code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
SCREAMING_SNAKE_CASE__ : Optional[int] = """base_with_context"""
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Optional[int] = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) )
__magic_name__ :Dict = nn.Parameter(
torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=snake_case )
for lyr_num, lyr in enumerate(model.encoders ):
__magic_name__ :Optional[int] = weights[f'''layers_{lyr_num}''']
__magic_name__ :Dict = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) )
__magic_name__ :Tuple = ly_weight['''attention''']
__magic_name__ :Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) )
__magic_name__ :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) )
__magic_name__ :List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) )
__magic_name__ :Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) )
__magic_name__ :int = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) )
__magic_name__ :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) )
__magic_name__ :Tuple = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) )
__magic_name__ :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) )
__magic_name__ :Tuple = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) )
return model
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Dict = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) )
__magic_name__ :Union[str, Any] = nn.Parameter(
torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=snake_case )
for lyr_num, lyr in enumerate(model.encoders ):
__magic_name__ :Union[str, Any] = weights[f'''layers_{lyr_num}''']
__magic_name__ :Any = ly_weight['''attention''']
__magic_name__ :Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) )
__magic_name__ :List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) )
__magic_name__ :Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) )
__magic_name__ :Dict = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) )
__magic_name__ :Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) )
__magic_name__ :Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) )
__magic_name__ :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) )
__magic_name__ :int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) )
__magic_name__ :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) )
__magic_name__ :int = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) )
return model
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Dict = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) )
__magic_name__ :str = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) )
__magic_name__ :List[str] = nn.Parameter(
torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=snake_case )
__magic_name__ :Optional[Any] = nn.Parameter(
torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
__magic_name__ :Optional[int] = weights[f'''layers_{lyr_num}''']
__magic_name__ :Optional[int] = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) )
__magic_name__ :Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) )
__magic_name__ :Tuple = ly_weight['''self_attention''']
__magic_name__ :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) )
__magic_name__ :str = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) )
__magic_name__ :Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) )
__magic_name__ :int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) )
__magic_name__ :int = ly_weight['''MultiHeadDotProductAttention_0''']
__magic_name__ :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) )
__magic_name__ :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) )
__magic_name__ :int = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) )
__magic_name__ :Any = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) )
__magic_name__ :str = nn.Parameter(
torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) )
__magic_name__ :Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) )
__magic_name__ :Union[str, Any] = nn.Parameter(
torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) )
__magic_name__ :Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) )
__magic_name__ :Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) )
__magic_name__ :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) )
__magic_name__ :Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) )
__magic_name__ :int = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) )
return model
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path )
__magic_name__ :Tuple = jnp.tree_util.tree_map(onp.array, snake_case )
__magic_name__ :Optional[int] = [
'''from __gin__ import dynamic_registration''',
'''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''',
'''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''',
'''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''',
]
__magic_name__ :Dict = os.path.join(args.checkpoint_path, '''..''', '''config.gin''' )
__magic_name__ :Dict = inference.parse_training_gin_file(snake_case, snake_case )
__magic_name__ :Optional[int] = inference.InferenceModel(args.checkpoint_path, snake_case )
__magic_name__ :List[str] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''', variance_type='''fixed_large''' )
__magic_name__ :List[str] = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length['''inputs'''], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', )
__magic_name__ :str = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length['''targets_context'''], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', )
__magic_name__ :Dict = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length['''targets_context'''], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, )
__magic_name__ :int = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''], snake_case )
__magic_name__ :Any = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''], snake_case )
__magic_name__ :int = load_decoder(ta_checkpoint['''target''']['''decoder'''], snake_case )
__magic_name__ :int = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' )
__magic_name__ :List[Any] = SpectrogramDiffusionPipeline(
notes_encoder=snake_case, continuous_encoder=snake_case, decoder=snake_case, scheduler=snake_case, melgan=snake_case, )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser()
parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument(
"""--checkpoint_path""",
default=f"{MODEL}/checkpoint_500000",
type=str,
required=False,
help="""Path to the original jax model checkpoint.""",
)
SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args()
main(args)
| 0 |
import sys
SCREAMING_SNAKE_CASE__ : Optional[Any] = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def __lowercase ( snake_case = N ):
"""simple docstring"""
__magic_name__ :Optional[int] = -sys.maxsize - 1
for i in range(len(snake_case ) - 1_2 ):
__magic_name__ :List[Any] = 1
for j in range(1_3 ):
product *= int(n[i + j] )
if product > largest_product:
__magic_name__ :str = product
return largest_product
if __name__ == "__main__":
print(f"{solution() = }")
| 0 | 1 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class lowerCamelCase_ :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ):
"""simple docstring"""
