docs / huggingface_tokenizers.txt
danidarko's picture
Upload 59 files
b1d4de0 verified
raw
history blame
54.2 kB
# File: tokenizers-main/bindings/python/py_src/tokenizers/__init__.py
from enum import Enum
from typing import List, Tuple, Union
Offsets = Tuple[int, int]
TextInputSequence = str
''
PreTokenizedInputSequence = Union[List[str], Tuple[str]]
''
TextEncodeInput = Union[TextInputSequence, Tuple[TextInputSequence, TextInputSequence], List[TextInputSequence]]
''
PreTokenizedEncodeInput = Union[PreTokenizedInputSequence, Tuple[PreTokenizedInputSequence, PreTokenizedInputSequence], List[PreTokenizedInputSequence]]
''
InputSequence = Union[TextInputSequence, PreTokenizedInputSequence]
''
EncodeInput = Union[TextEncodeInput, PreTokenizedEncodeInput]
''
class OffsetReferential(Enum):
ORIGINAL = 'original'
NORMALIZED = 'normalized'
class OffsetType(Enum):
BYTE = 'byte'
CHAR = 'char'
class SplitDelimiterBehavior(Enum):
REMOVED = 'removed'
ISOLATED = 'isolated'
MERGED_WITH_PREVIOUS = 'merged_with_previous'
MERGED_WITH_NEXT = 'merged_with_next'
CONTIGUOUS = 'contiguous'
from .tokenizers import AddedToken, Encoding, NormalizedString, PreTokenizedString, Regex, Token, Tokenizer, decoders, models, normalizers, pre_tokenizers, processors, trainers, __version__
from .implementations import BertWordPieceTokenizer, ByteLevelBPETokenizer, CharBPETokenizer, SentencePieceBPETokenizer, SentencePieceUnigramTokenizer
# File: tokenizers-main/bindings/python/py_src/tokenizers/decoders/__init__.py
from .. import decoders
Decoder = decoders.Decoder
ByteLevel = decoders.ByteLevel
Replace = decoders.Replace
WordPiece = decoders.WordPiece
ByteFallback = decoders.ByteFallback
Fuse = decoders.Fuse
Strip = decoders.Strip
Metaspace = decoders.Metaspace
BPEDecoder = decoders.BPEDecoder
CTC = decoders.CTC
Sequence = decoders.Sequence
# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/base_tokenizer.py
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import AddedToken, EncodeInput, Encoding, InputSequence, Tokenizer
from tokenizers.decoders import Decoder
from tokenizers.models import Model
from tokenizers.normalizers import Normalizer
from tokenizers.pre_tokenizers import PreTokenizer
from tokenizers.processors import PostProcessor
Offsets = Tuple[int, int]
class BaseTokenizer:
def __init__(self, tokenizer: Tokenizer, parameters=None):
self._tokenizer = tokenizer
self._parameters = parameters if parameters is not None else {}
def __repr__(self):
return 'Tokenizer(vocabulary_size={}, {})'.format(self._tokenizer.get_vocab_size(), ', '.join((k + '=' + str(v) for (k, v) in self._parameters.items())))
def num_special_tokens_to_add(self, is_pair: bool) -> int:
return self._tokenizer.num_special_tokens_to_add(is_pair)
def get_vocab(self, with_added_tokens: bool=True) -> Dict[str, int]:
return self._tokenizer.get_vocab(with_added_tokens=with_added_tokens)
def get_added_tokens_decoder(self) -> Dict[int, AddedToken]:
return self._tokenizer.get_added_tokens_decoder()
def get_vocab_size(self, with_added_tokens: bool=True) -> int:
return self._tokenizer.get_vocab_size(with_added_tokens=with_added_tokens)
def enable_padding(self, direction: Optional[str]='right', pad_to_multiple_of: Optional[int]=None, pad_id: Optional[int]=0, pad_type_id: Optional[int]=0, pad_token: Optional[str]='[PAD]', length: Optional[int]=None):
return self._tokenizer.enable_padding(direction=direction, pad_to_multiple_of=pad_to_multiple_of, pad_id=pad_id, pad_type_id=pad_type_id, pad_token=pad_token, length=length)
def no_padding(self):
return self._tokenizer.no_padding()
@property
def padding(self) -> Optional[dict]:
return self._tokenizer.padding
def enable_truncation(self, max_length: int, stride: Optional[int]=0, strategy: Optional[str]='longest_first'):
return self._tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy)
def no_truncation(self):
return self._tokenizer.no_truncation()
@property
def truncation(self) -> Optional[dict]:
return self._tokenizer.truncation
def add_tokens(self, tokens: List[Union[str, AddedToken]]) -> int:
return self._tokenizer.add_tokens(tokens)
def add_special_tokens(self, special_tokens: List[Union[str, AddedToken]]) -> int:
return self._tokenizer.add_special_tokens(special_tokens)
def normalize(self, sequence: str) -> str:
return self._tokenizer.normalize(sequence)
def encode(self, sequence: InputSequence, pair: Optional[InputSequence]=None, is_pretokenized: bool=False, add_special_tokens: bool=True) -> Encoding:
if sequence is None:
raise ValueError("encode: `sequence` can't be `None`")
return self._tokenizer.encode(sequence, pair, is_pretokenized, add_special_tokens)
def encode_batch(self, inputs: List[EncodeInput], is_pretokenized: bool=False, add_special_tokens: bool=True) -> List[Encoding]:
if inputs is None:
raise ValueError("encode_batch: `inputs` can't be `None`")
return self._tokenizer.encode_batch(inputs, is_pretokenized, add_special_tokens)
def decode(self, ids: List[int], skip_special_tokens: Optional[bool]=True) -> str:
if ids is None:
raise ValueError('None input is not valid. Should be a list of integers.')
