|
import os |
|
import datasets |
|
import pandas as pd |
|
from datasets.tasks import AudioClassification |
|
|
|
|
|
_NAMES = [ |
|
|
|
"gao_hu", |
|
"er_hu", |
|
"zhong_hu", |
|
"ge_hu", |
|
"di_yin_ge_hu", |
|
"jing_hu", |
|
"ban_hu", |
|
"bang_di", |
|
"qu_di", |
|
"xin_di", |
|
"da_di", |
|
"gao_yin_sheng", |
|
"zhong_yin_sheng", |
|
"di_yin_sheng", |
|
"gao_yin_suo_na", |
|
"zhong_yin_suo_na", |
|
"ci_zhong_yin_suo_na", |
|
"di_yin_suo_na", |
|
"gao_yin_guan", |
|
"zhong_yin_guan", |
|
"di_yin_guan", |
|
"bei_di_yin_guan", |
|
"ba_wu", |
|
"xun", |
|
"xiao", |
|
"liu_qin", |
|
"xiao_ruan", |
|
"pi_pa", |
|
"yang_qin", |
|
"zhong_ruan", |
|
"da_ruan", |
|
"gu_zheng", |
|
"gu_qin", |
|
"kong_hou", |
|
"san_xian", |
|
"yun_luo", |
|
"bian_zhong", |
|
|
|
"violin", |
|
"viola", |
|
"cello", |
|
"double_bass", |
|
"piccolo", |
|
"flute", |
|
"oboe", |
|
"clarinet", |
|
"bassoon", |
|
"saxophone", |
|
"trumpet", |
|
"trombone", |
|
"horn", |
|
"tuba", |
|
"harp", |
|
"tubular_bells", |
|
"bells", |
|
"xylophone", |
|
"vibraphone", |
|
"marimba", |
|
"piano", |
|
"clavichord", |
|
"accordion", |
|
"organ", |
|
] |
|
|
|
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}" |
|
|
|
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data" |
|
|
|
_URLS = { |
|
"audio": f"{_DOMAIN}/audio.zip", |
|
"mel": f"{_DOMAIN}/mel.zip", |
|
"Chinese": f"{_DOMAIN}/Chinese.csv", |
|
"Western": f"{_DOMAIN}/Western.csv", |
|
} |
|
|
|
|
|
class instrument_timbre(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=44100), |
|
"mel": datasets.Image(), |
|
"instrument": datasets.features.ClassLabel(names=_NAMES), |
|
"slim": datasets.Value("float32"), |
|
"bright": datasets.Value("float32"), |
|
"dim": datasets.Value("float32"), |
|
"sharp": datasets.Value("float32"), |
|
"thick": datasets.Value("float32"), |
|
"thin": datasets.Value("float32"), |
|
"solid": datasets.Value("float32"), |
|
"clear": datasets.Value("float32"), |
|
"dry": datasets.Value("float32"), |
|
"plump": datasets.Value("float32"), |
|
"rough": datasets.Value("float32"), |
|
"pure": datasets.Value("float32"), |
|
"hoarse": datasets.Value("float32"), |
|
"harmonious": datasets.Value("float32"), |
|
"soft": datasets.Value("float32"), |
|
"turbid": datasets.Value("float32"), |
|
} |
|
), |
|
supervised_keys=("audio", "instrument"), |
|
homepage=_HOMEPAGE, |
|
license="CC-BY-NC-ND", |
|
version="1.2.0", |
|
task_templates=[ |
|
AudioClassification( |
|
task="audio-classification", |
|
audio_column="audio", |
|
label_column="instrument", |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
audio_files = dl_manager.download_and_extract(_URLS["audio"]) |
|
mel_files = dl_manager.download_and_extract(_URLS["mel"]) |
|
cn_ins_eval = dl_manager.download(_URLS["Chinese"]) |
|
en_ins_eval = dl_manager.download(_URLS["Western"]) |
|
cn_labels = pd.read_csv(cn_ins_eval, index_col="instrument_id") |
|
en_labels = pd.read_csv(en_ins_eval, index_col="instrument_id") |
|
cn_dataset, en_dataset = {}, {} |
|
for path in dl_manager.iter_files([audio_files]): |
|
fname: str = os.path.basename(path) |
|
i = int(fname.split(".wa")[0]) - 1 |
|
if fname.endswith(".wav"): |
|
region = os.path.basename(os.path.dirname(path)) |
|
labels = cn_labels if region == "Chinese" else en_labels |
|
data = { |
|
"audio": path, |
|
"mel": "", |
|
"instrument": labels.iloc[i]["instrument_name"], |
|
"slim": labels.iloc[i]["slim"], |
|
"bright": labels.iloc[i]["bright"], |
|
"dim": labels.iloc[i]["dim"], |
|
"sharp": labels.iloc[i]["sharp"], |
|
"thick": labels.iloc[i]["thick"], |
|
"thin": labels.iloc[i]["thin"], |
|
"solid": labels.iloc[i]["solid"], |
|
"clear": labels.iloc[i]["clear"], |
|
"dry": labels.iloc[i]["dry"], |
|
"plump": labels.iloc[i]["plump"], |
|
"rough": labels.iloc[i]["rough"], |
|
"pure": labels.iloc[i]["pure"], |
|
"hoarse": labels.iloc[i]["hoarse"], |
|
"harmonious": labels.iloc[i]["harmonious"], |
|
"soft": labels.iloc[i]["soft"], |
|
"turbid": labels.iloc[i]["turbid"], |
|
} |
|
if region == "Chinese": |
|
cn_dataset[i] = data |
|
|
|
else: |
|
en_dataset[i] = data |
|
|
|
for path in dl_manager.iter_files([mel_files]): |
|
fname = os.path.basename(path) |
|
i = int(fname.split(".jp")[0]) - 1 |
|
if fname.endswith(".jpg"): |
|
if os.path.basename(os.path.dirname(path)) == "Chinese": |
|
cn_dataset[i]["mel"] = path |
|
|
|
else: |
|
en_dataset[i]["mel"] = path |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="Chinese", |
|
gen_kwargs={ |
|
"files": [cn_dataset[k] for k in sorted(cn_dataset)], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="Western", |
|
gen_kwargs={ |
|
"files": [en_dataset[k] for k in sorted(en_dataset)], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
for i, path in enumerate(files): |
|
yield i, path |
|
|