__magic_name__ :Optional[int] = parent
__magic_name__ :List[Any] = 1_3
__magic_name__ :Union[str, Any] = 7
__magic_name__ :Optional[Any] = True
__magic_name__ :Tuple = True
__magic_name__ :List[str] = True
__magic_name__ :List[Any] = True
__magic_name__ :int = 9_9
__magic_name__ :Any = 3_2
__magic_name__ :Union[str, Any] = 2
__magic_name__ :List[str] = 4
__magic_name__ :List[Any] = 3_7
__magic_name__ :Tuple = '''gelu'''
__magic_name__ :Any = 0.1
__magic_name__ :str = 0.1
__magic_name__ :List[str] = 5_1_2
__magic_name__ :int = 1_6
__magic_name__ :Any = 2
__magic_name__ :List[Any] = 0.02
__magic_name__ :Optional[Any] = 3
__magic_name__ :Tuple = 4
__magic_name__ :Optional[Any] = None
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ :str = None
if self.use_input_mask:
__magic_name__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ :str = None
if self.use_token_type_ids:
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ :Union[str, Any] = None
__magic_name__ :Tuple = None
__magic_name__ :str = None
if self.use_labels:
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ :str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerModel(config=__lowerCAmelCase )
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ :List[str] = [input_ids, input_mask]
__magic_name__ :Any = model(__lowerCAmelCase )
__magic_name__ :List[str] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Dict = True
__magic_name__ :List[str] = TFRoFormerForCausalLM(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerForMaskedLM(config=__lowerCAmelCase )
__magic_name__ :Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = self.num_labels
__magic_name__ :str = TFRoFormerForSequenceClassification(config=__lowerCAmelCase )
__magic_name__ :Optional[int] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :str = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.num_choices
__magic_name__ :Tuple = TFRoFormerForMultipleChoice(config=__lowerCAmelCase )
__magic_name__ :int = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Optional[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Union[str, Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :str = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__magic_name__ :Tuple = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.num_labels
__magic_name__ :Any = TFRoFormerForTokenClassification(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase )
__magic_name__ :List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) :Union[str, Any] = config_and_inputs
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
a__ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
a__ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
a__ = False
a__ = False
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerModelTester(self )
__magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 )
def A ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(__lowerCAmelCase )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
__magic_name__ :Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )[0]
# TODO Replace vocab size
__magic_name__ :int = 5_0_0_0_0
__magic_name__ :Tuple = [1, 6, vocab_size]
self.assertEqual(output.shape , __lowerCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
__magic_name__ :Any = tf.constant(
[
[
[-0.12053341, -1.0264901, 0.29221946],
[-1.5133783, 0.197433, 0.15190607],
[-5.0135403, -3.900256, -0.84038764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = tf.constant([[4, 1_0]] )
__magic_name__ :Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
__magic_name__ :Optional[Any] = emba(input_ids.shape )
__magic_name__ :List[str] = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
__magic_name__ :Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 )
emba([2, 1_6, 5_1_2] )
__magic_name__ :Optional[int] = emba.weight[:3, :5]
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
# 2,12,16,64
__magic_name__ :int = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :str = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 )
__magic_name__ :List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :]
__magic_name__ , __magic_name__ :Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
__magic_name__ :List[str] = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
| 0 |
SCREAMING_SNAKE_CASE__ : Tuple = {
"""a""": """AAAAA""",
"""b""": """AAAAB""",
"""c""": """AAABA""",
"""d""": """AAABB""",
"""e""": """AABAA""",
"""f""": """AABAB""",
"""g""": """AABBA""",
"""h""": """AABBB""",
"""i""": """ABAAA""",
"""j""": """BBBAA""",
"""k""": """ABAAB""",
"""l""": """ABABA""",
"""m""": """ABABB""",
"""n""": """ABBAA""",
"""o""": """ABBAB""",
"""p""": """ABBBA""",
"""q""": """ABBBB""",
"""r""": """BAAAA""",
"""s""": """BAAAB""",
"""t""": """BAABA""",
"""u""": """BAABB""",
"""v""": """BBBAB""",
"""w""": """BABAA""",
"""x""": """BABAB""",
"""y""": """BABBA""",
"""z""": """BABBB""",
""" """: """ """,
}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {value: key for key, value in encode_dict.items()}
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :Tuple = ''''''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('''encode() accepts only letters of the alphabet and spaces''' )
return encoded
def __lowercase ( snake_case ):
"""simple docstring"""
if set(snake_case ) - {"A", "B", " "} != set():
raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' )
__magic_name__ :Dict = ''''''
for word in coded.split():
while len(snake_case ) != 0:
decoded += decode_dict[word[:5]]
__magic_name__ :int = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 0 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase_ ( lowerCamelCase ):
a__ = ['''image_processor''', '''tokenizer''']
a__ = '''CLIPImageProcessor'''
a__ = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __lowerCAmelCase , )
__magic_name__ :Union[str, Any] = kwargs.pop('''feature_extractor''' )
__magic_name__ :List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__magic_name__ :int = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if images is not None:
__magic_name__ :Optional[Any] = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None and images is not None:
__magic_name__ :Dict = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = self.tokenizer.model_input_names
__magic_name__ :Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 0 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :Optional[Any] = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(snake_case, snake_case )
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ , __magic_name__ :Tuple = emb.weight.shape
__magic_name__ :int = nn.Linear(snake_case, snake_case, bias=snake_case )
__magic_name__ :str = emb.weight.data
return lin_layer
def __lowercase ( snake_case ):
"""simple docstring"""
__magic_name__ :int = torch.load(snake_case, map_location='''cpu''' )
__magic_name__ :Optional[Any] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model''']
__magic_name__ :List[Any] = mam_aaa['''model''']
remove_ignore_keys_(snake_case )
__magic_name__ :Tuple = state_dict['''encoder.embed_tokens.weight'''].shape[0]
__magic_name__ :List[str] = MaMaaaConfig(
vocab_size=snake_case, max_position_embeddings=1_0_2_4, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', )
__magic_name__ :int = state_dict['''decoder.embed_tokens.weight''']
__magic_name__ :List[str] = MaMaaaForConditionalGeneration(snake_case )
model.model.load_state_dict(snake_case, strict=snake_case )
__magic_name__ :List[str] = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
SCREAMING_SNAKE_CASE__ : int = parser.parse_args()
SCREAMING_SNAKE_CASE__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 0 | 1 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase_ :
a__ = None
