run_id
int64 0
255
| budget
int64 5k
10M
| performance
float64 -3,734.97
34.6k
| hp_config.buffer_batch_size
int64 16
256
| hp_config.buffer_prio_sampling
bool 2
classes | hp_config.buffer_size
int64 1.1k
1,000k
| hp_config.initial_epsilon
float64 0.5
1
| hp_config.learning_rate
float64 0
0.1
| hp_config.learning_starts
int64 1
32.7k
| hp_config.target_epsilon
float64 0
0.2
| hp_config.use_target_network
bool 2
classes | hp_config.buffer_alpha
float64 0.02
0.98
⌀ | hp_config.buffer_beta
float64 0.01
1
⌀ | hp_config.buffer_epsilon
float64 0
0
⌀ | hp_config.target_update_interval
float64 1
2k
⌀ | seed
int64 0
9
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 2,000,000 | 1,523.4375 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 3,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 4,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 5,000,000 | 546.875 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 6,000,000 | 2,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 7,000,000 | 1,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 8,000,000 | 0 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 9,000,000 | 3,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
0 | 10,000,000 | 3,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 9 |
1 | 1,000,000 | 1,351.5625 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 2,000,000 | 3,632.8125 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 3,000,000 | 2,117.1875 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 4,000,000 | 2,351.5625 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 5,000,000 | 7,984.375 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 6,000,000 | 4,171.875 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 7,000,000 | 4,828.125 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 8,000,000 | 7,226.5625 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 9,000,000 | 3,703.125 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
1 | 10,000,000 | 10,210.9375 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 9 |
2 | 1,000,000 | 257.8125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 2,000,000 | 2,937.5 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 3,000,000 | 4,187.5 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 4,000,000 | 4,453.125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 5,000,000 | 1,453.125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 6,000,000 | 0 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 7,000,000 | 2,507.8125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 8,000,000 | 3,000 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 9,000,000 | 1,421.875 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
2 | 10,000,000 | 0 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 9 |
3 | 1,000,000 | 4,289.0625 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 2,000,000 | 8,835.9375 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 3,000,000 | 5,578.125 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 4,000,000 | 2,960.9375 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 5,000,000 | 9,132.8125 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 6,000,000 | 12,875 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 7,000,000 | 14,265.625 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 8,000,000 | 16,570.312 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 9,000,000 | 8,593.75 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
3 | 10,000,000 | 20,132.812 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 9 |
4 | 1,000,000 | 554.6875 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 2,000,000 | 2,000 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 3,000,000 | 609.375 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 4,000,000 | 3,000 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 5,000,000 | 2,000 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 6,000,000 | 0 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 7,000,000 | 0 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 8,000,000 | 0 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 9,000,000 | 593.75 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
4 | 10,000,000 | 531.25 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 9 |
5 | 1,000,000 | 2,945.3125 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 2,000,000 | 5,531.25 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 3,000,000 | 8,726.5625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 4,000,000 | 5,031.25 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 5,000,000 | 3,914.0625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 6,000,000 | 2,335.9375 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 7,000,000 | 8,414.0625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 8,000,000 | 7,921.875 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 9,000,000 | 11,320.3125 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
5 | 10,000,000 | 11,765.625 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 9 |
6 | 1,000,000 | 2,953.125 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 2,000,000 | 7,429.6875 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 3,000,000 | 5,515.625 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 4,000,000 | 6,171.875 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 5,000,000 | 4,859.375 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 6,000,000 | 10,953.125 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 7,000,000 | 7,367.1875 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 8,000,000 | 17,015.625 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 9,000,000 | 13,718.75 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
6 | 10,000,000 | 16,390.625 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 9 |
7 | 1,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 2,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 3,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 4,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 5,000,000 | 531.25 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 6,000,000 | 2,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 7,000,000 | 2,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 8,000,000 | 2,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 9,000,000 | 671.875 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
7 | 10,000,000 | 1,000 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 9 |
8 | 1,000,000 | 554.6875 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 2,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 3,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 4,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 5,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 6,000,000 | 1,812.5 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 7,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 8,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 9,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
8 | 10,000,000 | 0 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 9 |
9 | 1,000,000 | 890.625 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 2,000,000 | 4,000 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 3,000,000 | 3,000 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 4,000,000 | 0 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 5,000,000 | 1,460.9375 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 6,000,000 | 0 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 7,000,000 | 0 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 8,000,000 | 546.875 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 9,000,000 | 1,429.6875 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
9 | 10,000,000 | 1,398.4375 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 9 |
The ARLBench Performance Dataset
ARLBench is a benchmark for hyperparameter optimization in Reinforcement Learning. Since we performed several thousand runs on the benchmark to find meaningful HPO test settings in RL, we collect them in this dataset for future use. These runs could be used to meta-learn information about the hyperparameter landscape or warmstart HPO tools.
In detail, it contains each 10 runs for the landscape data of PPO, DQN and SAC respectively on the Atari-5 environments, four XLand gridworlds, four Brax walkers, five classic control and two Box2D environments. Additionally, it contains each 3 runs for the 5 optimzation algorithms PBT, SMAC, SMAC with Multi-Fidelity and Random Search for each algorithm and environment pair. The dataset follows the mapping: For the optimization runs, it additionally includes the key optimization seed to distinguish configurations between the 5 optimization runs for each algorithm/environment pair. For more information, refer to the ARLBench paper.
- Downloads last month
- 44