.gitattributes CHANGED
@@ -1,3 +1,59 @@
1
- *.pt filter=lfs diff=lfs merge=lfs -text
2
- *.npz filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  *.npy filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
+ *.model filter=lfs diff=lfs merge=lfs -text
15
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
16
  *.npy filter=lfs diff=lfs merge=lfs -text
17
+ *.npz filter=lfs diff=lfs merge=lfs -text
18
+ *.onnx filter=lfs diff=lfs merge=lfs -text
19
+ *.ot filter=lfs diff=lfs merge=lfs -text
20
+ *.parquet filter=lfs diff=lfs merge=lfs -text
21
+ *.pb filter=lfs diff=lfs merge=lfs -text
22
+ *.pickle filter=lfs diff=lfs merge=lfs -text
23
+ *.pkl filter=lfs diff=lfs merge=lfs -text
24
+ *.pt filter=lfs diff=lfs merge=lfs -text
25
+ *.pth filter=lfs diff=lfs merge=lfs -text
26
+ *.rar filter=lfs diff=lfs merge=lfs -text
27
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
28
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
30
+ *.tar filter=lfs diff=lfs merge=lfs -text
31
+ *.tflite filter=lfs diff=lfs merge=lfs -text
32
+ *.tgz filter=lfs diff=lfs merge=lfs -text
33
+ *.wasm filter=lfs diff=lfs merge=lfs -text
34
+ *.xz filter=lfs diff=lfs merge=lfs -text
35
+ *.zip filter=lfs diff=lfs merge=lfs -text
36
+ *.zst filter=lfs diff=lfs merge=lfs -text
37
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
38
+ # Audio files - uncompressed
39
+ *.pcm filter=lfs diff=lfs merge=lfs -text
40
+ *.sam filter=lfs diff=lfs merge=lfs -text
41
+ *.raw filter=lfs diff=lfs merge=lfs -text
42
+ # Audio files - compressed
43
+ *.aac filter=lfs diff=lfs merge=lfs -text
44
+ *.flac filter=lfs diff=lfs merge=lfs -text
45
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
46
+ *.ogg filter=lfs diff=lfs merge=lfs -text
47
+ *.wav filter=lfs diff=lfs merge=lfs -text
48
+ # Image files - uncompressed
49
+ *.bmp filter=lfs diff=lfs merge=lfs -text
50
+ *.gif filter=lfs diff=lfs merge=lfs -text
51
+ *.png filter=lfs diff=lfs merge=lfs -text
52
+ *.tiff filter=lfs diff=lfs merge=lfs -text
53
+ # Image files - compressed
54
+ *.jpg filter=lfs diff=lfs merge=lfs -text
55
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
56
+ *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
README.md DELETED
@@ -1,407 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- task_categories:
4
- - graph-ml
5
- tags:
6
- - horology
7
- size_categories:
8
- - 100K<n<1M
9
- ---
10
-
11
- # Watch Market Analysis Graph Neural Network Dataset
12
-
13
- ## Link:
14
-
15
- - Github link to the code through which this dataset was generated from: [watch-market-gnn-code](https://github.com/calicartels/watch-market-gnn-code)
16
- - Link to interactive EDA that is hosted on a website : [Watch Market Analysis Report](https://incomparable-torrone-ccda90.netlify.app/)
17
-
18
- ## Table of Contents
19
- [Summary](#summary)
20
- [Dataset Description](#dataset-description)
21
- [Technical Details](#technical-details)
22
- [Exploratory Data Analysis](#exploratory-data-analysis)
23
- [Ethics and Limitations](#ethics-and-limitations)
24
- [Usage](#usage)
25
-
26
- <details>
27
- <summary>Detailed Table of Contents</summary>
28
-
29
- * Summary
30
- * Key Statistics
31
- * Primary Use Cases
32
- * Dataset Description
33
- * Data Structure
34
- * Features
35
- * Network Properties
36
- * Processing Parameters
37
- * Technical Details
38
- * Power Analysis
39
- * Implementation Details
40
- * Network Architecture
41
- * Embedding Dimensions
42
- * Network Parameters
43
- * Condition Scoring
44
- * Exploratory Data Analysis
45
- * Brand Distribution
46
- * Feature Correlations
47
- * Market Structure Visualizations
48
- * UMAP Analysis
49
- * t-SNE Visualization
50
- * PCA Analysis
51
- * Network Visualizations
52
- * Ethics and Limitations
53
- * Data Collection and Privacy
54
- * Known Biases
55
- * Usage Guidelines
56
- * License
57
- * Usage
58
- * Required Files
59
- * Loading the Dataset
60
- * Code Examples
61
-
62
- </details>
63
-
64
- ---
65
-
66
-
67
- ## Summary
68
-
69
- This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market.
