id
stringlengths
14
16
text
stringlengths
20
3.26k
source
stringlengths
65
181
c7f8bf914708-0
langchain_postgres 0.0.6¶ langchain_postgres.chat_message_histories¶ Client for persisting chat message history in a Postgres database. This client provides support for both sync and async via psycopg 3. Classes¶ chat_message_histories.PostgresChatMessageHistory(...) Client for persisting chat message history in a Postgres database, langchain_postgres.vectorstores¶ Classes¶ vectorstores.DistanceStrategy(value) Enumerator of the Distance strategies. vectorstores.PGVector(embeddings, *[, ...]) Vectorstore implementation using Postgres as the backend.
https://api.python.langchain.com/en/latest/postgres_api_reference.html
84a96703aa28-0
langchain_ai21 0.1.6¶ langchain_ai21.ai21_base¶ Classes¶ ai21_base.AI21Base Create a new model by parsing and validating input data from keyword arguments. langchain_ai21.chat¶ Classes¶ chat.chat_adapter.ChatAdapter() Provides a common interface for the different Chat models available in AI21. chat.chat_adapter.J2ChatAdapter() chat.chat_adapter.JambaChatCompletionsAdapter() Functions¶ chat.chat_factory.create_chat_adapter(model) langchain_ai21.chat_models¶ Classes¶ chat_models.ChatAI21 ChatAI21 chat model. langchain_ai21.contextual_answers¶ Classes¶ contextual_answers.AI21ContextualAnswers Create a new model by parsing and validating input data from keyword arguments. contextual_answers.ContextualAnswerInput langchain_ai21.embeddings¶ Classes¶ embeddings.AI21Embeddings AI21 Embeddings embedding model. langchain_ai21.llms¶ Classes¶ llms.AI21LLM AI21LLM large language models. langchain_ai21.semantic_text_splitter¶ Classes¶ semantic_text_splitter.AI21SemanticTextSplitter([...]) Splitting text into coherent and readable units, based on distinct topics and lines
https://api.python.langchain.com/en/latest/ai21_api_reference.html
6402da86d7bd-0
langchain_exa 0.1.0¶ langchain_exa.retrievers¶ Classes¶ retrievers.ExaSearchRetriever Exa Search retriever. langchain_exa.tools¶ Tool for the Exa Search API. Classes¶ tools.ExaFindSimilarResults Tool that queries the Metaphor Search API and gets back json. tools.ExaSearchResults Tool that queries the Metaphor Search API and gets back json.
https://api.python.langchain.com/en/latest/exa_api_reference.html
769b8b2ed736-0
langchain_text_splitters 0.2.1¶ langchain_text_splitters.base¶ Classes¶ base.Language(value) Enum of the programming languages. base.TextSplitter(chunk_size, chunk_overlap, ...) Interface for splitting text into chunks. base.TokenTextSplitter([encoding_name, ...]) Splitting text to tokens using model tokenizer. base.Tokenizer(chunk_overlap, ...) Tokenizer data class. Functions¶ base.split_text_on_tokens(*, text, tokenizer) Split incoming text and return chunks using tokenizer. langchain_text_splitters.character¶ Classes¶ character.CharacterTextSplitter([separator, ...]) Splitting text that looks at characters. character.RecursiveCharacterTextSplitter([...]) Splitting text by recursively look at characters. langchain_text_splitters.html¶ Classes¶ html.ElementType Element type as typed dict. html.HTMLHeaderTextSplitter(headers_to_split_on) Splitting HTML files based on specified headers. html.HTMLSectionSplitter(headers_to_split_on) Splitting HTML files based on specified tag and font sizes. langchain_text_splitters.json¶ Classes¶ json.RecursiveJsonSplitter([max_chunk_size, ...]) langchain_text_splitters.konlpy¶ Classes¶ konlpy.KonlpyTextSplitter([separator]) Splitting text using Konlpy package. langchain_text_splitters.latex¶ Classes¶ latex.LatexTextSplitter(**kwargs) Attempts to split the text along Latex-formatted layout elements. langchain_text_splitters.markdown¶ Classes¶ markdown.HeaderType Header type as typed dict. markdown.LineType Line type as typed dict. markdown.MarkdownHeaderTextSplitter(...[, ...])
https://api.python.langchain.com/en/latest/text_splitters_api_reference.html
769b8b2ed736-1
Line type as typed dict. markdown.MarkdownHeaderTextSplitter(...[, ...]) Splitting markdown files based on specified headers. markdown.MarkdownTextSplitter(**kwargs) Attempts to split the text along Markdown-formatted headings. langchain_text_splitters.nltk¶ Classes¶ nltk.NLTKTextSplitter([separator, language]) Splitting text using NLTK package. langchain_text_splitters.python¶ Classes¶ python.PythonCodeTextSplitter(**kwargs) Attempts to split the text along Python syntax. langchain_text_splitters.sentence_transformers¶ Classes¶ sentence_transformers.SentenceTransformersTokenTextSplitter([...]) Splitting text to tokens using sentence model tokenizer. langchain_text_splitters.spacy¶ Classes¶ spacy.SpacyTextSplitter([separator, ...]) Splitting text using Spacy package.
https://api.python.langchain.com/en/latest/text_splitters_api_reference.html
ac4984d7bea5-0
langchain_fireworks 0.1.3¶ langchain_fireworks.chat_models¶ Fireworks chat wrapper. Classes¶ chat_models.ChatFireworks Fireworks Chat large language models API. langchain_fireworks.embeddings¶ Classes¶ embeddings.FireworksEmbeddings FireworksEmbeddings embedding model. langchain_fireworks.llms¶ Wrapper around Fireworks AI’s Completion API. Classes¶ llms.Fireworks LLM models from Fireworks.
https://api.python.langchain.com/en/latest/fireworks_api_reference.html
bcc038c1af01-0
langchain_cohere 0.1.6¶ langchain_cohere.chat_models¶ Classes¶ chat_models.ChatCohere Implements the BaseChatModel (and BaseLanguageModel) interface with Cohere's large language models. Functions¶ chat_models.get_cohere_chat_request(messages, *) Get the request for the Cohere chat API. chat_models.get_role(message) Get the role of the message. langchain_cohere.cohere_agent¶ Functions¶ cohere_agent.create_cohere_tools_agent(llm, ...) langchain_cohere.common¶ Classes¶ common.CohereCitation(start, end, text, ...) Cohere has fine-grained citations that specify the exact part of text. langchain_cohere.embeddings¶ Classes¶ embeddings.CohereEmbeddings Implements the Embeddings interface with Cohere's text representation language models. langchain_cohere.llms¶ Classes¶ llms.BaseCohere Base class for Cohere models. llms.Cohere Cohere large language models. Functions¶ llms.acompletion_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.completion_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.enforce_stop_tokens(text, stop) Cut off the text as soon as any stop words occur. langchain_cohere.rag_retrievers¶ Classes¶ rag_retrievers.CohereRagRetriever Cohere Chat API with RAG. langchain_cohere.react_multi_hop¶ Classes¶ react_multi_hop.parsing.CohereToolsReactAgentOutputParser Parses a message into agent actions/finish.
https://api.python.langchain.com/en/latest/cohere_api_reference.html
bcc038c1af01-1
Parses a message into agent actions/finish. Functions¶ react_multi_hop.agent.create_cohere_react_agent(...) Create an agent that enables multiple tools to be used in sequence to complete a task. react_multi_hop.parsing.parse_actions(generation) Parse action selections from model output. react_multi_hop.parsing.parse_answer_with_prefixes(...) parses string into key-value pairs, react_multi_hop.parsing.parse_citations(...) Parses a grounded_generation (from parse_actions) and documents (from convert_to_documents) into a (generation, CohereCitation list) tuple. react_multi_hop.parsing.parse_jsonified_tool_use_generation(...) Parses model-generated jsonified actions. react_multi_hop.prompt.convert_to_documents(...) Converts observations into a 'document' dict react_multi_hop.prompt.create_directly_answer_tool() directly_answer is a special tool that's always presented to the model as an available tool. react_multi_hop.prompt.multi_hop_prompt(...) The returned function produces a BasePromptTemplate suitable for multi-hop. react_multi_hop.prompt.render_intermediate_steps(...) Renders an agent's intermediate steps into prompt content. react_multi_hop.prompt.render_messages(messages) Renders one or more BaseMessage implementations into prompt content. react_multi_hop.prompt.render_observations(...) Renders the 'output' part of an Agent's intermediate step into prompt content. react_multi_hop.prompt.render_role(message) Renders the role of a message into prompt content. react_multi_hop.prompt.render_structured_preamble([...]) Renders the structured preamble part of the prompt content. react_multi_hop.prompt.render_tool(tool) Renders a tool into prompt content react_multi_hop.prompt.render_tool_args(tool) Renders the 'Args' section of a tool's prompt content. react_multi_hop.prompt.render_tool_signature(tool)
https://api.python.langchain.com/en/latest/cohere_api_reference.html
bcc038c1af01-2
react_multi_hop.prompt.render_tool_signature(tool) Renders the signature of a tool into prompt content. react_multi_hop.prompt.render_type(type_, ...) Renders a tool's type into prompt content. langchain_cohere.rerank¶ Classes¶ rerank.CohereRerank Document compressor that uses Cohere Rerank API.
https://api.python.langchain.com/en/latest/cohere_api_reference.html
0bffa7774dfd-0
langchain_aws 0.1.6¶ langchain_aws.chat_models¶ Classes¶ chat_models.bedrock.BedrockChat [Deprecated] chat_models.bedrock.ChatBedrock A chat model that uses the Bedrock API. chat_models.bedrock.ChatPromptAdapter() Adapter class to prepare the inputs from Langchain to prompt format that Chat model expects. Functions¶ chat_models.bedrock.convert_messages_to_prompt_anthropic(...) Format a list of messages into a full prompt for the Anthropic model chat_models.bedrock.convert_messages_to_prompt_llama(...) Convert a list of messages to a prompt for llama. chat_models.bedrock.convert_messages_to_prompt_llama3(...) Convert a list of messages to a prompt for llama. chat_models.bedrock.convert_messages_to_prompt_mistral(...) Convert a list of messages to a prompt for mistral. langchain_aws.embeddings¶ Classes¶ embeddings.bedrock.BedrockEmbeddings Bedrock embedding models. langchain_aws.function_calling¶ Methods for creating function specs in the style of Bedrock Functions for supported model providers Classes¶ function_calling.AnthropicTool function_calling.FunctionDescription Representation of a callable function to send to an LLM. function_calling.ToolDescription Representation of a callable function to the OpenAI API. Functions¶ function_calling.convert_to_anthropic_tool(tool) function_calling.get_system_message(tools) langchain_aws.graphs¶ Classes¶ graphs.neptune_graph.BaseNeptuneGraph() graphs.neptune_graph.NeptuneAnalyticsGraph(...) Neptune Analytics wrapper for graph operations. graphs.neptune_graph.NeptuneGraph(host[, ...]) Neptune wrapper for graph operations. graphs.neptune_graph.NeptuneQueryException(...) Exception for the Neptune queries.
https://api.python.langchain.com/en/latest/aws_api_reference.html
0bffa7774dfd-1
graphs.neptune_graph.NeptuneQueryException(...) Exception for the Neptune queries. graphs.neptune_rdf_graph.NeptuneRdfGraph(host) Neptune wrapper for RDF graph operations. langchain_aws.llms¶ Classes¶ llms.bedrock.Bedrock [Deprecated] llms.bedrock.BedrockBase Base class for Bedrock models. llms.bedrock.BedrockLLM Bedrock models. llms.bedrock.LLMInputOutputAdapter() Adapter class to prepare the inputs from Langchain to a format that LLM model expects. llms.sagemaker_endpoint.ContentHandlerBase() A handler class to transform input from LLM to a format that SageMaker endpoint expects. llms.sagemaker_endpoint.LLMContentHandler() Content handler for LLM class. llms.sagemaker_endpoint.LineIterator(stream) A helper class for parsing the byte stream input. llms.sagemaker_endpoint.SagemakerEndpoint Sagemaker Inference Endpoint models. Functions¶ llms.sagemaker_endpoint.enforce_stop_tokens(...) Cut off the text as soon as any stop words occur. langchain_aws.retrievers¶ Classes¶ retrievers.bedrock.AmazonKnowledgeBasesRetriever Amazon Bedrock Knowledge Bases retrieval. retrievers.bedrock.RetrievalConfig Configuration for retrieval. retrievers.bedrock.VectorSearchConfig Configuration for vector search. retrievers.kendra.AdditionalResultAttribute Additional result attribute. retrievers.kendra.AdditionalResultAttributeValue Value of an additional result attribute. retrievers.kendra.AmazonKendraRetriever Amazon Kendra Index retriever. retrievers.kendra.DocumentAttribute Document attribute. retrievers.kendra.DocumentAttributeValue Value of a document attribute.
https://api.python.langchain.com/en/latest/aws_api_reference.html
0bffa7774dfd-2
Document attribute. retrievers.kendra.DocumentAttributeValue Value of a document attribute. retrievers.kendra.Highlight Information that highlights the keywords in the excerpt. retrievers.kendra.QueryResult Amazon Kendra Query API search result. retrievers.kendra.QueryResultItem Query API result item. retrievers.kendra.ResultItem Base class of a result item. retrievers.kendra.RetrieveResult Amazon Kendra Retrieve API search result. retrievers.kendra.RetrieveResultItem Retrieve API result item. retrievers.kendra.TextWithHighLights Text with highlights. Functions¶ retrievers.kendra.clean_excerpt(excerpt) Clean an excerpt from Kendra. retrievers.kendra.combined_text(item) Combine a ResultItem title and excerpt into a single string. langchain_aws.utils¶ Functions¶ utils.enforce_stop_tokens(text, stop) Cut off the text as soon as any stop words occur. utils.get_num_tokens_anthropic(text) Get the number of tokens in a string of text. utils.get_token_ids_anthropic(text) Get the token ids for a string of text.
https://api.python.langchain.com/en/latest/aws_api_reference.html
0427ef845670-0
langchain_voyageai 0.1.1¶ langchain_voyageai.embeddings¶ Classes¶ embeddings.VoyageAIEmbeddings VoyageAIEmbeddings embedding model. langchain_voyageai.rerank¶ Classes¶ rerank.VoyageAIRerank Document compressor that uses VoyageAI Rerank API.
https://api.python.langchain.com/en/latest/voyageai_api_reference.html
4c61959f7b68-0
langchain_couchbase 0.0.1¶ langchain_couchbase.vectorstores¶ Couchbase vector stores. Classes¶ vectorstores.CouchbaseVectorStore(cluster, ...) Couchbase vector store.