return self._tokenizer.decode(ids, skip_special_tokens=skip_special_tokens)
def decode_batch(self, sequences: List[List[int]], skip_special_tokens: Optional[bool]=True) -> str:
if sequences is None:
raise ValueError('None input is not valid. Should be list of list of integers.')
return self._tokenizer.decode_batch(sequences, skip_special_tokens=skip_special_tokens)
def token_to_id(self, token: str) -> Optional[int]:
return self._tokenizer.token_to_id(token)
def id_to_token(self, id: int) -> Optional[str]:
return self._tokenizer.id_to_token(id)
def save_model(self, directory: str, prefix: Optional[str]=None):
return self._tokenizer.model.save(directory, prefix=prefix)
def save(self, path: str, pretty: bool=True):
return self._tokenizer.save(path, pretty)
def to_str(self, pretty: bool=False):
return self._tokenizer.to_str(pretty)
def post_process(self, encoding: Encoding, pair: Optional[Encoding]=None, add_special_tokens: bool=True) -> Encoding:
return self._tokenizer.post_process(encoding, pair, add_special_tokens)
@property
def model(self) -> Model:
return self._tokenizer.model
@model.setter
def model(self, model: Model):
self._tokenizer.model = model
@property
def normalizer(self) -> Normalizer:
return self._tokenizer.normalizer
@normalizer.setter
def normalizer(self, normalizer: Normalizer):
self._tokenizer.normalizer = normalizer
@property
def pre_tokenizer(self) -> PreTokenizer:
return self._tokenizer.pre_tokenizer
@pre_tokenizer.setter
def pre_tokenizer(self, pre_tokenizer: PreTokenizer):
self._tokenizer.pre_tokenizer = pre_tokenizer
@property
def post_processor(self) -> PostProcessor:
return self._tokenizer.post_processor
@post_processor.setter
def post_processor(self, post_processor: PostProcessor):
self._tokenizer.post_processor = post_processor
@property
def decoder(self) -> Decoder:
return self._tokenizer.decoder
@decoder.setter
def decoder(self, decoder: Decoder):
self._tokenizer.decoder = decoder
# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/bert_wordpiece.py
from typing import Dict, Iterator, List, Optional, Union
from tokenizers import AddedToken, Tokenizer, decoders, trainers
from tokenizers.models import WordPiece
from tokenizers.normalizers import BertNormalizer
from tokenizers.pre_tokenizers import BertPreTokenizer
from tokenizers.processors import BertProcessing
from .base_tokenizer import BaseTokenizer
class BertWordPieceTokenizer(BaseTokenizer):
def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, unk_token: Union[str, AddedToken]='[UNK]', sep_token: Union[str, AddedToken]='[SEP]', cls_token: Union[str, AddedToken]='[CLS]', pad_token: Union[str, AddedToken]='[PAD]', mask_token: Union[str, AddedToken]='[MASK]', clean_text: bool=True, handle_chinese_chars: bool=True, strip_accents: Optional[bool]=None, lowercase: bool=True, wordpieces_prefix: str='##'):
if vocab is not None:
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token)))
else:
tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token)))
if tokenizer.token_to_id(str(unk_token)) is not None:
tokenizer.add_special_tokens([str(unk_token)])
if tokenizer.token_to_id(str(sep_token)) is not None:
tokenizer.add_special_tokens([str(sep_token)])
if tokenizer.token_to_id(str(cls_token)) is not None:
tokenizer.add_special_tokens([str(cls_token)])
if tokenizer.token_to_id(str(pad_token)) is not None:
tokenizer.add_special_tokens([str(pad_token)])
if tokenizer.token_to_id(str(mask_token)) is not None:
tokenizer.add_special_tokens([str(mask_token)])
tokenizer.normalizer = BertNormalizer(clean_text=clean_text, handle_chinese_chars=handle_chinese_chars, strip_accents=strip_accents, lowercase=lowercase)
tokenizer.pre_tokenizer = BertPreTokenizer()
if vocab is not None:
sep_token_id = tokenizer.token_to_id(str(sep_token))
if sep_token_id is None:
raise TypeError('sep_token not found in the vocabulary')
cls_token_id = tokenizer.token_to_id(str(cls_token))
if cls_token_id is None:
raise TypeError('cls_token not found in the vocabulary')
tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id))
tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix)
parameters = {'model': 'BertWordPiece', 'unk_token': unk_token, 'sep_token': sep_token, 'cls_token': cls_token, 'pad_token': pad_token, 'mask_token': mask_token, 'clean_text': clean_text, 'handle_chinese_chars': handle_chinese_chars, 'strip_accents': strip_accents, 'lowercase': lowercase, 'wordpieces_prefix': wordpieces_prefix}
super().__init__(tokenizer, parameters)
@staticmethod
def from_file(vocab: str, **kwargs):
vocab = WordPiece.read_file(vocab)
return BertWordPieceTokenizer(vocab, **kwargs)
def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##'):
trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix)
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, limit_alphabet: int=1000, initial_alphabet: List[str]=[], special_tokens: List[Union[str, AddedToken]]=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'], show_progress: bool=True, wordpieces_prefix: str='##', length: Optional[int]=None):
trainer = trainers.WordPieceTrainer(vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix)
self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)
# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/byte_level_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
