text
stringlengths
22
82
0 0.49853515625 0.31130573248407645 0.0966796875 0.19904458598726116
0 0.41748046875 0.29378980891719747 0.0556640625 0.13853503184713375
1 0.9619140625 0.2921974522292994 0.015625 0.027070063694267517
1 0.91650390625 0.29378980891719747 0.0146484375 0.03503184713375796
1 0.9404296875 0.267515923566879 0.013671875 0.02388535031847134
1 0.76220703125 0.3837579617834395 0.0234375 0.041401273885350316
1 0.6015625 0.320859872611465 0.0126953125 0.025477707006369428
1 0.576171875 0.3487261146496815 0.0146484375 0.02388535031847134
1 0.69775390625 0.29538216560509556 0.01171875 0.025477707006369428
1 0.7607421875 0.30254777070063693 0.0107421875 0.03503184713375796
1 0.28369140625 0.37579617834394907 0.01953125 0.03503184713375796
1 0.34228515625 0.3519108280254777 0.0146484375 0.028662420382165606
1 0.259765625 0.35429936305732485 0.0126953125 0.030254777070063694
1 0.18115234375 0.3765923566878981 0.0166015625 0.03503184713375796
1 0.205078125 0.3638535031847134 0.01953125 0.03343949044585987
1 0.08935546875 0.4012738853503185 0.0283203125 0.052547770700636945
1 0.01806640625 0.3765923566878981 0.0263671875 0.03821656050955414
1 0.06005859375 0.3781847133757962 0.0146484375 0.03343949044585987
1 0.78076171875 0.27229299363057324 0.017578125 0.044585987261146494
1 0.5558912386706949 0.5822222222222222 0.5196374622356495 0.2733333333333333
0 0.1044921875 0.35315712187958886 0.04296875 0.06020558002936858
0 0.4697265625 0.42951541850220265 0.111328125 0.18355359765051396
0 0.744140625 0.4104258443465492 0.087890625 0.11600587371512482
0 0.93212890625 0.48237885462555063 0.1337890625 0.315712187958884
0 0.8609375 0.5197916666666667 0.225 0.13333333333333333
1 0.622 0.19518072289156627 0.198 0.36626506024096384
0 0.8310344827586207 0.5879310344827586 0.33448275862068966 0.19425287356321838
1 0.4228515625 0.744258872651357 0.1083984375 0.1524008350730689
1 0.50634765625 0.38945827232796487 0.173828125 0.19326500732064422
1 0.53759765625 0.6112737920937042 0.15625 0.15226939970717424
0 0.62939453125 0.1708507670850767 0.0400390625 0.05509065550906555
0 0.57958984375 0.36052998605299863 0.03564453125 0.04741980474198047
0 0.59423828125 0.6206415620641562 0.0400390625 0.02789400278940028
0 0.5361328125 0.7838214783821479 0.02587890625 0.044630404463040445
0 0.5712890625 0.8556485355648535 0.03857421875 0.045327754532775454
1 0.9326171875 0.4404296875 0.1328125 0.10611979166666667
1 0.75634765625 0.7114914425427873 0.2265625 0.22493887530562348
1 0.529296875 0.7777406417112299 0.17578125 0.16310160427807488
1 0.73046875 0.11397058823529412 0.111328125 0.13088235294117648
1 0.61669921875 0.17794117647058824 0.0556640625 0.061764705882352944
1 0.212890625 0.11397058823529412 0.12890625 0.14705882352941177
1 0.0654296875 0.48131868131868133 0.12890625 0.06886446886446887
1 0.4306640625 0.35896309314586994 0.3212890625 0.4200351493848858
1 0.59521484375 0.049479166666666664 0.1025390625 0.09895833333333333
1 0.58544921875 0.8315972222222222 0.1298828125 0.13368055555555555
0 0.36065573770491804 0.7786069651741293 0.2098360655737705 0.30845771144278605
0 0.6737704918032786 0.7164179104477612 0.17049180327868851 0.3582089552238806
0 0.5969230769230769 0.4981481481481482 0.18769230769230769 0.1962962962962963
0 0.3292307692307692 0.023148148148148147 0.16615384615384615 0.046296296296296294
1 0.6592307692307692 0.0962962962962963 0.08461538461538462 0.1111111111111111
1 0.2915384615384615 0.2111111111111111 0.11538461538461539 0.12962962962962962
1 0.40384615384615385 0.9694444444444444 0.09692307692307692 0.05740740740740741
1 0.35923076923076924 0.075 0.11846153846153847 0.08703703703703704
1 0.44130434782608696 0.28239845261121854 0.2318840579710145 0.3346228239845261
0 0.587 0.26426426426426425 0.274 0.2987987987987988
0 0.5810344827586207 0.4307891332470893 0.5017241379310344 0.5278137128072445
0 0.695 0.62875 0.3075 0.41625
1 0.5166666666666667 0.43222222222222223 0.40166666666666667 0.5466666666666666
0 0.45111111111111113 0.6491666666666667 0.5155555555555555 0.6316666666666667
