Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: ReadTimeout Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 3f6a4eb6-0942-484d-b6bd-ea0648759f17)') Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 164, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1729, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1686, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1064, in get_module patterns = get_data_patterns(base_path, download_config=self.download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 501, in get_data_patterns return _get_data_files_patterns(resolver) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 275, in _get_data_files_patterns data_files = pattern_resolver(pattern) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 388, in resolve_pattern for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items() File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 408, in glob path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve() File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 175, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 121, in _repo_and_revision_exist self._api.repo_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2682, in repo_info return method( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2539, in dataset_info r = get_session().get(path, headers=headers, timeout=timeout, params=params) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get return self.request("GET", url, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send return super().send(request, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send raise ReadTimeout(e, request=request) requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 3f6a4eb6-0942-484d-b6bd-ea0648759f17)')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation
Abstract
Despite considerable progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, consisting of 40K frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with diverse lighting conditions. Collected using two 360° cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with a significantly increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a significant challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, achieving improved performance.
Dataset Structure
The dataset is organized into training and testing subsets with the following structure:
helvipad/
├── train/
│ ├── depth_maps # Depth maps generated from LiDAR data
│ ├── depth_maps_augmented # Augmented depth maps using depth completion
│ ├── disparity_maps # Disparity maps computed from depth maps
│ ├── disparity_maps_augmented # Augmented disparity maps using depth completion
│ ├── images_top # Top-camera RGB images
│ ├── images_bottom # Bottom-camera RGB images
│ ├── LiDAR_pcd # Original LiDAR point cloud data
├── test/
│ ├── depth_maps # Depth maps generated from LiDAR data
│ ├── disparity_maps # Disparity maps computed from depth maps
│ ├── images_top # Top-camera RGB images
│ ├── images_bottom # Bottom-camera RGB images
│ ├── LiDAR_pcd # Original LiDAR point cloud data
Benchmark
We evaluate the performance of multiple state-of-the-art and popular stereo matching methods, both for standard and 360° images. All models are trained on a single NVIDIA A100 GPU with the largest possible batch size to ensure comparable use of computational resources.
Method | Type | Disp-MAE (°) | Disp-RMSE (°) | Disp-MARE | Depth-MAE (m) | Depth-RMSE (m) | Depth-MARE (m) |
---|---|---|---|---|---|---|---|
PSMNet | Stereo | 0.33 | 0.54 | 0.20 | 2.79 | 6.17 | 0.29 |
360SD-Net | 360° Stereo | 0.21 | 0.42 | 0.18 | 2.14 | 5.12 | 0.15 |
IGEV-Stereo | Stereo | 0.22 | 0.41 | 0.17 | 1.85 | 4.44 | 0.15 |
360-IGEV-Stereo | 360° Stereo | 0.18 | 0.39 | 0.15 | 1.77 | 4.36 | 0.14 |
Project Page
For more information, visualizations, and updates, visit the project page.
Citation
If you use the Helvipad dataset in your research, please cite our paper:
@misc{zayene2024helvipad,
author = {Zayene, Mehdi and Endres, Jannik and Havolli, Albias and Corbière, Charles and Cherkaoui, Salim and Ben Ahmed Kontouli, Alexandre and Alahi, Alexandre},
title = {Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation},
year = {2024},
eprint = {2403.16999},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
License
This dataset is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
Acknowledgments
This work was supported by the EPFL Center for Imaging through a Collaborative Imaging Grant. We thank the VITA lab members for their valuable feedback, which helped to enhance the quality of this manuscript. We also express our gratitude to Dr. Simone Schaub-Meyer and Oliver Hahn for their insightful advice during the project's final stages.
- Downloads last month
- 447