from tokenizers.models import BPE
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
from .base_tokenizer import BaseTokenizer
class ByteLevelBPETokenizer(BaseTokenizer):
def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, add_prefix_space: bool=False, lowercase: bool=False, dropout: Optional[float]=None, unicode_normalizer: Optional[str]=None, continuing_subword_prefix: Optional[str]=None, end_of_word_suffix: Optional[str]=None, trim_offsets: bool=False):
if vocab is not None and merges is not None:
tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, continuing_subword_prefix=continuing_subword_prefix or '', end_of_word_suffix=end_of_word_suffix or ''))
else:
tokenizer = Tokenizer(BPE())
normalizers = []
if unicode_normalizer:
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
if lowercase:
normalizers += [Lowercase()]
if len(normalizers) > 0:
if len(normalizers) > 1:
tokenizer.normalizer = Sequence(normalizers)
else:
tokenizer.normalizer = normalizers[0]
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
tokenizer.decoder = decoders.ByteLevel()
tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
parameters = {'model': 'ByteLevelBPE', 'add_prefix_space': add_prefix_space, 'lowercase': lowercase, 'dropout': dropout, 'unicode_normalizer': unicode_normalizer, 'continuing_subword_prefix': continuing_subword_prefix, 'end_of_word_suffix': end_of_word_suffix, 'trim_offsets': trim_offsets}
super().__init__(tokenizer, parameters)
@staticmethod
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
(vocab, merges) = BPE.read_file(vocab_filename, merges_filename)
return ByteLevelBPETokenizer(vocab, merges, **kwargs)
def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[]):
trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet())
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, show_progress: bool=True, special_tokens: List[Union[str, AddedToken]]=[], length: Optional[int]=None):
trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, show_progress=show_progress, special_tokens=special_tokens, initial_alphabet=pre_tokenizers.ByteLevel.alphabet())
self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)
# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/char_level_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union
from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
from ..models import BPE
from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str
from .base_tokenizer import BaseTokenizer
class CharBPETokenizer(BaseTokenizer):
def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='<unk>', suffix: str='</w>', dropout: Optional[float]=None, lowercase: bool=False, unicode_normalizer: Optional[str]=None, bert_normalizer: bool=True, split_on_whitespace_only: bool=False):
if vocab is not None and merges is not None:
tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=str(unk_token), end_of_word_suffix=suffix))
else:
tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix))
if tokenizer.token_to_id(str(unk_token)) is not None:
tokenizer.add_special_tokens([str(unk_token)])
normalizers = []
if unicode_normalizer:
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
if bert_normalizer:
normalizers += [BertNormalizer(lowercase=False)]
if lowercase:
normalizers += [Lowercase()]
if len(normalizers) > 0:
if len(normalizers) > 1:
tokenizer.normalizer = Sequence(normalizers)
else:
tokenizer.normalizer = normalizers[0]
if split_on_whitespace_only:
tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit()
else:
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
tokenizer.decoder = decoders.BPEDecoder(suffix=suffix)
parameters = {'model': 'BPE', 'unk_token': unk_token, 'suffix': suffix, 'dropout': dropout, 'lowercase': lowercase, 'unicode_normalizer': unicode_normalizer, 'bert_normalizer': bert_normalizer, 'split_on_whitespace_only': split_on_whitespace_only}
super().__init__(tokenizer, parameters)
@staticmethod
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
(vocab, merges) = BPE.read_file(vocab_filename, merges_filename)
return CharBPETokenizer(vocab, merges, **kwargs)
def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='</w>', show_progress: bool=True):
trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress)
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], suffix: Optional[str]='</w>', show_progress: bool=True, length: Optional[int]=None):
trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress)
self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)
# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_bpe.py
from typing import Dict, Iterator, List, Optional, Tuple, Union
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
from tokenizers.models import BPE
from tokenizers.normalizers import NFKC
from .base_tokenizer import BaseTokenizer
class SentencePieceBPETokenizer(BaseTokenizer):
def __init__(self, vocab: Optional[Union[str, Dict[str, int]]]=None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]]=None, unk_token: Union[str, AddedToken]='<unk>', replacement: str='▁', add_prefix_space: bool=True, dropout: Optional[float]=None, fuse_unk: Optional[bool]=False):
if vocab is not None and merges is not None:
tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
else:
tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