https://api.python.langchain.com/en/latest/couchbase_api_reference.html
1a3f9b66ffdb-0
langchain_experimental 0.0.60¶ langchain_experimental.agents¶ Agent is a class that uses an LLM to choose a sequence of actions to take. In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order. Agents select and use Tools and Toolkits for actions. Functions¶ agents.agent_toolkits.csv.base.create_csv_agent(...) Create pandas dataframe agent by loading csv to a dataframe. agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent(llm, df) Construct a Pandas agent from an LLM and dataframe(s). agents.agent_toolkits.python.base.create_python_agent(...) Construct a python agent from an LLM and tool. agents.agent_toolkits.spark.base.create_spark_dataframe_agent(llm, df) Construct a Spark agent from an LLM and dataframe. agents.agent_toolkits.xorbits.base.create_xorbits_agent(...) Construct a xorbits agent from an LLM and dataframe. langchain_experimental.autonomous_agents¶ Autonomous agents in the Langchain experimental package include [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT), [BabyAGI](https://github.com/yoheinakajima/babyagi), and [HuggingGPT](https://arxiv.org/abs/2303.17580) agents that interact with language models autonomously. These agents have specific functionalities like memory management, task creation, execution chains, and response generation. They differ from ordinary agents by their autonomous decision-making capabilities, memory handling, and specialized functionalities for tasks and response. Classes¶ autonomous_agents.autogpt.agent.AutoGPT(...) Agent for interacting with AutoGPT.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-1
Agent for interacting with AutoGPT. autonomous_agents.autogpt.memory.AutoGPTMemory Memory for AutoGPT. autonomous_agents.autogpt.output_parser.AutoGPTAction(...) Action returned by AutoGPTOutputParser. autonomous_agents.autogpt.output_parser.AutoGPTOutputParser Output parser for AutoGPT. autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser Base Output parser for AutoGPT. autonomous_agents.autogpt.prompt.AutoGPTPrompt Prompt for AutoGPT. autonomous_agents.autogpt.prompt_generator.PromptGenerator() Generator of custom prompt strings. autonomous_agents.baby_agi.baby_agi.BabyAGI Controller model for the BabyAGI agent. autonomous_agents.baby_agi.task_creation.TaskCreationChain Chain generating tasks. autonomous_agents.baby_agi.task_execution.TaskExecutionChain Chain to execute tasks. autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain Chain to prioritize tasks. autonomous_agents.hugginggpt.hugginggpt.HuggingGPT(...) Agent for interacting with HuggingGPT. autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain Chain to execute tasks. autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerator(...) Generates a response based on the input. autonomous_agents.hugginggpt.task_executor.Task(...) Task to be executed. autonomous_agents.hugginggpt.task_executor.TaskExecutor(plan) Load tools and execute tasks. autonomous_agents.hugginggpt.task_planner.BasePlanner Base class for a planner. autonomous_agents.hugginggpt.task_planner.Plan(steps) A plan to execute. autonomous_agents.hugginggpt.task_planner.PlanningOutputParser
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-2
autonomous_agents.hugginggpt.task_planner.PlanningOutputParser Parses the output of the planning stage. autonomous_agents.hugginggpt.task_planner.Step(...) A step in the plan. autonomous_agents.hugginggpt.task_planner.TaskPlaningChain Chain to execute tasks. autonomous_agents.hugginggpt.task_planner.TaskPlanner Planner for tasks. Functions¶ autonomous_agents.autogpt.output_parser.preprocess_json_input(...) Preprocesses a string to be parsed as json. autonomous_agents.autogpt.prompt_generator.get_prompt(tools) Generates a prompt string. autonomous_agents.hugginggpt.repsonse_generator.load_response_generator(llm) Load the ResponseGenerator. autonomous_agents.hugginggpt.task_planner.load_chat_planner(llm) Load the chat planner. langchain_experimental.chat_models¶ Chat Models are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs. Class hierarchy: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ chat_models.llm_wrapper.ChatWrapper Wrapper for chat LLMs. chat_models.llm_wrapper.Llama2Chat Wrapper for Llama-2-chat model. chat_models.llm_wrapper.Mixtral See https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format chat_models.llm_wrapper.Orca Wrapper for Orca-style models. chat_models.llm_wrapper.Vicuna
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-3
Wrapper for Orca-style models. chat_models.llm_wrapper.Vicuna Wrapper for Vicuna-style models. langchain_experimental.comprehend_moderation¶ Comprehend Moderation is used to detect and handle Personally Identifiable Information (PII), toxicity, and prompt safety in text. The Langchain experimental package includes the AmazonComprehendModerationChain class for the comprehend moderation tasks. It is based on Amazon Comprehend service. This class can be configured with specific moderation settings like PII labels, redaction, toxicity thresholds, and prompt safety thresholds. See more at https://aws.amazon.com/comprehend/ Amazon Comprehend service is used by several other classes: - ComprehendToxicity class is used to check the toxicity of text prompts using AWS Comprehend service and take actions based on the configuration ComprehendPromptSafety class is used to validate the safety of given prompt text, raising an error if unsafe content is detected based on the specified threshold ComprehendPII class is designed to handle Personally Identifiable Information (PII) moderation tasks, detecting and managing PII entities in text inputs Classes¶ comprehend_moderation.amazon_comprehend_moderation.AmazonComprehendModerationChain Moderation Chain, based on Amazon Comprehend service. comprehend_moderation.base_moderation.BaseModeration(client) Base class for moderation. comprehend_moderation.base_moderation_callbacks.BaseModerationCallbackHandler() Base class for moderation callback handlers. comprehend_moderation.base_moderation_config.BaseModerationConfig Base configuration settings for moderation. comprehend_moderation.base_moderation_config.ModerationPiiConfig Configuration for PII moderation filter.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-4
Configuration for PII moderation filter. comprehend_moderation.base_moderation_config.ModerationPromptSafetyConfig Configuration for Prompt Safety moderation filter. comprehend_moderation.base_moderation_config.ModerationToxicityConfig Configuration for Toxicity moderation filter. comprehend_moderation.base_moderation_exceptions.ModerationPiiError([...]) Exception raised if PII entities are detected. comprehend_moderation.base_moderation_exceptions.ModerationPromptSafetyError([...]) Exception raised if Unsafe prompts are detected. comprehend_moderation.base_moderation_exceptions.ModerationToxicityError([...]) Exception raised if Toxic entities are detected. comprehend_moderation.pii.ComprehendPII(client) Class to handle Personally Identifiable Information (PII) moderation. comprehend_moderation.prompt_safety.ComprehendPromptSafety(client) Class to handle prompt safety moderation. comprehend_moderation.toxicity.ComprehendToxicity(client) Class to handle toxicity moderation. langchain_experimental.cpal¶ Causal program-aided language (CPAL) is a concept implemented in LangChain as a chain for causal modeling and narrative decomposition. CPAL improves upon the program-aided language (PAL) by incorporating causal structure to prevent hallucination in language models, particularly when dealing with complex narratives and math problems with nested dependencies. CPAL involves translating causal narratives into a stack of operations, setting hypothetical conditions for causal models, and decomposing narratives into story elements. It allows for the creation of causal chains that define the relationships between different elements in a narrative, enabling the modeling and analysis of causal relationships within a given context. Classes¶ cpal.base.CPALChain
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-5
of causal relationships within a given context. Classes¶ cpal.base.CPALChain Causal program-aided language (CPAL) chain implementation. cpal.base.CausalChain Translate the causal narrative into a stack of operations. cpal.base.InterventionChain Set the hypothetical conditions for the causal model. cpal.base.NarrativeChain Decompose the narrative into its story elements. cpal.base.QueryChain Query the outcome table using SQL. cpal.constants.Constant(value) Enum for constants used in the CPAL. cpal.models.CausalModel Casual data. cpal.models.EntityModel Entity in the story. cpal.models.EntitySettingModel Entity initial conditions. cpal.models.InterventionModel Intervention data of the story aka initial conditions. cpal.models.NarrativeModel Narrative input as three story elements. cpal.models.QueryModel Query data of the story. cpal.models.ResultModel Result of the story query. cpal.models.StoryModel Story data. cpal.models.SystemSettingModel System initial conditions. langchain_experimental.data_anonymizer¶ Data anonymizer contains both Anonymizers and Deanonymizers. It uses the [Microsoft Presidio](https://microsoft.github.io/presidio/) library. Anonymizers are used to replace a Personally Identifiable Information (PII) entity text with some other value by applying a certain operator (e.g. replace, mask, redact, encrypt). Deanonymizers are used to revert the anonymization operation (e.g. to decrypt an encrypted text). Classes¶ data_anonymizer.base.AnonymizerBase() Base abstract class for anonymizers. data_anonymizer.base.ReversibleAnonymizerBase() Base abstract class for reversible anonymizers.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-6
Base abstract class for reversible anonymizers. data_anonymizer.deanonymizer_mapping.DeanonymizerMapping(...) Deanonymizer mapping. data_anonymizer.presidio.PresidioAnonymizer([...]) Anonymizer using Microsoft Presidio. data_anonymizer.presidio.PresidioAnonymizerBase([...]) Base Anonymizer using Microsoft Presidio. data_anonymizer.presidio.PresidioReversibleAnonymizer([...]) Reversible Anonymizer using Microsoft Presidio. Functions¶ data_anonymizer.deanonymizer_mapping.create_anonymizer_mapping(...) Create or update the mapping used to anonymize and/or data_anonymizer.deanonymizer_mapping.format_duplicated_operator(...) Format the operator name with the count. data_anonymizer.deanonymizer_matching_strategies.case_insensitive_matching_strategy(...) Case insensitive matching strategy for deanonymization. data_anonymizer.deanonymizer_matching_strategies.combined_exact_fuzzy_matching_strategy(...) Combined exact and fuzzy matching strategy for deanonymization. data_anonymizer.deanonymizer_matching_strategies.exact_matching_strategy(...) Exact matching strategy for deanonymization. data_anonymizer.deanonymizer_matching_strategies.fuzzy_matching_strategy(...) Fuzzy matching strategy for deanonymization. data_anonymizer.deanonymizer_matching_strategies.ngram_fuzzy_matching_strategy(...) N-gram fuzzy matching strategy for deanonymization. data_anonymizer.faker_presidio_mapping.get_pseudoanonymizer_mapping([seed]) Get a mapping of entities to pseudo anonymize them. langchain_experimental.fallacy_removal¶ Fallacy Removal Chain runs a self-review of logical fallacies as determined by paper [Robust and Explainable Identification of Logical Fallacies in Natural
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-7
as determined by paper [Robust and Explainable Identification of Logical Fallacies in Natural Language Arguments](https://arxiv.org/pdf/2212.07425.pdf). It is modeled after Constitutional AI and in the same format, but applying logical fallacies as generalized rules to remove them in output. Classes¶ fallacy_removal.base.FallacyChain Chain for applying logical fallacy evaluations. fallacy_removal.models.LogicalFallacy Logical fallacy. langchain_experimental.generative_agents¶ Generative Agent primitives. Classes¶ generative_agents.generative_agent.GenerativeAgent Agent as a character with memory and innate characteristics. generative_agents.memory.GenerativeAgentMemory Memory for the generative agent. langchain_experimental.graph_transformers¶ Graph Transformers transform Documents into Graph Documents. Classes¶ graph_transformers.diffbot.DiffbotGraphTransformer(...) Transform documents into graph documents using Diffbot NLP API. graph_transformers.diffbot.NodesList() List of nodes with associated properties. graph_transformers.diffbot.SimplifiedSchema() Simplified schema mapping. graph_transformers.diffbot.TypeOption(value) An enumeration. graph_transformers.llm.LLMGraphTransformer(llm) Transform documents into graph-based documents using a LLM. graph_transformers.llm.UnstructuredRelation Create a new model by parsing and validating input data from keyword arguments. Functions¶ graph_transformers.diffbot.format_property_key(s) Formats a string to be used as a property key. graph_transformers.llm.create_simple_model([...]) Simple model allows to limit node and/or relationship types. graph_transformers.llm.create_unstructured_prompt([...]) graph_transformers.llm.format_property_key(s) graph_transformers.llm.map_to_base_node(node) Map the SimpleNode to the base Node.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-8
Map the SimpleNode to the base Node. graph_transformers.llm.map_to_base_relationship(rel) Map the SimpleRelationship to the base Relationship. graph_transformers.llm.optional_enum_field([...]) Utility function to conditionally create a field with an enum constraint. langchain_experimental.llm_bash¶ LLM bash is a chain that uses LLM to interpret a prompt and executes bash code. Classes¶ llm_bash.base.LLMBashChain Chain that interprets a prompt and executes bash operations. llm_bash.bash.BashProcess([strip_newlines, ...]) Wrapper for starting subprocesses. llm_bash.prompt.BashOutputParser Parser for bash output. langchain_experimental.llm_symbolic_math¶ Chain that interprets a prompt and executes python code to do math. Heavily borrowed from llm_math, uses the [SymPy](https://www.sympy.org/) package. Classes¶ llm_symbolic_math.base.LLMSymbolicMathChain Chain that interprets a prompt and executes python code to do symbolic math. langchain_experimental.llms¶ Experimental LLM classes provide access to the large language model (LLM) APIs and services. Classes¶ llms.anthropic_functions.AnthropicFunctions [Deprecated] Chat model for interacting with Anthropic functions. llms.anthropic_functions.TagParser() Parser for the tool tags. llms.jsonformer_decoder.JsonFormer Jsonformer wrapped LLM using HuggingFace Pipeline API. llms.llamaapi.ChatLlamaAPI Chat model using the Llama API. llms.lmformatenforcer_decoder.LMFormatEnforcer LMFormatEnforcer wrapped LLM using HuggingFace Pipeline API. llms.ollama_functions.OllamaFunctions
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-9
llms.ollama_functions.OllamaFunctions Function chat model that uses Ollama API. llms.rellm_decoder.RELLM RELLM wrapped LLM using HuggingFace Pipeline API. Functions¶ llms.jsonformer_decoder.import_jsonformer() Lazily import of the jsonformer package. llms.lmformatenforcer_decoder.import_lmformatenforcer() Lazily import of the lmformatenforcer package. llms.ollama_functions.convert_to_ollama_tool(tool) Convert a tool to an Ollama tool. llms.ollama_functions.parse_response(message) Extract function_call from AIMessage. llms.rellm_decoder.import_rellm() Lazily import of the rellm package. langchain_experimental.open_clip¶ OpenCLIP Embeddings model. OpenCLIP is a multimodal model that can encode text and images into a shared space. See this paper for more details: https://arxiv.org/abs/2103.00020 and [this repository](https://github.com/mlfoundations/open_clip) for details. Classes¶ open_clip.open_clip.OpenCLIPEmbeddings OpenCLIP Embeddings model. langchain_experimental.pal_chain¶ PAL Chain implements Program-Aided Language Models. See the paper: https://arxiv.org/pdf/2211.10435.pdf. This chain is vulnerable to [arbitrary code execution](https://github.com/langchain-ai/langchain/issues/5872). Classes¶ pal_chain.base.PALChain Chain that implements Program-Aided Language Models (PAL). pal_chain.base.PALValidation([...]) Validation for PAL generated code. langchain_experimental.plan_and_execute¶ Plan-and-execute agents are planning tasks with a language model (LLM) and
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-10
Plan-and-execute agents are planning tasks with a language model (LLM) and executing them with a separate agent. Classes¶ plan_and_execute.agent_executor.PlanAndExecute Plan and execute a chain of steps. plan_and_execute.executors.base.BaseExecutor Base executor. plan_and_execute.executors.base.ChainExecutor Chain executor. plan_and_execute.planners.base.BasePlanner Base planner. plan_and_execute.planners.base.LLMPlanner LLM planner. plan_and_execute.planners.chat_planner.PlanningOutputParser Planning output parser. plan_and_execute.schema.BaseStepContainer Base step container. plan_and_execute.schema.ListStepContainer Container for List of steps. plan_and_execute.schema.Plan Plan. plan_and_execute.schema.PlanOutputParser Plan output parser. plan_and_execute.schema.Step Step. plan_and_execute.schema.StepResponse Step response. Functions¶ plan_and_execute.executors.agent_executor.load_agent_executor(...) Load an agent executor. plan_and_execute.planners.chat_planner.load_chat_planner(llm) Load a chat planner. langchain_experimental.prompt_injection_identifier¶ HuggingFace Injection Identifier is a tool that uses [HuggingFace Prompt Injection model](https://huggingface.co/deepset/deberta-v3-base-injection) to detect prompt injection attacks. Classes¶ prompt_injection_identifier.hugging_face_identifier.HuggingFaceInjectionIdentifier Tool that uses HuggingFace Prompt Injection model to detect prompt injection attacks. prompt_injection_identifier.hugging_face_identifier.PromptInjectionException([...]) Exception raised when prompt injection attack is detected. langchain_experimental.recommenders¶ Amazon Personalize primitives. [Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html)
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-11
is a fully managed machine learning service that uses your data to generate item recommendations for your users. Classes¶ recommenders.amazon_personalize.AmazonPersonalize([...]) Amazon Personalize Runtime wrapper for executing real-time operations. recommenders.amazon_personalize_chain.AmazonPersonalizeChain Chain for retrieving recommendations from Amazon Personalize, langchain_experimental.retrievers¶ Retriever class returns Documents given a text query. It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) it. Classes¶ retrievers.vector_sql_database.VectorSQLDatabaseChainRetriever Retriever that uses Vector SQL Database. langchain_experimental.rl_chain¶ RL (Reinforcement Learning) Chain leverages the Vowpal Wabbit (VW) models for reinforcement learning with a context, with the goal of modifying the prompt before the LLM call. [Vowpal Wabbit](https://vowpalwabbit.org/) provides fast, efficient, and flexible online machine learning techniques for reinforcement learning, supervised learning, and more. Classes¶ rl_chain.base.AutoSelectionScorer Auto selection scorer. rl_chain.base.Embedder(*args, **kwargs) Abstract class to represent an embedder. rl_chain.base.Event(inputs[, selected]) Abstract class to represent an event. rl_chain.base.Policy(**kwargs) Abstract class to represent a policy. rl_chain.base.RLChain Chain that leverages the Vowpal Wabbit (VW) model as a learned policy for reinforcement learning. rl_chain.base.Selected() Abstract class to represent the selected item. rl_chain.base.SelectionScorer Abstract class to grade the chosen selection or the response of the llm.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-12
Abstract class to grade the chosen selection or the response of the llm. rl_chain.base.VwPolicy(model_repo, vw_cmd, ...) Vowpal Wabbit policy. rl_chain.metrics.MetricsTrackerAverage(step) Metrics Tracker Average. rl_chain.metrics.MetricsTrackerRollingWindow(...) Metrics Tracker Rolling Window. rl_chain.model_repository.ModelRepository(folder) Model Repository. rl_chain.pick_best_chain.PickBest Chain that leverages the Vowpal Wabbit (VW) model for reinforcement learning with a context, with the goal of modifying the prompt before the LLM call. rl_chain.pick_best_chain.PickBestEvent(...) Event class for PickBest chain. rl_chain.pick_best_chain.PickBestFeatureEmbedder(...) Embed the BasedOn and ToSelectFrom inputs into a format that can be used by the learning policy. rl_chain.pick_best_chain.PickBestRandomPolicy(...) Random policy for PickBest chain. rl_chain.pick_best_chain.PickBestSelected([...]) Selected class for PickBest chain. rl_chain.vw_logger.VwLogger(path) Vowpal Wabbit custom logger. Functions¶ rl_chain.base.BasedOn(anything) Wrap a value to indicate that it should be based on. rl_chain.base.Embed(anything[, keep]) Wrap a value to indicate that it should be embedded. rl_chain.base.EmbedAndKeep(anything) Wrap a value to indicate that it should be embedded and kept. rl_chain.base.ToSelectFrom(anything) Wrap a value to indicate that it should be selected from. rl_chain.base.embed(to_embed, model[, namespace]) Embed the actions or context using the SentenceTransformer model (or a model that has an encode function). rl_chain.base.embed_dict_type(item, model) Embed a dictionary item.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-13
rl_chain.base.embed_dict_type(item, model) Embed a dictionary item. rl_chain.base.embed_list_type(item, model[, ...]) Embed a list item. rl_chain.base.embed_string_type(item, model) Embed a string or an _Embed object. rl_chain.base.get_based_on_and_to_select_from(inputs) Get the BasedOn and ToSelectFrom from the inputs. rl_chain.base.is_stringtype_instance(item) Check if an item is a string. rl_chain.base.parse_lines(parser, input_str) Parse the input string into a list of examples. rl_chain.base.prepare_inputs_for_autoembed(inputs) Prepare the inputs for auto embedding. rl_chain.base.stringify_embedding(embedding) Convert an embedding to a string. langchain_experimental.smart_llm¶ SmartGPT chain is applying self-critique using the SmartGPT workflow. See details at https://youtu.be/wVzuvf9D9BU The workflow performs these 3 steps: 1. Ideate: Pass the user prompt to an Ideation LLM n_ideas times, each result is an “idea” Critique: Pass the ideas to a Critique LLM which looks for flaws in the ideas & picks the best one Resolve: Pass the critique to a Resolver LLM which improves upon the best idea & outputs only the (improved version of) the best output In total, the SmartGPT workflow will use n_ideas+2 LLM calls Note that SmartLLMChain will only improve results (compared to a basic LLMChain), when the underlying models have the capability for reflection, which smaller models often don’t. Finally, a SmartLLMChain assumes that each underlying LLM outputs exactly 1 result. Classes¶ smart_llm.base.SmartLLMChain
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-14
Classes¶ smart_llm.base.SmartLLMChain Chain for applying self-critique using the SmartGPT workflow. langchain_experimental.sql¶ SQL Chain interacts with SQL Database. Classes¶ sql.base.SQLDatabaseChain Chain for interacting with SQL Database. sql.base.SQLDatabaseSequentialChain Chain for querying SQL database that is a sequential chain. sql.vector_sql.VectorSQLDatabaseChain Chain for interacting with Vector SQL Database. sql.vector_sql.VectorSQLOutputParser Output Parser for Vector SQL. sql.vector_sql.VectorSQLRetrieveAllOutputParser Parser based on VectorSQLOutputParser. Functions¶ sql.vector_sql.get_result_from_sqldb(db, cmd) Get result from SQL Database. langchain_experimental.tabular_synthetic_data¶ Generate tabular synthetic data using LLM and few-shot template. Classes¶ tabular_synthetic_data.base.SyntheticDataGenerator Generate synthetic data using the given LLM and few-shot template. Functions¶ tabular_synthetic_data.openai.create_openai_data_generator(...) Create an instance of SyntheticDataGenerator tailored for OpenAI models. langchain_experimental.text_splitter¶ Experimental text splitter based on semantic similarity. Classes¶ text_splitter.SemanticChunker(embeddings[, ...]) Split the text based on semantic similarity. Functions¶ text_splitter.calculate_cosine_distances(...) Calculate cosine distances between sentences. text_splitter.combine_sentences(sentences[, ...]) Combine sentences based on buffer size. langchain_experimental.tools¶ Experimental Python REPL tools. Classes¶ tools.python.tool.PythonAstREPLTool Tool for running python code in a REPL. tools.python.tool.PythonInputs Python inputs. tools.python.tool.PythonREPLTool Tool for running python code in a REPL. Functions¶
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-15
Tool for running python code in a REPL. Functions¶ tools.python.tool.sanitize_input(query) Sanitize input to the python REPL. langchain_experimental.tot¶ Implementation of a Tree of Thought (ToT) chain based on the paper [Large Language Model Guided Tree-of-Thought](https://arxiv.org/pdf/2305.08291.pdf). The Tree of Thought (ToT) chain uses a tree structure to explore the space of possible solutions to a problem. Classes¶ tot.base.ToTChain Chain implementing the Tree of Thought (ToT). tot.checker.ToTChecker Tree of Thought (ToT) checker. tot.controller.ToTController([c]) Tree of Thought (ToT) controller. tot.memory.ToTDFSMemory([stack]) Memory for the Tree of Thought (ToT) chain. tot.prompts.CheckerOutputParser Parse and check the output of the language model. tot.prompts.JSONListOutputParser Parse the output of a PROPOSE_PROMPT response. tot.thought.Thought A thought in the ToT. tot.thought.ThoughtValidity(value) Enum for the validity of a thought. tot.thought_generation.BaseThoughtGenerationStrategy Base class for a thought generation strategy. tot.thought_generation.ProposePromptStrategy Strategy that is sequentially using a "propose prompt". tot.thought_generation.SampleCoTStrategy Sample strategy from a Chain-of-Thought (CoT) prompt. Functions¶ tot.prompts.get_cot_prompt() Get the prompt for the Chain of Thought (CoT) chain. tot.prompts.get_propose_prompt() Get the prompt for the PROPOSE_PROMPT chain. langchain_experimental.utilities¶ Utility that simulates a standalone Python REPL. Classes¶ utilities.python.PythonREPL
https://api.python.langchain.com/en/latest/experimental_api_reference.html
1a3f9b66ffdb-16
Utility that simulates a standalone Python REPL. Classes¶ utilities.python.PythonREPL Simulates a standalone Python REPL. langchain_experimental.video_captioning¶ Classes¶ video_captioning.base.VideoCaptioningChain Video Captioning Chain. video_captioning.models.AudioModel(...) video_captioning.models.BaseModel(...) video_captioning.models.CaptionModel(...) video_captioning.models.VideoModel(...) video_captioning.services.audio_service.AudioProcessor(api_key) video_captioning.services.caption_service.CaptionProcessor(llm) video_captioning.services.combine_service.CombineProcessor(llm) video_captioning.services.image_service.ImageProcessor([...]) video_captioning.services.srt_service.SRTProcessor()
https://api.python.langchain.com/en/latest/experimental_api_reference.html
e0dcea695f3e-0
langchain_google_genai 1.0.6¶ langchain_google_genai.chat_models¶ Classes¶ chat_models.ChatGoogleGenerativeAI Google Generative AI Chat models API. chat_models.ChatGoogleGenerativeAIError Custom exception class for errors associated with the Google GenAI API. langchain_google_genai.embeddings¶ Classes¶ embeddings.GoogleGenerativeAIEmbeddings Google Generative AI Embeddings. langchain_google_genai.genai_aqa¶ Google GenerativeAI Attributed Question and Answering (AQA) service. The GenAI Semantic AQA API is a managed end to end service that allows developers to create responses grounded on specified passages based on a user query. For more information visit: https://developers.generativeai.google/guide Classes¶ genai_aqa.AqaInput Input to GenAIAqa.invoke. genai_aqa.AqaOutput Output from GenAIAqa.invoke. genai_aqa.GenAIAqa Google's Attributed Question and Answering service. langchain_google_genai.google_vector_store¶ Google Generative AI Vector Store. The GenAI Semantic Retriever API is a managed end-to-end service that allows developers to create a corpus of documents to perform semantic search on related passages given a user query. For more information visit: https://developers.generativeai.google/guide Classes¶ google_vector_store.DoesNotExistsException(*, ...) google_vector_store.GoogleVectorStore(*, ...) Google GenerativeAI Vector Store. google_vector_store.ServerSideEmbedding() Do nothing embedding model where the embedding is done by the server. langchain_google_genai.llms¶ Classes¶ llms.GoogleGenerativeAI Google GenerativeAI models. llms.GoogleModelFamily(value) An enumeration.