a__ = False
a__ = False
a__ = False
a__ = None
a__ = None
a__ = False
a__ = False
a__ = False
a__ = True
a__ = None
a__ = 1
a__ = None
a__ = False
a__ = None
a__ = None
def A ( self ):
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(__lowerCAmelCase ) for k, v in self.__dict__.items()} )
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE__ : Dict = {
"""configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""],
"""tokenization_canine""": ["""CanineTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : str = [
"""CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CanineForMultipleChoice""",
"""CanineForQuestionAnswering""",
"""CanineForSequenceClassification""",
"""CanineForTokenClassification""",
"""CanineLayer""",
"""CanineModel""",
"""CaninePreTrainedModel""",
"""load_tf_weights_in_canine""",
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 0 | 1 |
import os
# Precomputes a list of the 100 first triangular numbers
SCREAMING_SNAKE_CASE__ : List[str] = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)]
def __lowercase ( ):
"""simple docstring"""
__magic_name__ :List[Any] = os.path.dirname(os.path.realpath(snake_case ) )
__magic_name__ :str = os.path.join(snake_case, '''words.txt''' )
__magic_name__ :Any = ''''''
with open(snake_case ) as f:
__magic_name__ :List[Any] = f.readline()
__magic_name__ :List[str] = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )]
__magic_name__ :List[str] = [
word
for word in [sum(ord(snake_case ) - 6_4 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(snake_case )
if __name__ == "__main__":
print(solution())
| 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class lowerCamelCase_ ( lowerCamelCase ):
a__ = ['''image_processor''', '''tokenizer''']
a__ = '''ChineseCLIPImageProcessor'''
a__ = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Tuple = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __lowerCAmelCase , )
__magic_name__ :Optional[Any] = kwargs.pop('''feature_extractor''' )
__magic_name__ :Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[Any] = self.image_processor
def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ):
"""simple docstring"""
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__magic_name__ :int = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if images is not None:
__magic_name__ :Dict = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None and images is not None:
__magic_name__ :Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = self.tokenizer.model_input_names
__magic_name__ :Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def A ( self ):
"""simple docstring"""
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , )
return self.image_processor_class
| 0 | 1 |
import itertools
import math
def __lowercase ( snake_case ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(snake_case ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __lowercase ( ):
"""simple docstring"""
__magic_name__ :str = 2
while True:
if is_prime(snake_case ):
yield num
num += 1
def __lowercase ( snake_case = 1_0_0_0_1 ):
"""simple docstring"""
return next(itertools.islice(prime_generator(), nth - 1, snake_case ) )
if __name__ == "__main__":
print(f"{solution() = }")
| 0 |
from sklearn.metrics import matthews_corrcoef
import datasets
SCREAMING_SNAKE_CASE__ : Optional[Any] = """
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results['matthews_correlation'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results['matthews_correlation'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric(\"matthews_correlation\")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results['matthews_correlation'], 2))
-0.25
"""
SCREAMING_SNAKE_CASE__ : int = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
def A ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ):
"""simple docstring"""
return {
"matthews_correlation": float(matthews_corrcoef(__lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase ) ),
}
| 0 | 1 |
import re
from filelock import FileLock
try:
import nltk
SCREAMING_SNAKE_CASE__ : Tuple = True
except (ImportError, ModuleNotFoundError):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = False
if NLTK_AVAILABLE:
with FileLock(""".lock""") as lock:
nltk.download("""punkt""", quiet=True)
def __lowercase ( snake_case ):
"""simple docstring"""
re.sub('''<n>''', '''''', snake_case ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(snake_case ) )
| 0 |
from __future__ import annotations
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
print(f'''Vertex\tShortest Distance from vertex {src}''' )
for i, d in enumerate(snake_case ):
print(f'''{i}\t\t{d}''' )
def __lowercase ( snake_case, snake_case, snake_case ):
"""simple docstring"""
for j in range(snake_case ):
__magic_name__ , __magic_name__ , __magic_name__ :Tuple = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
return True
return False
def __lowercase ( snake_case, snake_case, snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :List[Any] = [float('''inf''' )] * vertex_count
__magic_name__ :Tuple = 0.0
for _ in range(vertex_count - 1 ):
for j in range(snake_case ):
__magic_name__ , __magic_name__ , __magic_name__ :Dict = (graph[j][k] for k in ['''src''', '''dst''', '''weight'''])
if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]:
__magic_name__ :Tuple = distance[u] + w
__magic_name__ :Tuple = check_negative_cycle(snake_case, snake_case, snake_case )
if negative_cycle_exists:
raise Exception('''Negative cycle found''' )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ : Tuple = int(input("""Enter number of vertices: """).strip())
SCREAMING_SNAKE_CASE__ : Any = int(input("""Enter number of edges: """).strip())
SCREAMING_SNAKE_CASE__ : list[dict[str, int]] = [{} for _ in range(E)]
for i in range(E):
print("""Edge """, i + 1)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = (
int(x)
for x in input("""Enter source, destination, weight: """).strip().split(""" """)
)
SCREAMING_SNAKE_CASE__ : Dict = {"""src""": src, """dst""": dest, """weight""": weight}
SCREAMING_SNAKE_CASE__ : List[Any] = int(input("""\nEnter shortest path source:""").strip())
SCREAMING_SNAKE_CASE__ : List[str] = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 0 | 1 |
import numpy as np
def __lowercase ( snake_case ):
"""simple docstring"""
return 1 / (1 + np.exp(-vector ))
def __lowercase ( snake_case ):
"""simple docstring"""
return vector * sigmoid(snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 0 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class lowerCamelCase_ :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ):
"""simple docstring"""
__magic_name__ :Optional[int] = parent
__magic_name__ :List[Any] = 1_3
__magic_name__ :Union[str, Any] = 7
__magic_name__ :Optional[Any] = True
__magic_name__ :Tuple = True
__magic_name__ :List[str] = True
__magic_name__ :List[Any] = True
__magic_name__ :int = 9_9
__magic_name__ :Any = 3_2
__magic_name__ :Union[str, Any] = 2
__magic_name__ :List[str] = 4
__magic_name__ :List[Any] = 3_7
__magic_name__ :Tuple = '''gelu'''
__magic_name__ :Any = 0.1
__magic_name__ :str = 0.1
__magic_name__ :List[str] = 5_1_2
__magic_name__ :int = 1_6
__magic_name__ :Any = 2
__magic_name__ :List[Any] = 0.02
__magic_name__ :Optional[Any] = 3
__magic_name__ :Tuple = 4
__magic_name__ :Optional[Any] = None
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ :str = None
if self.use_input_mask:
__magic_name__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ :str = None
if self.use_token_type_ids:
