|
--- |
|
license: mit |
|
language: |
|
- vi |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
|
|
# Structure |
|
Each sample will have a structure as follows: |
|
``` |
|
{ |
|
'id': Value(dtype='string', id=None), |
|
'images': Value(dtype='binary', id=None), |
|
'conversations': [{'from': Value(dtype='string', id=None), 'value': Value(dtype='string', id=None)}] |
|
} |
|
|
|
{ |
|
'id': '004309348', |
|
'image': <image-bytes>, |
|
'conversations': [{'from': 'human', 'value': 'Điều gì được minh họa trong hình ảnh này?\n<image>'}, {'from': 'gpt', 'value': 'bạn nghĩ có bao nhiêu sinh viên ở farbaut sử dụng sản phẩm thuốc lá'}] |
|
} |
|
``` |
|
|
|
# How To Use |
|
|
|
## Convert binary objects |
|
Because the returned video will be in bytes, here is a way to extract frames and fps: |
|
```python |
|
import io |
|
import numpy as np |
|
from PIL import Image |
|
from datasets import load_dataset |
|
|
|
def extract_image(image_bytes): |
|
img = Image.open(io.BytesIO(image_bytes)) |
|
arr = np.asarray(img) |
|
return arr |
|
|
|
dataset = load_dataset("Vividbot/instruct500k_vi", name="all", streaming=True) |
|
|
|
image_bytes = next(iter(dataset["train"]))["image"] |
|
image = extract_image(image_bytes) |
|
print(f"Image shape: {image.shape}") |
|
``` |