code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowercase( __a : str , __a : int ): # Load checkpoint a__ =torch.load(__a , map_location='cpu' ) a__ =chkpt['model'] # We have the base model one level deeper than the original XLM repository a__ ={} for k, v in state_dict.items(): if "pred_layer" in k: a__ =v else: a__ =v a__ =chkpt['params'] a__ ={n: v for n, v in config.items() if not isinstance(__a , (torch.FloatTensor, numpy.ndarray) )} a__ =chkpt['dico_word2id'] a__ ={s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model a__ =pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ =pytorch_dump_folder_path + '/' + CONFIG_NAME a__ =pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(__a , __a ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__a , indent=2 ) + '\n' ) if __name__ == "__main__": _lowerCAmelCase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCAmelCase: int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
20
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase_ : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCAmelCase_ : Optional[Any] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) UpperCAmelCase_ : int = "|".join(sys.argv[1:]) UpperCAmelCase_ : Union[str, Any] = re.compile(RF"""^({joined_dirs}).*?\.py$""") UpperCAmelCase_ : List[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
21
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A : def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=99 , lowerCAmelCase_ : Any=36 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[int]=0.0_2 , lowerCAmelCase_ : List[str]=6 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=10_00 , ) -> List[Any]: """simple docstring""" _a = parent _a = batch_size _a = num_channels _a = image_size _a = patch_size _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = coordinate_size _a = shape_size _a = num_labels _a = num_choices _a = scope _a = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _a = text_seq_length _a = (image_size // patch_size) ** 2 + 1 _a = self.text_seq_length + self.image_seq_length def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _a = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) _a = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a = bbox[i, j, 3] _a = bbox[i, j, 1] _a = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _a = bbox[i, j, 2] _a = bbox[i, j, 0] _a = tmp_coordinate _a = tf.constant(lowerCAmelCase_ ) _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.text_seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _a = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> str: """simple docstring""" _a = TFLayoutLMvaModel(config=lowerCAmelCase_ ) # text + image _a = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) _a = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , training=lowerCAmelCase_ , ) _a = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _a = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _a = model({'''pixel_values''': pixel_values} , training=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" _a = self.num_labels _a = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase_ ) _a = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Dict: """simple docstring""" _a = self.num_labels _a = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase_ ) _a = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> int: """simple docstring""" _a = 2 _a = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ ) _a = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , training=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = self.prepare_config_and_inputs() ((_a) , (_a) , (_a) , (_a) , (_a) , (_a) , (_a) , (_a)) = config_and_inputs _a = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class A ( _a ,_a ,unittest.TestCase ): lowercase_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowercase_ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" return True def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str=False ) -> dict: """simple docstring""" _a = copy.deepcopy(lowerCAmelCase_ ) if model_class in get_values(lowerCAmelCase_ ): _a = { k: tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCAmelCase_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase_ ): _a = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): _a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) _a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): _a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase_ ): _a = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _a = TFLayoutLMvaModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(lowerCAmelCase_ ) if getattr(lowerCAmelCase_ , '''hf_compute_loss''' , lowerCAmelCase_ ): # The number of elements in the loss should be the same as the number of elements in the label _a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _a = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase_ )[0] ] _a = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _a = prepared_for_class.pop('''input_ids''' ) _a = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions _a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _a = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: _a = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: _a = -1_00 _a = tf.convert_to_tensor(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict _a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple _a = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) # Get keys that were added with the _prepare_for_class function _a = prepared_for_class.keys() - inputs_dict.keys() _a = inspect.signature(model.call ).parameters _a = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple _a = {0: '''input_ids'''} for label_key in label_keys: _a = signature_names.index(lowerCAmelCase_ ) _a = label_key _a = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple _a = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: _a = prepared_for_class[value] _a = tuple(lowerCAmelCase_ ) # Send to model _a = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case_ (): '''simple docstring''' _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' ).pixel_values _a = tf.constant([[1, 2]] ) _a = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass _a = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _a = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ ) _a = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
22
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
def _snake_case (__lowercase = 10 , __lowercase = 22): UpperCamelCase_ = range(1 , __lowercase) UpperCamelCase_ = range(1 , __lowercase) return sum( 1 for power in powers for base in bases if len(str(base**power)) == power) if __name__ == "__main__": print(f'{solution(1_0, 2_2) = }')
23
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCAmelCase_ : Tuple = '''<<<<<<< This should probably be modified because it mentions: ''' UpperCAmelCase_ : Optional[int] = '''======= >>>>>>> ''' UpperCAmelCase_ : Tuple = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] UpperCAmelCase_ : Optional[int] = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _UpperCamelCase (_lowerCamelCase : Namespace )-> int: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase ( __lowerCAmelCase): @staticmethod def lowerCAmelCase ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __snake_case = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' __snake_case = get_logger('''datasets-cli/converting''' ) __snake_case = tfds_path __snake_case = datasets_directory def lowerCAmelCase ( self ) -> int: '''simple docstring''' if os.path.isdir(self._tfds_path ): __snake_case = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __snake_case = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) __snake_case = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) __snake_case = [] __snake_case = [] __snake_case = {} if os.path.isdir(self._tfds_path ): __snake_case = os.listdir(__SCREAMING_SNAKE_CASE ) else: __snake_case = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) __snake_case = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not os.path.isfile(__SCREAMING_SNAKE_CASE ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: __snake_case = f.readlines() __snake_case = [] __snake_case = False __snake_case = False __snake_case = [] for line in lines: __snake_case = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __snake_case = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here __snake_case = '''''' continue elif "from absl import logging" in out_line: __snake_case = '''from datasets import logging\n''' elif "getLogger" in out_line: __snake_case = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __snake_case = True __snake_case = list(filter(lambda __SCREAMING_SNAKE_CASE : e in out_line , __SCREAMING_SNAKE_CASE ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__SCREAMING_SNAKE_CASE ) + '''\n''' ) out_lines.append(__SCREAMING_SNAKE_CASE ) out_lines.append(__SCREAMING_SNAKE_CASE ) continue else: for pattern, replacement in TO_CONVERT: __snake_case = re.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __snake_case = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , __SCREAMING_SNAKE_CASE ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) __snake_case = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __snake_case = True out_lines.append(__SCREAMING_SNAKE_CASE ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __snake_case = f_name.replace('''.py''' , '''''' ) __snake_case = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__SCREAMING_SNAKE_CASE ) if needs_manual_update: with_manual_update.append(__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: __snake_case = os.path.basename(__SCREAMING_SNAKE_CASE ) __snake_case = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
24
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='deberta-v2' def __init__( self : List[str] , a : int=12_8100 , a : str=1536 , a : List[Any]=24 , a : Union[str, Any]=24 , a : Union[str, Any]=6144 , a : Dict="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : Any=512 , a : Optional[int]=0 , a : Any=0.02 , a : int=1e-7 , a : Dict=False , a : Optional[int]=-1 , a : int=0 , a : Union[str, Any]=True , a : Dict=None , a : List[Any]=0 , a : Tuple="gelu" , **a : str , ) -> Union[str, Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : str = relative_attention SCREAMING_SNAKE_CASE : Dict = max_relative_positions SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE : Tuple = position_biased_input # Backwards compatibility if type(a ) == str: SCREAMING_SNAKE_CASE : Any = [x.strip() for x in pos_att_type.lower().split("|" )] SCREAMING_SNAKE_CASE : Dict = pos_att_type SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Any = kwargs.get("pooler_hidden_size" , a ) SCREAMING_SNAKE_CASE : int = pooler_dropout SCREAMING_SNAKE_CASE : List[str] = pooler_hidden_act class _UpperCamelCase ( __A ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return 12 def __UpperCamelCase ( self : Optional[Any] , a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a : int = -1 , a : int = -1 , a : int = -1 , a : bool = False , a : Optional["TensorType"] = None , a : int = 3 , a : int = 40 , a : int = 40 , a : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = super().generate_dummy_inputs(preprocessor=a , framework=a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
25
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = int(_lowerCamelCase ) assert noofclusters < len(_lowerCamelCase ) # Find out the dimensionality __snake_case : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors __snake_case : Dict = list(range(len(_lowerCamelCase ) ) ) shuffle(_lowerCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __snake_case : Dict = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __snake_case : List[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __snake_case : List[Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_lowerCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values __snake_case : Dict = tf.placeholder("""float64""" , [dim] ) __snake_case : Optional[int] = [] for centroid in centroids: cent_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __snake_case : Dict = [tf.Variable(0 ) for i in range(len(_lowerCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value __snake_case : Optional[Any] = tf.placeholder("""int32""" ) __snake_case : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(_lowerCamelCase , _lowerCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __snake_case : Union[str, Any] = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __snake_case : Optional[int] = tf.reduce_mean(_lowerCamelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input __snake_case : int = tf.placeholder("""float""" , [dim] ) __snake_case : Optional[int] = tf.placeholder("""float""" , [dim] ) __snake_case : int = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_lowerCamelCase , _lowerCamelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __snake_case : Optional[Any] = tf.placeholder("""float""" , [noofclusters] ) __snake_case : Optional[int] = tf.argmin(_lowerCamelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __snake_case : str = tf.initialize_all_variables() # Initialize all variables sess.run(_lowerCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __snake_case : int = 100 for _ in range(_lowerCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_lowerCamelCase ) ): __snake_case : Optional[int] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __snake_case : Union[str, Any] = [ sess.run(_lowerCamelCase , feed_dict={va: vect, va: sess.run(_lowerCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __snake_case : Dict = sess.run( _lowerCamelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_lowerCamelCase ): # Collect all the vectors assigned to this cluster __snake_case : str = [ vectors[i] for i in range(len(_lowerCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __snake_case : str = sess.run( _lowerCamelCase , feed_dict={mean_input: array(_lowerCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __snake_case : Tuple = sess.run(_lowerCamelCase ) __snake_case : str = sess.run(_lowerCamelCase ) return centroids, assignments
26
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
'''simple docstring''' import math from collections.abc import Callable def lowercase__( __UpperCamelCase: Callable[[float], float] ,__UpperCamelCase: float ,__UpperCamelCase: float ): """simple docstring""" SCREAMING_SNAKE_CASE : float = xa SCREAMING_SNAKE_CASE : float = xa while True: if x_n == x_na or function(__UpperCamelCase ) == function(__UpperCamelCase ): raise ZeroDivisionError('float division by zero, could not find root' ) SCREAMING_SNAKE_CASE : float = x_na - ( function(__UpperCamelCase ) / ((function(__UpperCamelCase ) - function(__UpperCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na SCREAMING_SNAKE_CASE : Dict = x_na SCREAMING_SNAKE_CASE : Tuple = x_na def lowercase__( __UpperCamelCase: float ): """simple docstring""" return math.pow(__UpperCamelCase ,3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