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ :Union[str, Any] = None
__magic_name__ :Tuple = None
__magic_name__ :str = None
if self.use_labels:
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ :str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerModel(config=__lowerCAmelCase )
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ :List[str] = [input_ids, input_mask]
__magic_name__ :Any = model(__lowerCAmelCase )
__magic_name__ :List[str] = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Dict = True
__magic_name__ :List[str] = TFRoFormerForCausalLM(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )['''logits''']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerForMaskedLM(config=__lowerCAmelCase )
__magic_name__ :Any = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :int = self.num_labels
__magic_name__ :str = TFRoFormerForSequenceClassification(config=__lowerCAmelCase )
__magic_name__ :Optional[int] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :str = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.num_choices
__magic_name__ :Tuple = TFRoFormerForMultipleChoice(config=__lowerCAmelCase )
__magic_name__ :int = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Optional[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :Union[str, Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) )
__magic_name__ :str = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__magic_name__ :Tuple = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.num_labels
__magic_name__ :Any = TFRoFormerForTokenClassification(config=__lowerCAmelCase )
__magic_name__ :str = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase )
__magic_name__ :List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
__magic_name__ :Union[str, Any] = model(__lowerCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) :Union[str, Any] = config_and_inputs
__magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
a__ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
a__ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
a__ = False
a__ = False
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = TFRoFormerModelTester(self )
__magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 )
def A ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' )
self.assertIsNotNone(__lowerCAmelCase )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :int = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' )
__magic_name__ :Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ :Optional[Any] = model(__lowerCAmelCase )[0]
# TODO Replace vocab size
__magic_name__ :int = 5_0_0_0_0
__magic_name__ :Tuple = [1, 6, vocab_size]
self.assertEqual(output.shape , __lowerCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
__magic_name__ :Any = tf.constant(
[
[
[-0.12053341, -1.0264901, 0.29221946],
[-1.5133783, 0.197433, 0.15190607],
[-5.0135403, -3.900256, -0.84038764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = tf.constant([[4, 1_0]] )
__magic_name__ :Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
__magic_name__ :Optional[Any] = emba(input_ids.shape )
__magic_name__ :List[str] = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
__magic_name__ :Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 )
emba([2, 1_6, 5_1_2] )
__magic_name__ :Optional[int] = emba.weight[:3, :5]
tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance )
@require_tf
class lowerCamelCase_ ( unittest.TestCase ):
a__ = 1e-4
def A ( self ):
"""simple docstring"""
# 2,12,16,64
__magic_name__ :int = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :str = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0
__magic_name__ :int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 )
__magic_name__ :List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :]
__magic_name__ , __magic_name__ :Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Tuple = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
__magic_name__ :List[str] = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
| 0 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class lowerCamelCase_ ( lowerCamelCase ):
a__ = '''luke'''
def __init__( self , __lowerCAmelCase=5_0_2_6_7 , __lowerCAmelCase=5_0_0_0_0_0 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ):
"""simple docstring"""
super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :List[str] = vocab_size
__magic_name__ :int = entity_vocab_size
__magic_name__ :List[str] = hidden_size
__magic_name__ :Union[str, Any] = entity_emb_size
__magic_name__ :Tuple = num_hidden_layers
__magic_name__ :Dict = num_attention_heads
__magic_name__ :Optional[Any] = hidden_act
__magic_name__ :Tuple = intermediate_size
__magic_name__ :List[Any] = hidden_dropout_prob
__magic_name__ :List[Any] = attention_probs_dropout_prob
__magic_name__ :Dict = max_position_embeddings
__magic_name__ :Optional[Any] = type_vocab_size
__magic_name__ :int = initializer_range
__magic_name__ :str = layer_norm_eps
__magic_name__ :Union[str, Any] = use_entity_aware_attention
__magic_name__ :Tuple = classifier_dropout
| 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
SCREAMING_SNAKE_CASE__ : Optional[int] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 0 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ : Any = {"""configuration_mmbt""": ["""MMBTConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Any = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""]
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 0 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = XCLIPTextConfig()
# derive patch size from model name
__magic_name__ :Union[str, Any] = model_name.find('''patch''' )
__magic_name__ :Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] )
__magic_name__ :int = XCLIPVisionConfig(patch_size=snake_case, num_frames=snake_case )
if "large" in model_name:
__magic_name__ :Dict = 7_6_8
__magic_name__ :int = 3_0_7_2
__magic_name__ :List[Any] = 1_2
__magic_name__ :str = 1_0_2_4
__magic_name__ :Any = 4_0_9_6
__magic_name__ :Optional[Any] = 1_6
__magic_name__ :Union[str, Any] = 2_4
__magic_name__ :Union[str, Any] = 7_6_8
__magic_name__ :Tuple = 3_0_7_2
if model_name == "xclip-large-patch14-16-frames":
__magic_name__ :List[str] = 3_3_6
__magic_name__ :Any = XCLIPConfig.from_text_vision_configs(snake_case, snake_case )
if "large" in model_name:
__magic_name__ :str = 7_6_8
return config
def __lowercase ( snake_case ):
"""simple docstring"""
if name == "token_embedding.weight":
__magic_name__ :Any = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''' )
if name == "positional_embedding":
__magic_name__ :Any = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''' )
if "ln_1" in name:
__magic_name__ :List[str] = name.replace('''ln_1''', '''layer_norm1''' )
if "ln_2" in name:
__magic_name__ :str = name.replace('''ln_2''', '''layer_norm2''' )
if "c_fc" in name:
__magic_name__ :List[Any] = name.replace('''c_fc''', '''fc1''' )
if "c_proj" in name:
__magic_name__ :Any = name.replace('''c_proj''', '''fc2''' )
if name.startswith('''transformer.resblocks''' ):
__magic_name__ :Any = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''' )
if "attn.out_proj" in name and "message" not in name:
__magic_name__ :Union[str, Any] = name.replace('''attn.out_proj''', '''self_attn.out_proj''' )
if "ln_final" in name:
__magic_name__ :Tuple = name.replace('''ln_final''', '''text_model.final_layer_norm''' )
# visual encoder
if name == "visual.class_embedding":