https://api.python.langchain.com/en/latest/google_genai_api_reference.html
1aeb7f07cbc6-0
langchain_google_community 1.0.5¶ langchain_google_community.bigquery¶ Classes¶ bigquery.BigQueryLoader(query[, project, ...]) Load from the Google Cloud Platform BigQuery. langchain_google_community.bigquery_vector_search¶ Vector Store in Google Cloud BigQuery. Classes¶ bigquery_vector_search.BigQueryVectorSearch(...) Google Cloud BigQuery vector store. langchain_google_community.docai¶ Module contains a PDF parser based on Document AI from Google Cloud. You need to install two libraries to use this parser: pip install google-cloud-documentai pip install google-cloud-documentai-toolbox Classes¶ docai.DocAIParser(*[, client, location, ...]) Google Cloud Document AI parser. docai.DocAIParsingResults(source_path, ...) A dataclass to store Document AI parsing results. langchain_google_community.documentai_warehouse¶ Retriever wrapper for Google Cloud Document AI Warehouse. Classes¶ documentai_warehouse.DocumentAIWarehouseRetriever A retriever based on Document AI Warehouse. langchain_google_community.drive¶ Classes¶ drive.GoogleDriveLoader Load Google Docs from Google Drive. langchain_google_community.gcs_directory¶ Classes¶ gcs_directory.GCSDirectoryLoader(...[, ...]) Load from GCS directory. langchain_google_community.gcs_file¶ Classes¶ gcs_file.GCSFileLoader(project_name, bucket, ...) Load from GCS file. langchain_google_community.gmail¶ Classes¶ gmail.base.GmailBaseTool Base class for Gmail tools. gmail.create_draft.CreateDraftSchema Input for CreateDraftTool. gmail.create_draft.GmailCreateDraft Tool that creates a draft email for Gmail. gmail.get_message.GmailGetMessage Tool that gets a message by ID from Gmail.
https://api.python.langchain.com/en/latest/google_community_api_reference.html
1aeb7f07cbc6-1
gmail.get_message.GmailGetMessage Tool that gets a message by ID from Gmail. gmail.get_message.SearchArgsSchema Input for GetMessageTool. gmail.get_thread.GetThreadSchema Input for GetMessageTool. gmail.get_thread.GmailGetThread Tool that gets a thread by ID from Gmail. gmail.loader.GMailLoader(creds[, n, raise_error]) Load data from GMail. gmail.search.GmailSearch Tool that searches for messages or threads in Gmail. gmail.search.Resource(value) Enumerator of Resources to search. gmail.search.SearchArgsSchema Input for SearchGmailTool. gmail.send_message.GmailSendMessage Tool that sends a message to Gmail. gmail.send_message.SendMessageSchema Input for SendMessageTool. gmail.toolkit.GmailToolkit Toolkit for interacting with Gmail. Functions¶ gmail.utils.build_resource_service([...]) Build a Gmail service. gmail.utils.clean_email_body(body) Clean email body. gmail.utils.get_gmail_credentials([...]) Get credentials. gmail.utils.import_google() Import google libraries. gmail.utils.import_googleapiclient_resource_builder() Import googleapiclient.discovery.build function. gmail.utils.import_installed_app_flow() Import InstalledAppFlow class. langchain_google_community.google_speech_to_text¶ Classes¶ google_speech_to_text.SpeechToTextLoader(...) Loader for Google Cloud Speech-to-Text audio transcripts. langchain_google_community.places_api¶ Chain that calls Google Places API. Classes¶ places_api.GooglePlacesAPIWrapper Wrapper around Google Places API. places_api.GooglePlacesSchema Input for GooglePlacesTool. places_api.GooglePlacesTool Tool that queries the Google places API. langchain_google_community.search¶ Util that calls Google Search. Classes¶ search.GoogleSearchAPIWrapper Wrapper for Google Search API. search.GoogleSearchResults
https://api.python.langchain.com/en/latest/google_community_api_reference.html
1aeb7f07cbc6-2
search.GoogleSearchAPIWrapper Wrapper for Google Search API. search.GoogleSearchResults Tool that queries the Google Search API and gets back json. search.GoogleSearchRun Tool that queries the Google search API. langchain_google_community.texttospeech¶ Classes¶ texttospeech.TextToSpeechTool Tool that queries the Google Cloud Text to Speech API. langchain_google_community.translate¶ Classes¶ translate.GoogleTranslateTransformer(...[, ...]) Translate text documents using Google Cloud Translation. langchain_google_community.vertex_ai_search¶ Retriever wrapper for Google Vertex AI Search. Set the following environment variables before the tests: export PROJECT_ID=… - set to your Google Cloud project ID export DATA_STORE_ID=… - the ID of the search engine to use for the test Classes¶ vertex_ai_search.VertexAIMultiTurnSearchRetriever Google Vertex AI Search retriever for multi-turn conversations. vertex_ai_search.VertexAISearchRetriever Google Vertex AI Search retriever. vertex_ai_search.VertexAISearchSummaryTool Class that exposes a tool to interface with an App in Vertex Search and Conversation and get the summary of the documents retrieved. langchain_google_community.vertex_check_grounding¶ Classes¶ vertex_check_grounding.VertexAICheckGroundingWrapper Initializes the Vertex AI CheckGroundingOutputParser with configurable parameters. langchain_google_community.vertex_rank¶ Classes¶ vertex_rank.VertexAIRank Initializes the Vertex AI Ranker with configurable parameters. langchain_google_community.vision¶ Classes¶ vision.CloudVisionLoader(file_path[, project]) vision.CloudVisionParser([project])
https://api.python.langchain.com/en/latest/google_community_api_reference.html
22fa5befd980-0
langchain 0.2.3¶ langchain.agents¶ Agent is a class that uses an LLM to choose a sequence of actions to take. In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order. Agents select and use Tools and Toolkits for actions. Class hierarchy: BaseSingleActionAgent --> LLMSingleActionAgent OpenAIFunctionsAgent XMLAgent Agent --> <name>Agent # Examples: ZeroShotAgent, ChatAgent BaseMultiActionAgent --> OpenAIMultiFunctionsAgent Main helpers: AgentType, AgentExecutor, AgentOutputParser, AgentExecutorIterator, AgentAction, AgentFinish Classes¶ agents.agent.Agent [Deprecated] Agent that calls the language model and deciding the action. agents.agent.AgentExecutor Agent that is using tools. agents.agent.AgentOutputParser Base class for parsing agent output into agent action/finish. agents.agent.BaseMultiActionAgent Base Multi Action Agent class. agents.agent.BaseSingleActionAgent Base Single Action Agent class. agents.agent.ExceptionTool Tool that just returns the query. agents.agent.LLMSingleActionAgent [Deprecated] Base class for single action agents. agents.agent.MultiActionAgentOutputParser Base class for parsing agent output into agent actions/finish. agents.agent.RunnableAgent Agent powered by runnables. agents.agent.RunnableMultiActionAgent Agent powered by runnables. agents.agent_iterator.AgentExecutorIterator(...) Iterator for AgentExecutor. agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo Information about a VectorStore. agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit Toolkit for routing between Vector Stores. agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-1
Toolkit for routing between Vector Stores. agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit Toolkit for interacting with a Vector Store. agents.agent_types.AgentType(value) [Deprecated] An enum for agent types. agents.chat.base.ChatAgent [Deprecated] Chat Agent. agents.chat.output_parser.ChatOutputParser Output parser for the chat agent. agents.conversational.base.ConversationalAgent [Deprecated] An agent that holds a conversation in addition to using tools. agents.conversational.output_parser.ConvoOutputParser Output parser for the conversational agent. agents.conversational_chat.base.ConversationalChatAgent [Deprecated] An agent designed to hold a conversation in addition to using tools. agents.conversational_chat.output_parser.ConvoOutputParser Output parser for the conversational agent. agents.mrkl.base.ChainConfig(action_name, ...) Configuration for chain to use in MRKL system. agents.mrkl.base.MRKLChain [Deprecated] [Deprecated] Chain that implements the MRKL system. agents.mrkl.base.ZeroShotAgent [Deprecated] Agent for the MRKL chain. agents.mrkl.output_parser.MRKLOutputParser MRKL Output parser for the chat agent. agents.openai_assistant.base.OpenAIAssistantAction AgentAction with info needed to submit custom tool output to existing run. agents.openai_assistant.base.OpenAIAssistantFinish AgentFinish with run and thread metadata. agents.openai_assistant.base.OpenAIAssistantRunnable Run an OpenAI Assistant. agents.openai_functions_agent.agent_token_buffer_memory.AgentTokenBufferMemory Memory used to save agent output AND intermediate steps. agents.openai_functions_agent.base.OpenAIFunctionsAgent [Deprecated] An Agent driven by OpenAIs function powered API. agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-2
agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent [Deprecated] An Agent driven by OpenAIs function powered API. agents.output_parsers.json.JSONAgentOutputParser Parses tool invocations and final answers in JSON format. agents.output_parsers.openai_functions.OpenAIFunctionsAgentOutputParser Parses a message into agent action/finish. agents.output_parsers.openai_tools.OpenAIToolsAgentOutputParser Parses a message into agent actions/finish. agents.output_parsers.react_json_single_input.ReActJsonSingleInputOutputParser Parses ReAct-style LLM calls that have a single tool input in json format. agents.output_parsers.react_single_input.ReActSingleInputOutputParser Parses ReAct-style LLM calls that have a single tool input. agents.output_parsers.self_ask.SelfAskOutputParser Parses self-ask style LLM calls. agents.output_parsers.tools.ToolAgentAction Override init to support instantiation by position for backward compat. agents.output_parsers.tools.ToolsAgentOutputParser Parses a message into agent actions/finish. agents.output_parsers.xml.XMLAgentOutputParser Parses tool invocations and final answers in XML format. agents.react.base.DocstoreExplorer(docstore) [Deprecated] Class to assist with exploration of a document store. agents.react.base.ReActChain [Deprecated] [Deprecated] Chain that implements the ReAct paper. agents.react.base.ReActDocstoreAgent [Deprecated] Agent for the ReAct chain. agents.react.base.ReActTextWorldAgent [Deprecated] Agent for the ReAct TextWorld chain. agents.react.output_parser.ReActOutputParser Output parser for the ReAct agent. agents.schema.AgentScratchPadChatPromptTemplate Chat prompt template for the agent scratchpad.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-3
agents.schema.AgentScratchPadChatPromptTemplate Chat prompt template for the agent scratchpad. agents.self_ask_with_search.base.SelfAskWithSearchAgent [Deprecated] Agent for the self-ask-with-search paper. agents.self_ask_with_search.base.SelfAskWithSearchChain [Deprecated] [Deprecated] Chain that does self-ask with search. agents.structured_chat.base.StructuredChatAgent [Deprecated] Structured Chat Agent. agents.structured_chat.output_parser.StructuredChatOutputParser Output parser for the structured chat agent. agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries Output parser with retries for the structured chat agent. agents.tools.InvalidTool Tool that is run when invalid tool name is encountered by agent. agents.xml.base.XMLAgent [Deprecated] Agent that uses XML tags. Functions¶ agents.agent_toolkits.conversational_retrieval.openai_functions.create_conversational_retrieval_agent(...) A convenience method for creating a conversational retrieval agent. agents.agent_toolkits.vectorstore.base.create_vectorstore_agent(...) Construct a VectorStore agent from an LLM and tools. agents.agent_toolkits.vectorstore.base.create_vectorstore_router_agent(...) Construct a VectorStore router agent from an LLM and tools. agents.format_scratchpad.log.format_log_to_str(...) Construct the scratchpad that lets the agent continue its thought process. agents.format_scratchpad.log_to_messages.format_log_to_messages(...) Construct the scratchpad that lets the agent continue its thought process. agents.format_scratchpad.openai_functions.format_to_openai_function_messages(...) Convert (AgentAction, tool output) tuples into FunctionMessages. agents.format_scratchpad.openai_functions.format_to_openai_functions(...) Convert (AgentAction, tool output) tuples into FunctionMessages. agents.format_scratchpad.tools.format_to_tool_messages(...)
