Datasets:

Modalities:
Tabular
Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
Search is not available for this dataset
x
float64
-43.59
32.7
y
float64
-50.42
53
z
float64
-11.34
22.5
r
int64
0
255
g
int64
0
255
b
int64
0
255
cat
int64
-1
17
inst
int64
-1
115
0.041
0.011
1.358
232
233
233
0
0
0.041
0.011
1.358
224
225
225
0
0
0.041
0.011
1.36
232
233
233
0
0
0.041
0.011
1.361
228
229
230
0
0
0.041
0.011
1.361
224
225
226
0
0
0.041
0.011
1.361
232
233
233
0
0
0.041
0.011
1.361
232
233
233
0
0
0.041
0.011
1.361
224
225
225
0
0
0.041
0.011
1.361
232
233
233
0
0
0.041
0.011
1.361
224
225
225
0
0
0.041
0.011
1.363
228
229
230
0
0
0.041
0.011
1.363
224
225
225
0
0
0.041
0.011
1.363
224
225
225
0
0
0.041
0.011
1.363
228
229
230
0
0
0.041
0.011
1.363
227
228
228
0
0
0.041
0.011
1.364
228
229
230
0
0
0.041
0.011
1.364
224
225
225
0
0
0.052
0.014
1.369
206
205
209
0
0
0.052
0.014
1.369
206
205
209
0
0
0.052
0.014
1.369
206
205
209
0
0
0.052
0.014
1.37
206
205
209
0
0
0.052
0.014
1.372
206
205
209
0
0
0.052
0.014
1.37
206
205
209
0
0
0.052
0.014
1.372
209
206
212
0
0
0.052
0.014
1.373
209
206
212
0
0
0.052
0.014
1.373
206
205
209
0
0
0.052
0.014
1.377
206
205
209
0
0
0.067
0.018
1.413
189
181
193
0
0
0.067
0.018
1.415
189
181
193
0
0
0.067
0.018
1.415
189
181
193
0
0
0.067
0.018
1.416
189
181
193
0
0
0.067
0.018
1.416
189
181
193
0
0
0.078
0.021
1.413
179
174
191
0
0
0.078
0.021
1.413
179
174
191
0
0
0.078
0.021
1.415
179
174
191
0
0
0.078
0.021
1.416
181
173
190
0
0
0.078
0.021
1.415
179
174
191
0
0
0.078
0.021
1.416
179
174
191
0
0
0.085
0.023
1.416
181
180
191
0
0
0.085
0.023
1.416
182
179
192
0
0
0.085
0.023
1.416
181
180
191
0
0
0.085
0.023
1.416
184
179
190
0
0
0.096
0.026
1.413
181
179
187
0
0
0.096
0.026
1.415
183
178
190
0
0
0.096
0.026
1.416
181
180
190
0
0
0.096
0.026
1.416
181
179
187
0
0
0.096
0.026
1.416
183
178
190
0
0
0.096
0.026
1.413
184
177
187
0
0
0.096
0.026
1.413
181
179
187
0
0
0.096
0.026
1.416
184
177
187
0
0
0.096
0.026
1.415
185
175
188
0
0
0.096
0.026
1.416
181
179
187
0
0
0.096
0.026
1.416
181
179
187
0
0
0.107
0.029
1.415
179
175
184
0
0
0.108
0.029
1.415
179
175
184
0
0
0.107
0.029
1.415
180
175
186
0
0
0.108
0.029
1.415
180
173
186
0
0
0.107
0.029
1.416
179
175
184
0
0
0.108
0.029
1.416
180
173
186
0
0
0.107
0.029
1.416
180
175
186
0
0
0.108
0.029
1.415
183
173
186
0
0
0.108
0.029
1.415
180
173
186
0
0
0.111
0.03
1.415
178
173
184
0
0
0.111
0.03
1.416
179
174
185
0
0
0.119
0.032
1.415
177
174
183
0
0
0.119
0.032
1.415
176
172
182
0
0
0.119
0.032
1.416
177
170
182
0
0
0.119
0.032
1.416
177
170
182
0
0
0.119
0.032
1.415
177
170
182
0
0
0.119
0.032
1.416
179
171
183
0
0
0.119
0.032
1.416
177
170
182
0
0
0.125
0.034
1.413
178
170
181
0
0
0.125
0.034
1.415
176
173
181
0
0
0.125
0.034
1.415
178
170
181
0
0
0.125
0.034
1.416
176
173
181
0
0
0.125
0.034
1.416
178
170
181
0
0
0.13
0.035
1.416
179
171
180
0
0
0.13
0.035
1.416
179
171
180
0
0
0.13
0.035
1.416
179
171
180
0
0
0.136
0.037
1.416
176
172
182
0
0
0.137
0.037
1.415
179
170
181
0
0
0.137
0.037
1.416
176
172
182
0
0
0.137
0.037
1.416
179
170
181
0
0
0.14
0.038
1.416
177
176
182
0
0
0.14
0.038
1.415
183
173
186
0
0
0.14
0.038
1.416
180
173
182
0
0
0.148
0.04
1.413
177
174
182
0
0
0.148
0.04
1.413
177
174
182
0
0
0.148
0.04
1.415
177
174
182
0
0
0.148
0.04
1.413
179
172
184
0
0
0.149
0.04
1.413
179
172
184
0
0
0.148
0.04
1.413
179
172
184
0
0
0.149
0.04
1.413
179
172
181
0
0
0.148
0.04
1.415
180
174
184
0
0
0.149
0.04
1.415
179
172
184
0
0
0.151
0.041
1.413
181
172
186
0
0
0.151
0.041
1.413
177
173
184
0
0
0.151
0.041
1.415
181
172
186
0
0
0.151
0.041
1.415
177
173
184
0
0
0.151
0.041
1.415
180
171
185
0
0