70
- It addresses three key market characteristics that traditional recommendation systems often miss:
71
-
72
- - **Condition-Based Value Dynamics**: Captures how a watch's condition influences its market position and value relative to other timepieces
73
- - **Temporal Price Behaviors**: Models non-linear price patterns where certain watches appreciate while others depreciate
74
- - **Inter-Model Relationships**: Maps complex value relationships between different models that transcend traditional brand hierarchies
75
-
76
- ### Key Statistics
77
- - Total Watches: 284,491
78
- - Total Brands: 28
79
- - Price Range: $50 - $3.2M
80
- - Year Range: 1559-2024
81
-
82
- ### Primary Use Cases
83
- - Advanced watch recommendation systems
84
- - Market positioning analysis
85
- - Value relationship modeling
86
- - Temporal trend analysis
87
-
88
- ## Dataset Description
89
-
90
- ### Data Structure
91
- The dataset is structured as a PyTorch Geometric Data object with three main components:
92
- - Node features tensor (watch attributes)
93
- - Edge index matrix (watch connections)
94
- - Edge attributes (similarity weights)
95
-
96
- ### Features
97
- Key features include:
98
- - **Brand Embeddings**: 128-dimensional vectors capturing brand identity and market position
99
- - **Material Embeddings**: 64-dimensional vectors for material types and values
100
- - **Movement Embeddings**: 64-dimensional vectors representing technical hierarchies
101
- - **Temporal Features**: 32-dimensional cyclical embeddings for year and seasonal patterns
102
- - **Condition Scores**: Standardized scale (0.5-1.0) based on watch condition
103
- - **Price Features**: Log-transformed and normalized across market segments
104
- - **Physical Attributes**: Standardized measurements in millimeters
105
-
106
- ### Network Properties
107
- - **Node Connections**: 3-5 edges per watch
108
- - **Similarity Threshold**: 70% minimum similarity for edge creation
109
- - **Edge Weights**: Based on multiple similarity factors:
110
- - Price (50% influence)
111
- - Brand similarity
112
- - Material type
113
- - Temporal proximity
114
- - Condition score
115
-
116
- ### Processing Parameters
117
- - Batch Size: 50 watches per chunk
118
- - Processing Window: 1000 watches
119
- - Edge Generation Batch: 32 watches
120
- - Network Architecture: Combined GCN and GAT layers with 4 attention heads
121
-
122
- ## Technical Details
123
-
124
- ### Power Analysis
125
- Minimum sample requirements based on statistical analysis:
126
- - Basic Network: 10,671 nodes (95% confidence, 3% margin)
127
- - GNN Requirements: 14,400 samples (feature space dimensionality)
128
- - Brand Coverage: 768 watches per brand
129
- - Price Segments: 4,320 watches per segment
130
-
131
- Current dataset (284,491 watches) exceeds requirements with:
132
- - 5,000+ samples per major brand
133
- - 50,000+ samples per price segment
134
- - Sufficient network density
135
-
136
- ### Implementation Details
137
-
138
- #### Network Architecture
139
- - 3 GNN layers with residual connections
140
- - 64 hidden channels
141
- - 20% dropout rate
142
- - 4 attention heads
143
- - Learning rate: 0.001
144
-
145
- #### Embedding Dimensions
146
- - Brand: 128
147
- - Material: 64
148
- - Movement: 64
149
- - Temporal: 32
150
-
151
- #### Network Parameters
152
- - Connections per watch: 3-5
153
- - Similarity threshold: 70%
154
- - Batch size: 50 watches
155
- - Processing window: 1000 watches
156
-
157
- #### Condition Scoring
158
- - New: 1.0
159
- - Unworn: 0.95
160
- - Very Good: 0.8
161
- - Good: 0.7
162
- - Fair: 0.5
163
-
164
- ## Exploratory Data Analysis
165
-
166
- **NOTE:**
167
- Only certain selected visualizations have been mentioned here, to see all the visualizations that have been explored in high-quality interactive graphs, please visit this site:
168
- [Watch Market Analysis Report](https://incomparable-torrone-ccda90.netlify.app/)
169
-
170
- ### Brand Distribution
171
-
172
- ![Brand Distribution Treemap](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/2.png)
173
-
174
- The treemap visualization provides a hierarchical view of market presence:
175
- - Rolex dominates with the highest representation, reflecting its market leadership
176
- - Omega and Seiko follow as major players, indicating a strong market presence
177
- - Distribution reveals clear tiers in the luxury watch market
178
- - Brand representation correlates with market positioning and availability
179
-
180
-
181
- ### Feature Correlations
182
-
183
- ![Feature Correlation Matrix](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/3.png)
184
-
185
- The correlation matrix reveals important market dynamics:
186