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-4
agents.format_scratchpad.tools.format_to_tool_messages(...) Convert (AgentAction, tool output) tuples into FunctionMessages. agents.format_scratchpad.xml.format_xml(...) Format the intermediate steps as XML. agents.initialize.initialize_agent(tools, llm) [Deprecated] Load an agent executor given tools and LLM. agents.json_chat.base.create_json_chat_agent(...) Create an agent that uses JSON to format its logic, build for Chat Models. agents.loading.load_agent(path, **kwargs) [Deprecated] Unified method for loading an agent from LangChainHub or local fs. agents.loading.load_agent_from_config(config) [Deprecated] Load agent from Config Dict. agents.openai_functions_agent.base.create_openai_functions_agent(...) Create an agent that uses OpenAI function calling. agents.openai_tools.base.create_openai_tools_agent(...) Create an agent that uses OpenAI tools. agents.output_parsers.openai_tools.parse_ai_message_to_openai_tool_action(message) Parse an AI message potentially containing tool_calls. agents.output_parsers.tools.parse_ai_message_to_tool_action(message) Parse an AI message potentially containing tool_calls. agents.react.agent.create_react_agent(llm, ...) Create an agent that uses ReAct prompting. agents.self_ask_with_search.base.create_self_ask_with_search_agent(...) Create an agent that uses self-ask with search prompting. agents.structured_chat.base.create_structured_chat_agent(...) Create an agent aimed at supporting tools with multiple inputs. agents.tool_calling_agent.base.create_tool_calling_agent(...) Create an agent that uses tools. agents.utils.validate_tools_single_input(...) Validate tools for single input. agents.xml.base.create_xml_agent(llm, tools, ...) Create an agent that uses XML to format its logic. langchain.callbacks¶ Callback handlers allow listening to events in LangChain. Class hierarchy:
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-5
langchain.callbacks¶ Callback handlers allow listening to events in LangChain. Class hierarchy: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler Classes¶ callbacks.streaming_aiter.AsyncIteratorCallbackHandler() Callback handler that returns an async iterator. callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*) Callback handler that returns an async iterator. callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler(*) Callback handler for streaming in agents. callbacks.tracers.logging.LoggingCallbackHandler(logger) Tracer that logs via the input Logger. langchain.chains¶ Chains are easily reusable components linked together. Chains encode a sequence of calls to components like models, document retrievers, other Chains, etc., and provide a simple interface to this sequence. The Chain interface makes it easy to create apps that are: Stateful: add Memory to any Chain to give it state, Observable: pass Callbacks to a Chain to execute additional functionality, like logging, outside the main sequence of component calls, Composable: combine Chains with other components, including other Chains. Class hierarchy: Chain --> <name>Chain # Examples: LLMChain, MapReduceChain, RouterChain Classes¶ chains.api.base.APIChain Chain that makes API calls and summarizes the responses to answer a question. chains.base.Chain Abstract base class for creating structured sequences of calls to components. chains.combine_documents.base.AnalyzeDocumentChain Chain that splits documents, then analyzes it in pieces. chains.combine_documents.base.BaseCombineDocumentsChain Base interface for chains combining documents. chains.combine_documents.map_reduce.MapReduceDocumentsChain Combining documents by mapping a chain over them, then combining results. chains.combine_documents.map_rerank.MapRerankDocumentsChain Combining documents by mapping a chain over them, then reranking results.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-6
Combining documents by mapping a chain over them, then reranking results. chains.combine_documents.reduce.AsyncCombineDocsProtocol(...) Interface for the combine_docs method. chains.combine_documents.reduce.CombineDocsProtocol(...) Interface for the combine_docs method. chains.combine_documents.reduce.ReduceDocumentsChain Combine documents by recursively reducing them. chains.combine_documents.refine.RefineDocumentsChain Combine documents by doing a first pass and then refining on more documents. chains.combine_documents.stuff.StuffDocumentsChain Chain that combines documents by stuffing into context. chains.constitutional_ai.base.ConstitutionalChain Chain for applying constitutional principles. chains.constitutional_ai.models.ConstitutionalPrinciple Class for a constitutional principle. chains.conversation.base.ConversationChain Chain to have a conversation and load context from memory. chains.conversational_retrieval.base.BaseConversationalRetrievalChain Chain for chatting with an index. chains.conversational_retrieval.base.ChatVectorDBChain Chain for chatting with a vector database. chains.conversational_retrieval.base.ConversationalRetrievalChain [Deprecated] Chain for having a conversation based on retrieved documents. chains.conversational_retrieval.base.InputType Input type for ConversationalRetrievalChain. chains.elasticsearch_database.base.ElasticsearchDatabaseChain Chain for interacting with Elasticsearch Database. chains.flare.base.FlareChain Chain that combines a retriever, a question generator, and a response generator. chains.flare.base.QuestionGeneratorChain Chain that generates questions from uncertain spans. chains.flare.prompts.FinishedOutputParser Output parser that checks if the output is finished. chains.hyde.base.HypotheticalDocumentEmbedder Generate hypothetical document for query, and then embed that. chains.llm.LLMChain [Deprecated] Chain to run queries against LLMs.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-7
chains.llm.LLMChain [Deprecated] Chain to run queries against LLMs. chains.llm_checker.base.LLMCheckerChain Chain for question-answering with self-verification. chains.llm_math.base.LLMMathChain Chain that interprets a prompt and executes python code to do math. chains.llm_summarization_checker.base.LLMSummarizationCheckerChain Chain for question-answering with self-verification. chains.mapreduce.MapReduceChain Map-reduce chain. chains.moderation.OpenAIModerationChain Pass input through a moderation endpoint. chains.natbot.base.NatBotChain Implement an LLM driven browser. chains.natbot.crawler.Crawler() A crawler for web pages. chains.natbot.crawler.ElementInViewPort A typed dictionary containing information about elements in the viewport. chains.openai_functions.citation_fuzzy_match.FactWithEvidence Class representing a single statement. chains.openai_functions.citation_fuzzy_match.QuestionAnswer A question and its answer as a list of facts each one should have a source. chains.openai_functions.openapi.SimpleRequestChain Chain for making a simple request to an API endpoint. chains.openai_functions.qa_with_structure.AnswerWithSources An answer to the question, with sources. chains.prompt_selector.BasePromptSelector Base class for prompt selectors. chains.prompt_selector.ConditionalPromptSelector Prompt collection that goes through conditionals. chains.qa_generation.base.QAGenerationChain Base class for question-answer generation chains. chains.qa_with_sources.base.BaseQAWithSourcesChain Question answering chain with sources over documents. chains.qa_with_sources.base.QAWithSourcesChain Question answering with sources over documents. chains.qa_with_sources.loading.LoadingCallable(...) Interface for loading the combine documents chain.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-8
chains.qa_with_sources.loading.LoadingCallable(...) Interface for loading the combine documents chain. chains.qa_with_sources.retrieval.RetrievalQAWithSourcesChain Question-answering with sources over an index. chains.qa_with_sources.vector_db.VectorDBQAWithSourcesChain Question-answering with sources over a vector database. chains.query_constructor.base.StructuredQueryOutputParser Output parser that parses a structured query. chains.query_constructor.parser.ISO8601Date A date in ISO 8601 format (YYYY-MM-DD). chains.query_constructor.schema.AttributeInfo Information about a data source attribute. chains.question_answering.chain.LoadingCallable(...) Interface for loading the combine documents chain. chains.retrieval_qa.base.BaseRetrievalQA Base class for question-answering chains. chains.retrieval_qa.base.RetrievalQA [Deprecated] Chain for question-answering against an index. chains.retrieval_qa.base.VectorDBQA Chain for question-answering against a vector database. chains.router.base.MultiRouteChain Use a single chain to route an input to one of multiple candidate chains. chains.router.base.Route(destination, ...) Create new instance of Route(destination, next_inputs) chains.router.base.RouterChain Chain that outputs the name of a destination chain and the inputs to it. chains.router.embedding_router.EmbeddingRouterChain Chain that uses embeddings to route between options. chains.router.llm_router.LLMRouterChain A router chain that uses an LLM chain to perform routing. chains.router.llm_router.RouterOutputParser Parser for output of router chain in the multi-prompt chain. chains.router.multi_prompt.MultiPromptChain A multi-route chain that uses an LLM router chain to choose amongst prompts. chains.router.multi_retrieval_qa.MultiRetrievalQAChain
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-9
chains.router.multi_retrieval_qa.MultiRetrievalQAChain A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains. chains.sequential.SequentialChain Chain where the outputs of one chain feed directly into next. chains.sequential.SimpleSequentialChain Simple chain where the outputs of one step feed directly into next. chains.sql_database.query.SQLInput Input for a SQL Chain. chains.sql_database.query.SQLInputWithTables Input for a SQL Chain. chains.summarize.chain.LoadingCallable(...) Interface for loading the combine documents chain. chains.transform.TransformChain Chain that transforms the chain output. Functions¶ chains.combine_documents.reduce.acollapse_docs(...) Execute a collapse function on a set of documents and merge their metadatas. chains.combine_documents.reduce.collapse_docs(...) Execute a collapse function on a set of documents and merge their metadatas. chains.combine_documents.reduce.split_list_of_docs(...) Split Documents into subsets that each meet a cumulative length constraint. chains.combine_documents.stuff.create_stuff_documents_chain(...) Create a chain for passing a list of Documents to a model. chains.example_generator.generate_example(...) Return another example given a list of examples for a prompt. chains.history_aware_retriever.create_history_aware_retriever(...) Create a chain that takes conversation history and returns documents. chains.loading.load_chain(path, **kwargs) Unified method for loading a chain from LangChainHub or local fs. chains.loading.load_chain_from_config(...) Load chain from Config Dict. chains.openai_functions.base.create_openai_fn_chain(...) [Deprecated] [Legacy] Create an LLM chain that uses OpenAI functions. chains.openai_functions.base.create_structured_output_chain(...) [Deprecated] [Legacy] Create an LLMChain that uses an OpenAI function to get a structured output.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-10
chains.openai_functions.citation_fuzzy_match.create_citation_fuzzy_match_chain(llm) Create a citation fuzzy match chain. chains.openai_functions.extraction.create_extraction_chain(...) [Deprecated] Creates a chain that extracts information from a passage. chains.openai_functions.extraction.create_extraction_chain_pydantic(...) [Deprecated] Creates a chain that extracts information from a passage using pydantic schema. chains.openai_functions.openapi.get_openapi_chain(spec) Create a chain for querying an API from a OpenAPI spec. chains.openai_functions.openapi.openapi_spec_to_openai_fn(spec) Convert a valid OpenAPI spec to the JSON Schema format expected for OpenAI chains.openai_functions.qa_with_structure.create_qa_with_sources_chain(llm) Create a question answering chain that returns an answer with sources. chains.openai_functions.qa_with_structure.create_qa_with_structure_chain(...) Create a question answering chain that returns an answer with sources chains.openai_functions.tagging.create_tagging_chain(...) Create a chain that extracts information from a passage chains.openai_functions.tagging.create_tagging_chain_pydantic(...) Create a chain that extracts information from a passage chains.openai_functions.utils.get_llm_kwargs(...) Return the kwargs for the LLMChain constructor. chains.openai_tools.extraction.create_extraction_chain_pydantic(...) [Deprecated] Creates a chain that extracts information from a passage. chains.prompt_selector.is_chat_model(llm) Check if the language model is a chat model. chains.prompt_selector.is_llm(llm) Check if the language model is a LLM. chains.qa_with_sources.loading.load_qa_with_sources_chain(llm) Load a question answering with sources chain. chains.query_constructor.base.construct_examples(...) Construct examples from input-output pairs. chains.query_constructor.base.fix_filter_directive(...) Fix invalid filter directive.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-11
chains.query_constructor.base.fix_filter_directive(...) Fix invalid filter directive. chains.query_constructor.base.get_query_constructor_prompt(...) Create query construction prompt. chains.query_constructor.base.load_query_constructor_chain(...) Load a query constructor chain. chains.query_constructor.base.load_query_constructor_runnable(...) Load a query constructor runnable chain. chains.query_constructor.parser.get_parser([...]) Return a parser for the query language. chains.query_constructor.parser.v_args(...) Dummy decorator for when lark is not installed. chains.question_answering.chain.load_qa_chain(llm) Load question answering chain. chains.retrieval.create_retrieval_chain(...) Create retrieval chain that retrieves documents and then passes them on. chains.sql_database.query.create_sql_query_chain(llm, db) Create a chain that generates SQL queries. chains.structured_output.base.create_openai_fn_runnable(...) [Deprecated] Create a runnable sequence that uses OpenAI functions. chains.structured_output.base.create_structured_output_runnable(...) [Deprecated] Create a runnable for extracting structured outputs. chains.structured_output.base.get_openai_output_parser(...) Get the appropriate function output parser given the user functions. chains.summarize.chain.load_summarize_chain(llm) Load summarizing chain. langchain.chat_models¶ Chat Models are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs. Class hierarchy: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm Main helpers: AIMessage, BaseMessage, HumanMessage Functions¶ chat_models.base.init_chat_model(model, *[, ...])
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-12
Functions¶ chat_models.base.init_chat_model(model, *[, ...]) [Beta] Initialize a ChatModel from the model name and provider. langchain.embeddings¶ Embedding models are wrappers around embedding models from different APIs and services. Embedding models can be LLMs or not. Class hierarchy: Embeddings --> <name>Embeddings # Examples: OpenAIEmbeddings, HuggingFaceEmbeddings Classes¶ embeddings.cache.CacheBackedEmbeddings(...) Interface for caching results from embedding models. langchain.evaluation¶ Evaluation chains for grading LLM and Chain outputs. This module contains off-the-shelf evaluation chains for grading the output of LangChain primitives such as language models and chains. Loading an evaluator To load an evaluator, you can use the load_evaluators or load_evaluator functions with the names of the evaluators to load. from langchain.evaluation import load_evaluator evaluator = load_evaluator("qa") evaluator.evaluate_strings( prediction="We sold more than 40,000 units last week", input="How many units did we sell last week?", reference="We sold 32,378 units", ) The evaluator must be one of EvaluatorType. Datasets To load one of the LangChain HuggingFace datasets, you can use the load_dataset function with the name of the dataset to load. from langchain.evaluation import load_dataset ds = load_dataset("llm-math") Some common use cases for evaluation include: Grading the accuracy of a response against ground truth answers: QAEvalChain Comparing the output of two models: PairwiseStringEvalChain or LabeledPairwiseStringEvalChain when there is additionally a reference label. Judging the efficacy of an agent’s tool usage: TrajectoryEvalChain
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-13
Judging the efficacy of an agent’s tool usage: TrajectoryEvalChain Checking whether an output complies with a set of criteria: CriteriaEvalChain or LabeledCriteriaEvalChain when there is additionally a reference label. Computing semantic difference between a prediction and reference: EmbeddingDistanceEvalChain or between two predictions: PairwiseEmbeddingDistanceEvalChain Measuring the string distance between a prediction and reference StringDistanceEvalChain or between two predictions PairwiseStringDistanceEvalChain Low-level API These evaluators implement one of the following interfaces: StringEvaluator: Evaluate a prediction string against a reference label and/or input context. PairwiseStringEvaluator: Evaluate two prediction strings against each other. Useful for scoring preferences, measuring similarity between two chain or llm agents, or comparing outputs on similar inputs. AgentTrajectoryEvaluator Evaluate the full sequence of actions taken by an agent. These interfaces enable easier composability and usage within a higher level evaluation framework. Classes¶ evaluation.agents.trajectory_eval_chain.TrajectoryEval A named tuple containing the score and reasoning for a trajectory. evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain A chain for evaluating ReAct style agents. evaluation.agents.trajectory_eval_chain.TrajectoryOutputParser Trajectory output parser. evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain A chain for comparing two outputs, such as the outputs evaluation.comparison.eval_chain.PairwiseStringEvalChain A chain for comparing two outputs, such as the outputs evaluation.comparison.eval_chain.PairwiseStringResultOutputParser A parser for the output of the PairwiseStringEvalChain. evaluation.criteria.eval_chain.Criteria(value) A Criteria to evaluate. evaluation.criteria.eval_chain.CriteriaEvalChain LLM Chain for evaluating runs against criteria. evaluation.criteria.eval_chain.CriteriaResultOutputParser A parser for the output of the CriteriaEvalChain.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-14
A parser for the output of the CriteriaEvalChain. evaluation.criteria.eval_chain.LabeledCriteriaEvalChain Criteria evaluation chain that requires references. evaluation.embedding_distance.base.EmbeddingDistance(value) Embedding Distance Metric. evaluation.embedding_distance.base.EmbeddingDistanceEvalChain Use embedding distances to score semantic difference between a prediction and reference. evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain Use embedding distances to score semantic difference between two predictions. evaluation.exact_match.base.ExactMatchStringEvaluator(*) Compute an exact match between the prediction and the reference. evaluation.parsing.base.JsonEqualityEvaluator([...]) Evaluate whether the prediction is equal to the reference after evaluation.parsing.base.JsonValidityEvaluator(...) Evaluate whether the prediction is valid JSON. evaluation.parsing.json_distance.JsonEditDistanceEvaluator([...]) An evaluator that calculates the edit distance between JSON strings. evaluation.parsing.json_schema.JsonSchemaEvaluator(...) An evaluator that validates a JSON prediction against a JSON schema reference. evaluation.qa.eval_chain.ContextQAEvalChain LLM Chain for evaluating QA w/o GT based on context evaluation.qa.eval_chain.CotQAEvalChain LLM Chain for evaluating QA using chain of thought reasoning. evaluation.qa.eval_chain.QAEvalChain LLM Chain for evaluating question answering. evaluation.qa.generate_chain.QAGenerateChain LLM Chain for generating examples for question answering. evaluation.regex_match.base.RegexMatchStringEvaluator(*) Compute a regex match between the prediction and the reference. evaluation.schema.AgentTrajectoryEvaluator() Interface for evaluating agent trajectories. evaluation.schema.EvaluatorType(value) The types of the evaluators. evaluation.schema.LLMEvalChain A base class for evaluators that use an LLM. evaluation.schema.PairwiseStringEvaluator() Compare the output of two models (or two outputs of the same model).