if tokenizer.token_to_id(str(unk_token)) is not None:
tokenizer.add_special_tokens([str(unk_token)])
tokenizer.normalizer = NFKC()
prepend_scheme = 'always' if add_prefix_space else 'never'
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
parameters = {'model': 'SentencePieceBPE', 'unk_token': unk_token, 'replacement': replacement, 'add_prefix_space': add_prefix_space, 'dropout': dropout}
super().__init__(tokenizer, parameters)
@staticmethod
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
(vocab, merges) = BPE.read_file(vocab_filename, merges_filename)
return SentencePieceBPETokenizer(vocab, merges, **kwargs)
def train(self, files: Union[str, List[str]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True):
trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress)
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=30000, min_frequency: int=2, special_tokens: List[Union[str, AddedToken]]=['<unk>'], limit_alphabet: int=1000, initial_alphabet: List[str]=[], show_progress: bool=True, length: Optional[int]=None):
trainer = trainers.BpeTrainer(vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, show_progress=show_progress)
self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)
# File: tokenizers-main/bindings/python/py_src/tokenizers/implementations/sentencepiece_unigram.py
import json
import os
from typing import Iterator, List, Optional, Union, Tuple
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.models import Unigram
from .base_tokenizer import BaseTokenizer
class SentencePieceUnigramTokenizer(BaseTokenizer):
def __init__(self, vocab: Optional[List[Tuple[str, float]]]=None, replacement: str='▁', add_prefix_space: bool=True):
if vocab is not None:
tokenizer = Tokenizer(Unigram(vocab))
else:
tokenizer = Tokenizer(Unigram())
tokenizer.normalizer = normalizers.Sequence([normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}'), ' ')])
prepend_scheme = 'always' if add_prefix_space else 'never'
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
parameters = {'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space}
super().__init__(tokenizer, parameters)
def train(self, files: Union[str, List[str]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None):
if special_tokens is None:
special_tokens = []
if initial_alphabet is None:
initial_alphabet = []
trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token)
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
def train_from_iterator(self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int=8000, show_progress: bool=True, special_tokens: Optional[List[Union[str, AddedToken]]]=None, initial_alphabet: Optional[List[str]]=None, unk_token: Optional[str]=None, length: Optional[int]=None):
if special_tokens is None:
special_tokens = []
if initial_alphabet is None:
initial_alphabet = []
trainer = trainers.UnigramTrainer(vocab_size=vocab_size, special_tokens=special_tokens, show_progress=show_progress, initial_alphabet=initial_alphabet, unk_token=unk_token)
self._tokenizer.train_from_iterator(iterator, trainer=trainer, length=length)
@staticmethod
def from_spm(filename: str):
try:
import sys
sys.path.append('.')
import sentencepiece_model_pb2 as model
except Exception:
raise Exception("You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required.")
m = model.ModelProto()
m.ParseFromString(open(filename, 'rb').read())
precompiled_charsmap = m.normalizer_spec.precompiled_charsmap
vocab = [(piece.piece, piece.score) for piece in m.pieces]
unk_id = m.trainer_spec.unk_id
model_type = m.trainer_spec.model_type
byte_fallback = m.trainer_spec.byte_fallback
if model_type != 1:
raise Exception("You're trying to run a `Unigram` model but you're file was trained with a different algorithm")
replacement = '▁'
add_prefix_space = True
tokenizer = Tokenizer(Unigram(vocab, unk_id, byte_fallback))
if precompiled_charsmap:
tokenizer.normalizer = normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(' {2,}'), ' ')])
else:
tokenizer.normalizer = normalizers.Sequence([normalizers.Replace(Regex(' {2,}'), ' ')])
prepend_scheme = 'always' if add_prefix_space else 'never'
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
parameters = {'model': 'SentencePieceUnigram'}
obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters)
BaseTokenizer.__init__(obj, tokenizer, parameters)
return obj
# File: tokenizers-main/bindings/python/py_src/tokenizers/normalizers/__init__.py
from .. import normalizers
Normalizer = normalizers.Normalizer
BertNormalizer = normalizers.BertNormalizer
NFD = normalizers.NFD
NFKD = normalizers.NFKD
NFC = normalizers.NFC
NFKC = normalizers.NFKC
Sequence = normalizers.Sequence
Lowercase = normalizers.Lowercase
Prepend = normalizers.Prepend
Strip = normalizers.Strip
StripAccents = normalizers.StripAccents
Nmt = normalizers.Nmt
Precompiled = normalizers.Precompiled
Replace = normalizers.Replace
ByteLevel = normalizers.ByteLevel
NORMALIZERS = {'nfc': NFC, 'nfd': NFD, 'nfkc': NFKC, 'nfkd': NFKD}
def unicode_normalizer_from_str(normalizer: str) -> Normalizer:
if normalizer not in NORMALIZERS:
raise ValueError('{} is not a known unicode normalizer. Available are {}'.format(normalizer, NORMALIZERS.keys()))
return NORMALIZERS[normalizer]()
# File: tokenizers-main/bindings/python/py_src/tokenizers/pre_tokenizers/__init__.py
from .. import pre_tokenizers
