File size: 11,619 Bytes
5a3a07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a534d17
 
 
5a3a07c
 
a534d17
5a3a07c
 
 
 
 
a534d17
 
 
5a3a07c
 
 
 
 
 
 
 
 
 
a534d17
 
 
5a3a07c
 
 
 
 
 
 
 
 
a534d17
 
 
5a3a07c
 
 
 
 
 
 
 
 
 
a534d17
5a3a07c
 
 
a534d17
 
 
5a3a07c
 
 
 
 
 
 
 
 
 
a534d17
5a3a07c
 
 
 
 
 
 
 
a534d17
5a3a07c
a534d17
 
 
5a3a07c
 
 
 
 
 
 
 
a534d17
 
 
5a3a07c
a534d17
5a3a07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a534d17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
---
license: apache-2.0
task_categories:
- graph-ml
tags:
- horology
size_categories:
- 100K<n<1M
---

# Watch Market Analysis Graph Neural Network Dataset

## Executive Summary

This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market. 
It addresses three key market characteristics that traditional recommendation systems often miss:

- **Condition-Based Value Dynamics**: Captures how a watch's condition influences its market position and value relative to other timepieces
- **Temporal Price Behaviors**: Models non-linear price patterns where certain watches appreciate while others depreciate
- **Inter-Model Relationships**: Maps complex value relationships between different models that transcend traditional brand hierarchies

### Key Statistics
- Total Watches: 284,491
- Total Brands: 28
- Price Range: $50 - $3.2M
- Year Range: 1559-2024

### Primary Use Cases
- Advanced watch recommendation systems
- Market positioning analysis
- Value relationship modeling
- Temporal trend analysis

## Dataset Description

### Data Structure
The dataset is structured as a PyTorch Geometric Data object with three main components:
- Node features tensor (watch attributes)
- Edge index matrix (watch connections)
- Edge attributes (similarity weights)

### Features
Key features include:
- **Brand Embeddings**: 128-dimensional vectors capturing brand identity and market position
- **Material Embeddings**: 64-dimensional vectors for material types and values
- **Movement Embeddings**: 64-dimensional vectors representing technical hierarchies
- **Temporal Features**: 32-dimensional cyclical embeddings for year and seasonal patterns
- **Condition Scores**: Standardized scale (0.5-1.0) based on watch condition
- **Price Features**: Log-transformed and normalized across market segments
- **Physical Attributes**: Standardized measurements in millimeters

### Network Properties
- **Node Connections**: 3-5 edges per watch
- **Similarity Threshold**: 70% minimum similarity for edge creation
- **Edge Weights**: Based on multiple similarity factors:
  - Price (50% influence)
  - Brand similarity
  - Material type
  - Temporal proximity
  - Condition score

### Processing Parameters
- Batch Size: 50 watches per chunk
- Processing Window: 1000 watches
- Edge Generation Batch: 32 watches
- Network Architecture: Combined GCN and GAT layers with 4 attention heads


## Exploratory Data Analysis

### Brand Distribution

![Brand Distribution Treemap](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/2.png)

The treemap visualization provides a hierarchical view of market presence:
- Rolex dominates with the highest representation, reflecting its market leadership
- Omega and Seiko follow as major players, indicating a strong market presence
- Distribution reveals clear tiers in the luxury watch market
- Brand representation correlates with market positioning and availability


### Feature Correlations

![Feature Correlation Matrix](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/3.png)

The correlation matrix reveals important market dynamics:
- **Size vs. Year**: Positive correlation indicating a trend toward larger case sizes in modern watches
- **Price vs. Size**: Moderate correlation showing larger watches generally command higher prices
- **Price vs. Year**: Notably low correlation, demonstrating that vintage watches maintain value
- Each feature contributes unique information, validated by the lack of strong correlations across all variables


### Market Structure Visualizations

#### UMAP Analysis

![UMAP Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/4.png)

The UMAP visualization unveils complex market positioning dynamics:
- Rolex maintains a dominant central position around coordinates (0, -5), showing unparalleled brand cohesion
- Omega and Breitling cluster in the left segment, indicating strategic market alignment
- Seiko and Longines occupy the upper-right quadrant, reflecting distinct value propositions
- Premium timepieces (yellower/greener hues) show tighter clustering, suggesting standardized luxury attributes
- Smaller, specialized clusters indicate distinct horological collections and style categories


#### t-SNE Visualization

![t-SNE Analysis](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/5.png)

T-SNE analysis reveals clear market stratification with logarithmic pricing from $50 to $3.2M:
- **Entry-Level Segment ($50-$4,000)**
 - Anchored by Seiko in the left segment
 - High volume, accessible luxury positioning
- **Mid-Range Segment ($4,000-$35,000)**
 - Occupies central space
 - Shows competitive positioning between brands
 - Cartier demonstrates strategic positioning between luxury and mid-range
- **Ultra-Luxury Segment ($35,000-$3.2M)**
 - Dominated by Patek Philippe and Audemars Piguet
 - Clear separation in the right segment
 - Strong brand clustering indicating market alignment

#### PCA Analysis

![PCA Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/6.png)