__magic_name__ :List[Any] = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''' )
if name == "visual.positional_embedding":
__magic_name__ :Any = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''' )
if name.startswith('''visual.transformer.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''' )
if "visual.conv1" in name:
__magic_name__ :Tuple = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''' )
if "visual.ln_pre" in name:
__magic_name__ :Tuple = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''' )
if "visual.ln_post" in name:
__magic_name__ :Optional[Any] = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''' )
if "visual.proj" in name:
__magic_name__ :Tuple = name.replace('''visual.proj''', '''visual_projection.weight''' )
if "text_projection" in name:
__magic_name__ :int = name.replace('''text_projection''', '''text_projection.weight''' )
# things on top
if "prompts_visual_proj" in name:
__magic_name__ :int = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''' )
if "prompts_visual_ln" in name:
__magic_name__ :Dict = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''' )
# mit
if name == "mit.positional_embedding":
__magic_name__ :List[Any] = name.replace('''positional''', '''position''' )
if name.startswith('''mit.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''mit.resblocks''', '''mit.encoder.layers''' )
# prompts generator
if name.startswith('''prompts_generator.norm''' ):
__magic_name__ :str = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''' )
return name
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__magic_name__ :Any = orig_state_dict.pop(snake_case )
if "attn.in_proj" in key:
__magic_name__ :str = key.split('''.''' )
if key.startswith('''visual''' ):
__magic_name__ :List[Any] = key_split[3]
__magic_name__ :List[Any] = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__magic_name__ :List[Any] = val[
:dim, :
]
__magic_name__ :List[str] = val[
dim : dim * 2, :
]
__magic_name__ :List[str] = val[
-dim:, :
]
else:
__magic_name__ :str = val[
:dim
]
__magic_name__ :Optional[int] = val[
dim : dim * 2
]
__magic_name__ :Any = val[
-dim:
]
else:
if "weight" in key:
__magic_name__ :int = val[
:dim, :
]
__magic_name__ :Union[str, Any] = val[
dim : dim * 2, :
]
__magic_name__ :List[Any] = val[
-dim:, :
]
else:
__magic_name__ :Union[str, Any] = val[:dim]
__magic_name__ :str = val[
dim : dim * 2
]
__magic_name__ :Dict = val[-dim:]
elif key.startswith('''mit''' ):
__magic_name__ :List[Any] = key_split[2]
__magic_name__ :Any = config.vision_config.mit_hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Optional[int] = val[dim : dim * 2, :]
__magic_name__ :int = val[-dim:, :]
else:
__magic_name__ :Tuple = val[:dim]
__magic_name__ :Optional[int] = val[dim : dim * 2]
__magic_name__ :Optional[int] = val[-dim:]
else:
__magic_name__ :Any = key_split[2]
__magic_name__ :List[Any] = config.text_config.hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Tuple = val[
dim : dim * 2, :
]
__magic_name__ :str = val[-dim:, :]
else:
__magic_name__ :int = val[:dim]
__magic_name__ :Any = val[
dim : dim * 2
]
__magic_name__ :str = val[-dim:]
else:
__magic_name__ :Tuple = rename_key(snake_case )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__magic_name__ :List[Any] = val.T
__magic_name__ :Optional[Any] = val
return orig_state_dict
def __lowercase ( snake_case ):
"""simple docstring"""
if num_frames == 8:
__magic_name__ :Any = '''eating_spaghetti_8_frames.npy'''
elif num_frames == 1_6:
__magic_name__ :List[Any] = '''eating_spaghetti.npy'''
elif num_frames == 3_2:
__magic_name__ :Tuple = '''eating_spaghetti_32_frames.npy'''
__magic_name__ :str = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''', filename=snake_case, repo_type='''dataset''', )
__magic_name__ :List[Any] = np.load(snake_case )
return list(snake_case )
def __lowercase ( snake_case, snake_case=None, snake_case=False ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = {
# fully supervised kinetics-400 checkpoints
'''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''',
'''xclip-base-patch32-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'''
),
'''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''',
'''xclip-base-patch16-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'''
),
'''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb''',
'''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f''',
# fully supervised kinetics-600 checkpoints
'''xclip-base-patch16-kinetics-600''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'''
),
'''xclip-base-patch16-kinetics-600-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'''
),
'''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be''',
# few shot
'''xclip-base-patch16-hmdb-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'''
),
'''xclip-base-patch16-hmdb-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'''
),
'''xclip-base-patch16-hmdb-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'''
),
'''xclip-base-patch16-hmdb-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'''
),
'''xclip-base-patch16-ucf-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'''
),
'''xclip-base-patch16-ucf-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'''
),
'''xclip-base-patch16-ucf-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'''
),
'''xclip-base-patch16-ucf-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'''
),
# zero shot
'''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''',
}
__magic_name__ :Optional[int] = model_to_url[model_name]
__magic_name__ :List[str] = 8
if "16-frames" in model_name:
__magic_name__ :List[Any] = 1_6
elif "shot" in model_name:
__magic_name__ :Dict = 3_2
__magic_name__ :str = get_xclip_config(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
model.eval()
if "drive" in checkpoint_url:
__magic_name__ :Any = '''pytorch_model.bin'''
gdown.cached_download(snake_case, snake_case, quiet=snake_case )
__magic_name__ :Optional[Any] = torch.load(snake_case, map_location='''cpu''' )['''model''']
else:
__magic_name__ :Optional[int] = torch.hub.load_state_dict_from_url(snake_case )['''model''']
__magic_name__ :List[str] = convert_state_dict(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
__magic_name__ , __magic_name__ :Optional[Any] = model.load_state_dict(snake_case, strict=snake_case )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__magic_name__ :str = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4
__magic_name__ :Optional[int] = VideoMAEImageProcessor(size=snake_case )
__magic_name__ :Optional[int] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Tuple = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Optional[int] = XCLIPProcessor(image_processor=snake_case, tokenizer=snake_case )
__magic_name__ :List[Any] = prepare_video(snake_case )
__magic_name__ :str = processor(
text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=snake_case, return_tensors='''pt''', padding=snake_case )
print('''Shape of pixel values:''', inputs.pixel_values.shape )
with torch.no_grad():
__magic_name__ :Tuple = model(**snake_case )
# Verify outputs
__magic_name__ :Any = outputs.logits_per_video
__magic_name__ :str = logits_per_video.softmax(dim=1 )
print('''Probs:''', snake_case )
# kinetics-400
if model_name == "xclip-base-patch32":
__magic_name__ :Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
__magic_name__ :str = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] )
elif model_name == "xclip-base-patch16":