28
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A_ = logging.getLogger(__name__) @dataclass class __lowerCamelCase ( lowerCAmelCase ): a__: Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) a__: bool = field(default=lowerCAmelCase , metadata={'help': 'Whether to SortishSamler or not.'} ) a__: bool = field( default=lowerCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) a__: bool = field(default=lowerCAmelCase , metadata={'help': 'whether to use adafactor'} ) a__: Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) a__: Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) a__: Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'Dropout probability. Goes into model.config.'} ) a__: Optional[float] = field( default=lowerCAmelCase , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) a__: Optional[str] = field( default='linear' , metadata={'help': f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
29
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_a ) class __a( _a ): """simple docstring""" lowerCAmelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase = Features({'''image''': Image()} ) lowerCAmelCase = Features({'''labels''': ClassLabel} ) lowerCAmelCase = "image" lowerCAmelCase = "labels" def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,_SCREAMING_SNAKE_CASE ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase_ : Tuple = copy.deepcopy(self ) UpperCAmelCase_ : int = self.label_schema.copy() UpperCAmelCase_ : Optional[Any] = features[self.label_column] UpperCAmelCase_ : Dict = label_schema return task_template @property def a__ ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
30
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=_lowerCAmelCase , ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCAmelCase ) class lowerCamelCase_ ( datasets.BeamBasedBuilder ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=_lowerCAmelCase , ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCAmelCase ) def UpperCAmelCase_ ( ) -> Optional[Any]: return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def UpperCAmelCase_ ( ) -> Union[str, Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_beam def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE_ = DummyBeamDataset(cache_dir=_lowerCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCAmelCase , builder.name , 'default' , '0.0.0' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _lowerCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _lowerCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowerCAmelCase_ ( self : List[str] ): import apache_beam as beam SCREAMING_SNAKE_CASE_ = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE_ = DummyBeamDataset(cache_dir=_lowerCAmelCase , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: SCREAMING_SNAKE_CASE_ = partial(_lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _lowerCAmelCase , builder.name , 'default' , '0.0.0' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( _lowerCAmelCase , builder.name , 'default' , '0.0.0' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _lowerCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(_lowerCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowerCAmelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE_ = DummyBeamDataset(cache_dir=_lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE_ = NestedBeamDataset(cache_dir=_lowerCAmelCase , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCAmelCase , builder.name , 'default' , '0.0.0' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) SCREAMING_SNAKE_CASE_ = builder.as_dataset() self.assertEqual(dset['train'].num_rows , _lowerCAmelCase ) self.assertEqual(dset['train'].info.splits['train'].num_examples , _lowerCAmelCase ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCAmelCase , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
31
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : list[int] ) -> int: """simple docstring""" if not nums: return 0 _UpperCAmelCase = nums[0] _UpperCAmelCase = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase = ( max_excluding + num, max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), ) return max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
32
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
import torch from diffusers import StableDiffusionPipeline lowerCamelCase__ : Any = """path-to-your-trained-model""" lowerCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") lowerCamelCase__ : int = """A photo of sks dog in a bucket""" lowerCamelCase__ : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
33
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case_ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: pass @is_pipeline_test @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCamelCase = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase = vqa_pipeline(lowerCamelCase_ , top_k=1) self.assertEqual( lowerCamelCase_ , [ [{'''score''': ANY(lowerCamelCase_), '''answer''': ANY(lowerCamelCase_)}], [{'''score''': ANY(lowerCamelCase_), '''answer''': ANY(lowerCamelCase_)}], ] , ) @require_torch def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCamelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCamelCase = '''How many cats are there?''' UpperCamelCase = vqa_pipeline(image=lowerCamelCase_ , question='''How many cats are there?''' , top_k=2) self.assertEqual( lowerCamelCase_ , [{'''score''': ANY(lowerCamelCase_), '''answer''': ANY(lowerCamelCase_)}, {'''score''': ANY(lowerCamelCase_), '''answer''': ANY(lowerCamelCase_)}]) UpperCamelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( lowerCamelCase_ , [{'''score''': ANY(lowerCamelCase_), '''answer''': ANY(lowerCamelCase_)}, {'''score''': ANY(lowerCamelCase_), '''answer''': ANY(lowerCamelCase_)}]) @slow @require_torch def UpperCAmelCase__ ( self) -> Optional[int]: UpperCamelCase = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCamelCase = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCamelCase = '''How many cats are there?''' UpperCamelCase = vqa_pipeline(image=lowerCamelCase_ , question=lowerCamelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]) UpperCamelCase = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]) UpperCamelCase = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(lowerCamelCase_ , decimals=4) , [[{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def UpperCAmelCase__ ( self) -> Optional[int]: pass
34
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ :Optional[int] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Dict = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a_ :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
__lowercase : dict[tuple[int, int, int], int] = {} def lowercase ( __A : int , __A : int , __A : int ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on snake_case : Optional[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one snake_case : Union[str, Any] = _calculate(days - 1 , __A , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 snake_case : str = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter snake_case : List[str] = _calculate(days - 1 , __A , 0 ) snake_case : List[str] = state_late + state_absent + state_ontime snake_case : List[Any] = prizestrings return prizestrings def lowercase ( __A : int = 30 ) -> int: '''simple docstring''' return _calculate(__A , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
36
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple=13 , lowerCamelCase__ : List[Any]=7 , lowerCamelCase__ : Any=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : Optional[Any]=99 , lowerCamelCase__ : Tuple=32 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : int=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Optional[int]=512 , lowerCamelCase__ : str=16 , lowerCamelCase__ : List[Any]=2 , lowerCamelCase__ : int=0.02 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : int=1_000 , ): a__ : Union[str, Any] = parent a__ : Optional[Any] = batch_size a__ : Optional[int] = seq_length a__ : Any = is_training a__ : Tuple = use_input_mask a__ : str = use_token_type_ids a__ : int = use_labels a__ : int = vocab_size a__ : int = hidden_size a__ : List[str] = num_hidden_layers a__ : Tuple = num_attention_heads a__ : Any = intermediate_size a__ : Tuple = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : List[Any] = attention_probs_dropout_prob a__ : Dict = max_position_embeddings a__ : int = type_vocab_size a__ : str = type_sequence_label_size a__ : List[str] = initializer_range a__ : List[str] = num_labels a__ : Any = num_choices a__ : Union[str, Any] = scope a__ : Dict = range_bbox def _UpperCamelCase( self : Optional[Any] ): a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment a__ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a__ : int = bbox[i, j, 3] a__ : str = bbox[i, j, 1] a__ : int = t if bbox[i, j, 2] < bbox[i, j, 0]: a__ : Union[str, Any] = bbox[i, j, 2] a__ : int = bbox[i, j, 0] a__ : Dict = t a__ : List[str] = tf.convert_to_tensor(lowerCamelCase__ ) a__ : Union[str, Any] = None if self.use_input_mask: a__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a__ : List[Any] = None if self.use_token_type_ids: a__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ : str = None a__ : str = None a__ : int = None if self.use_labels: a__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : str = ids_tensor([self.batch_size] , self.num_choices ) a__ : Tuple = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] ): a__ : Any = TFLayoutLMModel(config=lowerCamelCase__ ) a__ : Any = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) a__ : List[Any] = model(lowerCamelCase__ , lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) a__ : Tuple = model(lowerCamelCase__ , lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase( self : int , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : str ): a__ : int = TFLayoutLMForMaskedLM(config=lowerCamelCase__ ) a__ : Union[str, Any] = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Tuple ): a__ : Any = self.num_labels a__ : Optional[Any] = TFLayoutLMForSequenceClassification(config=lowerCamelCase__ ) a__ : int = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Dict ): a__ : Any = self.num_labels a__ : Any = TFLayoutLMForTokenClassification(config=lowerCamelCase__ ) a__ : int = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[str] ): a__ : Optional[int] = TFLayoutLMForQuestionAnswering(config=lowerCamelCase__ ) a__ : List[str] = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase( self : Dict ): a__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ( a__ ), ) : List[Any] = config_and_inputs a__ : Optional[int] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _lowercase = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _lowercase = False _lowercase = True _lowercase = 1_0 def _UpperCamelCase( self : List[str] ): a__ : Optional[int] = TFLayoutLMModelTester(self ) a__ : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[str] ): self.config_tester.run_common_tests() def _UpperCamelCase( self : int ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : Any ): a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : str ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @slow def _UpperCamelCase( self : Tuple ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : str = TFLayoutLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def _UpperCamelCase( self : Optional[int] ): pass def UpperCamelCase_ ( ) -> List[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off a__ : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 a__ : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 a__ : Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 a__ : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) a__ : List[str] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase( self : int ): a__ : Union[str, Any] = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) a__, a__, a__, a__, a__ : Tuple = prepare_layoutlm_batch_inputs() # forward pass a__ : Optional[int] = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) # test the sequence output on [0, :3, :3] a__ : Dict = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1E-3 ) ) # test the pooled output on [1, :3] a__ : Tuple = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowerCamelCase__ , atol=1E-3 ) ) @slow def _UpperCamelCase( self : Optional[int] ): # initialize model with randomly initialized sequence classification head a__ : Tuple = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) a__, a__, a__, a__, a__ : str = prepare_layoutlm_batch_inputs() # forward pass a__ : Optional[Any] = model( input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar a__ : Union[str, Any] = outputs.loss a__ : Tuple = (2,) self.assertEqual(loss.shape , lowerCamelCase__ ) # test the shape of the logits a__ : Dict = outputs.logits a__ : Any = (2, 2) self.assertEqual(logits.shape , lowerCamelCase__ ) @slow def _UpperCamelCase( self : List[str] ): # initialize model with randomly initialized token classification head a__ : str = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) a__, a__, a__, a__, a__ : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass a__ : Optional[Any] = model( input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) # test the shape of the logits a__ : Any = outputs.logits a__ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): # initialize model with randomly initialized token classification head a__ : Tuple = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) a__, a__, a__, a__, a__ : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass a__ : List[str] = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) # test the shape of the logits a__ : Dict = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , lowerCamelCase__ ) self.assertEqual(outputs.end_logits.shape , lowerCamelCase__ )
37
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : List[str] = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''roc_bert''' def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=9_1_0 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2_4_8_5_8 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): snake_case__ : List[str] = vocab_size snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : Optional[int] = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Optional[int] = initializer_range snake_case__ : Any = type_vocab_size snake_case__ : Dict = layer_norm_eps snake_case__ : Optional[Any] = use_cache snake_case__ : List[Any] = enable_pronunciation snake_case__ : Tuple = enable_shape snake_case__ : List[str] = pronunciation_embed_dim snake_case__ : List[str] = pronunciation_vocab_size snake_case__ : int = shape_embed_dim snake_case__ : Dict = shape_vocab_size snake_case__ : int = concat_input snake_case__ : Optional[int] = position_embedding_type snake_case__ : int = classifier_dropout super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
