Dataset Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ParserError
Message:      Error tokenizing data. C error: Expected 1 fields in line 14, saw 2

Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 233, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2998, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1918, in _head
                  return _examples_to_batch(list(self.take(n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2093, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1576, in __iter__
                  for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 279, in __iter__
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 190, in _generate_tables
                  for batch_idx, df in enumerate(csv_file_reader):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1843, in __next__
                  return self.get_chunk()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1985, in get_chunk
                  return self.read(nrows=size)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1923, in read
                  ) = self._engine.read(  # type: ignore[attr-defined]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 234, in read
                  chunks = self._reader.read_low_memory(nrows)
                File "parsers.pyx", line 850, in pandas._libs.parsers.TextReader.read_low_memory
                File "parsers.pyx", line 905, in pandas._libs.parsers.TextReader._read_rows
                File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "parsers.pyx", line 2061, in pandas._libs.parsers.raise_parser_error
              pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 14, saw 2

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

A larger version of YT-100K dataset -> YT-30M dataset with 30 million YouTube multilingual multicategory comments is also available which can be obtained by directly emailing the author of this dataset.

Introduction

This work introduces two large-scale multilingual comment datasets, YT-30M (and YT-100K) from YouTube. The code and both the datasets: YT-30M (full) and YT-100K (randomly selected 100K sample from YT-30M) are publicly released for further research. YT-30M (YT-100K) contains 32M (100K) comments posted by YouTube channel belonging to YouTube categories. Each comment is associated with a video ID, comment ID, commenter name, commenter channel ID, comment text, upvotes, original channel ID and category of the YouTube channel (e.g., News & Politics, Science & Technology, etc.).

Data Description

Each entry in the dataset is related to one comment for a specific YouTube video in the related category with the following columns: videoID, commentID, commenterName, commenterChannelID, comment, votes, originalChannelID, category. Each field is explained below:

videoID: represents the video ID in YouTube.
commentID: represents the comment ID.
commenterName: represents the name of the commenter.
commenterChannelID: represents the ID of the commenter.
comment: represents the comment text.
votes: represents the upvotes received by that comment.
originalChannelID: represents the original channel ID who posted the video.
category: represents the category of the YouTube video.

Data Anonymization

The data is anonymized by removing all Personally Identifiable Information (PII). 

Data sample

{
"videoID": "ab9fe84e2b2406efba4c23385ef9312a",
"commentID": "488b24557cf81ed56e75bab6cbf76fa9",
"commenterName": "b654822a96eae771cbac945e49e43cbd",
"commenterChannelID": "2f1364f249626b3ca514966e3ef3aead",
"comment": "ich fand den Handelwecker am besten",
"votes": 2,
"originalChannelID": "oc_2f1364f249626b3ca514966e3ef3aead",
"category": "entertainment"
}

Multilingual data

| Language | Text |

|--------------|---------------------------------------------------|

| English | You girls are so awesome!! |

| Russian | Точно так же Я стрелец |

| Hindi | आज भी भाई कʏ आवाज में वही पुरानी बात है.... |

| Chinese | 無論如何,你已經是台灣YT訂閱數之首 |

| Bengali | খুিন হািসনােক ভারেতর àধানমন্... |

| Spanish | jajajaj esto tiene que ser una brom |

| Portuguese | nossa senhora!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!... |

| Malayalam | നമസ്കാരം |

| Telegu | నమసాక్రం |

| Japanese | こんにちは |

License

[CC] (https://choosealicense.com/licenses/cc-by-4.0/#)

Bibtex

@misc{dutta2024yt30mmultilingualmulticategorydataset,
      title={YT-30M: A multi-lingual multi-category dataset of YouTube comments}, 
      author={Hridoy Sankar Dutta},
      year={2024},
      eprint={2412.03465},
      archivePrefix={arXiv},
      primaryClass={cs.SI},
      url={https://arxiv.org/abs/2412.03465}, 
}
Downloads last month
36