Datasets:

License:
scielo / scielo.py
gabrielaltay's picture
upload hubscripts/scielo_hub.py to hub from bigbio repo
8f06c11
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO.
"""
from typing import IO, Any, Generator, List, Optional, Tuple
import datasets
from .bigbiohub import text2text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English', 'Spanish', 'Portuguese']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{soares2018large,
title = {A Large Parallel Corpus of Full-Text Scientific Articles},
author = {Soares, Felipe and Moreira, Viviane and Becker, Karin},
year = 2018,
booktitle = {
Proceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC-2018)
}
}
"""
_DATASETNAME = "scielo"
_DISPLAYNAME = "SciELO"
_DESCRIPTION = """\
A parallel corpus of full-text scientific articles collected from Scielo \
database in the following languages: English, Portuguese and Spanish. The corpus \
is sentence aligned for all language pairs, as well as trilingual aligned for a \
small subset of sentences. Alignment was carried out using the Hunalign \
algorithm.
"""
_HOMEPAGE = "https://sites.google.com/view/felipe-soares/datasets#h.p_92uSCyAjWSRB"
_LICENSE = 'Creative Commons Attribution 4.0 International'
_URLS = {
"en_es": "https://ndownloader.figstatic.com/files/14019287",
"en_pt": "https://ndownloader.figstatic.com/files/14019308",
"en_pt_es": "https://ndownloader.figstatic.com/files/14019293",
}
_SUPPORTED_TASKS = [Tasks.TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class ScieloDataset(datasets.GeneratorBasedBuilder):
"""Parallel corpus of full-text articles in Portuguese, English and Spanish from SciELO."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
# NOTE: bigbio_t2t schema doesn't allow only for more than two texts in text-to-text schema.
# en-pt-es translation is not implemented using the bigbio schema
BUILDER_CONFIGS = [
BigBioConfig(
name="scielo_en_es_source",
version=SOURCE_VERSION,
description="English-Spanish",
schema="source",
subset_id="scielo_en_es",
),
BigBioConfig(
name="scielo_en_pt_source",
version=SOURCE_VERSION,
description="English-Portuguese",
schema="source",
subset_id="scielo_en_pt",
),
BigBioConfig(
name="scielo_en_pt_es_source",
version=SOURCE_VERSION,
description="English-Portuguese-Spanish",
schema="source",
subset_id="scielo_en_pt_es",
),
BigBioConfig(
name="scielo_en_es_bigbio_t2t",
version=BIGBIO_VERSION,
description="scielo BigBio schema English-Spanish",
schema="bigbio_t2t",
subset_id="scielo_en_es",
),
BigBioConfig(
name="scielo_en_pt_bigbio_t2t",
version=BIGBIO_VERSION,
description="scielo BigBio schema English-Portuguese",
schema="bigbio_t2t",
subset_id="scielo_en_pt",
),
]
DEFAULT_CONFIG_NAME = "scielo_source_en_es"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
lang_list: List[str] = self.config.subset_id.split("_")[1:]
features = datasets.Features(
{"translation": datasets.features.Translation(languages=lang_list)}
)
elif self.config.schema == "bigbio_t2t":
features = text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
lang_list: List[str] = self.config.subset_id.split("_")[1:]
languages = "_".join(lang_list)
archive = dl_manager.download(_URLS[languages])
fname = languages
if languages == "en_pt_es":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"source_file": f"{fname}.en",
"target_file": f"{fname}.pt",
"target_file_2": f"{fname}.es",
"files": dl_manager.iter_archive(archive),
"languages": languages,
"split": "train",
},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"source_file": f"{fname}.{lang_list[0]}",
"target_file": f"{fname}.{lang_list[1]}",
"files": dl_manager.iter_archive(archive),
"languages": languages,
"split": "train",
},
),
]
def _generate_examples(
self,
languages: str,
split: str,
source_file: str,
target_file: str,
files: Generator[Tuple[str, IO[bytes]], Any, None],
target_file_2: Optional[str] = None,
) -> Tuple[int, dict]:
if self.config.schema == "source":
for path, f in files:
if path == source_file:
source_sentences = f.read().decode("utf-8").split("\n")
elif path == target_file:
target_sentences = f.read().decode("utf-8").split("\n")
elif languages == "en_pt_es" and path == target_file_2:
target_sentences_2 = f.read().decode("utf-8").split("\n")
if languages == "en_pt_es":
source, target, target_2 = tuple(languages.split("_"))
for idx, (l1, l2, l3) in enumerate(
zip(source_sentences, target_sentences, target_sentences_2)
):
result = {"translation": {source: l1, target: l2, target_2: l3}}
yield idx, result
else:
source, target = tuple(languages.split("_"))
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
result = {"translation": {source: l1, target: l2}}
yield idx, result
elif self.config.schema == "bigbio_t2t":
for path, f in files:
if path == source_file:
source_sentences = f.read().decode("utf-8").split("\n")
elif path == target_file:
target_sentences = f.read().decode("utf-8").split("\n")
uid = 0
source, target = tuple(languages.split("_"))
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
uid += 1
yield idx, {
"id": str(uid),
"document_id": str(idx),
"text_1": l1,
"text_2": l2,
"text_1_name": source,
"text_2_name": target,
}