Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: BadZipFile Message: zipfiles that span multiple disks are not supported Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 164, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1671, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1640, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 586, in infer_module_for_data_files split_modules = { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 587, in <dictcomp> split: infer_module_for_data_files_list(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 528, in infer_module_for_data_files_list return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 556, in infer_module_for_data_files_list_in_archives for f in xglob(extracted, recursive=True, download_config=download_config)[ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1016, in xglob fs, *_ = url_to_fs(urlpath, **storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 395, in url_to_fs fs = filesystem(protocol, **inkwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/registry.py", line 293, in filesystem return cls(**storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/spec.py", line 80, in __call__ obj = super().__call__(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/implementations/zip.py", line 62, in __init__ self.zip = zipfile.ZipFile( File "/usr/local/lib/python3.9/zipfile.py", line 1266, in __init__ self._RealGetContents() File "/usr/local/lib/python3.9/zipfile.py", line 1329, in _RealGetContents endrec = _EndRecData(fp) File "/usr/local/lib/python3.9/zipfile.py", line 286, in _EndRecData return _EndRecData64(fpin, -sizeEndCentDir, endrec) File "/usr/local/lib/python3.9/zipfile.py", line 232, in _EndRecData64 raise BadZipFile("zipfiles that span multiple disks are not supported") zipfile.BadZipFile: zipfiles that span multiple disks are not supported
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Foundation Tactile (FoTa) - a multi-sensor multi-task large dataset for tactile sensing
This repository stores the FoTa dataset and the pretrained checkpoints of Transferable Tactile Transformers (T3).
Paper Code ColabJialiang (Alan) Zhao, Yuxiang Ma, Lirui Wang, and Edward H. Adelson
MIT CSAIL
Overview
FoTa was released with Transferable Tactile Transformers (T3) as a large dataset for tactile representation learning. It aggregates some of the largest open-source tactile datasets, and it is released in a unified WebDataset format.
Fota contains over 3 million tactile images collected from 13 camera-based tactile sensors and 11 tasks.
File structure
After downloading and unzipping, the file structure of FoTa looks like:
dataset_1
|---- train
|---- count.txt
|---- data_000000.tar
|---- data_000001.tar
|---- ...
|---- val
|---- count.txt
|---- data_000000.tar
|---- ...
dataset_2
:
dataset_n
Each .tar
file is one sharded dataset. At runtime, wds (WebDataset) api automatically loads, shuffles, and unpacks all shards on demand.
The nicest part of having a .tar
file, instead of saving all raw data into matrices (e.g. .npz
for zarr), is that .tar
is easy to visualize without the need of any code.
Simply double click on any .tar
file to check its content.
Although you will never need to unpack a .tar
manually (wds does that automatically), it helps to understand the logic and file structure.
data_000000.tar
|---- file_name_1.jpg
|---- file_name_1.json
:
|---- file_name_n.jpg
|---- file_name_n.json
The .jpg
files are tactile images, and the .json
files store task-specific labels.
For more details on operations of the paper, checkout our GitHub repository and Colab tutorial.
Getting started
Checkout our Colab for a step-by-step tutorial!
Download and unpack
Download either with the web interface or using the python interface:
pip install huggingface_hub
then inside a python script or in ipython, run the following:
from huggingface_hub import snapshot_download
snapshot_download(repo_id="alanz-mit/FoundationTactile", repo_type="dataset", local_dir=".", local_dir_use_symlinks=False)
To unpack the dataset which has been split into many .zip
files:
cd dataset
zip -s 0 FoTa_dataset.zip --out unsplit_FoTa_dataset.zip
unzip unsplit_FoTa_dataset.zip
Citation
@article{zhao2024transferable,
title={Transferable Tactile Transformers for Representation Learning Across Diverse Sensors and Tasks},
author={Jialiang Zhao and Yuxiang Ma and Lirui Wang and Edward H. Adelson},
year={2024},
eprint={2406.13640},
archivePrefix={arXiv},
}
MIT License.
- Downloads last month
- 675