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-15
Compare the output of two models (or two outputs of the same model). evaluation.schema.StringEvaluator() Grade, tag, or otherwise evaluate predictions relative to their inputs and/or reference labels. evaluation.scoring.eval_chain.LabeledScoreStringEvalChain A chain for scoring the output of a model on a scale of 1-10. evaluation.scoring.eval_chain.ScoreStringEvalChain A chain for scoring on a scale of 1-10 the output of a model. evaluation.scoring.eval_chain.ScoreStringResultOutputParser A parser for the output of the ScoreStringEvalChain. evaluation.string_distance.base.PairwiseStringDistanceEvalChain Compute string edit distances between two predictions. evaluation.string_distance.base.StringDistance(value) Distance metric to use. evaluation.string_distance.base.StringDistanceEvalChain Compute string distances between the prediction and the reference. Functions¶ evaluation.comparison.eval_chain.resolve_pairwise_criteria(...) Resolve the criteria for the pairwise evaluator. evaluation.criteria.eval_chain.resolve_criteria(...) Resolve the criteria to evaluate. evaluation.loading.load_dataset(uri) Load a dataset from the LangChainDatasets on HuggingFace. evaluation.loading.load_evaluator(evaluator, *) Load the requested evaluation chain specified by a string. evaluation.loading.load_evaluators(evaluators, *) Load evaluators specified by a list of evaluator types. evaluation.scoring.eval_chain.resolve_criteria(...) Resolve the criteria for the pairwise evaluator. langchain.hub¶ Interface with the LangChain Hub. Functions¶ hub.pull(owner_repo_commit, *[, api_url, ...]) Pull an object from the hub and returns it as a LangChain object. hub.push(repo_full_name, object, *[, ...]) Push an object to the hub and returns the URL it can be viewed at in a browser. langchain.indexes¶
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-16
langchain.indexes¶ Index is used to avoid writing duplicated content into the vectostore and to avoid over-writing content if it’s unchanged. Indexes also : Create knowledge graphs from data. Support indexing workflows from LangChain data loaders to vectorstores. Importantly, Index keeps on working even if the content being written is derived via a set of transformations from some source content (e.g., indexing children documents that were derived from parent documents by chunking.) Classes¶ indexes.vectorstore.VectorStoreIndexWrapper Wrapper around a vectorstore for easy access. indexes.vectorstore.VectorstoreIndexCreator Logic for creating indexes. langchain.memory¶ Memory maintains Chain state, incorporating context from past runs. Class hierarchy for Memory: BaseMemory --> BaseChatMemory --> <name>Memory # Examples: ZepMemory, MotorheadMemory Main helpers: BaseChatMessageHistory Chat Message History stores the chat message history in different stores. Class hierarchy for ChatMessageHistory: BaseChatMessageHistory --> <name>ChatMessageHistory # Example: ZepChatMessageHistory Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ memory.buffer.ConversationBufferMemory Buffer for storing conversation memory. memory.buffer.ConversationStringBufferMemory Buffer for storing conversation memory. memory.buffer_window.ConversationBufferWindowMemory Buffer for storing conversation memory inside a limited size window. memory.chat_memory.BaseChatMemory Abstract base class for chat memory. memory.combined.CombinedMemory Combining multiple memories' data together. memory.entity.BaseEntityStore Abstract base class for Entity store. memory.entity.ConversationEntityMemory Entity extractor & summarizer memory. memory.entity.InMemoryEntityStore In-memory Entity store. memory.entity.RedisEntityStore Redis-backed Entity store. memory.entity.SQLiteEntityStore SQLite-backed Entity store
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-17
Redis-backed Entity store. memory.entity.SQLiteEntityStore SQLite-backed Entity store memory.entity.UpstashRedisEntityStore Upstash Redis backed Entity store. memory.readonly.ReadOnlySharedMemory Memory wrapper that is read-only and cannot be changed. memory.simple.SimpleMemory Simple memory for storing context or other information that shouldn't ever change between prompts. memory.summary.ConversationSummaryMemory Conversation summarizer to chat memory. memory.summary.SummarizerMixin Mixin for summarizer. memory.summary_buffer.ConversationSummaryBufferMemory Buffer with summarizer for storing conversation memory. memory.token_buffer.ConversationTokenBufferMemory Conversation chat memory with token limit. memory.vectorstore.VectorStoreRetrieverMemory VectorStoreRetriever-backed memory. Functions¶ memory.utils.get_prompt_input_key(inputs, ...) Get the prompt input key. langchain.model_laboratory¶ Experiment with different models. Classes¶ model_laboratory.ModelLaboratory(chains[, names]) Experiment with different models. langchain.output_parsers¶ OutputParser classes parse the output of an LLM call. Class hierarchy: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser Main helpers: Serializable, Generation, PromptValue Classes¶ output_parsers.boolean.BooleanOutputParser Parse the output of an LLM call to a boolean. output_parsers.combining.CombiningOutputParser Combine multiple output parsers into one. output_parsers.datetime.DatetimeOutputParser Parse the output of an LLM call to a datetime. output_parsers.enum.EnumOutputParser Parse an output that is one of a set of values. output_parsers.fix.OutputFixingParser Wrap a parser and try to fix parsing errors. output_parsers.pandas_dataframe.PandasDataFrameOutputParser
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-18
output_parsers.pandas_dataframe.PandasDataFrameOutputParser Parse an output using Pandas DataFrame format. output_parsers.regex.RegexParser Parse the output of an LLM call using a regex. output_parsers.regex_dict.RegexDictParser Parse the output of an LLM call into a Dictionary using a regex. output_parsers.retry.RetryOutputParser Wrap a parser and try to fix parsing errors. output_parsers.retry.RetryWithErrorOutputParser Wrap a parser and try to fix parsing errors. output_parsers.structured.ResponseSchema Schema for a response from a structured output parser. output_parsers.structured.StructuredOutputParser Parse the output of an LLM call to a structured output. output_parsers.yaml.YamlOutputParser Parse YAML output using a pydantic model. Functions¶ output_parsers.loading.load_output_parser(config) Load an output parser. langchain.retrievers¶ Retriever class returns Documents given a text query. It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used as the backbone of a retriever, but there are other types of retrievers as well. Class hierarchy: BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever Main helpers: Document, Serializable, Callbacks, CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun Classes¶ retrievers.contextual_compression.ContextualCompressionRetriever Retriever that wraps a base retriever and compresses the results. retrievers.document_compressors.base.DocumentCompressorPipeline Document compressor that uses a pipeline of Transformers. retrievers.document_compressors.chain_extract.LLMChainExtractor
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-19
retrievers.document_compressors.chain_extract.LLMChainExtractor Document compressor that uses an LLM chain to extract the relevant parts of documents. retrievers.document_compressors.chain_extract.NoOutputParser Parse outputs that could return a null string of some sort. retrievers.document_compressors.chain_filter.LLMChainFilter Filter that drops documents that aren't relevant to the query. retrievers.document_compressors.cohere_rerank.CohereRerank [Deprecated] Document compressor that uses Cohere Rerank API. retrievers.document_compressors.cross_encoder.BaseCrossEncoder() Interface for cross encoder models. retrievers.document_compressors.cross_encoder_rerank.CrossEncoderReranker Document compressor that uses CrossEncoder for reranking. retrievers.document_compressors.embeddings_filter.EmbeddingsFilter Document compressor that uses embeddings to drop documents unrelated to the query. retrievers.ensemble.EnsembleRetriever Retriever that ensembles the multiple retrievers. retrievers.merger_retriever.MergerRetriever Retriever that merges the results of multiple retrievers. retrievers.multi_query.LineListOutputParser Output parser for a list of lines. retrievers.multi_query.MultiQueryRetriever Given a query, use an LLM to write a set of queries. retrievers.multi_vector.MultiVectorRetriever Retrieve from a set of multiple embeddings for the same document. retrievers.multi_vector.SearchType(value) Enumerator of the types of search to perform. retrievers.parent_document_retriever.ParentDocumentRetriever Retrieve small chunks then retrieve their parent documents. retrievers.re_phraser.RePhraseQueryRetriever Given a query, use an LLM to re-phrase it. retrievers.self_query.base.SelfQueryRetriever
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-20
retrievers.self_query.base.SelfQueryRetriever Retriever that uses a vector store and an LLM to generate the vector store queries. retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever Retriever that combines embedding similarity with recency in retrieving values. Functions¶ retrievers.document_compressors.chain_extract.default_get_input(...) Return the compression chain input. retrievers.document_compressors.chain_filter.default_get_input(...) Return the compression chain input. retrievers.ensemble.unique_by_key(iterable, key) Yield unique elements of an iterable based on a key function. langchain.runnables¶ LangChain Runnable and the LangChain Expression Language (LCEL). The LangChain Expression Language (LCEL) offers a declarative method to build production-grade programs that harness the power of LLMs. Programs created using LCEL and LangChain Runnables inherently support synchronous, asynchronous, batch, and streaming operations. Support for async allows servers hosting the LCEL based programs to scale better for higher concurrent loads. Batch operations allow for processing multiple inputs in parallel. Streaming of intermediate outputs, as they’re being generated, allows for creating more responsive UX. This module contains non-core Runnable classes. Classes¶ runnables.hub.HubRunnable An instance of a runnable stored in the LangChain Hub. runnables.openai_functions.OpenAIFunction A function description for ChatOpenAI runnables.openai_functions.OpenAIFunctionsRouter A runnable that routes to the selected function. langchain.smith¶ LangSmith utilities. This module provides utilities for connecting to LangSmith. For more information on LangSmith, see the LangSmith documentation. Evaluation
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-21
Evaluation LangSmith helps you evaluate Chains and other language model application components using a number of LangChain evaluators. An example of this is shown below, assuming you’ve created a LangSmith dataset called <my_dataset_name>: from langsmith import Client from langchain_community.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain.smith import RunEvalConfig, run_on_dataset # Chains may have memory. Passing in a constructor function lets the # evaluation framework avoid cross-contamination between runs. def construct_chain(): llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string( llm, "What's the answer to {your_input_key}" ) return chain # Load off-the-shelf evaluators via config or the EvaluatorType (string or enum) evaluation_config = RunEvalConfig( evaluators=[ "qa", # "Correctness" against a reference answer "embedding_distance", RunEvalConfig.Criteria("helpfulness"), RunEvalConfig.Criteria({ "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?" }), ] ) client = Client() run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) You can also create custom evaluators by subclassing the StringEvaluator or LangSmith’s RunEvaluator classes. from typing import Optional from langchain.evaluation import StringEvaluator class MyStringEvaluator(StringEvaluator): @property def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-22
def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "exact_match" def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict: return {"score": prediction == reference} evaluation_config = RunEvalConfig( custom_evaluators = [MyStringEvaluator()], ) run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) Primary Functions arun_on_dataset: Asynchronous function to evaluate a chain, agent, or other LangChain component over a dataset. run_on_dataset: Function to evaluate a chain, agent, or other LangChain component over a dataset. RunEvalConfig: Class representing the configuration for running evaluation. You can select evaluators by EvaluatorType or config, or you can pass in custom_evaluators Classes¶ smith.evaluation.config.EvalConfig Configuration for a given run evaluator. smith.evaluation.config.RunEvalConfig Configuration for a run evaluation. smith.evaluation.config.SingleKeyEvalConfig Configuration for a run evaluator that only requires a single key. smith.evaluation.progress.ProgressBarCallback(total) A simple progress bar for the console. smith.evaluation.runner_utils.ChatModelInput Input for a chat model. smith.evaluation.runner_utils.EvalError(...) Your architecture raised an error. smith.evaluation.runner_utils.InputFormatError Raised when the input format is invalid. smith.evaluation.runner_utils.TestResult A dictionary of the results of a single test run. smith.evaluation.string_run_evaluator.ChainStringRunMapper Extract items to evaluate from the run object from a chain. smith.evaluation.string_run_evaluator.LLMStringRunMapper Extract items to evaluate from the run object.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
22fa5befd980-23
Extract items to evaluate from the run object. smith.evaluation.string_run_evaluator.StringExampleMapper Map an example, or row in the dataset, to the inputs of an evaluation. smith.evaluation.string_run_evaluator.StringRunEvaluatorChain Evaluate Run and optional examples. smith.evaluation.string_run_evaluator.StringRunMapper Extract items to evaluate from the run object. smith.evaluation.string_run_evaluator.ToolStringRunMapper Map an input to the tool. Functions¶ smith.evaluation.name_generation.random_name() Generate a random name. smith.evaluation.runner_utils.arun_on_dataset(...) Run the Chain or language model on a dataset and store traces to the specified project name. smith.evaluation.runner_utils.run_on_dataset(...) Run the Chain or language model on a dataset and store traces to the specified project name. langchain.storage¶ Implementations of key-value stores and storage helpers. Module provides implementations of various key-value stores that conform to a simple key-value interface. The primary goal of these storages is to support implementation of caching. Classes¶ storage.encoder_backed.EncoderBackedStore(...) Wraps a store with key and value encoders/decoders. storage.file_system.LocalFileStore(root_path, *) BaseStore interface that works on the local file system.
https://api.python.langchain.com/en/latest/langchain_api_reference.html
062d95a2b003-0
langchain_google_vertexai 1.0.5¶ langchain_google_vertexai.callbacks¶ Classes¶ callbacks.VertexAICallbackHandler() Callback Handler that tracks VertexAI info. langchain_google_vertexai.chains¶ Functions¶ chains.create_structured_runnable(function, ...) Create a runnable sequence that uses OpenAI functions. chains.get_output_parser(functions) Get the appropriate function output parser given the user functions. langchain_google_vertexai.chat_models¶ Wrapper around Google VertexAI chat-based models. Classes¶ chat_models.ChatVertexAI Vertex AI Chat large language models API. langchain_google_vertexai.embeddings¶ Classes¶ embeddings.GoogleEmbeddingModelType(value) An enumeration. embeddings.GoogleEmbeddingModelVersion(value) An enumeration. embeddings.VertexAIEmbeddings Google Cloud VertexAI embedding models. langchain_google_vertexai.evaluators¶ Classes¶ evaluators.evaluation.VertexPairWiseStringEvaluator(...) Evaluate the perplexity of a predicted string. evaluators.evaluation.VertexStringEvaluator(...) Evaluate the perplexity of a predicted string. langchain_google_vertexai.functions_utils¶ Classes¶ functions_utils.PydanticFunctionsOutputParser Parse an output as a pydantic object. langchain_google_vertexai.gemma¶ Classes¶ gemma.GemmaChatLocalHF Create a new model by parsing and validating input data from keyword arguments. gemma.GemmaChatLocalKaggle Needed for mypy typing to recognize model_name as a valid arg. gemma.GemmaChatVertexAIModelGarden Needed for mypy typing to recognize model_name as a valid arg. gemma.GemmaLocalHF Local gemma model loaded from HuggingFace. gemma.GemmaLocalKaggle Local gemma chat model loaded from Kaggle.
https://api.python.langchain.com/en/latest/google_vertexai_api_reference.html
062d95a2b003-1
gemma.GemmaLocalKaggle Local gemma chat model loaded from Kaggle. gemma.GemmaVertexAIModelGarden Create a new model by parsing and validating input data from keyword arguments. Functions¶ gemma.gemma_messages_to_prompt(history) Converts a list of messages to a chat prompt for Gemma. langchain_google_vertexai.llms¶ Classes¶ llms.VertexAI Google Vertex AI large language models. langchain_google_vertexai.model_garden¶ Classes¶ model_garden.ChatAnthropicVertex Create a new model by parsing and validating input data from keyword arguments. model_garden.VertexAIModelGarden Large language models served from Vertex AI Model Garden. langchain_google_vertexai.vectorstores¶ Classes¶ vectorstores.document_storage.DataStoreDocumentStorage(...) Stores documents in Google Cloud DataStore. vectorstores.document_storage.DocumentStorage() Abstract interface of a key, text storage for retrieving documents. vectorstores.document_storage.GCSDocumentStorage(bucket) Stores documents in Google Cloud Storage. vectorstores.vectorstores.VectorSearchVectorStore(...) VertexAI VectorStore that handles the search and indexing using Vector Search and stores the documents in Google Cloud Storage. vectorstores.vectorstores.VectorSearchVectorStoreDatastore(...) VectorSearch with DatasTore document storage. vectorstores.vectorstores.VectorSearchVectorStoreGCS(...) Alias of VectorSearchVectorStore for consistency with the rest of vector stores with different document storage backends. langchain_google_vertexai.vision_models¶ Classes¶ vision_models.VertexAIImageCaptioning Implementation of the Image Captioning model as an LLM. vision_models.VertexAIImageCaptioningChat Implementation of the Image Captioning model as a chat. vision_models.VertexAIImageEditorChat Given an image and a prompt, edits the image. vision_models.VertexAIImageGeneratorChat
https://api.python.langchain.com/en/latest/google_vertexai_api_reference.html
062d95a2b003-2
Given an image and a prompt, edits the image. vision_models.VertexAIImageGeneratorChat Generates an image from a prompt. vision_models.VertexAIVisualQnAChat Chat implementation of a visual QnA model
https://api.python.langchain.com/en/latest/google_vertexai_api_reference.html
4a17f9abbf33-0
langchain_qdrant 0.1.0¶ langchain_qdrant.vectorstores¶ Classes¶ vectorstores.Qdrant(client, collection_name) Qdrant vector store. vectorstores.QdrantException Qdrant related exceptions. Functions¶ vectorstores.sync_call_fallback(method) Decorator to call the synchronous method of the class if the async method is not implemented.
https://api.python.langchain.com/en/latest/qdrant_api_reference.html
593fbb1d5d80-0
langchain_mistralai 0.1.8¶ langchain_mistralai.chat_models¶ Classes¶ chat_models.ChatMistralAI A chat model that uses the MistralAI API. Functions¶ chat_models.acompletion_with_retry(llm[, ...]) Use tenacity to retry the async completion call. langchain_mistralai.embeddings¶ Classes¶ embeddings.DummyTokenizer() Dummy tokenizer for when tokenizer cannot be accessed (e.g., via Huggingface) embeddings.MistralAIEmbeddings MistralAI embedding models.
https://api.python.langchain.com/en/latest/mistralai_api_reference.html
f7355acc28da-0
langchain_upstage 0.1.6¶ langchain_upstage.chat_models¶ Classes¶ chat_models.ChatUpstage ChatUpstage chat model. langchain_upstage.embeddings¶ Classes¶ embeddings.UpstageEmbeddings UpstageEmbeddings embedding model. langchain_upstage.layout_analysis¶ Classes¶ layout_analysis.UpstageLayoutAnalysisLoader(...) Upstage Layout Analysis. Functions¶ layout_analysis.get_from_param_or_env(key[, ...]) Get a value from a param or an environment variable. layout_analysis.validate_api_key(api_key) Validates the provided API key. layout_analysis.validate_file_path(file_path) Validates if a file exists at the given file path. langchain_upstage.layout_analysis_parsers¶ Classes¶ layout_analysis_parsers.UpstageLayoutAnalysisParser([...]) Upstage Layout Analysis Parser. Functions¶ layout_analysis_parsers.get_from_param_or_env(key) Get a value from a param or an environment variable. layout_analysis_parsers.parse_output(data, ...) Parse the output data based on the specified output type. layout_analysis_parsers.validate_api_key(api_key) Validates the provided API key. layout_analysis_parsers.validate_file_path(...) Validates if a file exists at the given file path. langchain_upstage.tools¶ Classes¶ tools.groundedness_check.GroundednessCheck [Deprecated] tools.groundedness_check.UpstageGroundednessCheck Tool that checks the groundedness of a context and an assistant message. tools.groundedness_check.UpstageGroundednessCheckInput Input for the Groundedness Check tool.
