Datasets:
Danish Gigaword Corpus
Version: 1.0.0
License: See the respective dataset
Table of Contents
Dataset Description
- Homepage: https://gigaword.dk
- Paper: http://www.derczynski.com/papers/dagw.pdf
Dataset Summary
The Danish Gigaword Corpus contains text spanning several domains and forms. This version does not include the sections containing tweets ("General Discussions" and "Parliament Elections"), "danavis", "Common Crawl" and "OpenSubtitles" due to potential privacy, quality and copyright concerns.
Loading the dataset
from datasets import load_dataset
name = "danish-foundation-models/danish-gigaword"
ds = load_dataset(name, split = "train")
sample = ds[1] # see "Data Instances" below
# or load by streaming the data
ds = load_dataset(name, split = "train", streaming=True)
sample = next(iter(ds))
Dataset Structure
The dataset contains text from different sources which are thoroughly defined in Source Data. See the homepage or paper for more information.
Data Instances
Each entry in the dataset consists of a single text with associated metadata
{
'text': 'Vimoutiers er en kommune i departementet Orne i Basse-Normandie regionen i det nordvestlige Frankrig.\nCykelløbet Paris-Camembert slutter i Vimoutiers.\nHistorie.\nDen 14. juni 1944, under invasionen i Normandiet blev Vimoutiers bombarderet af allierede styrker. Landsbyen blev ødelagt og 220 civile dræbt.\nPersonligheder.\nPolitikeren Joseph Laniel (1889-1975) var født i Vomoutiers.',
'source': 'wiki',
'id': 'wiki_366127',
'added': '2021-03-28',
'created': '2019-01-01, 2021-01-01',
'metadata':
{'domain': 'Wiki & Books',
'license': 'Creative Commons Legal Code\n\nCC0 1.0 Universal', 'source-pretty': 'Wikipedia'
}
}
Data Fields
An entry in the dataset consists of the following fields:
text
(str
): The content of the document.source
(str
): The source of the document (see Source Data).id
(str
): An unique identifer for each document.added
(str
): An date for when the document was added to this collection.created
(str
): An date range for when the document was originally created.metadata/license
(str
): The license of the document. The licenses vary according to the source.metadata/domain
(str
): The domain of the sourcemetadata/source-pretty
(str
): The longform version of the short-form source name
Data Splits
The entire corpus is provided in the train
split.
Dataset Creation
Source Data
Below follows a brief overview of the sources in the corpus along with their individual license.
Source | License |
---|---|
adl | Creative Commons Legal Code 1.0 Universal |
botxt | Creative Commons Legal Code 1.0 Universal |
dannet | dannet license |
depbank | Attribution-ShareAlike 4.0 International |
ep | Creative Commons Legal Code 1.0 Universal |
ft | Creative Commons Legal Code 1.0 Universal |
gutenberg | gutenberg license |
hest | Creative Commons Legal Code 1.0 Universal |
jvj | Attribution-ShareAlike 4.0 International |
naat | Creative Commons Legal Code 1.0 Universal |
relig | Creative Commons Legal Code 1.0 Universal |
retsinformationdk | Danish Copyright law at https://www.retsinformation.dk/forms/r0710.aspx?id=164796 states "§ 9. Love, administrative forskrifter, retsafgørelser og lignende offentlige aktstykker er ikke genstand for ophavsret. Stk. 2. Bestemmelsen i stk. 1 gælder ikke for værker, der fremtræder som selvstændige bidrag i de i stk. 1 nævnte aktstykker. Sådanne værker må dog gengives i forbindelse med aktstykket. Retten til videre udnyttelse afhænger af de i øvrigt gældende regler." |
retspraksis | Creative Commons Legal Code 1.0 Universal |