1 0.4898989898989899 0.6428571428571429 0.08686868686868687 0.10752688172043011
1 0.7288135593220338 0.4264705882352941 0.10508474576271186 0.1334841628959276
1 0.4559322033898305 0.7341628959276018 0.07796610169491526 0.10407239819004525
1 0.44745762711864406 0.9558823529411765 0.10508474576271186 0.083710407239819
1 0.5050847457627119 0.2171945701357466 0.08305084745762711 0.0746606334841629
1 0.47203389830508474 0.049773755656108594 0.07796610169491526 0.09502262443438914
1 0.67626953125 0.4809027777777778 0.228515625 0.5121527777777778
1 0.7080078125 0.44502617801047123 0.025390625 0.06806282722513089
1 0.8525390625 0.45091623036649214 0.033203125 0.05366492146596859
1 0.3427734375 0.21400523560209425 0.05859375 0.08900523560209424
1 0.13720703125 0.5176701570680629 0.0693359375 0.10340314136125654
1 0.8857421875 0.5380859375 0.2265625 0.09700520833333333
1 0.56103515625 0.3333333333333333 0.0703125 0.13069016152716592
1 0.7001953125 0.2209985315712188 0.08203125 0.1395007342143906
1 0.77783203125 0.23641703377386197 0.0634765625 0.14096916299559473
1 0.9267578125 0.24302496328928047 0.0732421875 0.13215859030837004
1 0.3994140625 0.1894273127753304 0.072265625 0.15712187958883994
1 0.2255859375 0.28707782672540383 0.056640625 0.14537444933920704
1 0.025390625 0.35462555066079293 0.048828125 0.1527165932452276
1 0.3642578125 0.3854166666666667 0.2412109375 0.4440104166666667
1 0.74267578125 0.6438802083333334 0.2568359375 0.4361979166666667
1 0.6435546875 0.10379981464318813 0.0947265625 0.12140871177015755
1 0.29052734375 0.3178869323447637 0.107421875 0.0871177015755329
0 0.5236907730673317 0.47215777262180975 0.3341645885286783 0.3433874709976798
0 0.50875 0.7453183520599251 0.095 0.1647940074906367
0 0.30875 0.6947565543071161 0.08 0.149812734082397
0 0.75125 0.7228464419475655 0.0925 0.16104868913857678
0 0.57421875 0.7558823529411764 0.2109375 0.2823529411764706
1 0.525390625 0.5035063113604488 0.0478515625 0.06311360448807854
0 0.38205980066445183 0.42375 0.4684385382059801 0.235
0 0.595 0.8448979591836735 0.06 0.09795918367346938
0 0.65375 0.9285714285714286 0.055 0.0653061224489796
0 0.63875 0.5979591836734693 0.05 0.06938775510204082
0 0.62625 0.6775510204081633 0.05 0.061224489795918366
0 0.60625 0.7489795918367347 0.0575 0.05714285714285714
0 0.5225 0.4204081632653061 0.055 0.08979591836734693
0 0.62875 0.2571428571428571 0.0725 0.07755102040816327
0 0.63875 0.3489795918367347 0.055 0.06938775510204082
0 0.64 0.46530612244897956 0.0475 0.053061224489795916
0 0.64625 0.5387755102040817 0.0525 0.04081632653061224
1 0.6525 0.9877551020408163 0.045 0.0163265306122449

Face Masks ensemble dataset is no longer limited to Kaggle, it is now coming to Huggingface!

This dataset was created to help train and/or fine tune models for detecting masked and un-masked faces.

I created a new face masks object detection dataset by compositing together three publically available face masks object detection datasets on Kaggle that used the YOLO annotation format. To combine the datasets, I used Roboflow. All three original datasets had different class dictionaries, so I recoded the classes into two classes: "Mask" and "No Mask". One dataset included a class for incorrectly worn face masks, images with this class were removed from the dataset. Approximately 50 images had corrupted annotations, so they were manually re-annotated in the Roboflow platform. The final dataset includes 9,982 images, with 24,975 annotated instances. Image resolution was on average 0.49 mp, with a median size of 750 x 600 pixels.

To improve model performance on out of sample data, I used 90 degree rotational augmentation. This saved duplicate versions of each image for 90, 180, and 270 degree rotations. I then split the data into 85% training, 10% validation, and 5% testing. Images with classes that were removed from the dataset were removed, leaving 16,000 images in training, 1,900 in validation, and 1,000 in testing.

Downloads last month
74