Datasets:

ArXiv:
License:
Dataset Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    RuntimeError
Message:      Disallowed deserialization of 'arrow.py_extension_type':
storage_type = list<item: list<item: list<item: uint8>>>
serialized = b'\x80\x04\x95K\x00\x00\x00\x00\x00\x00\x00\x8c\x1adatasets.features.features\x94\x8c\x14Array3DExtensionType\x94\x93\x94K\x1cK\x1cK\x01\x87\x94\x8c\x05uint8\x94\x86\x94R\x94.'
pickle disassembly:
    0: \x80 PROTO      4
    2: \x95 FRAME      75
   11: \x8c SHORT_BINUNICODE 'datasets.features.features'
   39: \x94 MEMOIZE    (as 0)
   40: \x8c SHORT_BINUNICODE 'Array3DExtensionType'
   62: \x94 MEMOIZE    (as 1)
   63: \x93 STACK_GLOBAL
   64: \x94 MEMOIZE    (as 2)
   65: K    BININT1    28
   67: K    BININT1    28
   69: K    BININT1    1
   71: \x87 TUPLE3
   72: \x94 MEMOIZE    (as 3)
   73: \x8c SHORT_BINUNICODE 'uint8'
   80: \x94 MEMOIZE    (as 4)
   81: \x86 TUPLE2
   82: \x94 MEMOIZE    (as 5)
   83: R    REDUCE
   84: \x94 MEMOIZE    (as 6)
   85: .    STOP
highest protocol among opcodes = 4


Reading of untrusted Parquet or Feather files with a PyExtensionType column
allows arbitrary code execution.
If you trust this file, you can enable reading the extension type by one of:

- upgrading to pyarrow >= 14.0.1, and call `pa.PyExtensionType.set_auto_load(True)`
- disable this error by running `import pyarrow_hotfix; pyarrow_hotfix.uninstall()`

We strongly recommend updating your Parquet/Feather files to use extension types
derived from `pyarrow.ExtensionType` instead, and register this type explicitly.
See https://arrow.apache.org/docs/dev/python/extending_types.html#defining-extension-types-user-defined-types
for more details.

Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 322, in compute
                  compute_first_rows_from_parquet_response(
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 88, in compute_first_rows_from_parquet_response
                  rows_index = indexer.get_rows_index(
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 444, in get_rows_index
                  return RowsIndex(
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 347, in __init__
                  self.parquet_index = self._init_parquet_index(
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 364, in _init_parquet_index
                  response = get_previous_step_or_raise(
                File "/src/libs/libcommon/src/libcommon/simple_cache.py", line 566, in get_previous_step_or_raise
                  raise CachedArtifactError(
              libcommon.simple_cache.CachedArtifactError: The previous step failed.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 126, in get_rows_or_raise
                  return get_rows(
                File "/src/services/worker/src/worker/utils.py", line 64, in decorator
                  return func(*args, **kwargs)
                File "/src/services/worker/src/worker/utils.py", line 103, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1388, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 282, in __iter__
                  for key, pa_table in self.generate_tables_fn(**self.kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 85, in _generate_tables
                  parquet_file = pq.ParquetFile(f)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 341, in __init__
                  self.reader.open(
                File "pyarrow/_parquet.pyx", line 1261, in pyarrow._parquet.ParquetReader.open
                File "pyarrow/types.pxi", line 88, in pyarrow.lib._datatype_to_pep3118
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow_hotfix/__init__.py", line 47, in __arrow_ext_deserialize__
                  raise RuntimeError(
              RuntimeError: Disallowed deserialization of 'arrow.py_extension_type':
              storage_type = list<item: list<item: list<item: uint8>>>
              serialized = b'\x80\x04\x95K\x00\x00\x00\x00\x00\x00\x00\x8c\x1adatasets.features.features\x94\x8c\x14Array3DExtensionType\x94\x93\x94K\x1cK\x1cK\x01\x87\x94\x8c\x05uint8\x94\x86\x94R\x94.'
              pickle disassembly:
                  0: \x80 PROTO      4
                  2: \x95 FRAME      75
                 11: \x8c SHORT_BINUNICODE 'datasets.features.features'
                 39: \x94 MEMOIZE    (as 0)
                 40: \x8c SHORT_BINUNICODE 'Array3DExtensionType'
                 62: \x94 MEMOIZE    (as 1)
                 63: \x93 STACK_GLOBAL
                 64: \x94 MEMOIZE    (as 2)
                 65: K    BININT1    28
                 67: K    BININT1    28
                 69: K    BININT1    1
                 71: \x87 TUPLE3
                 72: \x94 MEMOIZE    (as 3)
                 73: \x8c SHORT_BINUNICODE 'uint8'
                 80: \x94 MEMOIZE    (as 4)
                 81: \x86 TUPLE2
                 82: \x94 MEMOIZE    (as 5)
                 83: R    REDUCE
                 84: \x94 MEMOIZE    (as 6)
                 85: .    STOP
              highest protocol among opcodes = 4
              
              
              Reading of untrusted Parquet or Feather files with a PyExtensionType column
              allows arbitrary code execution.
              If you trust this file, you can enable reading the extension type by one of:
              
              - upgrading to pyarrow >= 14.0.1, and call `pa.PyExtensionType.set_auto_load(True)`
              - disable this error by running `import pyarrow_hotfix; pyarrow_hotfix.uninstall()`
              
              We strongly recommend updating your Parquet/Feather files to use extension types
              derived from `pyarrow.ExtensionType` instead, and register this type explicitly.
              See https://arrow.apache.org/docs/dev/python/extending_types.html#defining-extension-types-user-defined-types
              for more details.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Source: https://github.com/google-research/mnist-c

MNIST-C

This repository contains the source code used to create the MNIST-C dataset, a corrupted MNIST benchmark for testing out-of-distribution robustness of computer vision models.

Please see our full paper https://arxiv.org/abs/1906.02337 for more details.

Dataset

The static dataset is available for download at https://zenodo.org/record/3239543.

Downloads last month
49