skat | Creative Commons Legal Code 1.0 Universal |
spont | Creative Commons Legal Code 1.0 Universal |
synne | Creative Commons Legal Code 1.0 Universal |
tv2r | The owner of this content is TV2 Regionerne, Denmark. Creative Commons Attribution 4.0 International |
wiki | Creative Commons Legal Code 1.0 Universal |
wikibooks | Creative Commons Legal Code 1.0 Universal |
wikisource | Creative Commons Legal Code 1.0 Universal |
These sources corresponds to the following top-level domains in the dataset:
# mapping from domain to top-level domain
domain_mapping_dict = {
"retsinformationdk": "Legal",
"skat": "Legal",
"retspraksis": "Legal",
"hest": "Social Media",
"cc": "Web",
"adl": "Wiki & Books",
"botxt": "Other",
"danavis": "News",
"dannet": "dannet",
"depbank": "Other",
"ep": "Conversation",
"ft": "Conversation",
"gutenberg": "Wiki & Books",
"jvj": "Wiki & Books",
"naat": "Conversation",
"opensub": "Conversation",
"relig": "Wiki & Books",
"spont": "Conversation",
"synne": "Other",
"tv2r": "News",
"wiki": "Wiki & Books",
"wikibooks": "Wiki & Books",
"wikisource": "Wiki & Books",
"twfv19": "Social Media", # not present in this version of the dataset
}
And the following mapping translates between the short form and the long form of the source name
# mapping from domain to its long name format
longname_mapping_dict = {
"retsinformationdk": "retsinformation.dk (Danish legal information)",
"skat": "Skat (Danish tax authority)",
"retspraksis": "retspraksis (Danish legal information)",
"hest": "Hestenettet (Danish debate forum)",
"cc": "Common Crawl",
"adl": " Archive for Danish Literature",
"botxt": "Bornholmsk (Danish dialect)",
"danavis": "Danish daily newspapers",
"dannet": "DanNet (Danish WordNet)",
"depbank": "Danish Dependency Treebank",
"ep": "European Parliament",
"ft": "Folketinget (Danish Parliament)",
"gutenberg": "Gutenberg",
"jvj": "Johannes V. Jensen (Danish poet)",
"naat": "NAAT",
"opensub": "Open Subtitles",
"relig": "Religious texts",
"spont": "Spontaneous speech",
"synne": "Synderjysk (Danish dialect)",
"tv2r": "TV 2 Radio (Danish news)",
"wiki": "Wikipedia",
"wikibooks": "Wikibooks",
"wikisource": "Wikisource",
"twfv19": "Twitter Folketingsvalget 2019 (Danish election tweets)", # not present in this version of the dataset
}
Additional Information
Citation Information
Sample attributions:
In a press release:
Modellen er præ-trænet på et datasæt fra The Danish Gigaword Project (https://gigaword.dk), der er udviklet af forskere fra IT-Universitetet i København
The model is pre-trained using the Danish Gigaword Corpus (https://gigaword.dk), developed at the IT University of Copenhagen
In academic writing:
Derczynski, L., Ciosici, M. R., et al. (2021). The Danish Gigaword Corpus. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021).
@inproceedings{dagw,
title = {{The Danish Gigaword Corpus}},
author = {Leon Derczynski and Manuel R. Ciosici and Rebekah Baglini and Morten H. Christiansen and Jacob Aarup Dalsgaard and Riccardo Fusaroli and Peter Juel Henrichsen and Rasmus Hvingelby and Andreas Kirkedal and Alex Speed Kjeldsen and Claus Ladefoged and Finn Årup Nielsen and Jens Madsen and Malte Lau Petersen and Jonathan Hvithamar Rystrøm and Daniel Varab},
year = 2021,
booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics},
publisher = {NEALT}
}
In a software product, tool, or service:
Denne service er lavet med data fra The Danish Gigaword Corpus
Contributions
Dataset created by Derczynski et al. (2021). Thanks to @HLasse, @KennethEnevoldsen, and Jan Kostkan for adding this dataset to the Hugging Face Hub.