Dataset Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowTypeError
Message:      ("Expected bytes, got a 'int' object", 'Conversion failed for column answer with type object')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 137, in _generate_tables
                  pa_table = paj.read_json(
                File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to array in row 0
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 233, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2998, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1918, in _head
                  return _examples_to_batch(list(self.take(n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2093, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1576, in __iter__
                  for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 279, in __iter__
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 167, in _generate_tables
                  pa_table = pa.Table.from_pandas(df, preserve_index=False)
                File "pyarrow/table.pxi", line 3874, in pyarrow.lib.Table.from_pandas
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/pandas_compat.py", line 624, in dataframe_to_arrays
                  arrays[i] = maybe_fut.result()
                File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 439, in result
                  return self.__get_result()
                File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result
                  raise self._exception
                File "/usr/local/lib/python3.9/concurrent/futures/thread.py", line 58, in run
                  result = self.fn(*self.args, **self.kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/pandas_compat.py", line 598, in convert_column
                  raise e
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/pandas_compat.py", line 592, in convert_column
                  result = pa.array(col, type=type_, from_pandas=True, safe=safe)
                File "pyarrow/array.pxi", line 339, in pyarrow.lib.array
                File "pyarrow/array.pxi", line 85, in pyarrow.lib._ndarray_to_array
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowTypeError: ("Expected bytes, got a 'int' object", 'Conversion failed for column answer with type object')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset Card for ACQAD

we propose a new approach to automatically generate a dataset for Arabic complex question answering task. The proposed approach is based on using an effective workflow with a set of templates. The generated dataset, denoted as ACQAD, contains more than 118k questions, covering both comparison and multi-hop types. Each question-answer pair is decomposed into a set of single-hop questions, allowing QA systems to reduce question complexity and explain the reasoning steps

Dataset Details

Dataset Description

  • Curated by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]

Dataset Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Dataset Structure

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Arabic Wikipedia

Data Collection and Processing

[More Information Needed]

Who are the source data producers?

[More Information Needed]

Annotations [optional]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation [optional]

BibTeX:

@inproceedings{sidhoum2022acqad, title={ACQAD: a dataset for arabic complex question answering}, author={Hamouda Sidhoum, Abdellah and Mataoui, M’hamed and Sebbak, Faouzi and Sma{"\i}li, Kamel}, booktitle={International conference on cyber security, artificial inteligence and theoretical computer science}, year={2022} }

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Dataset Card Authors [optional]

[More Information Needed]

Dataset Card Contact

[More Information Needed]

Downloads last month
41