38
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = CpmAntTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = False def snake_case__( self : Tuple ) ->Any: super().setUp() snake_case_ = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def snake_case__( self : Any ) ->str: snake_case_ = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) snake_case_ = '''今天天气真好!''' snake_case_ = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] snake_case_ = tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = '''今天天气真好!''' snake_case_ = [tokenizer.bos_token] + tokens snake_case_ = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , _UpperCamelCase ) snake_case_ = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
'''simple docstring''' from typing import Any import numpy as np def _A ( A__ ): """simple docstring""" return np.array_equal(A__ , matrix.conjugate().T ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = v.conjugate().T __lowercase = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def _A ( ): """simple docstring""" __lowercase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) __lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
41
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
'''simple docstring''' from __future__ import annotations from typing import Any def _UpperCamelCase ( __UpperCamelCase ) -> None: create_state_space_tree(__UpperCamelCase ,[] ,0 ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> None: if index == len(__UpperCamelCase ): print(__UpperCamelCase ) return create_state_space_tree(__UpperCamelCase ,__UpperCamelCase ,index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__UpperCamelCase ,__UpperCamelCase ,index + 1 ) current_subsequence.pop() if __name__ == "__main__": A_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
42
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" def constraint_to_multiple_of(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=None ): lowercase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ = math.ceil(val / multiple ) * multiple return x lowercase__ = (output_size, output_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else output_size lowercase__ , lowercase__ = get_image_size(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = output_size # determine new height and width lowercase__ = output_height / input_height lowercase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ = scale_width else: # fit height lowercase__ = scale_height lowercase__ = constraint_to_multiple_of(scale_height * input_height , multiple=SCREAMING_SNAKE_CASE ) lowercase__ = constraint_to_multiple_of(scale_width * input_width , multiple=SCREAMING_SNAKE_CASE ) return (new_height, new_width) class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = ['''pixel_values'''] def __init__( self: Optional[Any] , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: bool = False , UpperCamelCase_: int = 1 , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , **UpperCamelCase_: Tuple , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ = get_size_dict(UpperCamelCase_ ) lowercase__ = do_resize lowercase__ = size lowercase__ = keep_aspect_ratio lowercase__ = ensure_multiple_of lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self: Any , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: bool = False , UpperCamelCase_: int = 1 , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: int , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase__ = get_resize_output_image_size( UpperCamelCase_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCamelCase_ , multiple=UpperCamelCase_ , ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[int, float] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Any , ) -> List[Any]: """simple docstring""" return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: ImageInput , UpperCamelCase_: bool = None , UpperCamelCase_: int = None , UpperCamelCase_: bool = None , UpperCamelCase_: int = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: float = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_: List[Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(UpperCamelCase_ ) lowercase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: lowercase__ = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] lowercase__ = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowercase__ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: List[Tuple] = None ) -> int: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase_ ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(UpperCamelCase_ ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase_ ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase_ ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
43
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase_ : List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' UpperCAmelCase_ : Any = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' UpperCAmelCase_ : Tuple = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : bool , _lowerCAmelCase : Optional[Dict[int, int]] = None , _lowerCAmelCase : bool = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _lowerCamelCase : Any = new_id # turn into Numpy arrays _lowerCamelCase : str = np.array(_lowerCAmelCase ) _lowerCamelCase : List[str] = np.array(_lowerCAmelCase ) if reduce_labels: _lowerCamelCase : Optional[int] = 255 _lowerCamelCase : Tuple = label - 1 _lowerCamelCase : List[Any] = 255 _lowerCamelCase : int = label != ignore_index _lowerCamelCase : str = np.not_equal(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[str] = pred_label[mask] _lowerCamelCase : str = np.array(_lowerCAmelCase )[mask] _lowerCamelCase : Union[str, Any] = pred_label[pred_label == label] _lowerCamelCase : int = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase : Dict = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase : Tuple = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : bool , _lowerCAmelCase : Optional[Dict[int, int]] = None , _lowerCAmelCase : bool = False , ): """simple docstring""" _lowerCamelCase : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = intersect_and_union( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : bool , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Dict[int, int]] = None , _lowerCAmelCase : bool = False , ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = total_intersect_and_union( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # compute metrics _lowerCamelCase : Tuple = {} _lowerCamelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() _lowerCamelCase : Optional[Any] = total_area_intersect / total_area_union _lowerCamelCase : str = total_area_intersect / total_area_label _lowerCamelCase : Union[str, Any] = np.nanmean(_lowerCAmelCase ) _lowerCamelCase : Dict = np.nanmean(_lowerCAmelCase ) _lowerCamelCase : Any = all_acc _lowerCamelCase : Tuple = iou _lowerCamelCase : str = acc if nan_to_num is not None: _lowerCamelCase : str = {metric: np.nan_to_num(_lowerCAmelCase , nan=_lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ),reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ],) def lowerCamelCase_ ( self : List[Any],__A : Dict,__A : Dict,__A : int,__A : bool,__A : Optional[int] = None,__A : Optional[Dict[int, int]] = None,__A : bool = False,): _lowerCamelCase : Optional[int] = mean_iou( results=__A,gt_seg_maps=__A,num_labels=__A,ignore_index=__A,nan_to_num=__A,label_map=__A,reduce_labels=__A,) return iou_result
44
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
from string import ascii_uppercase UpperCamelCase = {str(ord(c) - 55): c for c in ascii_uppercase} def A ( lowercase__ : int , lowercase__ : int ) -> str: if isinstance(lowercase__ , lowercase__ ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(lowercase__ , lowercase__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(lowercase__ , lowercase__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) UpperCamelCase__ :Optional[int] = """""" UpperCamelCase__ :Union[str, Any] = 0 UpperCamelCase__ :Dict = 0 while div != 1: UpperCamelCase__ , UpperCamelCase__ :Tuple = divmod(lowercase__ , lowercase__ ) if base >= 11 and 9 < mod < 36: UpperCamelCase__ :Tuple = ALPHABET_VALUES[str(lowercase__ )] else: UpperCamelCase__ :Dict = str(lowercase__ ) new_value += actual_value UpperCamelCase__ :Union[str, Any] = num // base UpperCamelCase__ :Optional[int] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(lowercase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = "cpu" , _lowerCamelCase = None ) -> None: '''simple docstring''' _lowerCamelCase : Any = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowerCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) _lowerCamelCase : List[str] = v.half() if save_path is None: # overwrite src_path _lowerCamelCase : Union[str, Any] = src_path torch.save(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
46
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE__ = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): __a : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): __a : Union[str, Any] = True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCamelCase_ , ) is not None ): __a : Dict = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __a : Dict = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __a : List[Any] = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] __a : Optional[Any] = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed __a : Optional[Any] = True if not attribute_used: __a : Any = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __a : int = True elif attribute in ["tie_word_embeddings"] and default_value is False: __a : List[str] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __a : Tuple = True elif attribute.endswith('_token_id' ): __a : Dict = True # configuration class specific cases if not case_allowed: __a : Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __a : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCAmelCase__ ( lowerCamelCase_ : Any ): __a : str = dict(inspect.signature(config_class.__init__ ).parameters ) __a : Optional[Any] = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] __a : List[Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __a : Any = {} if len(config_class.attribute_map ) > 0: __a : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __a : Union[str, Any] = inspect.getsourcefile(lowerCamelCase_ ) __a : str = os.path.dirname(lowerCamelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __a : Dict = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for fn in os.listdir(lowerCamelCase_ ) if fn.startswith('modeling_' )] # Get the source code strings __a : str = [] for path in modeling_paths: if os.path.isfile(lowerCamelCase_ ): with open(lowerCamelCase_ ) as fp: modeling_sources.append(fp.read() ) __a : str = [] for config_param, default_value in zip(lowerCamelCase_ , lowerCamelCase_ ): # `attributes` here is all the variant names for `config_param` __a : Dict = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCamelCase_ ) def UpperCAmelCase__ ( ): __a : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __a : List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCamelCase_ : inspect.isclass(lowerCamelCase_ ) and issubclass(lowerCamelCase_ , lowerCamelCase_ ) and inspect.getmodule(lowerCamelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __a : List[Any] = check_config_attributes_being_used(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: __a : Optional[Any] = unused_attributes if len(lowerCamelCase_ ) > 0: __a : str = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(lowerCamelCase_ ) if __name__ == "__main__": check_config_attributes()
47
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' def A ( UpperCamelCase_ : str ) -> int: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 while i * i <= n: lowerCAmelCase__ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def A ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 while True: i += 1 t_num += i if count_divisors(UpperCamelCase_ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
48
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : Any = logging.get_logger(__name__) def lowercase__ ( snake_case_ :Union[tf.Tensor, np.ndarray] ): if isinstance(snake_case_ , np.ndarray ): return list(tensor.shape ) __UpperCAmelCase = tf.shape(snake_case_ ) if tensor.shape == tf.TensorShape(snake_case_ ): return dynamic __UpperCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(snake_case_ )] def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :Optional[int] = None , snake_case_ :Optional[str] = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=snake_case_ , name=snake_case_ ) def lowercase__ ( snake_case_ :List[Any] , snake_case_ :Any , snake_case_ :Optional[Any] , snake_case_ :List[Any]=1E-5 , snake_case_ :Optional[Any]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(snake_case_ , snake_case_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized __UpperCAmelCase , __UpperCAmelCase = tf.nn.moments(snake_case_ , axes=[axis] , keepdims=snake_case_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCAmelCase = [1] * inputs.shape.rank __UpperCAmelCase = shape_list(snake_case_ )[axis] __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) __UpperCAmelCase = tf.reshape(snake_case_ , snake_case_ ) # Compute layer normalization using the batch_normalization # function. __UpperCAmelCase = tf.nn.batch_normalization( snake_case_ , snake_case_ , snake_case_ , offset=snake_case_ , scale=snake_case_ , variance_epsilon=snake_case_ , ) return outputs def lowercase__ ( snake_case_ :Any , snake_case_ :str=0 , snake_case_ :Union[str, Any]=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCAmelCase = tf.shape(snake_case_ ) __UpperCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :tf.Tensor ): if not isinstance(snake_case_ , tf.Tensor ): __UpperCAmelCase = tf.convert_to_tensor(snake_case_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowercase__ ( snake_case_ :tf.Tensor , snake_case_ :int , snake_case_ :str = "input_ids" ): tf.debugging.assert_less( snake_case_ , tf.cast(snake_case_ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(snake_case_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :int , snake_case_ :str ): __UpperCAmelCase = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCAmelCase = [x for x in data if len(snake_case_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) __UpperCAmelCase = np.asarray(snake_case_ ) __UpperCAmelCase = 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCAmelCase = np.array_split(snake_case_ , snake_case_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(snake_case_ ): __UpperCAmelCase = chunk_data else: __UpperCAmelCase = data def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict ): if name in group.attrs: __UpperCAmelCase = [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs[name]] else: __UpperCAmelCase = [] __UpperCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(snake_case_ , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowercase__ ( snake_case_ :Dict ): def _expand_single_ad_tensor(snake_case_ :Tuple ): if isinstance(snake_case_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(snake_case_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , snake_case_ )
