|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from bioc import biocxml |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, kb_features |
|
|
|
_LOCAL = True |
|
_CITATION = """\ |
|
@article{10.1093/jamiaopen/ooab025, |
|
author = {Kittner, Madeleine and Lamping, Mario and Rieke, Damian T and Götze, Julian and Bajwa, Bariya and |
|
Jelas, Ivan and Rüter, Gina and Hautow, Hanjo and Sänger, Mario and Habibi, Maryam and Zettwitz, Marit and |
|
Bortoli, Till de and Ostermann, Leonie and Ševa, Jurica and Starlinger, Johannes and Kohlbacher, Oliver and |
|
Malek, Nisar P and Keilholz, Ulrich and Leser, Ulf}, |
|
title = "{Annotation and initial evaluation of a large annotated German oncological corpus}", |
|
journal = {JAMIA Open}, |
|
volume = {4}, |
|
number = {2}, |
|
year = {2021}, |
|
month = {04}, |
|
issn = {2574-2531}, |
|
doi = {10.1093/jamiaopen/ooab025}, |
|
url = {https://doi.org/10.1093/jamiaopen/ooab025}, |
|
note = {ooab025}, |
|
eprint = {https://academic.oup.com/jamiaopen/article-pdf/4/2/ooab025/38830128/ooab025.pdf}, |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
BRONCO150 is a corpus containing selected sentences of 150 German discharge summaries of cancer patients (hepatocelluar |
|
carcinoma or melanoma) treated at Charite Universitaetsmedizin Berlin or Universitaetsklinikum Tuebingen. All discharge |
|
summaries were manually anonymized. The original documents were scrambled at the sentence level to make reconstruction |
|
of individual reports impossible. |
|
""" |
|
_HOMEPAGE = "https://www2.informatik.hu-berlin.de/~leser/bronco/index.html" |
|
_LICENSE = "DUA" |
|
_URLS = {} |
|
_PUBMED = False |
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
_DATASETNAME = "bronco" |
|
_DISPLAYNAME = "BRONCO" |
|
_LANGUAGES = ["German"] |
|
|
|
|
|
class Bronco(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
DEFAULT_CONFIG_NAME = "bronco_bigbio_kb" |
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bronco_source", |
|
version=SOURCE_VERSION, |
|
description="BRONCO source schema", |
|
schema="source", |
|
subset_id="bronco", |
|
), |
|
BigBioConfig( |
|
name="bronco_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="BRONCO BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bronco", |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"passage": { |
|
"offset": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"annotation": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"infon": { |
|
"file": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
}, |
|
"location": [ |
|
{ |
|
"offset": datasets.Value("int32"), |
|
"length": datasets.Value("int32"), |
|
} |
|
], |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
"relation": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"infon": { |
|
"file": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"norm/atr": datasets.Value("string"), |
|
"string": datasets.Value("string"), |
|
}, |
|
"node": [ |
|
{ |
|
"refid": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
}, |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "bioCFiles", "BRONCO150.xml"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, "r") as fp: |
|
data = biocxml.load(fp).documents |
|
|
|
if self.config.schema == "source": |
|
for uid, doc in enumerate(data): |
|
out = { |
|
"id": doc.id, |
|
"passage": { |
|
"offset": doc.passages[0].offset, |
|
"text": doc.passages[0].text, |
|
"annotation": [], |
|
"relation": [], |
|
}, |
|
} |
|
|
|
|
|
for annotation in doc.passages[0].annotations: |
|
anno = { |
|
"id": annotation.id, |
|
"infon": annotation.infons, |
|
"text": annotation.text, |
|
"location": [], |
|
} |
|
for location in annotation.locations: |
|
anno["location"].append( |
|
{ |
|
"offset": location.offset, |
|
"length": location.length, |
|
} |
|
) |
|
out["passage"]["annotation"].append(anno) |
|
|
|
|
|
for relation in doc.passages[0].relations: |
|
rel = { |
|
"id": relation.id, |
|
"node": [], |
|
} |
|
|
|
|
|
|
|
if relation.infons["type"] == "Normalization": |
|
rel["infon"] = { |
|
"file": relation.infons["file"], |
|
"type": relation.infons["type"], |
|
"norm/atr": relation.infons["normalization type"], |
|
"string": relation.infons["string"], |
|
} |
|
else: |
|
rel["infon"] = { |
|
"file": relation.infons["file"], |
|
"type": relation.infons["type"], |
|
"norm/atr": relation.infons["attribute type"], |
|
"string": "", |
|
} |
|
|
|
for node in relation.nodes: |
|
rel["node"].append( |
|
{ |
|
"refid": node.refid, |
|
"role": node.role, |
|
} |
|
) |
|
|
|
out["passage"]["relation"].append(rel) |
|
|
|
yield uid, out |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
|
|
ordered_data = [data[2], data[4], data[0], data[3], data[1]] |
|
for uid, doc in enumerate(ordered_data): |
|
out = { |
|
"id": uid, |
|
"document_id": doc.id, |
|
"passages": [], |
|
"entities": [], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
|
|
|
|
norm_map = {} |
|
for rel in doc.passages[0].relations: |
|
if rel.infons["type"] == "Normalization": |
|
norm_map[rel.nodes[0].role] = rel.nodes[0].refid |
|
|
|
|
|
for i, passage in enumerate(doc.passages[0].text.split("\n")): |
|
|
|
if i == 0: |
|
marker = 0 |
|
else: |
|
marker = out["passages"][-1]["offsets"][-1][-1] + 1 |
|
|
|
out["passages"].append( |
|
{ |
|
"id": f"{uid}-{i}", |
|
"text": [passage], |
|
"type": "sentence", |
|
"offsets": [[marker, marker + len(passage)]], |
|
} |
|
) |
|
|
|
|
|
for ent in doc.passages[0].annotations: |
|
offsets = [] |
|
text_s = [] |
|
for loc in ent.locations: |
|
offsets.append([loc.offset, loc.offset + loc.length]) |
|
text_s.append(doc.passages[0].text[loc.offset: loc.offset + loc.length]) |
|
|
|
out["entities"].append( |
|
{ |
|
"id": f"{uid}-{ent.id}", |
|
"type": ent.infons["type"], |
|
"text": text_s, |
|
"offsets": offsets, |
|
"normalized": [ |
|
{ |
|
"db_name": norm_map.get(ent.id, ":").split(":")[0], |
|
|
|
"db_id": norm_map.get(ent.id, ":") |
|
.split(":")[1] |
|
.replace(",", ".") |
|
.replace("+", ""), |
|
} |
|
], |
|
} |
|
) |
|
|
|
yield uid, out |
|
|