This resource contains Indoor Lodz University of Technology Point Cloud Dataset (InLUT3D) - a point cloud dataset tailored for real object classification and both semantic and instance segmentation tasks. Comprising of 321 scans, some areas in the dataset are covered by multiple scans. All of them are captured using the Leica BLK360 scanner.

Available categories

The points are divided into 18 distinct categories outlined in the label.yaml file along with their respective codes and colors. Among categories you will find:

  • ceiling,
  • floor,
  • wall,
  • stairs,
  • column,
  • chair,
  • sofa,
  • table,
  • storage,
  • door,
  • window,
  • plant,
  • dish,
  • wallmounted,
  • device,
  • radiator,
  • lighting,
  • other.

Challenges

Several challenges are intrinsic to the presented dataset:

  1. Extremely non-uniform categories distribution across the dataset.
  2. Presence of virtual images, particularly in reflective surfaces, and data exterior to windows and doors.
  3. Occurrence of missing data due to scanning shadows (certain areas were inaccessible to the scanner's laser beam).
  4. High point density throughout the dataset.

Data set structure

The structure of the dataset is the following:

inlut3d.tar.gz/
β”œβ”€ setup_0/
β”‚  β”œβ”€ projection.jpg
β”‚  β”œβ”€ segmentation.jpg
β”‚  β”œβ”€ setup_0.pts
β”œβ”€ setup_1/
β”‚  β”œβ”€ projection.jpg
β”‚  β”œβ”€ segmentation.jpg
β”‚  β”œβ”€ setup_1.pts
...
File Content
projection.jpg A file containing a spherical projection of a corresponding PTS file.
segmentation.jpg A file with objects marked with unique colours.
setup_x.pts A file with point cloud int the textual PTS format.

Point characteristic

Column ID Description
1 X Cartesian coordinate
2 Y Cartesian coordinate
3 Z Cartesian Coordinate
4 Red colour in RGB space in the range [0, 255]
5 Green colour in RGB space in the range [0, 255]
6 Blue colour in RGB space in the range [0, 255]
7 Category code
8 Instance ID
Downloads last month
333