49
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() # fmt: off lowerCamelCase__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCamelCase__ = dict(zip(_lowerCAmelCase ,range(len(_lowerCAmelCase ) ) ) ) lowerCamelCase__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowerCamelCase__ = {"""unk_token""": """<unk>"""} lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCamelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) lowerCamelCase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowerCamelCase__ = os.path.join(self.tmpdirname ,_lowerCAmelCase ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = self.get_rust_tokenizer() lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=_lowerCAmelCase ) lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,_lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,_lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = CLIPProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
50
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
'''simple docstring''' from pathlib import Path import fire def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] UpperCAmelCase = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open('''w''' ).write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
51
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
"""simple docstring""" def __A ( a_ :int , a_ :int) -> int: return int((input_a, input_a).count(0) == 0) def __A ( ) -> None: assert and_gate(0 , 0) == 0 assert and_gate(0 , 1) == 0 assert and_gate(1 , 0) == 0 assert and_gate(1 , 1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
52
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def a_ ( ): __lowerCAmelCase = 10 __lowerCAmelCase = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __lowerCAmelCase = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCAmelCase_ ) ), }, features=lowerCAmelCase_, ) return dataset @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return filename # FILE_CONTENT + files _snake_case : str = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt' __lowerCAmelCase = FILE_CONTENT with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return filename @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any] ): import bza __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with bza.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): import gzip __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with gzip.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): if datasets.config.LZ4_AVAILABLE: import lza.frame __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with lza.frame.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : List[str] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowerCAmelCase_, 'w' ) as archive: archive.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Optional[Any] ): import tarfile __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowerCAmelCase_, 'w' ) as f: f.add(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Any ): import lzma __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with lzma.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int ): import zipfile __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with zstd.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.xml' __lowerCAmelCase = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return filename _snake_case : Dict = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _snake_case : Union[str, Any] = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _snake_case : Dict = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _snake_case : Tuple = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _snake_case : Tuple = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def a_ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = datasets.Dataset.from_dict(lowerCAmelCase_ ) __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCAmelCase_ ) ) as con: __lowerCAmelCase = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)', tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCAmelCase_, 'w', newline='' ) as f: __lowerCAmelCase = csv.DictWriter(lowerCAmelCase_, fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCAmelCase_, 'w', newline='' ) as f: __lowerCAmelCase = csv.DictWriter(lowerCAmelCase_, fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[Any] ): import bza __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(csv_path.replace('.csv', '.CSV' ) ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(csva_path.replace('.csv', '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __lowerCAmelCase = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCAmelCase_, 'wb' ) as f: __lowerCAmelCase = pq.ParquetWriter(lowerCAmelCase_, schema=lowerCAmelCase_ ) __lowerCAmelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase_ ) )] for k in DATA[0]}, schema=lowerCAmelCase_ ) writer.write_table(lowerCAmelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __lowerCAmelCase = {'data': DATA} with open(lowerCAmelCase_, 'w' ) as f: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __lowerCAmelCase = {'data': DATA_DICT_OF_LISTS} with open(lowerCAmelCase_, 'w' ) as f: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Any ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any] ): import gzip __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCAmelCase_, 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_, 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple ): import gzip __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCAmelCase_, 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_, 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Any, lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('nested', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_, 'w' ) as f: f.add(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.add(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_, 'w' ) as f: f.add(lowerCAmelCase_, arcname=os.path.join('nested', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = ['0', '1', '2', '3'] __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCAmelCase_, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = ['0', '1', '2', '3'] __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCAmelCase_, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = ['0', '1', '2', '3'] __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowerCAmelCase_, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any, lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCAmelCase_, arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( ): return os.path.join('tests', 'features', 'data', 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def a_ ( ): return os.path.join('tests', 'features', 'data', 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ).replace('.jpg', '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt', 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt', 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt', 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt', 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt', 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
53
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: Tuple , _lowerCAmelCase: List[Any]=100 , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: str=30 , _lowerCAmelCase: str=2 , _lowerCAmelCase: str=3 , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: List[str]=32 , _lowerCAmelCase: str=4 , _lowerCAmelCase: List[str]=4 , _lowerCAmelCase: str=37 , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: str=10 , _lowerCAmelCase: Optional[int]=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Any=[0, 1, 2, 3] , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =100 UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope UpperCAmelCase_ =out_indices UpperCAmelCase_ =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =BeitModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =BeitForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.num_labels UpperCAmelCase_ =BeitForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _snake_case =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =BeitModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling]: continue UpperCAmelCase_ =model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() UpperCAmelCase_ =self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCAmelCase_ =model(**_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ =False UpperCAmelCase_ =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase_ =model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() UpperCAmelCase_ =self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCAmelCase_ =model(**_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =_config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ =BeitModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).pixel_values.to(_lowerCAmelCase ) # prepare bool_masked_pos UpperCAmelCase_ =torch.ones((1, 196) , dtype=torch.bool ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(pixel_values=_lowerCAmelCase , bool_masked_pos=_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCAmelCase , atol=1e-2 ) ) @slow def lowerCAmelCase__ ( self: Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ =BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 1000) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([-1.23_85, -1.09_87, -1.01_08] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ =281 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([1.68_81, -0.27_87, 0.59_01] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) UpperCAmelCase_ =2396 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' UpperCAmelCase_ =BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ =model.to(_lowerCAmelCase ) UpperCAmelCase_ =BeitImageProcessor(do_resize=_lowerCAmelCase , size=640 , do_center_crop=_lowerCAmelCase ) UpperCAmelCase_ =load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ =Image.open(ds[0]["file"] ) UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits # verify the logits UpperCAmelCase_ =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase_ =torch.tensor( [ [[-4.92_25, -2.39_54, -3.05_22], [-2.88_22, -1.00_46, -1.75_61], [-2.95_49, -1.32_28, -2.13_47]], [[-5.81_68, -3.41_29, -4.07_78], [-3.86_51, -2.22_14, -3.02_77], [-3.83_56, -2.46_43, -3.35_35]], [[-0.00_78, 3.99_52, 4.07_54], [2.98_56, 4.69_44, 5.00_35], [3.24_13, 4.78_13, 4.99_69]], ] , device=_lowerCAmelCase , ) else: UpperCAmelCase_ =torch.tensor( [ [[-4.89_60, -2.36_88, -3.03_55], [-2.84_78, -0.98_36, -1.74_18], [-2.94_49, -1.33_32, -2.14_56]], [[-5.80_81, -3.41_24, -4.10_06], [-3.85_61, -2.20_81, -3.03_23], [-3.83_65, -2.46_01, -3.36_69]], [[-0.03_09, 3.98_68, 4.05_40], [2.96_40, 4.68_77, 4.99_76], [3.20_81, 4.76_90, 4.99_42]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase_ =model.to(_lowerCAmelCase ) UpperCAmelCase_ =BeitImageProcessor(do_resize=_lowerCAmelCase , size=640 , do_center_crop=_lowerCAmelCase ) UpperCAmelCase_ =load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase_ =Image.open(ds[0]["file"] ) UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) UpperCAmelCase_ =outputs.logits.detach().cpu() UpperCAmelCase_ =image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(500, 300)] ) UpperCAmelCase_ =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) UpperCAmelCase_ =image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) UpperCAmelCase_ =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
54
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase : '''simple docstring''' snake_case_ = None def UpperCamelCase_ ( self : int ): __A = self.feature_extraction_class(**self.feat_extract_dict ) __A = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __A = os.path.join(A ,"feat_extract.json" ) feat_extract_first.to_json_file(A ) __A = self.feature_extraction_class.from_json_file(A ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def UpperCamelCase_ ( self : Any ): __A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __A = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) __A = self.feature_extraction_class.from_pretrained(A ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def UpperCamelCase_ ( self : Any ): __A = self.feature_extraction_class() self.assertIsNotNone(A )
55
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : List[Any] = "▁" _a : str = {"vocab_file": "spiece.model"} _a : List[Any] = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } _a : Optional[Any] = { "google/reformer-crime-and-punishment": 524_288, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[int]=[] , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> None: __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def a ( self : List[str] ) -> Dict: return self.sp_model.get_piece_size() def a ( self : Union[str, Any] ) -> Dict[str, int]: __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Dict: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if index < self.sp_model.get_piece_size(): __snake_case = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: __snake_case = [] __snake_case = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
56