__magic_name__ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
__magic_name__ :Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] )
elif model_name == "xclip-large-patch14":
__magic_name__ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
__magic_name__ :Optional[int] = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__magic_name__ :Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__magic_name__ :List[str] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__magic_name__ :List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__magic_name__ :Tuple = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__magic_name__ :List[str] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__magic_name__ :Any = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__magic_name__ :Optional[int] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] )
else:
raise ValueError(f'''Model name {model_name} not supported''' )
assert torch.allclose(snake_case, snake_case, atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case )
if push_to_hub:
print('''Pushing model, processor and slow tokenizer files to the hub...''' )
model.push_to_hub(snake_case, organization='''nielsr''' )
processor.push_to_hub(snake_case, organization='''nielsr''' )
slow_tokenizer.push_to_hub(snake_case, organization='''nielsr''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0 | 1 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
SCREAMING_SNAKE_CASE__ : Dict = """pt"""
elif is_tf_available():
SCREAMING_SNAKE_CASE__ : List[str] = """tf"""
else:
SCREAMING_SNAKE_CASE__ : List[Any] = """jax"""
class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ):
a__ = PerceiverTokenizer
a__ = False
def A ( self ):
"""simple docstring"""
super().setUp()
__magic_name__ :str = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self ):
"""simple docstring"""
return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' )
def A ( self , **__lowerCAmelCase ):
"""simple docstring"""
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def A ( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=2_0 , __lowerCAmelCase=5 ):
"""simple docstring"""
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
__magic_name__ :List[str] = []
for i in range(len(__lowerCAmelCase ) ):
try:
__magic_name__ :Optional[int] = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__magic_name__ :Dict = list(filter(lambda __lowerCAmelCase : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , __lowerCAmelCase ) )
__magic_name__ :Union[str, Any] = list(filter(lambda __lowerCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCAmelCase ) , __lowerCAmelCase ) )
if max_length is not None and len(__lowerCAmelCase ) > max_length:
__magic_name__ :int = toks[:max_length]
if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0:
while len(__lowerCAmelCase ) < min_length:
__magic_name__ :str = toks + toks
# toks_str = [t[1] for t in toks]
__magic_name__ :Dict = [t[0] for t in toks]
# Ensure consistency
__magic_name__ :List[str] = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )
if " " not in output_txt and len(__lowerCAmelCase ) > 1:
__magic_name__ :Tuple = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase )
)
if with_prefix_space:
__magic_name__ :Union[str, Any] = ''' ''' + output_txt
__magic_name__ :str = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
return output_txt, output_ids
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.perceiver_tokenizer
__magic_name__ :List[Any] = '''Unicode €.'''
__magic_name__ :Tuple = tokenizer(__lowerCAmelCase )
__magic_name__ :Optional[int] = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5]
self.assertEqual(encoded['''input_ids'''] , __lowerCAmelCase )
# decoding
__magic_name__ :List[str] = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , '''[CLS]Unicode €.[SEP]''' )
__magic_name__ :int = tokenizer('''e è é ê ë''' )
__magic_name__ :List[Any] = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5]
self.assertEqual(encoded['''input_ids'''] , __lowerCAmelCase )
# decoding
__magic_name__ :Tuple = tokenizer.decode(__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase , '''[CLS]e è é ê ë[SEP]''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' )
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = self.perceiver_tokenizer
__magic_name__ :Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
__magic_name__ :Union[str, Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0]
# fmt: on
__magic_name__ :List[str] = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
if FRAMEWORK != "jax":
__magic_name__ :List[Any] = list(batch.input_ids.numpy()[0] )
else:
__magic_name__ :Dict = list(batch.input_ids.tolist()[0] )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertEqual((2, 3_8) , batch.input_ids.shape )
self.assertEqual((2, 3_8) , batch.attention_mask.shape )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.perceiver_tokenizer
__magic_name__ :Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
__magic_name__ :Any = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , __lowerCAmelCase )
self.assertIn('''attention_mask''' , __lowerCAmelCase )
self.assertNotIn('''decoder_input_ids''' , __lowerCAmelCase )
self.assertNotIn('''decoder_attention_mask''' , __lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :str = self.perceiver_tokenizer
__magic_name__ :Optional[Any] = [
'''Summary of the text.''',
'''Another summary.''',
]
__magic_name__ :int = tokenizer(
text_target=__lowerCAmelCase , max_length=3_2 , padding='''max_length''' , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase )
self.assertEqual(3_2 , targets['''input_ids'''].shape[1] )
def A ( self ):
"""simple docstring"""
# safety check on max_len default value so we are sure the test works
__magic_name__ :List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 4_2 )
# Now let's start the test
__magic_name__ :Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ :Union[str, Any] = tempfile.mkdtemp()
__magic_name__ :Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running'''
__magic_name__ :Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
tokenizer.save_pretrained(__lowerCAmelCase )
__magic_name__ :int = tokenizer.__class__.from_pretrained(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
shutil.rmtree(__lowerCAmelCase )
__magic_name__ :int = self.get_tokenizers(model_max_length=4_2 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__magic_name__ :Union[str, Any] = tempfile.mkdtemp()
__magic_name__ :Tuple = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
__magic_name__ :Optional[Any] = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
__magic_name__ :List[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
tokenizer.save_pretrained(__lowerCAmelCase )
__magic_name__ :int = tokenizer.__class__.from_pretrained(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = after_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 4_2 )
__magic_name__ :Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCAmelCase , model_max_length=4_3 )
self.assertEqual(tokenizer.model_max_length , 4_3 )
shutil.rmtree(__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
__magic_name__ :Union[str, Any] = json.load(__lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
__magic_name__ :Tuple = json.load(__lowerCAmelCase )
__magic_name__ :str = [F'''<extra_id_{i}>''' for i in range(1_2_5 )]
__magic_name__ :List[str] = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
__magic_name__ :Tuple = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(__lowerCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
with open(os.path.join(__lowerCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(__lowerCAmelCase , __lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__magic_name__ :Optional[int] = tokenizer_class.from_pretrained(
