Search is not available for this dataset
observation_uuid
string
latitude
float32
longitude
float32
positional_accuracy
int64
taxon_id
int64
quality_grade
string
gl_image_date
string
ancestry
string
rank
string
name
string
gl_inat_id
string
gl_photo_id
int64
license
string
observer_id
string
rs_classification
bool
ecoregion
string
supervised
bool
rs_image_date
string
finetune_0.25percent
bool
finetune_0.5percent
bool
finetune_1.0percent
bool
finetune_2.5percent
bool
finetune_5.0percent
bool
finetune_10.0percent
bool
finetune_20.0percent
bool
finetune_100.0percent
bool
gl_image
image
rs_image
sequence
c3bfe327-c038-4f12-9d64-b6637ca6ba59
37.773072
-122.46238
10
54,854
needs_id
2019-06-02
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
9acde7f2-5450-4212-9403-3b8c9ad2ecd7
40,796,789
CC-BY-NC
32269
true
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[141,140,142,140,132,126,128,122,138,167,165,144,136,134,133,134,132,133,134,139,140,143,143,143,1(...TRUNCATED)
c3bfe327-c038-4f12-9d64-b6637ca6ba59
37.773072
-122.46238
10
54,854
needs_id
2019-06-02
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
e3fd0417-4dac-4dfe-a6e8-275ee6c6268e
40,796,831
CC-BY-NC
32269
false
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[141,140,142,140,132,126,128,122,138,167,165,144,136,134,133,134,132,133,134,139,140,143,143,143,1(...TRUNCATED)
c3bfe327-c038-4f12-9d64-b6637ca6ba59
37.773072
-122.46238
10
54,854
needs_id
2019-06-02
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
53f13435-598b-4e1a-a309-8e7e94f84148
40,796,763
CC-BY-NC
32269
false
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[141,140,142,140,132,126,128,122,138,167,165,144,136,134,133,134,132,133,134,139,140,143,143,143,1(...TRUNCATED)
c3bfe327-c038-4f12-9d64-b6637ca6ba59
37.773072
-122.46238
10
54,854
needs_id
2019-06-02
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
ff62f0bb-b7f7-4081-8d9b-c4fbd9347837
40,796,813
CC-BY-NC
32269
false
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[141,140,142,140,132,126,128,122,138,167,165,144,136,134,133,134,132,133,134,139,140,143,143,143,1(...TRUNCATED)
32a1215c-2c1a-4e9a-bec6-b9420c538bbf
37.77303
-122.462372
10
54,854
research
2021-07-10
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
d0da6a4d-a4d2-404f-82f4-dad8c878e5d7
142,504,863
CC-BY-NC
32269
true
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[54,53,55,78,139,143,145,148,145,148,147,151,152,154,159,163,170,177,179,182,180,177,170,166,161,1(...TRUNCATED)
32a1215c-2c1a-4e9a-bec6-b9420c538bbf
37.77303
-122.462372
10
54,854
research
2021-07-10
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
22d72627-7afd-42be-ac56-573b11e2ce3f
142,504,877
CC-BY-NC
32269
false
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[54,53,55,78,139,143,145,148,145,148,147,151,152,154,159,163,170,177,179,182,180,177,170,166,161,1(...TRUNCATED)
32a1215c-2c1a-4e9a-bec6-b9420c538bbf
37.77303
-122.462372
10
54,854
research
2021-07-10
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
67629bb9-fcb7-489c-8a90-c22668c7e2f4
142,504,903
CC-BY-NC
32269
false
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[54,53,55,78,139,143,145,148,145,148,147,151,152,154,159,163,170,177,179,182,180,177,170,166,161,1(...TRUNCATED)
32a1215c-2c1a-4e9a-bec6-b9420c538bbf
37.77303
-122.462372
10
54,854
research
2021-07-10
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
9301f43e-b6c2-4049-aae2-0c02ed63926c
142,504,947
CC-BY-NC
32269
false
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[54,53,55,78,139,143,145,148,145,148,147,151,152,154,159,163,170,177,179,182,180,177,170,166,161,1(...TRUNCATED)
32a1215c-2c1a-4e9a-bec6-b9420c538bbf
37.77303
-122.462372
10
54,854
research
2021-07-10
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
b1edc8e8-9cfe-4ba8-90ba-a14503ebcb6a
143,259,390
CC-BY-NC
32269
false
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[54,53,55,78,139,143,145,148,145,148,147,151,152,154,159,163,170,177,179,182,180,177,170,166,161,1(...TRUNCATED)
c2aeab1c-b9f1-4331-a36b-b24d54e4e1ae
37.773102
-122.462198
9
54,854
research
2021-08-12
48460/47126/211194/47125/47124/48796/48797/924978/54856
species
Tilia americana
aac72728-f0a6-4c64-8590-9f3e26a96997
150,352,857
CC-BY-NC
28037
true
California Coastal Sage, Chaparral, and Oak Woodlands
false
20180804
false
false
false
false
false
false
false
false
[[[151,165,144,148,150,151,151,149,147,147,149,149,147,145,143,142,139,138,137,137,138,133,134,135,1(...TRUNCATED)

