Datasets:

Languages:
English
ArXiv:
License:
asahi417 commited on
Commit
5b95481
·
1 Parent(s): 44cbae4
Files changed (1) hide show
  1. lm_finetuning.py +179 -0
lm_finetuning.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import logging
4
+ import os
5
+ import shutil
6
+ import urllib.request
7
+ import multiprocessing
8
+ from os.path import join as pj
9
+
10
+ import torch
11
+ import numpy as np
12
+ from huggingface_hub import create_repo
13
+ from datasets import load_dataset, load_metric
14
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
15
+ from ray import tune
16
+
17
+ logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
18
+
19
+ PARALLEL = bool(int(os.getenv("PARALLEL", 1)))
20
+ RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results")
21
+
22
+
23
+ def internet_connection(host='http://google.com'):
24
+ try:
25
+ urllib.request.urlopen(host)
26
+ return True
27
+ except:
28
+ return False
29
+
30
+
31
+ def get_metrics():
32
+ metric_accuracy = load_metric("accuracy", "multilabel")
33
+ metric_f1 = load_metric("f1", "multilabel")
34
+
35
+ # metric_f1.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average='micro')
36
+ # metric_accuracy.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]])
37
+
38
+ def compute_metric_search(eval_pred):
39
+ logits, labels = eval_pred
40
+ predictions = np.argmax(logits, axis=-1)
41
+ return metric_f1.compute(predictions=predictions, references=labels, average='micro')
42
+
43
+ def compute_metric_all(eval_pred):
44
+ logits, labels = eval_pred
45
+ predictions = np.argmax(logits, axis=-1)
46
+ return {
47
+ 'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
48
+ 'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
49
+ 'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy']
50
+ }
51
+ return compute_metric_search, compute_metric_all
52
+
53
+
54
+ def main():
55
+ parser = argparse.ArgumentParser(description='Fine-tuning language model.')
56
+ parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
57
+ parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str)
58
+ parser.add_argument('--dataset-name', help='huggingface dataset name', default='citation_intent', type=str)
59
+ parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
60
+ parser.add_argument('--random-seed', help='', default=42, type=int)
61
+ parser.add_argument('--eval-step', help='', default=50, type=int)
62
+ parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str)
63
+ parser.add_argument('-t', '--n-trials', default=10, type=int)
64
+ parser.add_argument('--push-to-hub', action='store_true')
65
+ parser.add_argument('--use-auth-token', action='store_true')
66
+ parser.add_argument('--hf-organization', default=None, type=str)
67
+ parser.add_argument('-a', '--model-alias', help='', default=None, type=str)
68
+ parser.add_argument('--summary-file', default='metric_summary.json', type=str)
69
+ parser.add_argument('--skip-train', action='store_true')
70
+ parser.add_argument('--skip-eval', action='store_true')
71
+ opt = parser.parse_args()
72
+ assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}'
73
+ # setup data
74
+ dataset = load_dataset(opt.dataset, opt.dataset_name)
75
+ network = internet_connection()
76
+ # setup model
77
+ tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
78
+ model = AutoModelForSequenceClassification.from_pretrained(
79
+ opt.model,
80
+ num_labels=len(dataset['train'][0]['label']),
81
+ local_files_only=not network,
82
+ problem_type="multi_label_classification"
83
+ )
84
+ tokenized_datasets = dataset.map(
85
+ lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
86
+ batched=True)
87
+ # setup metrics
88
+ compute_metric_search, compute_metric_all = get_metrics()
89
+
90
+ if not opt.skip_train:
91
+ # setup trainer
92
+ trainer = Trainer(
93
+ model=model,
94
+ args=TrainingArguments(
95
+ output_dir=opt.output_dir,
96
+ evaluation_strategy="steps",
97
+ eval_steps=opt.eval_step,
98
+ seed=opt.random_seed
99
+ ),
100
+ train_dataset=tokenized_datasets["train"],
101
+ eval_dataset=tokenized_datasets["validation"],
102
+ compute_metrics=compute_metric_search,
103
+ model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
104
+ opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
105
+ )
106
+ # parameter search
107
+ if PARALLEL:
108
+ best_run = trainer.hyperparameter_search(
109
+ hp_space=lambda x: {
110
+ "learning_rate": tune.loguniform(1e-6, 1e-4),
111
+ "num_train_epochs": tune.choice(list(range(1, 6))),
112
+ "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
113
+ },
114
+ local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials,
115
+ resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()},
116
+
117
+ )
118
+ else:
119
+ best_run = trainer.hyperparameter_search(
120
+ hp_space=lambda x: {
121
+ "learning_rate": tune.loguniform(1e-6, 1e-4),
122
+ "num_train_epochs": tune.choice(list(range(1, 6))),
123
+ "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
124
+ },
125
+ local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials
126
+ )
127
+ # finetuning
128
+ for n, v in best_run.hyperparameters.items():
129
+ setattr(trainer.args, n, v)
130
+ trainer.train()
131
+ trainer.save_model(pj(opt.output_dir, 'best_model'))
132
+ best_model_path = pj(opt.output_dir, 'best_model')
133
+ else:
134
+ best_model_path = opt.output_dir
135
+
136
+ # evaluation
137
+ model = AutoModelForSequenceClassification.from_pretrained(
138
+ best_model_path,
139
+ num_labels=dataset['train'].features['label'].num_classes,
140
+ local_files_only=not network)
141
+ trainer = Trainer(
142
+ model=model,
143
+ args=TrainingArguments(
144
+ output_dir=opt.output_dir,
145
+ evaluation_strategy="no",
146
+ seed=opt.random_seed
147
+ ),
148
+ train_dataset=tokenized_datasets["train"],
149
+ eval_dataset=tokenized_datasets["test"],
150
+ compute_metrics=compute_metric_all,
151
+ model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
152
+ opt.model, return_dict=True, num_labels=dataset['train'].features['label'].num_classes)
153
+ )
154
+ summary_file = pj(opt.output_dir, opt.summary_file)
155
+ if not opt.skip_eval:
156
+ result = {f'test/{k}': v for k, v in trainer.evaluate().items()}
157
+ logging.info(json.dumps(result, indent=4))
158
+ with open(summary_file, 'w') as f:
159
+ json.dump(result, f)
160
+
161
+ if opt.push_to_hub:
162
+ assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`'
163
+ assert opt.model_alias is not None, f'specify hf organization `--model-alias`'
164
+ url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True)
165
+ # if not opt.skip_train:
166
+ args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization}
167
+ trainer.model.push_to_hub(opt.model_alias, **args)
168
+ tokenizer.push_to_hub(opt.model_alias, **args)
169
+ if os.path.exists(summary_file):
170
+ shutil.copy2(summary_file, opt.model_alias)
171
+ os.system(
172
+ f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../")
173
+ shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo
174
+
175
+
176
+ if __name__ == '__main__':
177
+ main()
178
+
179
+