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int ='''xlm''' a : str ={ '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , _lowerCamelCase=3_0_1_4_5 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=True , _lowerCamelCase=5_1_2 , _lowerCamelCase=2_0_4_8**-0.5 , _lowerCamelCase=1e-12 , _lowerCamelCase=0.0_2 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=5 , _lowerCamelCase=True , _lowerCamelCase="first" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=5 , _lowerCamelCase=5 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Any = vocab_size UpperCamelCase_: Any = emb_dim UpperCamelCase_: Optional[int] = n_layers UpperCamelCase_: int = n_heads UpperCamelCase_: Optional[int] = dropout UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: List[Any] = gelu_activation UpperCamelCase_: Optional[int] = sinusoidal_embeddings UpperCamelCase_: Any = causal UpperCamelCase_: Tuple = asm UpperCamelCase_: Optional[Any] = n_langs UpperCamelCase_: int = use_lang_emb UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: Any = bos_index UpperCamelCase_: Any = eos_index UpperCamelCase_: Optional[int] = pad_index UpperCamelCase_: List[str] = unk_index UpperCamelCase_: Optional[Any] = mask_index UpperCamelCase_: Optional[int] = is_encoder UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: List[Any] = embed_init_std UpperCamelCase_: Union[str, Any] = init_std UpperCamelCase_: Dict = summary_type UpperCamelCase_: Optional[int] = summary_use_proj UpperCamelCase_: Dict = summary_activation UpperCamelCase_: Dict = summary_proj_to_labels UpperCamelCase_: List[Any] = summary_first_dropout UpperCamelCase_: Dict = start_n_top UpperCamelCase_: Optional[Any] = end_n_top UpperCamelCase_: List[Any] = mask_token_id UpperCamelCase_: Optional[int] = lang_id if "n_words" in kwargs: UpperCamelCase_: str = kwargs['n_words'] super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , **_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
57
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __lowerCAmelCase : Any = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowerCAmelCase ( __UpperCamelCase : List[str] ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] ): '''simple docstring''' return max(metric_fn(__UpperCamelCase , __UpperCamelCase ) for gt in ground_truths ) def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Any ): '''simple docstring''' snake_case_ : Optional[int] = [line.strip() for line in open(__UpperCamelCase , """r""" ).readlines()] snake_case_ : List[str] = [] if args.gold_data_mode == "qa": snake_case_ : Optional[int] = pd.read_csv(__UpperCamelCase , sep="""\t""" , header=__UpperCamelCase ) for answer_list in data[1]: snake_case_ : Dict = ast.literal_eval(__UpperCamelCase ) answers.append(__UpperCamelCase ) else: snake_case_ : Union[str, Any] = [line.strip() for line in open(__UpperCamelCase , """r""" ).readlines()] snake_case_ : Dict = [[reference] for reference in references] snake_case_ : str = 0 for prediction, ground_truths in zip(__UpperCamelCase , __UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) fa += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Union[str, Any] = 100.0 * em / total snake_case_ : Optional[Any] = 100.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def __lowerCAmelCase ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' snake_case_ : int = args.k snake_case_ : int = [line.strip() for line in open(__UpperCamelCase , """r""" ).readlines()] snake_case_ : Dict = [line.strip() for line in open(__UpperCamelCase , """r""" ).readlines()] snake_case_ : Any = 0 for hypo, reference in zip(__UpperCamelCase , __UpperCamelCase ): snake_case_ : Dict = set(hypo.split("""\t""" )[:k] ) snake_case_ : List[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case_ : Dict = 100.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' def strip_title(__UpperCamelCase : str ): if title.startswith("""\"""" ): snake_case_ : Union[str, Any] = title[1:] if title.endswith("""\"""" ): snake_case_ : Union[str, Any] = title[:-1] return title snake_case_ : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase , truncation=__UpperCamelCase , )["""input_ids"""].to(args.device ) snake_case_ : int = rag_model.rag.question_encoder(__UpperCamelCase ) snake_case_ : Union[str, Any] = question_enc_outputs[0] snake_case_ : Dict = rag_model.retriever( __UpperCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) snake_case_ : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case_ : Optional[Any] = [] for docs in all_docs: snake_case_ : List[Any] = [strip_title(__UpperCamelCase ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(__UpperCamelCase ) ) return provenance_strings def __lowerCAmelCase ( __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' with torch.no_grad(): snake_case_ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase , truncation=__UpperCamelCase ) snake_case_ : List[Any] = inputs_dict.input_ids.to(args.device ) snake_case_ : Optional[int] = inputs_dict.attention_mask.to(args.device ) snake_case_ : Any = rag_model.generate( # rag_model overwrites generate __UpperCamelCase , attention_mask=__UpperCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__UpperCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case_ : Tuple = rag_model.retriever.generator_tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) if args.print_predictions: for q, a in zip(__UpperCamelCase , __UpperCamelCase ): logger.info("""Q: {} - A: {}""".format(__UpperCamelCase , __UpperCamelCase ) ) return answers def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=__UpperCamelCase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=__UpperCamelCase , choices=["""exact""", """compressed""", """legacy"""] , type=__UpperCamelCase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=__UpperCamelCase , type=__UpperCamelCase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=__UpperCamelCase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=__UpperCamelCase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=__UpperCamelCase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=__UpperCamelCase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=__UpperCamelCase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=__UpperCamelCase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=__UpperCamelCase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=__UpperCamelCase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=5_0 , type=__UpperCamelCase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) snake_case_ : Dict = parser.parse_args() snake_case_ : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Optional[Any] = {} if args.model_type is None: snake_case_ : Any = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): snake_case_ : List[Any] = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration snake_case_ : Tuple = args.n_docs if args.index_name is not None: snake_case_ : Tuple = args.index_name if args.index_path is not None: snake_case_ : Any = args.index_path else: snake_case_ : Optional[Any] = BartForConditionalGeneration snake_case_ : int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , __UpperCamelCase ) snake_case_ : Union[str, Any] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k snake_case_ : int = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(__UpperCamelCase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): snake_case_ : Any = RagRetriever.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) snake_case_ : Any = model_class.from_pretrained(__UpperCamelCase , retriever=__UpperCamelCase , **__UpperCamelCase ) model.retriever.init_retrieval() else: snake_case_ : int = model_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: snake_case_ : List[Any] = [] for line in tqdm(__UpperCamelCase ): questions.append(line.strip() ) if len(__UpperCamelCase ) == args.eval_batch_size: snake_case_ : Tuple = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write("""\n""".join(__UpperCamelCase ) + """\n""" ) preds_file.flush() snake_case_ : Dict = [] if len(__UpperCamelCase ) > 0: snake_case_ : List[str] = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write("""\n""".join(__UpperCamelCase ) ) preds_file.flush() score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __lowerCAmelCase : List[str] = get_args() main(args)
58
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "tf_padding")) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "depth_multiplier")) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=32 , UpperCAmelCase_ : Optional[Any]=0.25 , UpperCAmelCase_ : Tuple=8 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=1_024 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Union[str, Any]="relu6" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Tuple=None , ) ->Any: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: List[str] =num_channels lowerCamelCase__: Optional[Any] =image_size lowerCamelCase__: str =depth_multiplier lowerCamelCase__: Union[str, Any] =min_depth lowerCamelCase__: Any =tf_padding lowerCamelCase__: List[Any] =int(last_hidden_size * depth_multiplier) lowerCamelCase__: Any =output_stride lowerCamelCase__: Optional[int] =hidden_act lowerCamelCase__: Union[str, Any] =classifier_dropout_prob lowerCamelCase__: List[Any] =use_labels lowerCamelCase__: int =is_training lowerCamelCase__: Optional[int] =num_labels lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: Any =scope def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Tuple =None lowerCamelCase__: Tuple =None if self.use_labels: lowerCamelCase__: str =ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__: Dict =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowerCamelCase__: Union[str, Any] =self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =MobileNetVaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Optional[int] =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =self.num_labels lowerCamelCase__: Union[str, Any] =MobileNetVaForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: int =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =config_and_inputs lowerCamelCase__: int ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =MobileNetVaModelTester(self) lowerCamelCase__: Any =MobileNetVaConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings") def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions") def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Tuple =model_class(UpperCAmelCase_) lowerCamelCase__: int =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Union[str, Any] =[*signature.parameters.keys()] lowerCamelCase__: Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple): lowerCamelCase__: int =model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() with torch.no_grad(): lowerCamelCase__: int =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =outputs.hidden_states lowerCamelCase__: List[str] =26 self.assertEqual(len(UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: List[str] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: str =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Any =MobileNetVaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__: Tuple =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224") if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Any =MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224").to(UpperCAmelCase_) lowerCamelCase__: List[str] =self.default_image_processor lowerCamelCase__: str =prepare_img() lowerCamelCase__: str =image_processor(images=UpperCAmelCase_ , return_tensors="pt").to(UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: List[str] =model(**UpperCAmelCase_) # verify the logits lowerCamelCase__: Tuple =torch.Size((1, 1_001)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) lowerCamelCase__: Tuple =torch.tensor([-4.1739, -1.1233, 3.1205]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4))
59
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
def lowerCamelCase_ ( _UpperCamelCase = 1_000 ) -> int: """simple docstring""" snake_case_ : Any = -1 snake_case_ : Optional[int] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case_ : str = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case_ : Dict = n - a - b if c * c == (a * a + b * b): snake_case_ : Any = a * b * c if candidate >= product: snake_case_ : int = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
60
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('transformers.models.encodec') UpperCamelCase = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } UpperCamelCase = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } UpperCamelCase = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } UpperCamelCase = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } UpperCamelCase = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ): """simple docstring""" for attribute in key.split("." ): lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value elif weight_type == "weight_ih_l0": lowerCAmelCase__ = value elif weight_type == "weight_hh_l0": lowerCAmelCase__ = value elif weight_type == "bias_ih_l0": lowerCAmelCase__ = value elif weight_type == "bias_hh_l0": lowerCAmelCase__ = value elif weight_type == "weight_ih_l1": lowerCAmelCase__ = value elif weight_type == "weight_hh_l1": lowerCAmelCase__ = value elif weight_type == "bias_ih_l1": lowerCAmelCase__ = value elif weight_type == "bias_hh_l1": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase__ , lowerCAmelCase__ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase__ = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase__ = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowerCAmelCase_ , lowerCAmelCase_ ): logger.info(F'{name} was ignored' ) continue lowerCAmelCase__ = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase__ , lowerCAmelCase__ = key.split(".*." ) if prefix in name and suffix in name: lowerCAmelCase__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCAmelCase_ )[0].split("." )[-2] lowerCAmelCase__ = mapped_key.replace("*" , lowerCAmelCase_ ) if "weight_g" in name: lowerCAmelCase__ = "weight_g" elif "weight_v" in name: lowerCAmelCase__ = "weight_v" elif "weight_ih_l0" in name: lowerCAmelCase__ = "weight_ih_l0" elif "weight_hh_l0" in name: lowerCAmelCase__ = "weight_hh_l0" elif "bias_ih_l0" in name: lowerCAmelCase__ = "bias_ih_l0" elif "bias_hh_l0" in name: lowerCAmelCase__ = "bias_hh_l0" elif "weight_ih_l1" in name: lowerCAmelCase__ = "weight_ih_l1" elif "weight_hh_l1" in name: lowerCAmelCase__ = "weight_hh_l1" elif "bias_ih_l1" in name: lowerCAmelCase__ = "bias_ih_l1" elif "bias_hh_l1" in name: lowerCAmelCase__ = "bias_hh_l1" elif "bias" in name: lowerCAmelCase__ = "bias" elif "weight" in name: lowerCAmelCase__ = "weight" elif "running_mean" in name: lowerCAmelCase__ = "running_mean" elif "running_var" in name: lowerCAmelCase__ = "running_var" elif "num_batches_tracked" in name: lowerCAmelCase__ = "num_batches_tracked" else: lowerCAmelCase__ = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def _A ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]=None , ): """simple docstring""" if config_path is not None: lowerCAmelCase__ = EncodecConfig.from_pretrained(lowerCAmelCase_ ) else: lowerCAmelCase__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase__ = [8, 5, 4, 4] lowerCAmelCase__ = [2.2] lowerCAmelCase__ = 64 lowerCAmelCase__ = 3_2000 lowerCAmelCase__ = 2048 lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False elif model_name == "encodec_48khz": lowerCAmelCase__ = [8, 5, 4, 2] lowerCAmelCase__ = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase__ = 4_8000 lowerCAmelCase__ = 2 lowerCAmelCase__ = False lowerCAmelCase__ = "time_group_norm" lowerCAmelCase__ = True lowerCAmelCase__ = 1.0 lowerCAmelCase__ = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) lowerCAmelCase__ = EncodecModel(lowerCAmelCase_ ) lowerCAmelCase__ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) lowerCAmelCase__ = torch.load(lowerCAmelCase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase__ = original_checkpoint["best_state"] recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCAmelCase_ ) model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