PreTokenizer = pre_tokenizers.PreTokenizer
BertPreTokenizer = pre_tokenizers.BertPreTokenizer
ByteLevel = pre_tokenizers.ByteLevel
CharDelimiterSplit = pre_tokenizers.CharDelimiterSplit
Digits = pre_tokenizers.Digits
Metaspace = pre_tokenizers.Metaspace
Punctuation = pre_tokenizers.Punctuation
Sequence = pre_tokenizers.Sequence
Split = pre_tokenizers.Split
UnicodeScripts = pre_tokenizers.UnicodeScripts
Whitespace = pre_tokenizers.Whitespace
WhitespaceSplit = pre_tokenizers.WhitespaceSplit
# File: tokenizers-main/bindings/python/py_src/tokenizers/tools/visualizer.py
import itertools
import os
import re
from string import Template
from typing import Any, Callable, Dict, List, NamedTuple, Optional, Tuple
from tokenizers import Encoding, Tokenizer
dirname = os.path.dirname(__file__)
css_filename = os.path.join(dirname, 'visualizer-styles.css')
with open(css_filename) as f:
css = f.read()
class Annotation:
start: int
end: int
label: int
def __init__(self, start: int, end: int, label: str):
self.start = start
self.end = end
self.label = label
AnnotationList = List[Annotation]
PartialIntList = List[Optional[int]]
class CharStateKey(NamedTuple):
token_ix: Optional[int]
anno_ix: Optional[int]
class CharState:
char_ix: Optional[int]
def __init__(self, char_ix):
self.char_ix = char_ix
self.anno_ix: Optional[int] = None
self.tokens: List[int] = []
@property
def token_ix(self):
return self.tokens[0] if len(self.tokens) > 0 else None
@property
def is_multitoken(self):
return len(self.tokens) > 1
def partition_key(self) -> CharStateKey:
return CharStateKey(token_ix=self.token_ix, anno_ix=self.anno_ix)
class Aligned:
pass
class EncodingVisualizer:
unk_token_regex = re.compile('(.{1}\x08)?(unk|oov)(\x08.{1})?', flags=re.IGNORECASE)
def __init__(self, tokenizer: Tokenizer, default_to_notebook: bool=True, annotation_converter: Optional[Callable[[Any], Annotation]]=None):
if default_to_notebook:
try:
from IPython.core.display import HTML, display
except ImportError:
raise Exception("We couldn't import IPython utils for html display.\n Are you running in a notebook?\n You can also pass `default_to_notebook=False` to get back raw HTML\n ")
self.tokenizer = tokenizer
self.default_to_notebook = default_to_notebook
self.annotation_coverter = annotation_converter
pass
def __call__(self, text: str, annotations: AnnotationList=[], default_to_notebook: Optional[bool]=None) -> Optional[str]:
final_default_to_notebook = self.default_to_notebook
if default_to_notebook is not None:
final_default_to_notebook = default_to_notebook
if final_default_to_notebook:
try:
from IPython.core.display import HTML, display
except ImportError:
raise Exception("We couldn't import IPython utils for html display.\n Are you running in a notebook?")
if self.annotation_coverter is not None:
annotations = list(map(self.annotation_coverter, annotations))
encoding = self.tokenizer.encode(text)
html = EncodingVisualizer.__make_html(text, encoding, annotations)
if final_default_to_notebook:
display(HTML(html))
else:
return html
@staticmethod
def calculate_label_colors(annotations: AnnotationList) -> Dict[str, str]:
if len(annotations) == 0:
return {}
labels = set(map(lambda x: x.label, annotations))
num_labels = len(labels)
h_step = int(255 / num_labels)
if h_step < 20:
h_step = 20
s = 32
l = 64
h = 10
colors = {}
for label in sorted(labels):
colors[label] = f'hsl({h},{s}%,{l}%'
h += h_step
return colors
@staticmethod
def consecutive_chars_to_html(consecutive_chars_list: List[CharState], text: str, encoding: Encoding):
first = consecutive_chars_list[0]
if first.char_ix is None:
stoken = encoding.tokens[first.token_ix]
return f'<span class="special-token" data-stoken={stoken}></span>'
last = consecutive_chars_list[-1]
start = first.char_ix
end = last.char_ix + 1
span_text = text[start:end]
css_classes = []
data_items = {}
if first.token_ix is not None:
css_classes.append('token')
if first.is_multitoken:
css_classes.append('multi-token')
if first.token_ix % 2:
css_classes.append('odd-token')
else:
css_classes.append('even-token')
if EncodingVisualizer.unk_token_regex.search(encoding.tokens[first.token_ix]) is not None:
css_classes.append('special-token')
data_items['stok'] = encoding.tokens[first.token_ix]
else:
css_classes.append('non-token')
css = f'''class="{' '.join(css_classes)}"'''
data = ''
for (key, val) in data_items.items():
data += f' data-{key}="{val}"'
return f'<span {css} {data} >{span_text}</span>'
@staticmethod
def __make_html(text: str, encoding: Encoding, annotations: AnnotationList) -> str:
char_states = EncodingVisualizer.__make_char_states(text, encoding, annotations)
current_consecutive_chars = [char_states[0]]
prev_anno_ix = char_states[0].anno_ix
spans = []
label_colors_dict = EncodingVisualizer.calculate_label_colors(annotations)
cur_anno_ix = char_states[0].anno_ix
if cur_anno_ix is not None:
anno = annotations[cur_anno_ix]
label = anno.label
color = label_colors_dict[label]
spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">')
for cs in char_states[1:]:
cur_anno_ix = cs.anno_ix
if cur_anno_ix != prev_anno_ix:
spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding))
current_consecutive_chars = [cs]
if prev_anno_ix is not None:
spans.append('</span>')
if cur_anno_ix is not None:
anno = annotations[cur_anno_ix]