NMV Dataset Overview

Nature Multi-View (NMV) Dataset Datacard

To encourage development of better machine learning methods for operating with diverse, unlabeled natural world imagery, we introduce Nature Multi-View (NMV), a multi-view dataset of over 3 million ground-level and aerial image pairs from over 1.75 million citizen science observations for over 6,000 native and introduced plant species across California.

Characteristics and Challenges

  • Long-Tail Distribution: The dataset exhibits a long-tail distribution common in natural world settings, making it a realistic benchmark for machine learning applications.
  • Geographic Bias: The dataset reflects the geographic bias of citizen science data, with more observations from densely populated and visited regions like urban areas and National Parks.
  • Many-to-One Pairing: There are instances in the dataset where multiple ground-level images are paired to the same aerial image.

Splits

  • Training Set:
    • Full Training Set: 1,755,602 observations, 3,307,025 images
    • Labeled Training Set:
      • 20%: 334,383 observations, 390,908 images
      • 5%: 93,708 observations, 97,727 images
      • 1%: 19,371 observations, 19,545 images
      • 0.25%: 4,878 observations, 4,886 images
  • Validation Set: 150,555 observations, 279,114 images
  • Test Set: 182,618 observations, 334,887 images

Acquisition

  • Ground-Level Images:
    • Sourced from iNaturalist open data on AWS.
    • Filters applied:
    • Vascular plants
    • Within California state boundaries
    • Observations dated from January 1, 2011, to September 27, 2023
    • Geographic uncertainty < 120 meters
    • Research-grade or in need of ID (excluding casual observations)
    • Availability of corresponding remote sensing imagery
    • Overlap with bio-climatic variables
  • Aerial Images:
    • Sourced from the 2018 National Agriculture Imagery Program (NAIP).
    • RGB-Infrared images, 256x256 pixels, 60 cm-per-pixel resolution.
    • Centered on the latitude and longitude of the iNaturalist observation.

Features

  • observation_uuid (string): Unique identifier for each observation in the dataset.
  • latitude (float32): Latitude coordinate of the observation.
  • longitude (float32): Longitude coordinate of the observation.
  • positional_accuracy (int64): Accuracy of the geographical position.
  • taxon_id (int64): Identifier for the taxonomic classification of the observed species.
  • quality_grade (string): Quality grade of the observation, indicating its verification status (e.g., research-grade, needs ID).
  • gl_image_date (string): Date when the ground-level image was taken.
  • ancestry (string): Taxonomic ancestry of the observed species.
  • rank (string): Taxonomic rank of the observed species (e.g., species, genus).
  • name (string): Scientific name of the observed species.
  • gl_inat_id (string): iNaturalist identifier for the ground-level observation.
  • gl_photo_id (int64): Identifier for the ground-level photo.
  • license (string): License type under which the image is shared (e.g., CC-BY).
  • observer_id (string): Identifier for the observer who recorded the observation.
  • rs_classification (bool): Indicates if remote sensing classification data is available.
  • ecoregion (string): Ecoregion where the observation was made.
  • supervised (bool): Indicates if the observation is part of the supervised dataset.
  • rs_image_date (string): Date when the remote sensing (aerial) image was taken.
  • finetune_0.25percent (bool): Indicates if the observation is included in the 0.25% finetuning subset.
  • finetune_0.5percent (bool): Indicates if the observation is included in the 0.5% finetuning subset.
  • finetune_1.0percent (bool): Indicates if the observation is included in the 1.0% finetuning subset.
  • finetune_2.5percent (bool): Indicates if the observation is included in the 2.5% finetuning subset.
  • finetune_5.0percent (bool): Indicates if the observation is included in the 5.0% finetuning subset.
  • finetune_10.0percent (bool): Indicates if the observation is included in the 10.0% finetuning subset.
  • finetune_20.0percent (bool): Indicates if the observation is included in the 20.0% finetuning subset.
  • finetune_100.0percent (bool): Indicates if the observation is included in the 100.0% finetuning subset.
  • gl_image (image): Ground-level image associated with the observation.
  • rs_image (sequence of sequences of int64): Aerial image data associated with the observation, represented as a sequence of pixel values.

References

Downloads last month
9,981