- - **Size vs. Year**: Positive correlation indicating a trend toward larger case sizes in modern watches
187
- - **Price vs. Size**: Moderate correlation showing larger watches generally command higher prices
188
- - **Price vs. Year**: Notably low correlation, demonstrating that vintage watches maintain value
189
- - Each feature contributes unique information, validated by the lack of strong correlations across all variables
190
-
191
-
192
- ### Market Structure Visualizations
193
-
194
- #### UMAP Analysis
195
-
196
- ![UMAP Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/4.png)
197
-
198
- The UMAP visualization unveils complex market positioning dynamics:
199
- - Rolex maintains a dominant central position around coordinates (0, -5), showing unparalleled brand cohesion
200
- - Omega and Breitling cluster in the left segment, indicating strategic market alignment
201
- - Seiko and Longines occupy the upper-right quadrant, reflecting distinct value propositions
202
- - Premium timepieces (yellower/greener hues) show tighter clustering, suggesting standardized luxury attributes
203
- - Smaller, specialized clusters indicate distinct horological collections and style categories
204
-
205
-
206
- #### t-SNE Visualization
207
-
208
- ![t-SNE Analysis](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/5.png)
209
-
210
- T-SNE analysis reveals clear market stratification with logarithmic pricing from $50 to $3.2M:
211
- - **Entry-Level Segment ($50-$4,000)**
212
- - Anchored by Seiko in the left segment
213
- - High volume, accessible luxury positioning
214
- - **Mid-Range Segment ($4,000-$35,000)**
215
- - Occupies central space
216
- - Shows competitive positioning between brands
217
- - Cartier demonstrates strategic positioning between luxury and mid-range
218
- - **Ultra-Luxury Segment ($35,000-$3.2M)**
219
- - Dominated by Patek Philippe and Audemars Piguet
220
- - Clear separation in the right segment
221
- - Strong brand clustering indicating market alignment
222
-
223
- #### PCA Analysis
224
-
225
- ![PCA Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/6.png)
226
-
227
- Principal Component Analysis provides robust market insights with 56.6% total explained variance:
228
- - **First Principal Component (31.3%)**
229
- - Predominantly captures price dynamics
230
- - Shows clear separation between market segments
231
- - **Second Principal Component (25.3%)**
232
- - Reflects brand positioning and design philosophies
233
- - Reveals vertical dispersion indicating intra-brand diversity
234
- - **Brand Trajectory**
235
- - Natural progression from Seiko through Longines, Breitling, and Omega
236
- - Culminates in Rolex and Patek Philippe
237
- - Diagonal trend line serves as a market positioning indicator
238
- - **Market Implications**
239
- - Successful brands occupy optimal positions along both dimensions
240
- - Clear differentiation between adjacent competitors
241
- - Evidence of strategic market positioning
242
-
243
-
244
- #### Network Visualizations
245
-
246
-
247
- **Force-Directed Graph**
248
-
249
- ![Force-Directed Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/7.png)
250
-
251
- The force-directed layout reveals natural market clustering:
252
- - Richard Mille's peripheral positioning highlights ultra-luxury strategy
253
- - Dense central clustering shows mainstream luxury brand interconnectivity
254
- - Edge patterns reveal shared market characteristics
255
- - Node proximity indicates competitive positioning
256
-
257
-
258
- **Starburst Visualization**
259
-
260
- ![Starburst Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/8.png)
261
-
262
- Radial architecture provides a hierarchical market perspective:
263
- - Central node represents the overall market
264
- - Green nodes show brand territories with strategic spacing
265
- - Blue peripheral nodes indicate individual timepieces
266
- - Node density reveals:
267
- - Brand portfolio breadth
268
- - Market penetration depth
269
- - Segment diversification
270
- - Balanced spacing between brand nodes indicates market segmentation
271
-
272
-
273
- ## Ethics and Limitations
274
-
275
- ### Data Collection and Privacy
276
- - Dataset consists of publicly available watch listings
277
- - No personal information, seller details, or private transaction data
278
- - Serial numbers and identifying marks removed
279
- - Strict privacy standards maintained throughout collection
280
-
281
- ### Known Biases
282
-
283
- #### Connection Strength Bias
284
- - Edge weights and connections based on author's domain expertise
285
- - Similarity thresholds (70%) chosen based on personal market understanding
286
- - Brand value weightings reflect author's market analysis
287
- - Connection strengths may not universally reflect all market perspectives