__lowerCAmelCase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__magic_name__ :Optional[Any] = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__lowerCAmelCase )]
__magic_name__ :Any = tokenizer_class.from_pretrained(
__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' )
def A ( self ):
"""simple docstring"""
pass
def A ( self ):
"""simple docstring"""
pass
def A ( self ):
"""simple docstring"""
pass
def A ( self ):
"""simple docstring"""
pass
def A ( self ):
"""simple docstring"""
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
__magic_name__ :List[Any] = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
__magic_name__ :Any = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]''']
__magic_name__ :Union[str, Any] = tokenizer.convert_tokens_to_string(__lowerCAmelCase )
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase )
| 0 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class lowerCamelCase_ ( lowerCamelCase ):
def __init__( self , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[int] = params
__magic_name__ :Any = np.array(__lowerCAmelCase )
__magic_name__ :Optional[Any] = np.array([len(__lowerCAmelCase ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , __lowerCAmelCase ):
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self ):
"""simple docstring"""
return len(self.lengths )
def A ( self ):
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = self.params.max_model_input_size
__magic_name__ :int = self.lengths > max_len
logger.info(F'''Splitting {sum(__lowerCAmelCase )} too long sequences.''' )
def divide_chunks(__lowerCAmelCase , __lowerCAmelCase ):
return [l[i : i + n] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )]
__magic_name__ :Optional[int] = []
__magic_name__ :List[Any] = []
if self.params.mlm:
__magic_name__ , __magic_name__ :Optional[Any] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token''']
else:
__magic_name__ , __magic_name__ :Tuple = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token''']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
__magic_name__ :int = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
__magic_name__ :List[Any] = np.insert(__lowerCAmelCase , 0 , __lowerCAmelCase )
if sub_s[-1] != sep_id:
__magic_name__ :Union[str, Any] = np.insert(__lowerCAmelCase , len(__lowerCAmelCase ) , __lowerCAmelCase )
assert len(__lowerCAmelCase ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(__lowerCAmelCase )
new_tok_ids.extend(__lowerCAmelCase )
new_lengths.extend([len(__lowerCAmelCase ) for l in sub_seqs] )
__magic_name__ :Tuple = np.array(__lowerCAmelCase )
__magic_name__ :Optional[int] = np.array(__lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = len(self )
__magic_name__ :int = self.lengths > 1_1
__magic_name__ :List[str] = self.token_ids[indices]
__magic_name__ :Union[str, Any] = self.lengths[indices]
__magic_name__ :List[str] = len(self )
logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def A ( self ):
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
__magic_name__ :Tuple = self.params.special_tok_ids['''unk_token''']
__magic_name__ :Dict = len(self )
__magic_name__ :Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
__magic_name__ :int = (unk_occs / self.lengths) < 0.5
__magic_name__ :str = self.token_ids[indices]
__magic_name__ :str = self.lengths[indices]
__magic_name__ :Any = len(self )
logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def A ( self ):
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = [t[0] for t in batch]
__magic_name__ :List[Any] = [t[1] for t in batch]
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
# Max for paddings
__magic_name__ :Tuple = max(__lowerCAmelCase )
# Pad token ids
if self.params.mlm:
__magic_name__ :Any = self.params.special_tok_ids['''pad_token''']
else:
__magic_name__ :str = self.params.special_tok_ids['''unk_token''']
__magic_name__ :Any = [list(t.astype(__lowerCAmelCase ) ) + [pad_idx] * (max_seq_len_ - len(__lowerCAmelCase )) for t in token_ids]
assert len(tk_ ) == len(__lowerCAmelCase )
assert all(len(__lowerCAmelCase ) == max_seq_len_ for t in tk_ )
__magic_name__ :Optional[int] = torch.tensor(tk_ ) # (bs, max_seq_len_)
__magic_name__ :Optional[int] = torch.tensor(__lowerCAmelCase ) # (bs)
return tk_t, lg_t
| 0 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = """▁"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""vocab_file""": {
"""google/reformer-crime-and-punishment""": (
"""https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"""
)
}
}
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""google/reformer-crime-and-punishment""": 52_42_88,
}
class lowerCamelCase_ ( lowerCamelCase ):
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = ['''input_ids''', '''attention_mask''']
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
__magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , )
__magic_name__ :Optional[Any] = vocab_file
__magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
return self.sp_model.get_piece_size()
def A ( self ):
"""simple docstring"""
__magic_name__ :str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.__dict__.copy()
__magic_name__ :Optional[Any] = None
return state
def __setstate__( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__magic_name__ :Optional[int] = {}
__magic_name__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.piece_to_id(__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
if index < self.sp_model.get_piece_size():
__magic_name__ :int = self.sp_model.IdToPiece(__lowerCAmelCase )
return token
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = []
__magic_name__ :Tuple = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__lowerCAmelCase ) + token
__magic_name__ :Optional[Any] = []
else:
current_sub_tokens.append(__lowerCAmelCase )
out_string += self.sp_model.decode(__lowerCAmelCase )
return out_string.strip()
def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__magic_name__ :Optional[int] = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCAmelCase , '''wb''' ) as fi:
__magic_name__ :Dict = self.sp_model.serialized_model_proto()
fi.write(__lowerCAmelCase )
return (out_vocab_file,)
| 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = """▁"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""vocab_file""": {
"""google/reformer-crime-and-punishment""": (
"""https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"""
)
}
}
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""google/reformer-crime-and-punishment""": 52_42_88,
}
class lowerCamelCase_ ( lowerCamelCase ):
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = ['''input_ids''', '''attention_mask''']
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
__magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , )
__magic_name__ :Optional[Any] = vocab_file
__magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
return self.sp_model.get_piece_size()
def A ( self ):
"""simple docstring"""
__magic_name__ :str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.__dict__.copy()
__magic_name__ :Optional[Any] = None
return state
def __setstate__( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__magic_name__ :Optional[int] = {}