61
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 0 if start < end: SCREAMING_SNAKE_CASE : int = randint(lowercase , lowercase ) SCREAMING_SNAKE_CASE : int = a[end] SCREAMING_SNAKE_CASE : str = a[pivot] SCREAMING_SNAKE_CASE : Dict = temp SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = _in_place_partition(lowercase , lowercase , lowercase ) count += _in_place_quick_sort(lowercase , lowercase , p - 1 ) count += _in_place_quick_sort(lowercase , p + 1 , lowercase ) return count def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Any = randint(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = a[end] SCREAMING_SNAKE_CASE : Any = a[pivot] SCREAMING_SNAKE_CASE : List[str] = temp SCREAMING_SNAKE_CASE : List[Any] = start - 1 for index in range(lowercase , lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value SCREAMING_SNAKE_CASE : Optional[Any] = new_pivot_index + 1 SCREAMING_SNAKE_CASE : Dict = a[new_pivot_index] SCREAMING_SNAKE_CASE : List[Any] = a[index] SCREAMING_SNAKE_CASE : Optional[int] = temp SCREAMING_SNAKE_CASE : Any = a[new_pivot_index + 1] SCREAMING_SNAKE_CASE : Optional[Any] = a[end] SCREAMING_SNAKE_CASE : Tuple = temp return new_pivot_index + 1, count snake_case = TemporaryFile() snake_case = 100 # 1000 elements are to be sorted snake_case , snake_case = 0, 1 # mean and standard deviation snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array snake_case = np.load(outfile) snake_case = len(M) - 1 snake_case = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
62
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : str ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __UpperCAmelCase : Any = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(__lowercase ) , torch_builtin(__lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(__lowercase ) , gelu_new(__lowercase ) ) ) def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Tuple = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __UpperCAmelCase : List[str] = get_activation("""gelu""" ) __UpperCAmelCase : Tuple = get_activation("""gelu_10""" ) __UpperCAmelCase : int = torch_builtin(__lowercase ) __UpperCAmelCase : Union[str, Any] = geluaa(__lowercase ) __UpperCAmelCase : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(__lowercase ): get_activation("""bogus""" ) with self.assertRaises(__lowercase ): get_activation(__lowercase ) def UpperCAmelCase ( self : str ) -> int: __UpperCAmelCase : Tuple = get_activation("""gelu""" ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Any = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__lowercase ): __UpperCAmelCase : List[Any] = acta.a
63
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
from math import sqrt def A__ ( snake_case_ : int ): SCREAMING_SNAKE_CASE__: List[str]= 0 for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def A__ ( snake_case_ : int = 10_000 ): SCREAMING_SNAKE_CASE__: int= sum( i for i in range(1 , snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
64
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowercase ( __lowerCamelCase ): snake_case_ = """fnet""" def __init__( self : Optional[Any] ,A : Tuple=32_000 ,A : str=768 ,A : List[str]=12 ,A : List[Any]=3_072 ,A : Optional[Any]="gelu_new" ,A : Tuple=0.1 ,A : List[str]=512 ,A : Any=4 ,A : Optional[int]=0.0_2 ,A : Optional[int]=1e-12 ,A : List[Any]=False ,A : str=512 ,A : List[Any]=3 ,A : int=1 ,A : List[str]=2 ,**A : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Dict = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : Optional[int] = use_tpu_fourier_optimizations UpperCAmelCase__ : Optional[Any] = tpu_short_seq_length
65
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
from math import isqrt def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(SCREAMING_SNAKE_CASE ) + 1 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE = 10**6 ) -> int: _lowercase : List[Any] = 0 _lowercase : Dict = 1 _lowercase : Any = 7 while prime_candidate < max_prime: primes_count += is_prime(SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
66
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowercase__ ( A_: str = "isbn/0140328726" ) -> dict: """simple docstring""" __UpperCAmelCase =olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: __UpperCAmelCase =F'''{olid} is not a valid Open Library olid''' raise ValueError(A_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def lowercase__ ( A_: dict ) -> dict: """simple docstring""" __UpperCAmelCase ={ """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } __UpperCAmelCase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __UpperCAmelCase =[ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] __UpperCAmelCase =data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(A_ , A_ ): __UpperCAmelCase =""", """.join(A_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __A = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: __A = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print("\n".join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
68
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: return getitem, k def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> str: return setitem, k, v def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> Union[str, Any]: return delitem, k def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , *_UpperCAmelCase : Union[str, Any] ) -> Optional[int]: try: return fun(_UpperCAmelCase , *_UpperCAmelCase ), None except Exception as e: return None, e a : Optional[int] = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) a : Any = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] a : List[str] = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] a : Dict = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] a : List[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a : Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> int: __snake_case = HashMap(initial_block_size=4 ) __snake_case = {} for _, (fun, *args) in enumerate(_UpperCAmelCase ): __snake_case , __snake_case = _run_operation(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ) __snake_case , __snake_case = _run_operation(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ) assert my_res == py_res assert str(_UpperCAmelCase ) == str(_UpperCAmelCase ) assert set(_UpperCAmelCase ) == set(_UpperCAmelCase ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> Tuple: def is_public(_UpperCAmelCase : str ) -> bool: return not name.startswith("_" ) __snake_case = {name for name in dir({} ) if is_public(_UpperCAmelCase )} __snake_case = {name for name in dir(HashMap() ) if is_public(_UpperCAmelCase )} assert dict_public_names > hash_public_names
69
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
import cmath import math def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' lowerCamelCase_ = math.radians(lowercase ) lowerCamelCase_ = math.radians(lowercase ) # Convert voltage and current to rectangular form lowerCamelCase_ = cmath.rect(lowercase , lowercase ) lowerCamelCase_ = cmath.rect(lowercase , lowercase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
70
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class _snake_case : def __init__( self ): UpperCAmelCase_ : Union[str, Any] = {} def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Tuple = {} def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): if nodea not in self.connections: self.add_node(_snake_case ) if nodea not in self.connections: self.add_node(_snake_case ) UpperCAmelCase_ : Dict = probability def UpperCamelCase__ ( self ): return list(self.connections ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : str = 0 UpperCAmelCase_ : int = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , _SCREAMING_SNAKE_CASE : int ) -> dict[str, int]: """simple docstring""" UpperCAmelCase_ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = Counter(graph.get_nodes() ) UpperCAmelCase_ : Any = start for _ in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = graph.transition(_SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
71
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
'''simple docstring''' def UpperCamelCase ( lowercase_ : int ) -> bool: '''simple docstring''' lowercase =(1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase ( lowercase_ : int = 5_0_0_0 ) -> int: '''simple docstring''' lowercase =[(i * (3 * i - 1)) // 2 for i in range(1 , lowercase_ )] for i, pentagonal_i in enumerate(lowercase_ ): for j in range(lowercase_ , len(lowercase_ ) ): lowercase =pentagonal_nums[j] lowercase =pentagonal_i + pentagonal_j lowercase =pentagonal_j - pentagonal_i if is_pentagonal(lowercase_ ) and is_pentagonal(lowercase_ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
72
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _snake_case ( A__ ): def __init__( self , a = None , a = None , a = None , a = None , a = False , a = False , a = None , **a , ) -> List[str]: SCREAMING_SNAKE_CASE = path_or_paths SCREAMING_SNAKE_CASE = split if split or isinstance(a , a) else 'train' SCREAMING_SNAKE_CASE = features SCREAMING_SNAKE_CASE = cache_dir SCREAMING_SNAKE_CASE = keep_in_memory SCREAMING_SNAKE_CASE = streaming SCREAMING_SNAKE_CASE = num_proc SCREAMING_SNAKE_CASE = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class _snake_case ( A__ ): def __init__( self , a = None , a = None , a = False , a = False , a = None , **a , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = features SCREAMING_SNAKE_CASE = cache_dir SCREAMING_SNAKE_CASE = keep_in_memory SCREAMING_SNAKE_CASE = streaming SCREAMING_SNAKE_CASE = num_proc SCREAMING_SNAKE_CASE = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Union[Dataset, IterableDataset]: pass
73
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = arr.split(''',''' ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = [int(self.array[0] )] * len(self.array ) __SCREAMING_SNAKE_CASE : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowercase_ = input("""please input some numbers:""") lowercase_ = SubArray(whole_array) lowercase_ = array.solve_sub_array() print(("""the results is:""", re))
74
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): def __init__( self : Union[str, Any] , *_A : Any , **_A : int ): '''simple docstring''' warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
75
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
"""simple docstring""" a_ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a_ = [{'type': 'code', 'content': INSTALL_CONTENT}] a_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
76
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
"""simple docstring""" import os from collections.abc import Iterator def _UpperCamelCase ( UpperCamelCase = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(UpperCamelCase ): __UpperCAmelCase : Any = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase , UpperCamelCase ).lstrip("./" ) def _UpperCamelCase ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return f"{i * ' '}*" if i else "\n##" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(UpperCamelCase )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def _UpperCamelCase ( UpperCamelCase = "." ) -> None: """simple docstring""" __UpperCAmelCase : str = "" for filepath in sorted(good_file_paths(UpperCamelCase ) ): __UpperCAmelCase , __UpperCAmelCase : List[str] = os.path.split(UpperCamelCase ) if filepath != old_path: __UpperCAmelCase : Tuple = print_path(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = (filepath.count(os.sep ) + 1) if filepath else 0 __UpperCAmelCase : Any = f"{filepath}/{filename}".replace(" " , "%20" ) __UpperCAmelCase : int = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"{md_prefix(UpperCamelCase )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
77
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE_: int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[Any] =['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE_: Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
78
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__ : List[Any] = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
79
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str=None ) -> int: """simple docstring""" super().__init__( _lowerCAmelCase , question_encoder_tokenizer=_lowerCAmelCase , generator_tokenizer=_lowerCAmelCase , index=_lowerCAmelCase , init_retrieval=_lowerCAmelCase , ) __lowercase = None def _a ( self : int , _lowerCAmelCase : int ) -> Any: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __lowercase = self._infer_socket_ifname() # avoid clash with the NCCL port __lowercase = str(distributed_port + 1 ) __lowercase = dist.new_group(ranks=_lowerCAmelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=torch.floataa ) -> Tuple: """simple docstring""" __lowercase = torch.empty(_lowerCAmelCase , dtype=_lowerCAmelCase ) dist.scatter(_lowerCAmelCase , src=0 , scatter_list=_lowerCAmelCase , group=self.process_group ) return target_tensor def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowercase = next((addr for addr in addrs if addr.startswith("""e""" )) , _lowerCAmelCase ) return ifname def _a ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __lowercase , __lowercase = self._main_retrieve(_lowerCAmelCase , _lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCAmelCase ) # distributed training __lowercase = dist.get_world_size(group=self.process_group ) # gather logic __lowercase = None if self._is_main(): __lowercase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_lowerCAmelCase )] dist.gather(torch.tensor(_lowerCAmelCase ) , dst=0 , gather_list=_lowerCAmelCase , group=self.process_group ) # scatter logic __lowercase = question_hidden_states.shape[0] __lowercase = [] __lowercase = [] if self._is_main(): assert len(_lowerCAmelCase ) == world_size __lowercase , __lowercase = self._main_retrieve(torch.cat(_lowerCAmelCase ).numpy() , _lowerCAmelCase ) __lowercase , __lowercase = torch.tensor(_lowerCAmelCase ), torch.tensor(_lowerCAmelCase ) __lowercase = self._chunk_tensor(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._chunk_tensor(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._scattered(_lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) __lowercase = self._scattered(_lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_lowerCAmelCase )
