MMFMChallenge / backup /delete /eval_mixtral.py
helloai0's picture
Upload 104 files
375239b verified
raw
history blame
4.83 kB
from argparse import ArgumentParser
import numpy as np
import tqdm
import torch
import re
from torch import bfloat16
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
def creat_prompt(model_id, tokenizer=None, question=None, answer=None, pred=None,):
messages = [
{
"role": "system",
"content":
"You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:\n"
"------\n"
"##INSTRUCTIONS:\n"
"- Focus on the meaningful match between the predicted answer and the correct answer.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the correctness of the prediction compared to the answer."
},
{
"role": "user",
"content":
"Please evaluate the following question-answer pair:\n\n"
f"Question: {question.capitalize()}\n"
f"Correct Answer: {answer.lower()}\n"
f"Predicted Answer: {pred.lower()}\n\n"
"Evaluate if the answer is correct with yes/no and assign a correctness score between 0 and 5, where 0 indicates incorrect answer, and 5 signifies the highest meaningful match. "
"Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING. "
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {'pred': 'no', 'score': 0}."
}
]
if 'mistralai' in model_id:
prompt = f'<s>[INST] {messages[0]["content"].strip()}\n\n{messages[1]["content"].strip()} [/INST]'
elif 'NousResearch' in model_id:
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
prompt = prompt + '<|im_start|>assistant'
else:
raise NotImplementedError
return prompt
def calculate_ins_level_score(results):
acc = 0
ins_num = 0
for cat_results in results.values():
acc += cat_results['avg_score'] * cat_results['num_example']
ins_num += cat_results['num_example']
return 0
return acc / ins_num
def LLM_eval(model_id, model, tokenizer, batch_size, samples, cuda=True):
steps = int(np.ceil(len(samples) / batch_size))
evals = []
for step in tqdm.tqdm(range(steps)):
prompts = []
for item in samples[step * batch_size: (step + 1) * batch_size]:
question = item['question'].replace('<image>', '').strip()
question = question.split('Context:')[0].strip() # for ScienceQA
answer = item['answer']
pred = item['parsed_pred']
prompt = creat_prompt(model_id, tokenizer, question, answer, pred)
prompts.append(prompt)
inputs = tokenizer(prompts, return_tensors="pt", padding=True) # feed inputs of a batch
if cuda:
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.inference_mode():
output_ids = model.generate(
**inputs,
use_cache=True,
max_new_tokens=20,
pad_token_id=tokenizer.eos_token_id,
)
outputs = tokenizer.batch_decode(output_ids[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True) # decode outputs of a batch
evals.extend(outputs)
judge_dict = dict()
pred_correct = 0
score_sum = 0
for sample_data, sample_eval in zip(samples, evals):
try:
sample_eval = re.match(r".*(\{.*?\}).*", sample_eval, re.S).group(1)
sample_eval = sample_eval.replace("'", '"')
sample_eval = json.loads(sample_eval)
pred = sample_eval['pred']
sample_score = sample_eval['score']
if pred == 'yes':
judge_dict[sample_data['id']] = {'pred': 'Correct', 'score': sample_score}
pred_correct += 1
else:
judge_dict[sample_data['id']] = {'pred': 'Wrong', 'score': sample_score}
score_sum += sample_score
except:
judge_dict[sample_data['id']] = {'pred': 'Wrong', 'score': 0}
if len(samples) == 0:
return {'acc': 0, 'avg_score': 0}
return judge_dict, {'acc': pred_correct / len(samples), 'avg_score': score_sum / len(samples)}
def run_mixtral_eval():
tokenizer = AutoTokenizer.from_pretrained(args.model_id)