__magic_name__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.piece_to_id(__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
if index < self.sp_model.get_piece_size():
__magic_name__ :int = self.sp_model.IdToPiece(__lowerCAmelCase )
return token
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = []
__magic_name__ :Tuple = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__lowerCAmelCase ) + token
__magic_name__ :Optional[Any] = []
else:
current_sub_tokens.append(__lowerCAmelCase )
out_string += self.sp_model.decode(__lowerCAmelCase )
return out_string.strip()
def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__magic_name__ :Optional[int] = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCAmelCase , '''wb''' ) as fi:
__magic_name__ :Dict = self.sp_model.serialized_model_proto()
fi.write(__lowerCAmelCase )
return (out_vocab_file,)
| 0 | 1 |
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__)
class lowerCamelCase_ ( lowerCamelCase ):
def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ):
"""simple docstring"""
warnings.warn(
'''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DPTImageProcessor instead.''' , __lowerCAmelCase , )
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
| 0 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ):
a__ = MobileBertTokenizer
a__ = MobileBertTokenizerFast
a__ = True
a__ = True
a__ = filter_non_english
a__ = '''google/mobilebert-uncased'''
def A ( self ):
"""simple docstring"""
super().setUp()
__magic_name__ :Tuple = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__magic_name__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__magic_name__ :List[str] = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = '''UNwant\u00E9d,running'''
__magic_name__ :int = '''unwanted, running'''
return input_text, output_text
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.tokenizer_class(self.vocab_file )
__magic_name__ :List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(__lowerCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] )
def A ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__magic_name__ :int = self.get_tokenizer()
__magic_name__ :Tuple = self.get_rust_tokenizer()
__magic_name__ :List[str] = '''UNwant\u00E9d,running'''
__magic_name__ :Optional[Any] = tokenizer.tokenize(__lowerCAmelCase )
__magic_name__ :List[Any] = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :int = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :str = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[Any] = self.get_rust_tokenizer()
__magic_name__ :Any = tokenizer.encode(__lowerCAmelCase )
__magic_name__ :Any = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
# With lower casing
__magic_name__ :Any = self.get_tokenizer(do_lower_case=__lowerCAmelCase )
__magic_name__ :List[Any] = self.get_rust_tokenizer(do_lower_case=__lowerCAmelCase )
__magic_name__ :Dict = '''UNwant\u00E9d,running'''
__magic_name__ :Tuple = tokenizer.tokenize(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = rust_tokenizer.tokenize(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Dict = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :Tuple = self.get_rust_tokenizer()
__magic_name__ :Dict = tokenizer.encode(__lowerCAmelCase )
__magic_name__ :List[Any] = rust_tokenizer.encode(__lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = BasicTokenizer(do_lower_case=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :int = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__magic_name__ :Union[str, Any] = {}
for i, token in enumerate(__lowerCAmelCase ):
__magic_name__ :Tuple = i
__magic_name__ :List[Any] = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def A ( self ):
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def A ( self ):
"""simple docstring"""
__magic_name__ :Any = self.get_tokenizer()
__magic_name__ :Any = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' )
__magic_name__ :Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
__magic_name__ :List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
assert encoded_sentence == [1_0_1] + text + [1_0_2]
assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2]
def A ( self ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__magic_name__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__magic_name__ :Optional[Any] = tokenizer_r.encode_plus(
__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , )
__magic_name__ :Any = tokenizer_r.do_lower_case if hasattr(__lowerCAmelCase , '''do_lower_case''' ) else False
__magic_name__ :Optional[int] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''Allen'''),
((2_1, 2_3), '''##NL'''),
((2_3, 2_4), '''##P'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''allen'''),
((2_1, 2_3), '''##nl'''),
((2_3, 2_4), '''##p'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def A ( self ):
"""simple docstring"""
__magic_name__ :Dict = ['''的''', '''人''', '''有''']
__magic_name__ :Any = ''''''.join(__lowerCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__magic_name__ :Optional[Any] = True
__magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Dict = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[str] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Dict = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
__magic_name__ :List[str] = False
__magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :List[str] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
__magic_name__ :Optional[Any] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :Union[str, Any] = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
__magic_name__ :List[str] = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase )
__magic_name__ :Optional[int] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
__magic_name__ :Dict = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__lowerCAmelCase )
]
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
| 0 | 1 |
Dataset Card for "python_codestyles-random-1k"
This dataset contains negative and positive examples with python code of compliance with a code style. A positive
example represents compliance with the code style (label is 1). Each example is composed of two components, the first
component consists of a code that either conforms to the code style or violates it and the second component
corresponding to an example code that already conforms to a code style. In total, the dataset contains 1.000
completely
different code styles. The code styles differ in at least one codestyle rule, which is called a random
codestyle
dataset variant. The dataset consists of a training and test group, with none of the code styles overlapping between
groups. In addition, both groups contain completely different underlying codes.
The examples contain source code from the following repositories:
repository | tag or commit |
---|---|
TheAlgorithms/Python | f614ed72170011d2d439f7901e1c8daa7deac8c4 |
huggingface/transformers | v4.31.0 |
huggingface/datasets | 2.13.1 |
huggingface/diffusers | v0.18.2 |
huggingface/accelerate | v0.21.0 |
You can find the corresponding code styles of the examples in the file additional_data.json.
The code styles in the file are split by training and test group and the index corresponds to the class for the
columns code_codestyle
and style_context_codestyle
in the dataset.
There are 364.400 samples in total and 182.200 positive and 182.200 negative samples.
- Downloads last month
- 44