label = anno.label
color = label_colors_dict[label]
spans.append(f'<span class="annotation" style="color:{color}" data-label="{label}">')
prev_anno_ix = cur_anno_ix
if cs.partition_key() == current_consecutive_chars[0].partition_key():
current_consecutive_chars.append(cs)
else:
spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding))
current_consecutive_chars = [cs]
spans.append(EncodingVisualizer.consecutive_chars_to_html(current_consecutive_chars, text=text, encoding=encoding))
res = HTMLBody(spans)
return res
@staticmethod
def __make_anno_map(text: str, annotations: AnnotationList) -> PartialIntList:
annotation_map = [None] * len(text)
for (anno_ix, a) in enumerate(annotations):
for i in range(a.start, a.end):
annotation_map[i] = anno_ix
return annotation_map
@staticmethod
def __make_char_states(text: str, encoding: Encoding, annotations: AnnotationList) -> List[CharState]:
annotation_map = EncodingVisualizer.__make_anno_map(text, annotations)
char_states: List[CharState] = [CharState(char_ix) for char_ix in range(len(text))]
for (token_ix, token) in enumerate(encoding.tokens):
offsets = encoding.token_to_chars(token_ix)
if offsets is not None:
(start, end) = offsets
for i in range(start, end):
char_states[i].tokens.append(token_ix)
for (char_ix, anno_ix) in enumerate(annotation_map):
char_states[char_ix].anno_ix = anno_ix
return char_states
def HTMLBody(children: List[str], css_styles=css) -> str:
children_text = ''.join(children)
return f'\n <html>\n <head>\n <style>\n {css_styles}\n </style>\n </head>\n <body>\n <div class="tokenized-text" dir=auto>\n {children_text}\n </div>\n </body>\n </html>\n '
# File: tokenizers-main/bindings/python/stub.py
import argparse
import inspect
import os
from pathlib import Path
INDENT = ' ' * 4
GENERATED_COMMENT = '# Generated content DO NOT EDIT\n'
def do_indent(text: str, indent: str):
return text.replace('\n', f'\n{indent}')
def function(obj, indent, text_signature=None):
if text_signature is None:
text_signature = obj.__text_signature__
string = ''
string += f'{indent}def {obj.__name__}{text_signature}:\n'
indent += INDENT
string += f'{indent}"""\n'
string += f'{indent}{do_indent(obj.__doc__, indent)}\n'
string += f'{indent}"""\n'
string += f'{indent}pass\n'
string += '\n'
string += '\n'
return string
def member_sort(member):
if inspect.isclass(member):
value = 10 + len(inspect.getmro(member))
else:
value = 1
return value
def fn_predicate(obj):
value = inspect.ismethoddescriptor(obj) or inspect.isbuiltin(obj)
if value:
return obj.__doc__ and obj.__text_signature__ and (not obj.__name__.startswith('_'))
if inspect.isgetsetdescriptor(obj):
return obj.__doc__ and (not obj.__name__.startswith('_'))
return False
def get_module_members(module):
members = [member for (name, member) in inspect.getmembers(module) if not name.startswith('_') and (not inspect.ismodule(member))]
members.sort(key=member_sort)
return members
def pyi_file(obj, indent=''):
string = ''
if inspect.ismodule(obj):
string += GENERATED_COMMENT
members = get_module_members(obj)
for member in members:
string += pyi_file(member, indent)
elif inspect.isclass(obj):
indent += INDENT
mro = inspect.getmro(obj)
if len(mro) > 2:
inherit = f'({mro[1].__name__})'
else:
inherit = ''
string += f'class {obj.__name__}{inherit}:\n'
body = ''
if obj.__doc__:
body += f'{indent}"""\n{indent}{do_indent(obj.__doc__, indent)}\n{indent}"""\n'
fns = inspect.getmembers(obj, fn_predicate)
if obj.__text_signature__:
body += f'{indent}def __init__{obj.__text_signature__}:\n'
body += f'{indent + INDENT}pass\n'
body += '\n'
for (name, fn) in fns:
body += pyi_file(fn, indent=indent)
if not body:
body += f'{indent}pass\n'
string += body
string += '\n\n'
elif inspect.isbuiltin(obj):
string += f'{indent}@staticmethod\n'
string += function(obj, indent)
elif inspect.ismethoddescriptor(obj):
string += function(obj, indent)
elif inspect.isgetsetdescriptor(obj):
string += f'{indent}@property\n'
string += function(obj, indent, text_signature='(self)')
else:
raise Exception(f'Object {obj} is not supported')
return string
def py_file(module, origin):
members = get_module_members(module)
string = GENERATED_COMMENT
string += f'from .. import {origin}\n'
string += '\n'
for member in members:
name = member.__name__
string += f'{name} = {origin}.{name}\n'
return string
import subprocess
from typing import List, Optional, Tuple
def do_ruff(code, is_pyi: bool):
command = ['ruff', 'format', '--config', 'pyproject.toml', '--silent', '-']
if is_pyi:
command.extend(['--stdin-filename', 'test.pyi'])
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE)
(stdout, _) = process.communicate(input=code.encode('utf-8'))
return stdout.decode('utf-8')
def write(module, directory, origin, check=False):
submodules = [(name, member) for (name, member) in inspect.getmembers(module) if inspect.ismodule(member)]
filename = os.path.join(directory, '__init__.pyi')
pyi_content = pyi_file(module)
pyi_content = do_ruff(pyi_content, is_pyi=True)
os.makedirs(directory, exist_ok=True)
if check:
with open(filename, 'r') as f:
data = f.read()
assert data == pyi_content, f'The content of {filename} seems outdated, please run `python stub.py`'
else:
with open(filename, 'w') as f:
f.write(pyi_content)
filename = os.path.join(directory, '__init__.py')
