|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more |
|
than the largest existing dataset. Instead of manually selecting and pairing concepts as done in previous work, |
|
the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task. |
|
A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets. |
|
""" |
|
|
|
import csv |
|
from pathlib import Path |
|
from typing import Dict, Iterator, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import pairs_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{schulz-etal-2020-biomedical, |
|
title = {Biomedical Concept Relatedness {--} A large {EHR}-based benchmark}, |
|
author = {Schulz, Claudia and |
|
Levy-Kramer, Josh and |
|
Van Assel, Camille and |
|
Kepes, Miklos and |
|
Hammerla, Nils}, |
|
booktitle = {Proceedings of the 28th International Conference on Computational Linguistics}, |
|
month = {dec}, |
|
year = {2020}, |
|
address = {Barcelona, Spain (Online)}, |
|
publisher = {International Committee on Computational Linguistics}, |
|
url = {https://aclanthology.org/2020.coling-main.577}, |
|
doi = {10.18653/v1/2020.coling-main.577}, |
|
pages = {6565--6575}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ehr_rel" |
|
_DISPLAYNAME = "EHR-Rel" |
|
|
|
_DESCRIPTION = """\ |
|
EHR-Rel is a novel open-source1 biomedical concept relatedness dataset consisting of 3630 concept pairs, six times more |
|
than the largest existing dataset. Instead of manually selecting and pairing concepts as done in previous work, |
|
the dataset is sampled from EHRs to ensure concepts are relevant for the EHR concept retrieval task. |
|
A detailed analysis of the concepts in the dataset reveals a far larger coverage compared to existing datasets. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/babylonhealth/EHR-Rel" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"ehr_rel_a": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelA.tsv", |
|
"ehr_rel_b": "https://raw.githubusercontent.com/babylonhealth/EHR-Rel/master/EHR-RelB.tsv", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] |
|
|
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class EHRRelDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset for EHR-Rel Corpus""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="ehr_rel_source", |
|
version=SOURCE_VERSION, |
|
description="EHR-Rel combined source schema", |
|
schema="source", |
|
subset_id="ehr_rel", |
|
), |
|
BigBioConfig( |
|
name="ehr_rel_a_source", |
|
version=SOURCE_VERSION, |
|
description="EHR-Rel-A source schema", |
|
schema="source", |
|
subset_id="ehr_rel_a", |
|
), |
|
BigBioConfig( |
|
name="ehr_rel_b_source", |
|
version=SOURCE_VERSION, |
|
description="EHR-Rel-B source schema", |
|
schema="source", |
|
subset_id="ehr_rel_b", |
|
), |
|
BigBioConfig( |
|
name="ehr_rel_bigbio_pairs", |
|
version=BIGBIO_VERSION, |
|
description="EHR-Rel BigBio schema", |
|
schema="bigbio_pairs", |
|
subset_id="ehr_rel", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ehr_rel_bigbio_pairs" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"snomed_id_1": datasets.Value("string"), |
|
"snomed_label_1": datasets.Value("string"), |
|
"snomed_id_2": datasets.Value("string"), |
|
"snomed_label_2": datasets.Value("string"), |
|
"rater_A": datasets.Value("string"), |
|
"rater_B": datasets.Value("string"), |
|
"rater_C": datasets.Value("string"), |
|
"rater_D": datasets.Value("string"), |
|
"rater_E": datasets.Value("string"), |
|
"mean_rating": datasets.Value("string"), |
|
"CUI_1": datasets.Value("string"), |
|
"CUI_2": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
features = pairs_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
urls = ( |
|
[urls[self.config.subset_id]] |
|
if self.config.subset_id in urls |
|
else list(urls.values()) |
|
) |
|
paths = dl_manager.download(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"paths": paths}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, paths: List[str]) -> Iterator[Tuple[str, Dict]]: |
|
|
|
uid = -1 |
|
|
|
for path in paths: |
|
document_id = Path(path).stem |
|
with open(path, encoding="utf-8", newline="") as csv_file: |
|
csv_reader = csv.reader(csv_file, quotechar='"', delimiter="\t") |
|
next(csv_reader, None) |
|
for id_, row in enumerate(csv_reader): |
|
uid += 1 |
|
( |
|
snomed_id_1, |
|
snomed_label_1, |
|
snomed_id_2, |
|
snomed_label_2, |
|
rater_A, |
|
rater_B, |
|
rater_C, |
|
rater_D, |
|
rater_E, |
|
mean_rating, |
|
CUI_1, |
|
CUI_2, |
|
) = row |
|
|
|
if self.config.schema == "source": |
|
yield uid, { |
|
"document_id": document_id, |
|
"snomed_id_1": snomed_id_1, |
|
"snomed_label_1": snomed_label_1, |
|
"snomed_id_2": snomed_id_1, |
|
"snomed_label_2": snomed_label_2, |
|
"rater_A": rater_A, |
|
"rater_B": rater_B, |
|
"rater_C": rater_C, |
|
"rater_D": rater_D, |
|
"rater_E": rater_E, |
|
"mean_rating": mean_rating, |
|
"CUI_1": CUI_1, |
|
"CUI_2": CUI_2, |
|
} |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
yield uid, { |
|
"id": uid, |
|
"document_id": document_id, |
|
"text_1": snomed_label_1, |
|
"text_2": snomed_label_2, |
|
"label": mean_rating, |
|
} |
|
|