https://api.python.langchain.com/en/latest/upstage_api_reference.html
7eba0115d1b6-0
langchain_nvidia_ai_endpoints 0.1.1¶ langchain_nvidia_ai_endpoints.callbacks¶ Callback Handler that prints to std out. Classes¶ callbacks.UsageCallbackHandler() Callback Handler that tracks OpenAI info. Functions¶ callbacks.get_token_cost_for_model(...[, ...]) Get the cost in USD for a given model and number of tokens. callbacks.get_usage_callback([price_map, ...]) Get the OpenAI callback handler in a context manager. callbacks.standardize_model_name(model_name) Standardize the model name to a format that can be used in the OpenAI API. langchain_nvidia_ai_endpoints.chat_models¶ Chat Model Components Derived from ChatModel/NVIDIA Classes¶ chat_models.ChatNVIDIA NVIDIA chat model. langchain_nvidia_ai_endpoints.embeddings¶ Embeddings Components Derived from NVEModel/Embeddings Classes¶ embeddings.NVIDIAEmbeddings Client to NVIDIA embeddings models. langchain_nvidia_ai_endpoints.reranking¶ Classes¶ reranking.NVIDIARerank LangChain Document Compressor that uses the NVIDIA NeMo Retriever Reranking API. reranking.Ranking Create a new model by parsing and validating input data from keyword arguments. langchain_nvidia_ai_endpoints.tools¶ OpenAI chat wrapper. Classes¶ tools.ServerToolsMixin()
https://api.python.langchain.com/en/latest/nvidia_ai_endpoints_api_reference.html
416aa63f7e0a-0
langchain_weaviate 0.0.2¶
https://api.python.langchain.com/en/latest/weaviate_api_reference.html
5ac1b6cc5af2-0
langchain_community 0.2.4¶ langchain_community.adapters¶ Adapters are used to adapt LangChain models to other APIs. LangChain integrates with many model providers. While LangChain has its own message and model APIs, LangChain has also made it as easy as possible to explore other models by exposing an adapter to adapt LangChain models to the other APIs, as to the OpenAI API. Classes¶ adapters.openai.Chat() Chat. adapters.openai.ChatCompletion() Chat completion. adapters.openai.ChatCompletionChunk Chat completion chunk. adapters.openai.ChatCompletions Chat completions. adapters.openai.Choice Choice. adapters.openai.ChoiceChunk Choice chunk. adapters.openai.Completions() Completions. adapters.openai.IndexableBaseModel Allows a BaseModel to return its fields by string variable indexing. Functions¶ adapters.openai.aenumerate(iterable[, start]) Async version of enumerate function. adapters.openai.convert_dict_to_message(_dict) Convert a dictionary to a LangChain message. adapters.openai.convert_message_to_dict(message) Convert a LangChain message to a dictionary. adapters.openai.convert_messages_for_finetuning(...) Convert messages to a list of lists of dictionaries for fine-tuning. adapters.openai.convert_openai_messages(messages) Convert dictionaries representing OpenAI messages to LangChain format. langchain_community.agent_toolkits¶ Toolkits are sets of tools that can be used to interact with various services and APIs. Classes¶ agent_toolkits.ainetwork.toolkit.AINetworkToolkit Toolkit for interacting with AINetwork Blockchain. agent_toolkits.amadeus.toolkit.AmadeusToolkit Toolkit for interacting with Amadeus which offers APIs for travel.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-1
Toolkit for interacting with Amadeus which offers APIs for travel. agent_toolkits.azure_ai_services.AzureAiServicesToolkit Toolkit for Azure AI Services. agent_toolkits.azure_cognitive_services.AzureCognitiveServicesToolkit Toolkit for Azure Cognitive Services. agent_toolkits.cassandra_database.toolkit.CassandraDatabaseToolkit Toolkit for interacting with an Apache Cassandra database. agent_toolkits.clickup.toolkit.ClickupToolkit Clickup Toolkit. agent_toolkits.cogniswitch.toolkit.CogniswitchToolkit Toolkit for CogniSwitch. agent_toolkits.connery.toolkit.ConneryToolkit Toolkit with a list of Connery Actions as tools. agent_toolkits.file_management.toolkit.FileManagementToolkit Toolkit for interacting with local files. agent_toolkits.github.toolkit.BranchName Schema for operations that require a branch name as input. agent_toolkits.github.toolkit.CommentOnIssue Schema for operations that require a comment as input. agent_toolkits.github.toolkit.CreateFile Schema for operations that require a file path and content as input. agent_toolkits.github.toolkit.CreatePR Schema for operations that require a PR title and body as input. agent_toolkits.github.toolkit.CreateReviewRequest Schema for operations that require a username as input. agent_toolkits.github.toolkit.DeleteFile Schema for operations that require a file path as input. agent_toolkits.github.toolkit.DirectoryPath Schema for operations that require a directory path as input. agent_toolkits.github.toolkit.GetIssue Schema for operations that require an issue number as input. agent_toolkits.github.toolkit.GetPR Schema for operations that require a PR number as input. agent_toolkits.github.toolkit.GitHubToolkit GitHub Toolkit. agent_toolkits.github.toolkit.NoInput Schema for operations that do not require any input. agent_toolkits.github.toolkit.ReadFile
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-2
Schema for operations that do not require any input. agent_toolkits.github.toolkit.ReadFile Schema for operations that require a file path as input. agent_toolkits.github.toolkit.SearchCode Schema for operations that require a search query as input. agent_toolkits.github.toolkit.SearchIssuesAndPRs Schema for operations that require a search query as input. agent_toolkits.github.toolkit.UpdateFile Schema for operations that require a file path and content as input. agent_toolkits.gitlab.toolkit.GitLabToolkit GitLab Toolkit. agent_toolkits.gmail.toolkit.GmailToolkit Toolkit for interacting with Gmail. agent_toolkits.jira.toolkit.JiraToolkit Jira Toolkit. agent_toolkits.json.toolkit.JsonToolkit Toolkit for interacting with a JSON spec. agent_toolkits.multion.toolkit.MultionToolkit Toolkit for interacting with the Browser Agent. agent_toolkits.nasa.toolkit.NasaToolkit Nasa Toolkit. agent_toolkits.nla.tool.NLATool Natural Language API Tool. agent_toolkits.nla.toolkit.NLAToolkit Natural Language API Toolkit. agent_toolkits.office365.toolkit.O365Toolkit Toolkit for interacting with Office 365. agent_toolkits.openapi.planner.RequestsDeleteToolWithParsing Tool that sends a DELETE request and parses the response. agent_toolkits.openapi.planner.RequestsGetToolWithParsing Requests GET tool with LLM-instructed extraction of truncated responses. agent_toolkits.openapi.planner.RequestsPatchToolWithParsing Requests PATCH tool with LLM-instructed extraction of truncated responses. agent_toolkits.openapi.planner.RequestsPostToolWithParsing Requests POST tool with LLM-instructed extraction of truncated responses. agent_toolkits.openapi.planner.RequestsPutToolWithParsing Requests PUT tool with LLM-instructed extraction of truncated responses.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-3
Requests PUT tool with LLM-instructed extraction of truncated responses. agent_toolkits.openapi.spec.ReducedOpenAPISpec(...) A reduced OpenAPI spec. agent_toolkits.openapi.toolkit.OpenAPIToolkit Toolkit for interacting with an OpenAPI API. agent_toolkits.openapi.toolkit.RequestsToolkit Toolkit for making REST requests. agent_toolkits.playwright.toolkit.PlayWrightBrowserToolkit Toolkit for PlayWright browser tools. agent_toolkits.polygon.toolkit.PolygonToolkit Polygon Toolkit. agent_toolkits.powerbi.toolkit.PowerBIToolkit Toolkit for interacting with Power BI dataset. agent_toolkits.slack.toolkit.SlackToolkit Toolkit for interacting with Slack. agent_toolkits.spark_sql.toolkit.SparkSQLToolkit Toolkit for interacting with Spark SQL. agent_toolkits.sql.toolkit.SQLDatabaseToolkit Toolkit for interacting with SQL databases. agent_toolkits.steam.toolkit.SteamToolkit Steam Toolkit. agent_toolkits.zapier.toolkit.ZapierToolkit Zapier Toolkit. Functions¶ agent_toolkits.json.base.create_json_agent(...) Construct a json agent from an LLM and tools. agent_toolkits.load_tools.get_all_tool_names() Get a list of all possible tool names. agent_toolkits.load_tools.load_huggingface_tool(...) Loads a tool from the HuggingFace Hub. agent_toolkits.load_tools.load_tools(tool_names) Load tools based on their name. agent_toolkits.openapi.base.create_openapi_agent(...) Construct an OpenAPI agent from an LLM and tools. agent_toolkits.openapi.planner.create_openapi_agent(...) Construct an OpenAI API planner and controller for a given spec. agent_toolkits.openapi.spec.reduce_openapi_spec(spec) Simplify/distill/minify a spec somehow. agent_toolkits.powerbi.base.create_pbi_agent(llm)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-4
agent_toolkits.powerbi.base.create_pbi_agent(llm) Construct a Power BI agent from an LLM and tools. agent_toolkits.powerbi.chat_base.create_pbi_chat_agent(llm) Construct a Power BI agent from a Chat LLM and tools. agent_toolkits.spark_sql.base.create_spark_sql_agent(...) Construct a Spark SQL agent from an LLM and tools. agent_toolkits.sql.base.create_sql_agent(llm) Construct a SQL agent from an LLM and toolkit or database. langchain_community.agents¶ Classes¶ agents.openai_assistant.base.OpenAIAssistantV2Runnable [Beta] Run an OpenAI Assistant. langchain_community.cache¶ Warning Beta Feature! Cache provides an optional caching layer for LLMs. Cache is useful for two reasons: It can save you money by reducing the number of API calls you make to the LLM provider if you’re often requesting the same completion multiple times. It can speed up your application by reducing the number of API calls you make to the LLM provider. Cache directly competes with Memory. See documentation for Pros and Cons. Class hierarchy: BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache Classes¶ cache.AstraDBCache(*[, collection_name, ...]) [Deprecated] cache.AstraDBSemanticCache(*[, ...]) [Deprecated] cache.AsyncRedisCache(redis_, *[, ttl]) Cache that uses Redis as a backend. cache.AzureCosmosDBSemanticCache(...[, ...]) Cache that uses Cosmos DB Mongo vCore vector-store backend cache.CassandraCache([session, keyspace, ...]) Cache that uses Cassandra / Astra DB as a backend. cache.CassandraSemanticCache([session, ...])
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-5
cache.CassandraSemanticCache([session, ...]) Cache that uses Cassandra as a vector-store backend for semantic (i.e. cache.FullLLMCache(**kwargs) SQLite table for full LLM Cache (all generations). cache.FullMd5LLMCache(**kwargs) SQLite table for full LLM Cache (all generations). cache.GPTCache([init_func]) Cache that uses GPTCache as a backend. cache.InMemoryCache() Cache that stores things in memory. cache.MomentoCache(cache_client, cache_name, *) Cache that uses Momento as a backend. cache.OpenSearchSemanticCache(...[, ...]) Cache that uses OpenSearch vector store backend cache.RedisCache(redis_, *[, ttl]) Cache that uses Redis as a backend. cache.RedisSemanticCache(redis_url, embedding) Cache that uses Redis as a vector-store backend. cache.SQLAlchemyCache(engine, cache_schema) Cache that uses SQAlchemy as a backend. cache.SQLAlchemyMd5Cache(engine, cache_schema) Cache that uses SQAlchemy as a backend. cache.SQLiteCache([database_path]) Cache that uses SQLite as a backend. cache.UpstashRedisCache(redis_, *[, ttl]) Cache that uses Upstash Redis as a backend. langchain_community.callbacks¶ Callback handlers allow listening to events in LangChain. Class hierarchy: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler Classes¶ callbacks.aim_callback.AimCallbackHandler([...]) Callback Handler that logs to Aim. callbacks.aim_callback.BaseMetadataCallbackHandler() Callback handler for the metadata and associated function states for callbacks. callbacks.argilla_callback.ArgillaCallbackHandler(...) Callback Handler that logs into Argilla. callbacks.arize_callback.ArizeCallbackHandler([...])
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-6
Callback Handler that logs into Argilla. callbacks.arize_callback.ArizeCallbackHandler([...]) Callback Handler that logs to Arize. callbacks.arthur_callback.ArthurCallbackHandler(...) Callback Handler that logs to Arthur platform. callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler() Callback Handler that tracks bedrock anthropic info. callbacks.clearml_callback.ClearMLCallbackHandler([...]) Callback Handler that logs to ClearML. callbacks.comet_ml_callback.CometCallbackHandler([...]) Callback Handler that logs to Comet. callbacks.confident_callback.DeepEvalCallbackHandler(metrics) Callback Handler that logs into deepeval. callbacks.context_callback.ContextCallbackHandler([...]) Callback Handler that records transcripts to the Context service. callbacks.fiddler_callback.FiddlerCallbackHandler(...) Initialize Fiddler callback handler. callbacks.flyte_callback.FlyteCallbackHandler() Callback handler that is used within a Flyte task. callbacks.human.AsyncHumanApprovalCallbackHandler(...) Asynchronous callback for manually validating values. callbacks.human.HumanApprovalCallbackHandler(...) Callback for manually validating values. callbacks.human.HumanRejectedException Exception to raise when a person manually review and rejects a value. callbacks.infino_callback.InfinoCallbackHandler([...]) Callback Handler that logs to Infino. callbacks.labelstudio_callback.LabelStudioCallbackHandler([...]) Label Studio callback handler. callbacks.labelstudio_callback.LabelStudioMode(value) Label Studio mode enumerator. callbacks.llmonitor_callback.LLMonitorCallbackHandler([...]) Callback Handler for LLMonitor`. callbacks.llmonitor_callback.UserContextManager(user_id) Context manager for LLMonitor user context. callbacks.mlflow_callback.MlflowCallbackHandler([...]) Callback Handler that logs metrics and artifacts to mlflow server. callbacks.mlflow_callback.MlflowLogger(**kwargs)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-7
callbacks.mlflow_callback.MlflowLogger(**kwargs) Callback Handler that logs metrics and artifacts to mlflow server. callbacks.openai_info.OpenAICallbackHandler() Callback Handler that tracks OpenAI info. callbacks.promptlayer_callback.PromptLayerCallbackHandler([...]) Callback handler for promptlayer. callbacks.sagemaker_callback.SageMakerCallbackHandler(run) Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments. callbacks.streamlit.mutable_expander.ChildRecord(...) Child record as a NamedTuple. callbacks.streamlit.mutable_expander.ChildType(value) Enumerator of the child type. callbacks.streamlit.mutable_expander.MutableExpander(...) Streamlit expander that can be renamed and dynamically expanded/collapsed. callbacks.streamlit.streamlit_callback_handler.LLMThought(...) A thought in the LLM's thought stream. callbacks.streamlit.streamlit_callback_handler.LLMThoughtLabeler() Generates markdown labels for LLMThought containers. callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value) Enumerator of the LLMThought state. callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler(...) Callback handler that writes to a Streamlit app. callbacks.streamlit.streamlit_callback_handler.ToolRecord(...) Tool record as a NamedTuple. callbacks.tracers.comet.CometTracer(**kwargs) Comet Tracer. callbacks.tracers.wandb.RunProcessor(...) Handles the conversion of a LangChain Runs into a WBTraceTree. callbacks.tracers.wandb.WandbRunArgs Arguments for the WandbTracer. callbacks.tracers.wandb.WandbTracer([run_args]) Callback Handler that logs to Weights and Biases. callbacks.trubrics_callback.TrubricsCallbackHandler([...]) Callback handler for Trubrics. callbacks.upstash_ratelimit_callback.UpstashRatelimitError(...)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-8
callbacks.upstash_ratelimit_callback.UpstashRatelimitError(...) Upstash Ratelimit Error callbacks.upstash_ratelimit_callback.UpstashRatelimitHandler(...) Callback to handle rate limiting based on the number of requests or the number of tokens in the input. callbacks.uptrain_callback.UpTrainCallbackHandler(*) Callback Handler that logs evaluation results to uptrain and the console. callbacks.uptrain_callback.UpTrainDataSchema(...) The UpTrain data schema for tracking evaluation results. callbacks.utils.BaseMetadataCallbackHandler() Handle the metadata and associated function states for callbacks. callbacks.wandb_callback.WandbCallbackHandler([...]) Callback Handler that logs to Weights and Biases. callbacks.whylabs_callback.WhyLabsCallbackHandler(...) Callback Handler for logging to WhyLabs. Functions¶ callbacks.aim_callback.import_aim() Import the aim python package and raise an error if it is not installed. callbacks.clearml_callback.import_clearml() Import the clearml python package and raise an error if it is not installed. callbacks.comet_ml_callback.import_comet_ml() Import comet_ml and raise an error if it is not installed. callbacks.context_callback.import_context() Import the getcontext package. callbacks.fiddler_callback.import_fiddler() Import the fiddler python package and raise an error if it is not installed. callbacks.flyte_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.flyte_callback.import_flytekit() Import flytekit and flytekitplugins-deck-standard. callbacks.infino_callback.get_num_tokens(...) Calculate num tokens for OpenAI with tiktoken package. callbacks.infino_callback.import_infino() Import the infino client. callbacks.infino_callback.import_tiktoken() Import tiktoken for counting tokens for OpenAI models.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-9
Import tiktoken for counting tokens for OpenAI models. callbacks.labelstudio_callback.get_default_label_configs(mode) Get default Label Studio configs for the given mode. callbacks.llmonitor_callback.identify(user_id) Builds an LLMonitor UserContextManager callbacks.manager.get_bedrock_anthropic_callback() Get the Bedrock anthropic callback handler in a context manager. callbacks.manager.get_openai_callback() Get the OpenAI callback handler in a context manager. callbacks.manager.wandb_tracing_enabled([...]) Get the WandbTracer in a context manager. callbacks.mlflow_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.mlflow_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.mlflow_callback.get_text_complexity_metrics() Get the text complexity metrics from textstat. callbacks.mlflow_callback.import_mlflow() Import the mlflow python package and raise an error if it is not installed. callbacks.mlflow_callback.mlflow_callback_metrics() Get the metrics to log to MLFlow. callbacks.openai_info.get_openai_token_cost_for_model(...) Get the cost in USD for a given model and number of tokens. callbacks.openai_info.standardize_model_name(...) Standardize the model name to a format that can be used in the OpenAI API. callbacks.sagemaker_callback.save_json(data, ...) Save dict to local file path. callbacks.tracers.comet.import_comet_llm_api() Import comet_llm api and raise an error if it is not installed. callbacks.uptrain_callback.import_uptrain() Import the uptrain package. callbacks.utils.flatten_dict(nested_dict[, ...]) Flatten a nested dictionary into a flat dictionary. callbacks.utils.hash_string(s) Hash a string using sha1.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-10