80
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class a (unittest.TestCase ): """simple docstring""" @slow def __snake_case ( self : int ) -> Optional[Any]: __snake_case : List[str] = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) __snake_case : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __snake_case : str = model(lowerCamelCase )["last_hidden_state"] __snake_case : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCamelCase ) # compare the actual values for a slice. __snake_case : Tuple = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
81
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) # TODO Update this lowerCamelCase = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''esm''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : str=3072 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=1026 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : List[str]=1e-12 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Dict , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , mask_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = emb_layer_norm_before UpperCAmelCase_ = token_dropout UpperCAmelCase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) UpperCAmelCase_ = EsmFoldConfig() elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase_ = EsmFoldConfig(**_UpperCAmelCase ) UpperCAmelCase_ = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) UpperCAmelCase_ = get_default_vocab_list() else: UpperCAmelCase_ = vocab_list else: UpperCAmelCase_ = None UpperCAmelCase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , _UpperCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = super().to_dict() if isinstance(self.esmfold_config , _UpperCAmelCase ): UpperCAmelCase_ = self.esmfold_config.to_dict() return output @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = None UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = 0 UpperCamelCase = True UpperCamelCase = False UpperCamelCase = 1_28 UpperCamelCase = None def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' if self.trunk is None: UpperCAmelCase_ = TrunkConfig() elif isinstance(self.trunk , _UpperCAmelCase ): UpperCAmelCase_ = TrunkConfig(**self.trunk ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = asdict(self ) UpperCAmelCase_ = self.trunk.to_dict() return output @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 48 UpperCamelCase = 10_24 UpperCamelCase = 1_28 UpperCamelCase = 32 UpperCamelCase = 32 UpperCamelCase = 32 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = False UpperCamelCase = 4 UpperCamelCase = 1_28 UpperCamelCase = None def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' if self.structure_module is None: UpperCAmelCase_ = StructureModuleConfig() elif isinstance(self.structure_module , _UpperCAmelCase ): UpperCAmelCase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) UpperCAmelCase_ = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = asdict(self ) UpperCAmelCase_ = self.structure_module.to_dict() return output @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 3_84 UpperCamelCase = 1_28 UpperCamelCase = 16 UpperCamelCase = 1_28 UpperCamelCase = 12 UpperCamelCase = 4 UpperCamelCase = 8 UpperCamelCase = 0.1 UpperCamelCase = 8 UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 7 UpperCamelCase = 10 UpperCamelCase = 1E-8 UpperCamelCase = 1E5 def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return asdict(self ) def a__ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
82
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __snake_case ( _lowercase): def __init__( self : Tuple , __lowerCAmelCase : str=0.01 , __lowerCAmelCase : Any=1_0_0_0 ): """simple docstring""" _lowerCamelCase : List[str] = p_stop _lowerCamelCase : List[Any] = max_length def __iter__( self : Optional[int] ): """simple docstring""" _lowerCamelCase : int = 0 _lowerCamelCase : Dict = False while not stop and count < self.max_length: yield count count += 1 _lowerCamelCase : int = random.random() < self.p_stop class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int=False , __lowerCAmelCase : Dict=True ): """simple docstring""" _lowerCamelCase : Optional[Any] = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] _lowerCamelCase : List[str] = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : str = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : Tuple = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : str = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : Optional[Any] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : List[str] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) _lowerCamelCase : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _lowerCamelCase : Tuple = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : int = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _lowerCamelCase : Union[str, Any] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _lowerCamelCase : List[Any] = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : int = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Any = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Tuple = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : List[Any] = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _lowerCamelCase : List[str] = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : str = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Dict = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _lowerCamelCase : str = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) _lowerCamelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : List[str] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] _lowerCamelCase : Any = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=False ): """simple docstring""" random.seed(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) _lowerCamelCase : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _lowerCamelCase : Union[str, Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) _lowerCamelCase : List[str] = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : List[Any] = 4_2 _lowerCamelCase : Any = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset _lowerCamelCase : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=__lowerCAmelCase ) _lowerCamelCase : Dict = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = DataLoader(list(range(1_6 ) ) , batch_size=4 ) _lowerCamelCase : str = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" Accelerator() _lowerCamelCase : Any = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
83
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): lowercase = tesseract_config if tesseract_config is not None else '' # apply OCR lowercase = to_pil_image(__SCREAMING_SNAKE_CASE ) lowercase , lowercase = pil_image.size lowercase = pytesseract.image_to_data(__SCREAMING_SNAKE_CASE , lang=__SCREAMING_SNAKE_CASE , output_type='dict' , config=__SCREAMING_SNAKE_CASE ) lowercase , lowercase , lowercase , lowercase , lowercase = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowercase = [idx for idx, word in enumerate(__SCREAMING_SNAKE_CASE ) if not word.strip()] lowercase = [word for idx, word in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase = [] for x, y, w, h in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [x, y, x + w, y + h] actual_boxes.append(__SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes lowercase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BILINEAR , snake_case = True , snake_case = None , snake_case = "" , **snake_case , ): super().__init__(**snake_case ) lowercase = size if size is not None else {'height': 224, 'width': 224} lowercase = get_size_dict(snake_case ) lowercase = do_resize lowercase = size lowercase = resample lowercase = apply_ocr lowercase = ocr_lang lowercase = tesseract_config def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = PILImageResampling.BILINEAR , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase = (size['height'], size['width']) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(snake_case ) lowercase = resample if resample is not None else self.resample lowercase = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(snake_case ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) lowercase = [] lowercase = [] for image in images: lowercase , lowercase = apply_tesseract(snake_case , snake_case , snake_case ) words_batch.append(snake_case ) boxes_batch.append(snake_case ) if do_resize: lowercase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase = [flip_channel_order(snake_case ) for image in images] lowercase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=snake_case ) if apply_ocr: lowercase = words_batch lowercase = boxes_batch return data
84
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : str , a_ : int , a_ : int , a_ : Optional[int] = None , a_ : int = 5_0257 , a_ : int = 1024 , a_ : int = 768 , a_ : int = 12 , a_ : int = 12 , a_ : Optional[int] = None , a_ : str = "gelu_new" , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 1e-5 , a_ : float = 0.02 , a_ : bool = True , a_ : bool = True , a_ : bool = False , a_ : bool = False , )-> Optional[int]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ : List[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE__ : str = prefix_hidden_dim SCREAMING_SNAKE_CASE__ : str = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE__ : List[Any] = ( nn.Linear(self.prefix_hidden_dim , a_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE__ : List[str] = GPTaConfig( vocab_size=a_ , n_positions=a_ , n_embd=a_ , n_layer=a_ , n_head=a_ , n_inner=a_ , activation_function=a_ , resid_pdrop=a_ , embd_pdrop=a_ , attn_pdrop=a_ , layer_norm_epsilon=a_ , initializer_range=a_ , scale_attn_weights=a_ , use_cache=a_ , scale_attn_by_inverse_layer_idx=a_ , reorder_and_upcast_attn=a_ , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = GPTaLMHeadModel(a_ ) def __lowercase( self : Any , a_ : torch.Tensor , a_ : torch.Tensor , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.transformer.transformer.wte(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.encode_prefix(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.decode_prefix(a_ ) SCREAMING_SNAKE_CASE__ : Any = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE__ : Tuple = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE__ : Any = self.transformer(inputs_embeds=a_ , labels=a_ , attention_mask=a_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __lowercase( self : str , a_ : int , a_ : torch.device )-> torch.Tensor: """simple docstring""" return torch.zeros(a_ , self.prefix_length , dtype=torch.intaa , device=a_ ) def __lowercase( self : str , a_ : int )-> Any: """simple docstring""" return self.encode_prefix(a_ ) @torch.no_grad() def __lowercase( self : List[Any] , a_ : Tuple , a_ : int , a_ : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = torch.split(a_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : Dict = [] for feature in features: SCREAMING_SNAKE_CASE__ : Dict = self.decode_prefix(feature.to(a_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.generate_beam( input_embeds=a_ , device=a_ , eos_token_id=a_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.stack(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.stack(a_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __lowercase( self : Tuple , a_ : Optional[int]=None , a_ : Optional[Any]=None , a_ : str=None , a_ : int = 5 , a_ : int = 67 , a_ : float = 1.0 , a_ : Optional[int] = None , )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = eos_token_id SCREAMING_SNAKE_CASE__ : Tuple = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(a_ , device=a_ , dtype=torch.int ) SCREAMING_SNAKE_CASE__ : List[str] = torch.zeros(a_ , device=a_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE__ : Dict = input_embeds else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.transformer.transformer.wte(a_ ) for i in range(a_ ): SCREAMING_SNAKE_CASE__ : Dict = self.transformer(inputs_embeds=a_ ) SCREAMING_SNAKE_CASE__ : int = outputs.logits SCREAMING_SNAKE_CASE__ : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE__ : Tuple = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = logits.topk(a_ , -1 ) SCREAMING_SNAKE_CASE__ : List[str] = generated.expand(a_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE__ : Dict = next_tokens else: SCREAMING_SNAKE_CASE__ : Dict = tokens.expand(a_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE__ : List[str] = -float(np.inf ) SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Any = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE__ : Dict = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = scores_sum_average.view(-1 ).topk(a_ , -1 ) SCREAMING_SNAKE_CASE__ : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE__ : str = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE__ : Union[str, Any] = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE__ : Any = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE__ : int = tokens[next_tokens_source] SCREAMING_SNAKE_CASE__ : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE__ : Any = generated[next_tokens_source] SCREAMING_SNAKE_CASE__ : List[str] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE__ : int = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE__ : int = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE__ : Tuple = is_stopped + next_tokens.eq(a_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE__ : Dict = scores / seq_lengths SCREAMING_SNAKE_CASE__ : List[Any] = scores.argsort(descending=a_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE__ : Any = torch.stack(a_ , dim=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
85