py_content = py_file(module, origin)
py_content = do_ruff(py_content, is_pyi=False)
os.makedirs(directory, exist_ok=True)
is_auto = False
if not os.path.exists(filename):
is_auto = True
else:
with open(filename, 'r') as f:
line = f.readline()
if line == GENERATED_COMMENT:
is_auto = True
if is_auto:
if check:
with open(filename, 'r') as f:
data = f.read()
assert data == py_content, f'The content of {filename} seems outdated, please run `python stub.py`'
else:
with open(filename, 'w') as f:
f.write(py_content)
for (name, submodule) in submodules:
write(submodule, os.path.join(directory, name), f'{name}', check=check)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--check', action='store_true')
args = parser.parse_args()
import tokenizers
write(tokenizers.tokenizers, 'py_src/tokenizers/', 'tokenizers', check=args.check)
# File: tokenizers-main/docs/source/_ext/entities.py
from collections import defaultdict, abc
from typing import cast
from docutils import nodes
from docutils.parsers.rst import Directive
import sphinx
from sphinx.locale import _
from sphinx.util.docutils import SphinxDirective
from sphinx.errors import ExtensionError
from conf import languages as LANGUAGES
logger = sphinx.util.logging.getLogger(__name__)
GLOBALNAME = '$GLOBAL$'
def update(d, u):
for (k, v) in u.items():
if isinstance(v, abc.Mapping):
d[k] = update(d.get(k, {}), v)
else:
d[k] = v
return d
class EntityNode(nodes.General, nodes.Element):
pass
class EntitiesNode(nodes.General, nodes.Element):
pass
class AllEntities:
def __init__(self):
self.entities = defaultdict(dict)
@classmethod
def install(cls, env):
if not hasattr(env, 'entity_all_entities'):
entities = cls()
env.entity_all_entities = entities
return env.entity_all_entities
def merge(self, other):
self.entities.update(other.entities)
def purge(self, docname):
for env_docname in [GLOBALNAME, docname]:
self.entities[env_docname] = dict([(name, entity) for (name, entity) in self.entities[env_docname].items() if entity['docname'] != docname])
def _extract_entities(self, nodes):
pass
def _extract_options(self, nodes):
pass
def _add_entities(self, entities, language, is_global, docname):
scope = GLOBALNAME if is_global else docname
for entity in entities:
name = f"{language}-{entity['name']}"
content = entity['content']
if name in self.entities[scope]:
logger.warning(f'''Entity "{name}" has already been defined{(' globally' if is_global else '')}''', location=docname)
self.entities[scope][name] = {'docname': docname, 'content': content}
def _extract_global(self, nodes):
for node in nodes:
if node.tagname != 'field':
raise Exception(f'Expected a field, found {node.tagname}')
(name, _) = node.children
if name.tagname != 'field_name':
raise Exception(f'Expected a field name here, found {name_node.tagname}')
if str(name.children[0]) == 'global':
return True
def _extract_entities(self, nodes):
entities = []
for node in nodes:
if node.tagname != 'definition_list_item':
raise Exception(f'Expected a list item here, found {node.tagname}')
(name_node, content_node) = node.children
if name_node.tagname != 'term':
raise Exception(f'Expected a term here, found {name_node.tagname}')
if content_node.tagname != 'definition':
raise Exception(f'Expected a definition here, found {content_node.tagname}')
name = str(name_node.children[0])
if len(content_node.children) == 1 and content_node.children[0].tagname == 'paragraph':
content = content_node.children[0].children[0]
else:
content = content_node
entities.append({'name': name, 'content': content})
return entities
def extract(self, node, docname):
is_global = False
entities = []
language = None
for node in node.children:
if language is None and node.tagname != 'paragraph':
raise Exception(f'Expected language name:\n.. entities:: <LANGUAGE>')
elif language is None and node.tagname == 'paragraph':
language = str(node.children[0])
if language not in LANGUAGES:
raise Exception(f'Unknown language "{language}. Might be missing a newline after language"')
elif node.tagname == 'field_list':
is_global = self._extract_global(node.children)
elif node.tagname == 'definition_list':
entities.extend(self._extract_entities(node.children))
else:
raise Exception(f'Expected a list of terms/options, found {node.tagname}')
self._add_entities(entities, language, is_global, docname)
def resolve_pendings(self, app):
env = app.builder.env
updates = defaultdict(dict)
for env_docname in self.entities.keys():
for (name, entity) in self.entities[env_docname].items():
docname = entity['docname']
node = entity['content']
for node in node.traverse(sphinx.addnodes.pending_xref):
contnode = cast(nodes.TextElement, node[0].deepcopy())
newnode = None
typ = node['reftype']
target = node['reftarget']
refdoc = node.get('refdoc', docname)
domain = None
try:
if 'refdomain' in node and node['refdomain']:
try:
domain = env.domains[node['refdomain']]
except KeyError as exc:
raise NoUri(target, typ) from exc
newnode = domain.resolve_xref(env, refdoc, app.builder, typ, target, node, contnode)
except NoUri:
newnode = contnode
updates[env_docname][name] = {'docname': docname, 'content': newnode or contnode}
update(self.entities, updates)
def get(self, language, name, docname):
name = f'{language}-{name}'
if name in self.entities[docname]:
return self.entities[docname][name]
elif name in self.entities[GLOBALNAME]:
