twitch_egos / README.md
clefourrier's picture
clefourrier HF staff
Update README.md
c01d97c
---
license: gpl-3.0
task_categories:
- graph-ml
---
# Dataset Card for Twitch ego nets
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [External Use](#external-use)
- [PyGeometric](#pygeometric)
- [Dataset Structure](#dataset-structure)
- [Data Properties](#data-properties)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **[Homepage](https://snap.stanford.edu/data/twitch_ego_nets.html)**
- **Paper:**: (see citation)
### Dataset Summary
The `Twitch ego nets` dataset contains ' ego-nets of Twitch users who participated in the partnership program in April 2018. Nodes are users and links are friendships.' (doc).
### Supported Tasks and Leaderboards
The related task is the binary classification to predict whether a user plays a single or multple games.
## External Use
### PyGeometric
To load in PyGeometric, do the following:
```python
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
dataset_hf = load_dataset("graphs-datasets/<mydataset>")
# For the train set (replace by valid or test as needed)
dataset_pg_list = [Data(graph) for graph in dataset_hf["train"]]
dataset_pg = DataLoader(dataset_pg_list)
```
## Dataset Structure
### Dataset information
- 127,094 graphs
### Data Fields
Each row of a given file is a graph, with:
- `edge_index` (list: 2 x #edges): pairs of nodes constituting edges
- `y` (list: #labels): contains the number of labels available to predict
- `num_nodes` (int): number of nodes of the graph
### Data Splits
This data is not split, and should be used with cross validation. It comes from the PyGeometric version of the dataset.
## Additional Information
### Licensing Information
The dataset has been released under GPL-3.0 license.
### Citation Information
See also [github](https://github.com/benedekrozemberczki/karateclub).
```
@inproceedings{karateclub,
title = {{Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs}},
author = {Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
year = {2020},
pages = {3125–3132},
booktitle = {Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
organization = {ACM},
}
```