callbacks.utils.hash_string(s) Hash a string using sha1. callbacks.utils.import_pandas() Import the pandas python package and raise an error if it is not installed. callbacks.utils.import_spacy() Import the spacy python package and raise an error if it is not installed. callbacks.utils.import_textstat() Import the textstat python package and raise an error if it is not installed. callbacks.utils.load_json(json_path) Load json file to a string. callbacks.wandb_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.wandb_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.wandb_callback.import_wandb() Import the wandb python package and raise an error if it is not installed. callbacks.wandb_callback.load_json_to_dict(...) Load json file to a dictionary. callbacks.whylabs_callback.import_langkit([...]) Import the langkit python package and raise an error if it is not installed. langchain_community.chains¶ Chains module for langchain_community This module contains the community chains. Classes¶ chains.graph_qa.arangodb.ArangoGraphQAChain Chain for question-answering against a graph by generating AQL statements. chains.graph_qa.base.GraphQAChain Chain for question-answering against a graph. chains.graph_qa.cypher.GraphCypherQAChain Chain for question-answering against a graph by generating Cypher statements. chains.graph_qa.cypher_utils.CypherQueryCorrector(schemas) Used to correct relationship direction in generated Cypher statements. chains.graph_qa.cypher_utils.Schema(...) Create new instance of Schema(left_node, relation, right_node) chains.graph_qa.falkordb.FalkorDBQAChain
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-11
chains.graph_qa.falkordb.FalkorDBQAChain Chain for question-answering against a graph by generating Cypher statements. chains.graph_qa.gremlin.GremlinQAChain Chain for question-answering against a graph by generating gremlin statements. chains.graph_qa.hugegraph.HugeGraphQAChain Chain for question-answering against a graph by generating gremlin statements. chains.graph_qa.kuzu.KuzuQAChain Question-answering against a graph by generating Cypher statements for Kùzu. chains.graph_qa.nebulagraph.NebulaGraphQAChain Chain for question-answering against a graph by generating nGQL statements. chains.graph_qa.neptune_cypher.NeptuneOpenCypherQAChain Chain for question-answering against a Neptune graph by generating openCypher statements. chains.graph_qa.neptune_sparql.NeptuneSparqlQAChain Chain for question-answering against a Neptune graph by generating SPARQL statements. chains.graph_qa.ontotext_graphdb.OntotextGraphDBQAChain Question-answering against Ontotext GraphDB chains.graph_qa.sparql.GraphSparqlQAChain Question-answering against an RDF or OWL graph by generating SPARQL statements. chains.llm_requests.LLMRequestsChain Chain that requests a URL and then uses an LLM to parse results. chains.openapi.chain.OpenAPIEndpointChain Chain interacts with an OpenAPI endpoint using natural language. chains.openapi.requests_chain.APIRequesterChain Get the request parser. chains.openapi.requests_chain.APIRequesterOutputParser Parse the request and error tags. chains.openapi.response_chain.APIResponderChain Get the response parser. chains.openapi.response_chain.APIResponderOutputParser
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-12
Get the response parser. chains.openapi.response_chain.APIResponderOutputParser Parse the response and error tags. chains.pebblo_retrieval.base.PebbloRetrievalQA Retrieval Chain with Identity & Semantic Enforcement for question-answering against a vector database. chains.pebblo_retrieval.models.App Create a new model by parsing and validating input data from keyword arguments. chains.pebblo_retrieval.models.AuthContext Class for an authorization context. chains.pebblo_retrieval.models.ChainInput Input for PebbloRetrievalQA chain. chains.pebblo_retrieval.models.Chains Create a new model by parsing and validating input data from keyword arguments. chains.pebblo_retrieval.models.Context Create a new model by parsing and validating input data from keyword arguments. chains.pebblo_retrieval.models.Framework Langchain framework details chains.pebblo_retrieval.models.Model Create a new model by parsing and validating input data from keyword arguments. chains.pebblo_retrieval.models.PkgInfo Create a new model by parsing and validating input data from keyword arguments. chains.pebblo_retrieval.models.Prompt Create a new model by parsing and validating input data from keyword arguments. chains.pebblo_retrieval.models.Qa Create a new model by parsing and validating input data from keyword arguments. chains.pebblo_retrieval.models.Runtime OS, language details chains.pebblo_retrieval.models.SemanticContext Class for a semantic context. chains.pebblo_retrieval.models.SemanticEntities Class for a semantic entity filter. chains.pebblo_retrieval.models.SemanticTopics Class for a semantic topic filter. chains.pebblo_retrieval.models.VectorDB Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-13
Create a new model by parsing and validating input data from keyword arguments. Functions¶ chains.ernie_functions.base.convert_python_function_to_ernie_function(...) Convert a Python function to an Ernie function-calling API compatible dict. chains.ernie_functions.base.convert_to_ernie_function(...) Convert a raw function/class to an Ernie function. chains.ernie_functions.base.create_ernie_fn_chain(...) [Legacy] Create an LLM chain that uses Ernie functions. chains.ernie_functions.base.create_ernie_fn_runnable(...) Create a runnable sequence that uses Ernie functions. chains.ernie_functions.base.create_structured_output_chain(...) [Legacy] Create an LLMChain that uses an Ernie function to get a structured output. chains.ernie_functions.base.create_structured_output_runnable(...) Create a runnable that uses an Ernie function to get a structured output. chains.ernie_functions.base.get_ernie_output_parser(...) Get the appropriate function output parser given the user functions. chains.graph_qa.cypher.construct_schema(...) Filter the schema based on included or excluded types chains.graph_qa.cypher.extract_cypher(text) Extract Cypher code from a text. chains.graph_qa.falkordb.extract_cypher(text) Extract Cypher code from a text. chains.graph_qa.gremlin.extract_gremlin(text) Extract Gremlin code from a text. chains.graph_qa.kuzu.extract_cypher(text) Extract Cypher code from a text. chains.graph_qa.kuzu.remove_prefix(text, prefix) Remove a prefix from a text. chains.graph_qa.neptune_cypher.extract_cypher(text) Extract Cypher code from text using Regex. chains.graph_qa.neptune_cypher.trim_query(query)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-14
chains.graph_qa.neptune_cypher.trim_query(query) Trim the query to only include Cypher keywords. chains.graph_qa.neptune_cypher.use_simple_prompt(llm) Decides whether to use the simple prompt chains.graph_qa.neptune_sparql.extract_sparql(query) Extract SPARQL code from a text. chains.pebblo_retrieval.enforcement_filters.set_enforcement_filters(...) Set identity and semantic enforcement filters in the retriever. chains.pebblo_retrieval.utilities.get_ip() Fetch local runtime ip address. chains.pebblo_retrieval.utilities.get_runtime() Fetch the current Framework and Runtime details. langchain_community.chat_loaders¶ Chat Loaders load chat messages from common communications platforms. Load chat messages from various communications platforms such as Facebook Messenger, Telegram, and WhatsApp. The loaded chat messages can be used for fine-tuning models. Class hierarchy: BaseChatLoader --> <name>ChatLoader # Examples: WhatsAppChatLoader, IMessageChatLoader Main helpers: ChatSession Classes¶ chat_loaders.facebook_messenger.FolderFacebookMessengerChatLoader(path) Load Facebook Messenger chat data from a folder. chat_loaders.facebook_messenger.SingleFileFacebookMessengerChatLoader(path) Load Facebook Messenger chat data from a single file. chat_loaders.gmail.GMailLoader(creds[, n, ...]) [Deprecated] Load data from GMail. chat_loaders.imessage.IMessageChatLoader([path]) Load chat sessions from the iMessage chat.db SQLite file. chat_loaders.langsmith.LangSmithDatasetChatLoader(*, ...) Load chat sessions from a LangSmith dataset with the "chat" data type. chat_loaders.langsmith.LangSmithRunChatLoader(runs) Load chat sessions from a list of LangSmith "llm" runs.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-15
Load chat sessions from a list of LangSmith "llm" runs. chat_loaders.slack.SlackChatLoader(path) Load Slack conversations from a dump zip file. chat_loaders.telegram.TelegramChatLoader(path) Load telegram conversations to LangChain chat messages. chat_loaders.whatsapp.WhatsAppChatLoader(path) Load WhatsApp conversations from a dump zip file or directory. Functions¶ chat_loaders.imessage.nanoseconds_from_2001_to_datetime(...) chat_loaders.utils.map_ai_messages(...) Convert messages from the specified 'sender' to AI messages. chat_loaders.utils.map_ai_messages_in_session(...) Convert messages from the specified 'sender' to AI messages. chat_loaders.utils.merge_chat_runs(chat_sessions) Merge chat runs together. chat_loaders.utils.merge_chat_runs_in_session(...) Merge chat runs together in a chat session. langchain_community.chat_message_histories¶ Chat message history stores a history of the message interactions in a chat. Class hierarchy: BaseChatMessageHistory --> <name>ChatMessageHistory # Examples: FileChatMessageHistory, PostgresChatMessageHistory Main helpers: AIMessage, HumanMessage, BaseMessage Classes¶ chat_message_histories.astradb.AstraDBChatMessageHistory(*, ...) [Deprecated] chat_message_histories.cassandra.CassandraChatMessageHistory(...) Chat message history that stores history in Cassandra. chat_message_histories.cosmos_db.CosmosDBChatMessageHistory(...) Chat message history backed by Azure CosmosDB. chat_message_histories.dynamodb.DynamoDBChatMessageHistory(...) Chat message history that stores history in AWS DynamoDB. chat_message_histories.elasticsearch.ElasticsearchChatMessageHistory(...) [Deprecated] Chat message history that stores history in Elasticsearch. chat_message_histories.file.FileChatMessageHistory(...)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-16
chat_message_histories.file.FileChatMessageHistory(...) Chat message history that stores history in a local file. chat_message_histories.firestore.FirestoreChatMessageHistory(...) Chat message history backed by Google Firestore. chat_message_histories.momento.MomentoChatMessageHistory(...) Chat message history cache that uses Momento as a backend. chat_message_histories.mongodb.MongoDBChatMessageHistory(...) [Deprecated] Chat message history that stores history in MongoDB. chat_message_histories.neo4j.Neo4jChatMessageHistory(...) Chat message history stored in a Neo4j database. chat_message_histories.postgres.PostgresChatMessageHistory(...) [Deprecated] Chat message history stored in a Postgres database. chat_message_histories.redis.RedisChatMessageHistory(...) Chat message history stored in a Redis database. chat_message_histories.rocksetdb.RocksetChatMessageHistory(...) Uses Rockset to store chat messages. chat_message_histories.singlestoredb.SingleStoreDBChatMessageHistory(...) Chat message history stored in a SingleStoreDB database. chat_message_histories.sql.BaseMessageConverter() Convert BaseMessage to the SQLAlchemy model. chat_message_histories.sql.DefaultMessageConverter(...) The default message converter for SQLChatMessageHistory. chat_message_histories.sql.SQLChatMessageHistory(...) Chat message history stored in an SQL database. chat_message_histories.streamlit.StreamlitChatMessageHistory([key]) Chat message history that stores messages in Streamlit session state. chat_message_histories.tidb.TiDBChatMessageHistory(...) Represents a chat message history stored in a TiDB database. chat_message_histories.upstash_redis.UpstashRedisChatMessageHistory(...) Chat message history stored in an Upstash Redis database. chat_message_histories.xata.XataChatMessageHistory(...) Chat message history stored in a Xata database.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-17
Chat message history stored in a Xata database. chat_message_histories.zep.SearchScope(value) Scope for the document search. chat_message_histories.zep.SearchType(value) Enumerator of the types of search to perform. chat_message_histories.zep.ZepChatMessageHistory(...) Chat message history that uses Zep as a backend. chat_message_histories.zep_cloud.ZepCloudChatMessageHistory(...) Chat message history that uses Zep Cloud as a backend. Functions¶ chat_message_histories.sql.create_message_model(...) Create a message model for a given table name. chat_message_histories.zep_cloud.condense_zep_memory_into_human_message(...) chat_message_histories.zep_cloud.get_zep_message_role_type(role) langchain_community.chat_models¶ Chat Models are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs. Class hierarchy: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ chat_models.anthropic.ChatAnthropic [Deprecated] Anthropic chat large language models. chat_models.anyscale.ChatAnyscale Anyscale Chat large language models. chat_models.azure_openai.AzureChatOpenAI [Deprecated] Azure OpenAI Chat Completion API. chat_models.azureml_endpoint.AzureMLChatOnlineEndpoint Azure ML Online Endpoint chat models. chat_models.azureml_endpoint.CustomOpenAIChatContentFormatter() Chat Content formatter for models with OpenAI like API scheme. chat_models.azureml_endpoint.LlamaChatContentFormatter() Deprecated: Kept for backwards compatibility
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-18
chat_models.azureml_endpoint.LlamaChatContentFormatter() Deprecated: Kept for backwards compatibility chat_models.azureml_endpoint.LlamaContentFormatter() Content formatter for LLaMA. chat_models.azureml_endpoint.MistralChatContentFormatter() Content formatter for Mistral. chat_models.baichuan.ChatBaichuan Baichuan chat models API by Baichuan Intelligent Technology. chat_models.baidu_qianfan_endpoint.QianfanChatEndpoint Baidu Qianfan chat models. chat_models.bedrock.BedrockChat [Deprecated] Chat model that uses the Bedrock API. chat_models.bedrock.ChatPromptAdapter() Adapter class to prepare the inputs from Langchain to prompt format that Chat model expects. chat_models.cohere.ChatCohere [Deprecated] Cohere chat large language models. chat_models.coze.ChatCoze ChatCoze chat models API by coze.com chat_models.dappier.ChatDappierAI Dappier chat large language models. chat_models.databricks.ChatDatabricks Databricks chat models API. chat_models.deepinfra.ChatDeepInfra A chat model that uses the DeepInfra API. chat_models.deepinfra.ChatDeepInfraException Exception raised when the DeepInfra API returns an error. chat_models.edenai.ChatEdenAI EdenAI chat large language models. chat_models.ernie.ErnieBotChat [Deprecated] ERNIE-Bot large language model. chat_models.everlyai.ChatEverlyAI EverlyAI Chat large language models. chat_models.fake.FakeListChatModel Fake ChatModel for testing purposes. chat_models.fake.FakeMessagesListChatModel Fake ChatModel for testing purposes. chat_models.fireworks.ChatFireworks [Deprecated] Fireworks Chat models. chat_models.friendli.ChatFriendli
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-19
[Deprecated] Fireworks Chat models. chat_models.friendli.ChatFriendli Friendli LLM for chat. chat_models.gigachat.GigaChat GigaChat large language models API. chat_models.google_palm.ChatGooglePalm Google PaLM Chat models API. chat_models.google_palm.ChatGooglePalmError Error with the Google PaLM API. chat_models.gpt_router.GPTRouter GPTRouter by Writesonic Inc. chat_models.gpt_router.GPTRouterException Error with the GPTRouter APIs chat_models.gpt_router.GPTRouterModel GPTRouter model. chat_models.huggingface.ChatHuggingFace [Deprecated] Wrapper for using Hugging Face LLM's as ChatModels. chat_models.human.HumanInputChatModel ChatModel which returns user input as the response. chat_models.hunyuan.ChatHunyuan Tencent Hunyuan chat models API by Tencent. chat_models.javelin_ai_gateway.ChatJavelinAIGateway Javelin AI Gateway chat models API. chat_models.javelin_ai_gateway.ChatParams Parameters for the Javelin AI Gateway LLM. chat_models.jinachat.JinaChat Jina AI Chat models API. chat_models.kinetica.ChatKinetica Kinetica LLM Chat Model API. chat_models.kinetica.KineticaSqlOutputParser Fetch and return data from the Kinetica LLM. chat_models.kinetica.KineticaSqlResponse Response containing SQL and the fetched data. chat_models.kinetica.KineticaUtil() Kinetica utility functions. chat_models.konko.ChatKonko ChatKonko Chat large language models API. chat_models.litellm.ChatLiteLLM Chat model that uses the LiteLLM API.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-20
Chat model that uses the LiteLLM API. chat_models.litellm.ChatLiteLLMException Error with the LiteLLM I/O library chat_models.litellm_router.ChatLiteLLMRouter LiteLLM Router as LangChain Model. chat_models.llama_edge.LlamaEdgeChatService Chat with LLMs via llama-api-server chat_models.maritalk.ChatMaritalk MariTalk Chat models API. chat_models.maritalk.MaritalkHTTPError(...) Initialize RequestException with request and response objects. chat_models.minimax.MiniMaxChat MiniMax large language models. chat_models.mlflow.ChatMlflow MLflow chat models API. chat_models.mlflow_ai_gateway.ChatMLflowAIGateway MLflow AI Gateway chat models API. chat_models.mlflow_ai_gateway.ChatParams Parameters for the MLflow AI Gateway LLM. chat_models.mlx.ChatMLX MLX chat models. chat_models.moonshot.MoonshotChat Moonshot large language models. chat_models.octoai.ChatOctoAI OctoAI Chat large language models. chat_models.ollama.ChatOllama Ollama locally runs large language models. chat_models.openai.ChatOpenAI [Deprecated] OpenAI Chat large language models API. chat_models.pai_eas_endpoint.PaiEasChatEndpoint Alibaba Cloud PAI-EAS LLM Service chat model API. chat_models.perplexity.ChatPerplexity Perplexity AI Chat models API. chat_models.premai.ChatPremAI PremAI Chat models. chat_models.premai.ChatPremAPIError Error with the PremAI API. chat_models.promptlayer_openai.PromptLayerChatOpenAI PromptLayer and OpenAI Chat large language models API. chat_models.solar.SolarChat
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-21
PromptLayer and OpenAI Chat large language models API. chat_models.solar.SolarChat [Deprecated] Wrapper around Solar large language models. chat_models.sparkllm.ChatSparkLLM iFlyTek Spark large language model. chat_models.tongyi.ChatTongyi Alibaba Tongyi Qwen chat models API. chat_models.vertexai.ChatVertexAI [Deprecated] Vertex AI Chat large language models API. chat_models.volcengine_maas.VolcEngineMaasChat Volc Engine Maas hosts a plethora of models. chat_models.yandex.ChatYandexGPT YandexGPT large language models. chat_models.yuan2.ChatYuan2 Yuan2.0 Chat models API. chat_models.zhipuai.ChatZhipuAI ZhipuAI large language chat models API. Functions¶ chat_models.anthropic.convert_messages_to_prompt_anthropic(...) Format a list of messages into a full prompt for the Anthropic model chat_models.baidu_qianfan_endpoint.convert_message_to_dict(message) Convert a message to a dictionary that can be passed to the API. chat_models.bedrock.convert_messages_to_prompt_mistral(...) Convert a list of messages to a prompt for mistral. chat_models.cohere.get_cohere_chat_request(...) Get the request for the Cohere chat API. chat_models.cohere.get_role(message) Get the role of the message. chat_models.fireworks.acompletion_with_retry(...) Use tenacity to retry the async completion call. chat_models.fireworks.acompletion_with_retry_streaming(...) Use tenacity to retry the completion call for streaming. chat_models.fireworks.completion_with_retry(...) Use tenacity to retry the completion call. chat_models.fireworks.conditional_decorator(...) Define conditional decorator.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-22