return self.entities[GLOBALNAME][name]
else:
return None
class EntitiesDirective(SphinxDirective):
has_content = True
def run(self):
content = nodes.definition_list()
self.state.nested_parse(self.content, self.content_offset, content)
try:
entities = AllEntities.install(self.env)
entities.extract(content, self.env.docname)
except Exception as err:
raise self.error(f'Malformed directive "entities": {err}')
return []
def entity_role(name, rawtext, text, lineno, inliner, options={}, content=[]):
node = EntityNode()
node.entity = text
return ([node], [])
def process_entity_nodes(app, doctree, docname):
env = app.builder.env
entities = AllEntities.install(env)
entities.resolve_pendings(app)
language = None
try:
language = next((l for l in LANGUAGES if l in app.tags))
except Exception:
logger.warning(f'No language tag specified, not resolving entities in {docname}')
for node in doctree.traverse(EntityNode):
if language is None:
node.replace_self(nodes.Text(_(node.entity), _(node.entity)))
else:
entity = entities.get(language, node.entity, docname)
if entity is None:
node.replace_self(nodes.Text(_(node.entity), _(node.entity)))
logger.warning(f'Entity "{node.entity}" has not been defined', location=node)
else:
node.replace_self(entity['content'])
def purge_entities(app, env, docname):
entities = AllEntities.install(env)
entities.purge(docname)
def merge_entities(app, env, docnames, other):
entities = AllEntities.install(env)
other_entities = AllEntities.install(other)
entities.merge(other_entities)
def setup(app):
app.add_node(EntityNode)
app.add_node(EntitiesNode)
app.add_directive('entities', EntitiesDirective)
app.add_role('entity', entity_role)
app.connect('doctree-resolved', process_entity_nodes)
app.connect('env-merge-info', merge_entities)
app.connect('env-purge-doc', purge_entities)
return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True}
# File: tokenizers-main/docs/source/_ext/rust_doc.py
from docutils import nodes
import sphinx
from sphinx.locale import _
from conf import rust_version
logger = sphinx.util.logging.getLogger(__name__)
class RustRef:
def __call__(self, name, rawtext, text, lineno, inliner, options={}, content=[]):
doctype = name.split('_')[1]
parts = text.split('::')
if text.startswith('~'):
title = parts[-1]
parts[0] = parts[0][1:]
else:
content = text
link = self.base_link()
if doctype == 'struct':
(l, title) = self.make_struct_link(parts, title)
if doctype == 'func':
(l, title) = self.make_func_link(parts, title)
if doctype == 'meth':
(l, title) = self.make_meth_link(parts, title)
if doctype == 'trait':
(l, title) = self.make_trait_link(parts, title)
link += l
node = nodes.reference(internal=False, refuri=link, text=title)
wrapper = nodes.literal(classes=['xref'])
wrapper += node
return ([wrapper], [])
def base_link(self):
return f'https://docs.rs/tokenizers/{rust_version}'
def make_struct_link(self, parts, title):
link = ''
struct_name = parts[-1]
path = parts[:-1]
for p in path:
link += f'/{p}'
link += f'/struct.{struct_name}.html'
return (link, title)
def make_func_link(self, parts, title):
link = ''
fn_name = parts[-1]
path = parts[:-1]
for p in path:
link += f'/{p}'
link += f'/fn.{fn_name}.html'
return (link, title)
def make_meth_link(self, parts, title):
meth_name = parts[-1]
if meth_name.endswith('()'):
meth_name = meth_name[:-2]
(link, title) = self.make_struct_link(parts[:-1], title)
link += f'#method.{meth_name}'
if not title.endswith(')'):
title += '()'
return (link, title)
def make_trait_link(self, parts, title):
link = ''
trait_name = parts[-1]
path = parts[:-1]
for p in path:
link += f'/{p}'
link += f'/trait.{trait_name}.html'
return (link, title)
def setup(app):
app.add_role('rust_struct', RustRef())
app.add_role('rust_func', RustRef())
app.add_role('rust_meth', RustRef())
app.add_role('rust_trait', RustRef())
return {'version': '0.1', 'parallel_read_safe': True, 'parallel_write_safe': True}
# File: tokenizers-main/docs/source/_ext/toctree_tags.py
import re
from sphinx.directives.other import TocTree
class TocTreeTags(TocTree):
hasPat = re.compile('^\\s*:(.+):(.+)$')
def filter_entries(self, entries):
filtered = []
for e in entries:
m = self.hasPat.match(e)
if m != None:
if self.env.app.tags.has(m.groups()[0]):
filtered.append(m.groups()[1])
else:
filtered.append(e)
return filtered
def run(self):
self.content = self.filter_entries(self.content)
return super().run()
def setup(app):
app.add_directive('toctree-tags', TocTreeTags)
return {'version': '0.1'}
# File: tokenizers-main/docs/source/conf.py
import os
import sys
sys.path.insert(0, os.path.abspath('./_ext'))
sys.path.insert(0, os.path.abspath('.'))
project = 'tokenizers'
copyright = '2020, huggingface'
author = 'huggingface'
release = ''
languages = ['node', 'rust', 'python']
rust_version = 'latest'
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'entities', 'rust_doc', 'toctree_tags']
templates_path = ['_templates']
exclude_patterns = []
html_theme = 'sphinx_rtd_theme'
html_theme_options = {'analytics_id': 'UA-83738774-2'}
html_static_path = ['_static']
def setup(app):
for language in languages:
if not tags.has(language):
exclude_patterns.append(f'tutorials/{language}/*')
app.add_css_file('css/huggingface.css')
app.add_css_file('css/code-snippets.css')
app.add_js_file('js/custom.js')