Principal Component Analysis provides robust market insights with 56.6% total explained variance:
- **First Principal Component (31.3%)**
 - Predominantly captures price dynamics
 - Shows clear separation between market segments
- **Second Principal Component (25.3%)**
 - Reflects brand positioning and design philosophies
 - Reveals vertical dispersion indicating intra-brand diversity
- **Brand Trajectory**
 - Natural progression from Seiko through Longines, Breitling, and Omega
 - Culminates in Rolex and Patek Philippe
 - Diagonal trend line serves as a market positioning indicator
- **Market Implications**
 - Successful brands occupy optimal positions along both dimensions
 - Clear differentiation between adjacent competitors
 - Evidence of strategic market positioning


#### Network Visualizations


**Force-Directed Graph**

![Force-Directed Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/7.png)

The force-directed layout reveals natural market clustering:
- Richard Mille's peripheral positioning highlights ultra-luxury strategy
- Dense central clustering shows mainstream luxury brand interconnectivity
- Edge patterns reveal shared market characteristics
- Node proximity indicates competitive positioning


**Starburst Visualization**

![Starburst Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/8.png)

Radial architecture provides a hierarchical market perspective:
- Central node represents the overall market
- Green nodes show brand territories with strategic spacing
- Blue peripheral nodes indicate individual timepieces
- Node density reveals:
 - Brand portfolio breadth
 - Market penetration depth
 - Segment diversification
- Balanced spacing between brand nodes indicates market segmentation


## Ethics and Limitations

### Data Collection and Privacy
- Dataset consists of publicly available watch listings
- No personal information, seller details, or private transaction data
- Serial numbers and identifying marks removed
- Strict privacy standards maintained throughout collection

### Known Biases

#### Connection Strength Bias
- Edge weights and connections based on author's domain expertise
- Similarity thresholds (70%) chosen based on personal market understanding
- Brand value weightings reflect author's market analysis
- Connection strengths may not universally reflect all market perspectives

#### Market Representation Bias
- Predominantly represents online listings
- May not fully capture private sales and in-person transactions
- Popular brands overrepresented (Rolex 25%, Omega 14%)
- Limited editions and rare pieces underrepresented

#### Temporal Bias
- Stronger representation of recent listings
- Historical data may be underrepresented
- Current market conditions more heavily weighted
- Seasonal variations may affect price patterns

#### Brand and Model Bias
- Skewed toward mainstream luxury brands
- Limited representation of boutique manufacturers
- Popular models have more data points
- Vintage and discontinued models may lack comprehensive data

#### Price Bias
- Asking prices may differ from actual transaction values
- Regional price variations not fully captured
- Currency conversion effects on price relationships
- Market fluctuations may not be fully represented

### Usage Guidelines

#### Appropriate Uses
- Market research and analysis
- Academic research
- Watch relationship modeling
- Price trend studies
- Educational purposes

#### Prohibited Uses
- Price manipulation or market distortion
- Unfair trading practices
- Personal data extraction
- Misleading market analysis
- Anti-competitive practices

### License
This dataset is released under the Apache 2.0 License, which allows:
- Commercial use
- Modification
- Distribution
- Private use

While requiring:
- License and copyright notice
- State changes
- Preserve attributions


## Technical Details

### Power Analysis
Minimum sample requirements based on statistical analysis:
- Basic Network: 10,671 nodes (95% confidence, 3% margin)
- GNN Requirements: 14,400 samples (feature space dimensionality)
- Brand Coverage: 768 watches per brand
- Price Segments: 4,320 watches per segment

Current dataset (284,491 watches) exceeds requirements with:
- 5,000+ samples per major brand
- 50,000+ samples per price segment
- Sufficient network density

### Implementation Details

#### Network Architecture
- 3 GNN layers with residual connections
- 64 hidden channels
- 20% dropout rate
- 4 attention heads
- Learning rate: 0.001

#### Embedding Dimensions
- Brand: 128
- Material: 64
- Movement: 64
- Temporal: 32

#### Network Parameters
- Connections per watch: 3-5
- Similarity threshold: 70%
- Batch size: 50 watches
- Processing window: 1000 watches

#### Condition Scoring
- New: 1.0
- Unworn: 0.95
- Very Good: 0.8
- Good: 0.7
- Fair: 0.5

## Usage

### Required Files
The dataset consists of three main files:
- `watch_gnn_data.pt` (315 MB): Main PyTorch Geometric data object
- `edges.npz` (20.5 MB): Edge information
- `features.npy` (596 MB): Node features

### Loading the Dataset

```python
import torch
from torch_geometric.data import Data

# Load the main dataset
data = torch.load('watch_gnn_data.pt')
```

#### Access components

```
node_features = data.x  # Shape: [284491, combined_embedding_dim]
edge_index = data.edge_index  # Shape: [2, num_edges]
edge_attr = data.edge_attr  # Shape: [num_edges, 1]
```
#### For direct feature access
```
features = np.load('features.npy')
```
#### Get number of nodes
```
num_nodes = data.num_nodes
```

#### Get number of edges
```
num_edges = data.num_edges
```

#### Find similar watches (k-nearest neighbors)
```
def find_similar_watches(watch_id, k=5):
    # Get watch features
    watch_features = data.x[watch_id]
    
    # Calculate similarities
    similarities = torch.cosine_similarity(
        watch_features.unsqueeze(0),
        data.x,
        dim=1
    )
    
    # Get top k similar watches
    _, indices = similarities.topk(k+1)  # +1 to exclude self
    return indices[1:]  # Exclude self

# Get watch features
def get_watch_features(watch_id):
    return data.x[watch_id]

```

## Note
- The dataset is optimized for PyTorch Geometric operations
- Recommended to use GPU for large-scale operations
- Consider batch processing for memory efficiency