288
-
289
- #### Market Representation Bias
290
- - Predominantly represents online listings
291
- - May not fully capture private sales and in-person transactions
292
- - Popular brands overrepresented (Rolex 25%, Omega 14%)
293
- - Limited editions and rare pieces underrepresented
294
-
295
- #### Temporal Bias
296
- - Stronger representation of recent listings
297
- - Historical data may be underrepresented
298
- - Current market conditions more heavily weighted
299
- - Seasonal variations may affect price patterns
300
-
301
- #### Brand and Model Bias
302
- - Skewed toward mainstream luxury brands
303
- - Limited representation of boutique manufacturers
304
- - Popular models have more data points
305
- - Vintage and discontinued models may lack comprehensive data
306
-
307
- #### Price Bias
308
- - Asking prices may differ from actual transaction values
309
- - Regional price variations not fully captured
310
- - Currency conversion effects on price relationships
311
- - Market fluctuations may not be fully represented
312
-
313
- ### Usage Guidelines
314
-
315
- #### Appropriate Uses
316
- - Market research and analysis
317
- - Academic research
318
- - Watch relationship modeling
319
- - Price trend studies
320
- - Educational purposes
321
-
322
- #### Prohibited Uses
323
- - Price manipulation or market distortion
324
- - Unfair trading practices
325
- - Personal data extraction
326
- - Misleading market analysis
327
- - Anti-competitive practices
328
-
329
- ### License
330
- This dataset is released under the Apache 2.0 License, which allows:
331
- - Commercial use
332
- - Modification
333
- - Distribution
334
- - Private use
335
-
336
- While requiring:
337
- - License and copyright notice
338
- - State changes
339
- - Preserve attributions
340
-
341
-
342
- ## Usage
343
-
344
- ### Required Files
345
- The dataset consists of three main files:
346
- - `watch_gnn_data.pt` (315 MB): Main PyTorch Geometric data object
347
- - `edges.npz` (20.5 MB): Edge information
348
- - `features.npy` (596 MB): Node features
349
-
350
- ### Loading the Dataset
351
-
352
- ```python
353
- import torch
354
- from torch_geometric.data import Data
355
-
356
- # Load the main dataset
357
- data = torch.load('watch_gnn_data.pt')
358
- ```
359
-
360
- #### Access components
361
-
362
- ```
363
- node_features = data.x # Shape: [284491, combined_embedding_dim]
364
- edge_index = data.edge_index # Shape: [2, num_edges]
365
- edge_attr = data.edge_attr # Shape: [num_edges, 1]
366
- ```
367
- #### For direct feature access
368
- ```
369
- features = np.load('features.npy')
370
- ```
371
- #### Get number of nodes
372
- ```
373
- num_nodes = data.num_nodes
374
- ```
375
-
376
- #### Get number of edges
377
- ```
378
- num_edges = data.num_edges
379
- ```
380
-
381
- #### Find similar watches (k-nearest neighbors)
382
- ```
383
- def find_similar_watches(watch_id, k=5):
384
- # Get watch features
385
- watch_features = data.x[watch_id]
386
-
387
- # Calculate similarities
388
- similarities = torch.cosine_similarity(
389
- watch_features.unsqueeze(0),
390
- data.x,
391
- dim=1
392
- )
393
-
394
- # Get top k similar watches
395
- _, indices = similarities.topk(k+1) # +1 to exclude self
396
- return indices[1:] # Exclude self
397
-
398
- # Get watch features
399
- def get_watch_features(watch_id):
400
- return data.x[watch_id]
401
-
402
- ```
403
-
404
- ## Note
405
- - The dataset is optimized for PyTorch Geometric operations
406
- - Recommended to use GPU for large-scale operations
407
- - Consider batch processing for memory efficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1,18 +0,0 @@
1
- {
2
- "default": {
3
- "description": "Watch Market GNN Dataset",
4
- "homepage": "https://huggingface.co/datasets/TMVishnu/watch-market-gnn",
5
- "license": "apache-2.0",
6
- "features": {
7
- "watch_gnn_data": "torch_geometric",
8
- "edges": "numpy",
9
- "features": "numpy"
10
- },
11
- "task_templates": [
12
- {
13
- "task": "graph-ml",
14
- "task_categories": ["graph-ml"]
15
- }
16
- ]
17
- }
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/edges.npz → edges.npz RENAMED
File without changes
data/features.npy → features.npy RENAMED
File without changes
final_embeddings.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:313cc9d898844574164a483e87759df9bb9105d5fd837d2a0f301c0215de417b
3
+ size 291320009
loaded_data.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9c0fffa25354d19a3f933a3034eb96c7d49d97bf0aac4739c97951c495d5edf
3
+ size 36141191
processed_df.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef91906c5313e76804e010ecbf95bfc960bdf8f72973b7f6ae360913925cf709
3
+ size 615675312
data/watch_gnn_data.pt → watch_gnn_data.pt RENAMED
File without changes