Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
SubjECTive-QA / README.md
shahagam4's picture
Added label interpretation
a63c2a9 verified
metadata
dataset_info:
  - config_name: '5768'
    features:
      - name: COMPANYNAME
        dtype: string
      - name: QUARTER
        dtype: string
      - name: YEAR
        dtype: int64
      - name: ASKER
        dtype: string
      - name: RESPONDER
        dtype: string
      - name: QUESTION
        dtype: string
      - name: ANSWER
        dtype: string
      - name: CLEAR
        dtype: int64
      - name: ASSERTIVE
        dtype: int64
      - name: CAUTIOUS
        dtype: int64
      - name: OPTIMISTIC
        dtype: int64
      - name: SPECIFIC
        dtype: int64
      - name: RELEVANT
        dtype: int64
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: train
        num_bytes: 2216875
        num_examples: 1922
      - name: test
        num_bytes: 662070
        num_examples: 577
      - name: val
        num_bytes: 287178
        num_examples: 248
    download_size: 1723955
    dataset_size: 3166123
  - config_name: '78516'
    features:
      - name: COMPANYNAME
        dtype: string
      - name: QUARTER
        dtype: string
      - name: YEAR
        dtype: int64
      - name: ASKER
        dtype: string
      - name: RESPONDER
        dtype: string
      - name: QUESTION
        dtype: string
      - name: ANSWER
        dtype: string
      - name: CLEAR
        dtype: int64
      - name: ASSERTIVE
        dtype: int64
      - name: CAUTIOUS
        dtype: int64
      - name: OPTIMISTIC
        dtype: int64
      - name: SPECIFIC
        dtype: int64
      - name: RELEVANT
        dtype: int64
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: train
        num_bytes: 2223784
        num_examples: 1922
      - name: test
        num_bytes: 654430
        num_examples: 577
      - name: val
        num_bytes: 287909
        num_examples: 248
    download_size: 1722234
    dataset_size: 3166123
  - config_name: '944601'
    features:
      - name: COMPANYNAME
        dtype: string
      - name: QUARTER
        dtype: string
      - name: YEAR
        dtype: int64
      - name: ASKER
        dtype: string
      - name: RESPONDER
        dtype: string
      - name: QUESTION
        dtype: string
      - name: ANSWER
        dtype: string
      - name: CLEAR
        dtype: int64
      - name: ASSERTIVE
        dtype: int64
      - name: CAUTIOUS
        dtype: int64
      - name: OPTIMISTIC
        dtype: int64
      - name: SPECIFIC
        dtype: int64
      - name: RELEVANT
        dtype: int64
      - name: __index_level_0__
        dtype: int64
    splits:
      - name: train
        num_bytes: 2197260
        num_examples: 1922
      - name: test
        num_bytes: 671149
        num_examples: 577
      - name: val
        num_bytes: 297714
        num_examples: 248
    download_size: 1713897
    dataset_size: 3166123
configs:
  - config_name: '5768'
    data_files:
      - split: train
        path: 5768/train-*
      - split: test
        path: 5768/test-*
      - split: val
        path: 5768/val-*
  - config_name: '78516'
    data_files:
      - split: train
        path: 78516/train-*
      - split: test
        path: 78516/test-*
      - split: val
        path: 78516/val-*
  - config_name: '944601'
    data_files:
      - split: train
        path: 944601/train-*
      - split: test
        path: 944601/test-*
      - split: val
        path: 944601/val-*
license: cc-by-4.0
task_categories:
  - text-classification
language:
  - en
tags:
  - finance
pretty_name: SubjECTive-QA
size_categories:
  - 10K<n<100K

Dataset Summary

For dataset summary, please refer to https://huggingface.co/datasets/gtfintechlab/subjectiveqa

Additional Information

This dataset is annotated across six subjective dimensions: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. It contains 2,747 longform QA pairs taken from the Earnings Call Transcripts of 120 companies listed on the NYSE from 2007-2021.

Label Interpretation (e.g. CLEAR)

  • 0: Negatively Demonstrative of the dimension (e.g. CLEAR)
    Indicates that the response lacks clarity.

  • 1: Neutral Demonstration of 'the dimension (e.g. CLEAR)
    Indicates that the response has an average level of clarity.

  • 2: Positively Demonstrative of the dimension (e.g. CLEAR)
    Indicates that the response is clear and transparent.

Licensing Information

The SubjECTive-QA dataset is licensed under the Creative Commons Attribution 4.0 International License. More information in the paper.

Citation Information

@misc{pardawala2024subjectiveqameasuringsubjectivityearnings,
      title={SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis}, 
      author={Huzaifa Pardawala and Siddhant Sukhani and Agam Shah and Veer Kejriwal and Abhishek Pillai and Rohan Bhasin and Andrew DiBiasio and Tarun Mandapati and Dhruv Adha and Sudheer Chava},
      year={2024},
      eprint={2410.20651},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.20651}, 
}

Contact

Please contact Huzaifa Pardawala (huzaifahp7[at]gatech[dot]edu) or Agam Shah (ashah482[at]gatech[dot]edu) about any SubjECTive-QA related issues and questions.

GitHub Link

Link to our GitHub repository.