chat_models.fireworks.conditional_decorator(...) Define conditional decorator. chat_models.fireworks.convert_dict_to_message(_dict) Convert a dict response to a message. chat_models.friendli.get_chat_request(messages) Get a request of the Friendli chat API. chat_models.friendli.get_role(message) Get role of the message. chat_models.google_palm.achat_with_retry(...) Use tenacity to retry the async completion call. chat_models.google_palm.chat_with_retry(llm, ...) Use tenacity to retry the completion call. chat_models.gpt_router.acompletion_with_retry(...) Use tenacity to retry the async completion call. chat_models.gpt_router.completion_with_retry(...) Use tenacity to retry the completion call. chat_models.gpt_router.get_ordered_generation_requests(...) Return the body for the model router input. chat_models.jinachat.acompletion_with_retry(...) Use tenacity to retry the async completion call. chat_models.litellm.acompletion_with_retry(llm) Use tenacity to retry the async completion call. chat_models.litellm_router.get_llm_output(...) Get llm output from usage and params. chat_models.meta.convert_messages_to_prompt_llama(...) Convert a list of messages to a prompt for llama. chat_models.minimax.aconnect_httpx_sse(...) chat_models.minimax.connect_httpx_sse(...) chat_models.openai.acompletion_with_retry(llm) Use tenacity to retry the async completion call. chat_models.premai.chat_with_retry(llm, ...) Using tenacity for retry in completion call chat_models.premai.create_prem_retry_decorator(llm, *) Create a retry decorator for PremAI API errors. chat_models.tongyi.convert_dict_to_message(_dict) Convert a dict to a message.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-23
Convert a dict to a message. chat_models.tongyi.convert_message_chunk_to_message(...) Convert a message chunk to a message. chat_models.tongyi.convert_message_to_dict(message) Convert a message to a dict. chat_models.volcengine_maas.convert_dict_to_message(_dict) Convert a dict to a message. chat_models.yandex.acompletion_with_retry(...) Use tenacity to retry the async completion call. chat_models.yandex.completion_with_retry(...) Use tenacity to retry the completion call. chat_models.yuan2.acompletion_with_retry(...) Use tenacity to retry the async completion call. chat_models.zhipuai.aconnect_sse(client, ...) chat_models.zhipuai.connect_sse(client, ...) langchain_community.cross_encoders¶ Cross encoders are wrappers around cross encoder models from different APIs andservices. Cross encoder models can be LLMs or not. Class hierarchy: BaseCrossEncoder --> <name>CrossEncoder # Examples: SagemakerEndpointCrossEncoder Classes¶ cross_encoders.fake.FakeCrossEncoder Fake cross encoder model. cross_encoders.huggingface.HuggingFaceCrossEncoder HuggingFace cross encoder models. cross_encoders.sagemaker_endpoint.CrossEncoderContentHandler() Content handler for CrossEncoder class. cross_encoders.sagemaker_endpoint.SagemakerEndpointCrossEncoder SageMaker Inference CrossEncoder endpoint. langchain_community.docstore¶ Docstores are classes to store and load Documents. The Docstore is a simplified version of the Document Loader. Class hierarchy: Docstore --> <name> # Examples: InMemoryDocstore, Wikipedia Main helpers: Document, AddableMixin Classes¶ docstore.arbitrary_fn.DocstoreFn(lookup_fn) Docstore via arbitrary lookup function. docstore.base.AddableMixin()
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-24
Docstore via arbitrary lookup function. docstore.base.AddableMixin() Mixin class that supports adding texts. docstore.base.Docstore() Interface to access to place that stores documents. docstore.in_memory.InMemoryDocstore([_dict]) Simple in memory docstore in the form of a dict. docstore.wikipedia.Wikipedia() Wikipedia API. langchain_community.document_compressors¶ Classes¶ document_compressors.dashscope_rerank.DashScopeRerank Document compressor that uses DashScope Rerank API. document_compressors.flashrank_rerank.FlashrankRerank Document compressor using Flashrank interface. document_compressors.jina_rerank.JinaRerank Document compressor that uses Jina Rerank API. document_compressors.llmlingua_filter.LLMLinguaCompressor Compress using LLMLingua Project. document_compressors.openvino_rerank.OpenVINOReranker OpenVINO rerank models. document_compressors.openvino_rerank.RerankRequest([...]) Request for reranking. document_compressors.rankllm_rerank.ModelType(value) An enumeration. document_compressors.rankllm_rerank.RankLLMRerank Document compressor using Flashrank interface. langchain_community.document_loaders¶ Document Loaders are classes to load Documents. Document Loaders are usually used to load a lot of Documents in a single run. Class hierarchy: BaseLoader --> <name>Loader # Examples: TextLoader, UnstructuredFileLoader Main helpers: Document, <name>TextSplitter Classes¶ document_loaders.acreom.AcreomLoader(path[, ...]) Load acreom vault from a directory. document_loaders.airbyte.AirbyteCDKLoader(...)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-25
document_loaders.airbyte.AirbyteCDKLoader(...) Load with an Airbyte source connector implemented using the CDK. document_loaders.airbyte.AirbyteGongLoader(...) Load from Gong using an Airbyte source connector. document_loaders.airbyte.AirbyteHubspotLoader(...) Load from Hubspot using an Airbyte source connector. document_loaders.airbyte.AirbyteSalesforceLoader(...) Load from Salesforce using an Airbyte source connector. document_loaders.airbyte.AirbyteShopifyLoader(...) Load from Shopify using an Airbyte source connector. document_loaders.airbyte.AirbyteStripeLoader(...) Load from Stripe using an Airbyte source connector. document_loaders.airbyte.AirbyteTypeformLoader(...) Load from Typeform using an Airbyte source connector. document_loaders.airbyte.AirbyteZendeskSupportLoader(...) Load from Zendesk Support using an Airbyte source connector. document_loaders.airbyte_json.AirbyteJSONLoader(...) Load local Airbyte json files. document_loaders.airtable.AirtableLoader(...) Load the Airtable tables. document_loaders.apify_dataset.ApifyDatasetLoader Load datasets from Apify web scraping, crawling, and data extraction platform. document_loaders.arcgis_loader.ArcGISLoader(layer) Load records from an ArcGIS FeatureLayer. document_loaders.arxiv.ArxivLoader(query[, ...]) Load a query result from Arxiv. document_loaders.assemblyai.AssemblyAIAudioLoaderById(...) Load AssemblyAI audio transcripts. document_loaders.assemblyai.AssemblyAIAudioTranscriptLoader(...) Load AssemblyAI audio transcripts. document_loaders.assemblyai.TranscriptFormat(value) Transcript format to use for the document loader. document_loaders.astradb.AstraDBLoader(...) [Deprecated]
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-26
document_loaders.astradb.AstraDBLoader(...) [Deprecated] document_loaders.async_html.AsyncHtmlLoader(...) Load HTML asynchronously. document_loaders.athena.AthenaLoader(query, ...) Load documents from AWS Athena. document_loaders.azlyrics.AZLyricsLoader([...]) Load AZLyrics webpages. document_loaders.azure_ai_data.AzureAIDataLoader(url) Load from Azure AI Data. document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(...) Load from Azure Blob Storage container. document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader(...) Load from Azure Blob Storage files. document_loaders.baiducloud_bos_directory.BaiduBOSDirectoryLoader(...) Load from Baidu BOS directory. document_loaders.baiducloud_bos_file.BaiduBOSFileLoader(...) Load from Baidu Cloud BOS file. document_loaders.base_o365.O365BaseLoader Base class for all loaders that uses O365 Package document_loaders.bibtex.BibtexLoader(...[, ...]) Load a bibtex file. document_loaders.bigquery.BigQueryLoader(query) [Deprecated] Load from the Google Cloud Platform BigQuery. document_loaders.bilibili.BiliBiliLoader(...) Load fetching transcripts from BiliBili videos. document_loaders.blackboard.BlackboardLoader(...) Load a Blackboard course. document_loaders.blob_loaders.cloud_blob_loader.CloudBlobLoader(url, *) Load blobs from cloud URL or file:. document_loaders.blob_loaders.file_system.FileSystemBlobLoader(path, *) Load blobs in the local file system. document_loaders.blob_loaders.youtube_audio.YoutubeAudioLoader(...) Load YouTube urls as audio file(s). document_loaders.blockchain.BlockchainDocumentLoader(...) Load elements from a blockchain smart contract.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-27
document_loaders.blockchain.BlockchainDocumentLoader(...) Load elements from a blockchain smart contract. document_loaders.blockchain.BlockchainType(value) Enumerator of the supported blockchains. document_loaders.brave_search.BraveSearchLoader(...) Load with Brave Search engine. document_loaders.browserbase.BrowserbaseLoader(urls) Load pre-rendered web pages using a headless browser hosted on Browserbase. document_loaders.browserless.BrowserlessLoader(...) Load webpages with Browserless /content endpoint. document_loaders.cassandra.CassandraLoader(...) Document Loader for Apache Cassandra. document_loaders.chatgpt.ChatGPTLoader(log_file) Load conversations from exported ChatGPT data. document_loaders.chm.CHMParser(path) Microsoft Compiled HTML Help (CHM) Parser. document_loaders.chm.UnstructuredCHMLoader(...) Load CHM files using Unstructured. document_loaders.chromium.AsyncChromiumLoader(urls, *) Scrape HTML pages from URLs using a headless instance of the Chromium. document_loaders.college_confidential.CollegeConfidentialLoader([...]) Load College Confidential webpages. document_loaders.concurrent.ConcurrentLoader(...) Load and pars Documents concurrently. document_loaders.confluence.ConfluenceLoader(url) Load Confluence pages. document_loaders.confluence.ContentFormat(value) Enumerator of the content formats of Confluence page. document_loaders.conllu.CoNLLULoader(file_path) Load CoNLL-U files. document_loaders.couchbase.CouchbaseLoader(...) Load documents from Couchbase. document_loaders.csv_loader.CSVLoader(file_path) Load a CSV file into a list of Documents. document_loaders.csv_loader.UnstructuredCSVLoader(...) Load CSV files using Unstructured. document_loaders.cube_semantic.CubeSemanticLoader(...)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-28
document_loaders.cube_semantic.CubeSemanticLoader(...) Load Cube semantic layer metadata. document_loaders.datadog_logs.DatadogLogsLoader(...) Load Datadog logs. document_loaders.dataframe.BaseDataFrameLoader(...) Initialize with dataframe object. document_loaders.dataframe.DataFrameLoader(...) Load Pandas DataFrame. document_loaders.diffbot.DiffbotLoader(...) Load Diffbot json file. document_loaders.directory.DirectoryLoader(...) Load from a directory. document_loaders.discord.DiscordChatLoader(...) Load Discord chat logs. document_loaders.doc_intelligence.AzureAIDocumentIntelligenceLoader(...) Load a PDF with Azure Document Intelligence. document_loaders.docugami.DocugamiLoader [Deprecated] Load from Docugami. document_loaders.docusaurus.DocusaurusLoader(url) Load from Docusaurus Documentation. document_loaders.dropbox.DropboxLoader Load files from Dropbox. document_loaders.duckdb_loader.DuckDBLoader(query) Load from DuckDB. document_loaders.email.OutlookMessageLoader(...) Loads Outlook Message files using extract_msg. document_loaders.email.UnstructuredEmailLoader(...) Load email files using Unstructured. document_loaders.epub.UnstructuredEPubLoader(...) Load EPub files using Unstructured. document_loaders.etherscan.EtherscanLoader(...) Load transactions from Ethereum mainnet. document_loaders.evernote.EverNoteLoader(...) Load from EverNote. document_loaders.excel.UnstructuredExcelLoader(...) Load Microsoft Excel files using Unstructured. document_loaders.facebook_chat.FacebookChatLoader(path) Load Facebook Chat messages directory dump. document_loaders.fauna.FaunaLoader(query, ...) Load from FaunaDB. document_loaders.figma.FigmaFileLoader(...) Load Figma file.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-29
document_loaders.figma.FigmaFileLoader(...) Load Figma file. document_loaders.firecrawl.FireCrawlLoader(url, *) Load web pages as Documents using FireCrawl. document_loaders.gcs_directory.GCSDirectoryLoader(...) [Deprecated] Load from GCS directory. document_loaders.gcs_file.GCSFileLoader(...) [Deprecated] Load from GCS file. document_loaders.generic.GenericLoader(...) Generic Document Loader. document_loaders.geodataframe.GeoDataFrameLoader(...) Load geopandas Dataframe. document_loaders.git.GitLoader(repo_path[, ...]) Load Git repository files. document_loaders.gitbook.GitbookLoader(web_page) Load GitBook data. document_loaders.github.BaseGitHubLoader Load GitHub repository Issues. document_loaders.github.GitHubIssuesLoader Load issues of a GitHub repository. document_loaders.github.GithubFileLoader Load GitHub File document_loaders.glue_catalog.GlueCatalogLoader(...) Load table schemas from AWS Glue. document_loaders.google_speech_to_text.GoogleSpeechToTextLoader(...) [Deprecated] Loader for Google Cloud Speech-to-Text audio transcripts. document_loaders.googledrive.GoogleDriveLoader [Deprecated] Load Google Docs from Google Drive. document_loaders.gutenberg.GutenbergLoader(...) Load from Gutenberg.org. document_loaders.helpers.FileEncoding(...) File encoding as the NamedTuple. document_loaders.hn.HNLoader([web_path, ...]) Load Hacker News data. document_loaders.html.UnstructuredHTMLLoader(...) Load HTML files using Unstructured. document_loaders.html_bs.BSHTMLLoader(file_path) Load HTML files and parse them with beautiful soup. document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader(path) Load from Hugging Face Hub datasets.
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-30
Load from Hugging Face Hub datasets. document_loaders.hugging_face_model.HuggingFaceModelLoader(*) Load model information from Hugging Face Hub, including README content. document_loaders.ifixit.IFixitLoader(web_path) Load iFixit repair guides, device wikis and answers. document_loaders.image.UnstructuredImageLoader(...) Load PNG and JPG files using Unstructured. document_loaders.image_captions.ImageCaptionLoader(images) Load image captions. document_loaders.imsdb.IMSDbLoader([...]) Load IMSDb webpages. document_loaders.iugu.IuguLoader(resource[, ...]) Load from IUGU. document_loaders.joplin.JoplinLoader([...]) Load notes from Joplin. document_loaders.json_loader.JSONLoader(...) Load a JSON file using a jq schema. document_loaders.kinetica_loader.KineticaLoader(...) Load from Kinetica API. document_loaders.lakefs.LakeFSClient(...) Client for lakeFS. document_loaders.lakefs.LakeFSLoader(...[, ...]) Load from lakeFS. document_loaders.lakefs.UnstructuredLakeFSLoader(...) Load from lakeFS as unstructured data. document_loaders.larksuite.LarkSuiteDocLoader(...) Load from LarkSuite (FeiShu). document_loaders.larksuite.LarkSuiteWikiLoader(...) Load from LarkSuite (FeiShu) wiki. document_loaders.llmsherpa.LLMSherpaFileLoader(...) Load Documents using LLMSherpa. document_loaders.markdown.UnstructuredMarkdownLoader(...) Load Markdown files using Unstructured. document_loaders.mastodon.MastodonTootsLoader(...) Load the Mastodon 'toots'. document_loaders.max_compute.MaxComputeLoader(...)
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-31
Load the Mastodon 'toots'. document_loaders.max_compute.MaxComputeLoader(...) Load from Alibaba Cloud MaxCompute table. document_loaders.mediawikidump.MWDumpLoader(...) Load MediaWiki dump from an XML file. document_loaders.merge.MergedDataLoader(loaders) Merge documents from a list of loaders document_loaders.mhtml.MHTMLLoader(file_path) Parse MHTML files with BeautifulSoup. document_loaders.mintbase.MintbaseDocumentLoader(...) Load elements from a blockchain smart contract. document_loaders.modern_treasury.ModernTreasuryLoader(...) Load from Modern Treasury. document_loaders.mongodb.MongodbLoader(...) Load MongoDB documents. document_loaders.news.NewsURLLoader(urls[, ...]) Load news articles from URLs using Unstructured. document_loaders.notebook.NotebookLoader(path) Load Jupyter notebook (.ipynb) files. document_loaders.notion.NotionDirectoryLoader(path, *) Load Notion directory dump. document_loaders.notiondb.NotionDBLoader(...) Load from Notion DB. document_loaders.nuclia.NucliaLoader(path, ...) Load from any file type using Nuclia Understanding API. document_loaders.obs_directory.OBSDirectoryLoader(...) Load from Huawei OBS directory. document_loaders.obs_file.OBSFileLoader(...) Load from the Huawei OBS file. document_loaders.obsidian.ObsidianLoader(path) Load Obsidian files from directory. document_loaders.odt.UnstructuredODTLoader(...) Load OpenOffice ODT files using Unstructured. document_loaders.onedrive.OneDriveLoader Load from Microsoft OneDrive. document_loaders.onedrive_file.OneDriveFileLoader Load a file from Microsoft OneDrive. document_loaders.onenote.OneNoteLoader
https://api.python.langchain.com/en/latest/community_api_reference.html
5ac1b6cc5af2-32
Load a file from Microsoft OneDrive. document_loaders.onenote.OneNoteLoader Load pages from OneNote notebooks. document_loaders.open_city_data.OpenCityDataLoader(...) Load from Open City. document_loaders.oracleadb_loader.OracleAutonomousDatabaseLoader(...) Load from oracle adb document_loaders.oracleai.OracleDocLoader(...) Read documents using OracleDocLoader :param conn: Oracle Connection, :param params: Loader parameters. document_loaders.oracleai.OracleDocReader() Read a file document_loaders.oracleai.OracleTextSplitter(...) Splitting text using Oracle chunker. document_loaders.oracleai.ParseOracleDocMetadata() Parse Oracle doc metadata... document_loaders.org_mode.UnstructuredOrgModeLoader(...) Load Org-Mode files using Unstructured. document_loaders.parsers.audio.FasterWhisperParser(*) Transcribe and parse audio files with faster-whisper. document_loaders.parsers.audio.OpenAIWhisperParser([...]) Transcribe and parse audio files. document_loaders.parsers.audio.OpenAIWhisperParserLocal([...]) Transcribe and parse audio files with OpenAI Whisper model. document_loaders.parsers.audio.YandexSTTParser(*) Transcribe and parse audio files. document_loaders.parsers.doc_intelligence.AzureAIDocumentIntelligenceParser(...) Loads a PDF with Azure Document Intelligence (formerly Forms Recognizer). document_loaders.parsers.docai.DocAIParser(*) [Deprecated] Google Cloud Document AI parser. document_loaders.parsers.docai.DocAIParsingResults(...) Dataclass to store Document AI parsing results. document_loaders.parsers.generic.MimeTypeBasedParser(...) Parser that uses mime-types to parse a blob. document_loaders.parsers.grobid.GrobidParser(...) Load article PDF files using Grobid. document_loaders.parsers.grobid.ServerUnavailableException
https://api.python.langchain.com/en/latest/community_api_reference.html
README.md exists but content is empty.
Downloads last month
16