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor class _a ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str=3 , UpperCAmelCase : Dict=3 , UpperCAmelCase : int=("DownEncoderBlock2D",) , UpperCAmelCase : Tuple=(64,) , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Optional[int]="silu" , UpperCAmelCase : List[Any]=True , ): super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCAmelCase ) - 1 A_ = get_down_block( UpperCAmelCase , num_layers=self.layers_per_block , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , ) self.down_blocks.append(UpperCAmelCase ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase , eps=1E-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCAmelCase , 3 , padding=1 ) A_ = False def __A ( self : Optional[Any] , UpperCAmelCase : Optional[int] ): A_ = x A_ = self.conv_in(UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : int ): def custom_forward(*UpperCAmelCase : str ): return module(*UpperCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCAmelCase ) # middle A_ = self.mid_block(UpperCAmelCase ) # post-process A_ = self.conv_norm_out(UpperCAmelCase ) A_ = self.conv_act(UpperCAmelCase ) A_ = self.conv_out(UpperCAmelCase ) return sample class _a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : str=3 , UpperCAmelCase : Any=3 , UpperCAmelCase : int=("UpDecoderBlock2D",) , UpperCAmelCase : str=(64,) , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : int=32 , UpperCAmelCase : Optional[Any]="silu" , UpperCAmelCase : Any="group" , ): super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == "spatial" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # up A_ = list(reversed(UpperCAmelCase ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCAmelCase ) - 1 A_ = get_up_block( UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , resnet_time_scale_shift=UpperCAmelCase , ) self.up_blocks.append(UpperCAmelCase ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCAmelCase ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase , eps=1E-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCAmelCase , 3 , padding=1 ) A_ = False def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=None ): A_ = z A_ = self.conv_in(UpperCAmelCase ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : Union[str, Any] ): def custom_forward(*UpperCAmelCase : int ): return module(*UpperCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) A_ = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase ) A_ = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) else: # middle A_ = self.mid_block(UpperCAmelCase , UpperCAmelCase ) A_ = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: A_ = up_block(UpperCAmelCase , UpperCAmelCase ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCAmelCase ) else: A_ = self.conv_norm_out(UpperCAmelCase , UpperCAmelCase ) A_ = self.conv_act(UpperCAmelCase ) A_ = self.conv_out(UpperCAmelCase ) return sample class _a ( nn.Module ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : int=None , UpperCAmelCase : str="random" , UpperCAmelCase : int=False , UpperCAmelCase : Optional[Any]=True ): super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def __A ( self : str , UpperCAmelCase : Tuple ): A_ = inds.shape assert len(UpperCAmelCase ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCAmelCase ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCAmelCase ) def __A ( self : str , UpperCAmelCase : Union[str, Any] ): A_ = inds.shape assert len(UpperCAmelCase ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase ) return back.reshape(UpperCAmelCase ) def __A ( self : Any , UpperCAmelCase : List[Any] ): # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCAmelCase , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCAmelCase ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCAmelCase ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __A ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] ): # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCAmelCase ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCAmelCase ) if shape is not None: A_ = z_q.view(UpperCAmelCase ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any]=False ): A_ = parameters A_ , A_ = torch.chunk(UpperCAmelCase , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def __A ( self : Dict , UpperCAmelCase : List[Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __A ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase ) def __A ( self : Union[str, Any] ): return self.mean
86
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Dict = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''gpt_neox''' def __init__( self : Any , UpperCAmelCase__ : Optional[int]=50_432 , UpperCAmelCase__ : str=6_144 , UpperCAmelCase__ : List[Any]=44 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : Any=24_576 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : int=0.25 , UpperCAmelCase__ : int=10_000 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : int=2_048 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : List[str]=1e-5 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : int , ) ->str: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = rotary_pct A__ = rotary_emb_base A__ = attention_dropout A__ = hidden_dropout A__ = classifier_dropout A__ = initializer_range A__ = layer_norm_eps A__ = use_cache A__ = tie_word_embeddings A__ = use_parallel_residual A__ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''') def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase__) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""") A__ = self.rope_scaling.get('''type''' , UpperCAmelCase__) A__ = self.rope_scaling.get('''factor''' , UpperCAmelCase__) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(UpperCAmelCase__ , UpperCAmelCase__) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
87
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None) -> Tuple: # Input as list _lowerCamelCase : Any = list(poly_a or [0])[:] _lowerCamelCase : Optional[Any] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase : int = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase : Union[str, Any] = len(self.polyB) # Add 0 to make lengths equal a power of 2 _lowerCamelCase : List[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform _lowerCamelCase : Optional[Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product _lowerCamelCase : int = self.__multiply() def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : Dict = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE) <= 1: return dft[0] # _lowerCamelCase : str = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase : Dict = [[] for i in range(SCREAMING_SNAKE_CASE)] _lowerCamelCase : Tuple = self.root**next_ncol # First half of next step _lowerCamelCase : int = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(SCREAMING_SNAKE_CASE): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step _lowerCamelCase : Optional[int] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(SCREAMING_SNAKE_CASE): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update _lowerCamelCase : Union[str, Any] = new_dft _lowerCamelCase : List[str] = next_ncol // 2 return dft[0] def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Optional[Any] = self.__dft("""A""") _lowerCamelCase : List[str] = self.__dft("""B""") _lowerCamelCase : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase : List[str] = 2 while next_ncol <= self.c_max_length: _lowerCamelCase : Any = [[] for i in range(SCREAMING_SNAKE_CASE)] _lowerCamelCase : List[Any] = self.root ** (next_ncol // 2) _lowerCamelCase : str = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update _lowerCamelCase : Any = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase : Optional[Any] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self) -> Any: _lowerCamelCase : Dict = """A = """ + """ + """.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) _lowerCamelCase : List[Any] = """B = """ + """ + """.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) _lowerCamelCase : int = """A*B = """ + """ + """.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
88
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Optional[int] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } SCREAMING_SNAKE_CASE : Optional[Any] = "▁" class _lowerCamelCase( _a ): lowercase_ : int = VOCAB_FILES_NAMES lowercase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str = ["""input_ids""", """attention_mask"""] lowercase_ : Dict = BarthezTokenizer def __init__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase="<s>", lowerCamelCase="</s>", lowerCamelCase="</s>", lowerCamelCase="<s>", lowerCamelCase="<unk>", lowerCamelCase="<pad>", lowerCamelCase="<mask>", **lowerCamelCase, ) -> Tuple: """simple docstring""" _lowercase : List[str] = AddedToken(lowerCamelCase, lstrip=lowerCamelCase, rstrip=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase) else mask_token super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, cls_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token=lowerCamelCase, **lowerCamelCase, ) _lowercase : Tuple = vocab_file _lowercase : Any = False if not self.vocab_file else True def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : int = [self.cls_token_id] _lowercase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> List[int]: """simple docstring""" _lowercase : Optional[Any] = [self.sep_token_id] _lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCamelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return _lowercase : Union[str, Any] = os.path.join( lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCamelCase): copyfile(self.vocab_file, lowerCamelCase) return (out_vocab_file,)
89
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_="" , lowerCamelCase_="train" ) -> Optional[int]: assert os.path.isdir(lowerCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = os.listdir(lowerCamelCase_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCAmelCase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not os.path.isfile(lowerCamelCase_ ): continue self.documents.append(lowerCamelCase_ ) def __len__( self ) -> List[Any]: return len(self.documents ) def __getitem__( self , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = self.documents[idx] lowerCAmelCase__ = document_path.split('''/''' )[-1] with open(lowerCamelCase_ , encoding='''utf-8''' ) as source: lowerCAmelCase__ = source.read() lowerCAmelCase__ , lowerCAmelCase__ = process_story(lowerCamelCase_ ) return document_name, story_lines, summary_lines def _snake_case ( A ) -> Optional[int]: lowerCAmelCase__ = list(filter(lambda A : len(A ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it lowerCAmelCase__ = [_add_missing_period(A ) for line in nonempty_lines] # gather article lines lowerCAmelCase__ = [] lowerCAmelCase__ = deque(A ) while True: try: lowerCAmelCase__ = lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(A ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCAmelCase__ = list(filter(lambda A : not t.startswith('''@highlight''' ) , A ) ) return story_lines, summary_lines def _snake_case ( A ) -> Dict: lowerCAmelCase__ = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def _snake_case ( A , A , A ) -> str: if len(A ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(A )) ) return sequence def _snake_case ( A , A ) -> str: lowerCAmelCase__ = torch.ones_like(A ) lowerCAmelCase__ = sequence == pad_token_id lowerCAmelCase__ = 0 return mask def _snake_case ( A , A , A ) -> Dict: lowerCAmelCase__ = [tokenizer.encode(A ) for line in story_lines] lowerCAmelCase__ = [token for sentence in story_lines_token_ids for token in sentence] lowerCAmelCase__ = [tokenizer.encode(A ) for line in summary_lines] lowerCAmelCase__ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _snake_case ( A , A ) -> List[Any]: lowerCAmelCase__ = [] for sequence in batch: lowerCAmelCase__ = -1 lowerCAmelCase__ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(A ) return torch.tensor(A )
90
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Union[str, Any] ,A_ : str=2 ,A_ : Union[str, Any]=3 ,A_ : Dict=4 ,A_ : Optional[Any]=2 ,A_ : Any=7 ,A_ : Any=True ,A_ : List[str]=True ,A_ : Tuple=True ,A_ : Optional[int]=True ,A_ : Dict=99 ,A_ : int=36 ,A_ : Dict=2 ,A_ : Tuple=4 ,A_ : List[Any]=37 ,A_ : int="gelu" ,A_ : Tuple=0.1 ,A_ : Union[str, Any]=0.1 ,A_ : Optional[int]=512 ,A_ : Dict=16 ,A_ : Dict=2 ,A_ : int=0.02 ,A_ : Dict=6 ,A_ : Dict=6 ,A_ : int=3 ,A_ : str=4 ,A_ : List[Any]=None ,A_ : str=1000 ,) -> Optional[Any]: A = parent A = batch_size A = num_channels A = image_size A = patch_size A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = coordinate_size A = shape_size A = num_labels A = num_choices A = scope A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A = text_seq_length A = (image_size // patch_size) ** 2 + 1 A = self.text_seq_length + self.image_seq_length def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) A = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A = bbox[i, j, 3] A = bbox[i, j, 1] A = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A = bbox[i, j, 2] A = bbox[i, j, 0] A = tmp_coordinate A = tf.constant(A_ ) A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.text_seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[int] ,A_ : Dict ,A_ : Optional[Any] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: A = TFLayoutLMvaModel(config=A_ ) # text + image A = model(A_ ,pixel_values=A_ ,training=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,training=A_ ,) A = model(A_ ,bbox=A_ ,pixel_values=A_ ,training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only A = model(A_ ,training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A = model({'pixel_values': pixel_values} ,training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ,A_ : Any ,A_ : str ,A_ : str ,A_ : List[str] ,A_ : Optional[Any] ,A_ : List[str] ) -> Union[str, Any]: A = self.num_labels A = TFLayoutLMvaForSequenceClassification(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,training=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[str] ,A_ : Any ,A_ : List[Any] ,A_ : List[str] ,A_ : List[Any] ,A_ : Union[str, Any] ,A_ : List[Any] ) -> Union[str, Any]: A = self.num_labels A = TFLayoutLMvaForTokenClassification(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ,training=A_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ,A_ : List[str] ,A_ : Tuple ,A_ : List[str] ,A_ : Optional[int] ,A_ : Optional[int] ,A_ : Optional[Any] ) -> Optional[Any]: A = 2 A = TFLayoutLMvaForQuestionAnswering(config=A_ ) A = model( A_ ,bbox=A_ ,pixel_values=A_ ,attention_mask=A_ ,token_type_ids=A_ ,start_positions=A_ ,end_positions=A_ ,training=A_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = self.prepare_config_and_inputs() ((A) , (A) , (A) , (A) , (A) , (A) , (A) , (A)) = config_and_inputs A = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: str = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowerCamelCase: int = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowerCamelCase: int = False _lowerCamelCase: Any = False _lowerCamelCase: Any = False def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tuple ,A_ : Any ,A_ : Optional[int] ,A_ : Dict ,A_ : Dict ) -> List[Any]: return True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ,A_ : Tuple ,A_ : Optional[int]=False ) -> dict: A = copy.deepcopy(A_ ) if model_class in get_values(A_ ): A = { k: tf.tile(tf.expand_dims(A_ ,1 ) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A_ ,tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): A = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(A_ ): A = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: A = TFLayoutLMvaModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(A_ ) if getattr(A_ ,'hf_compute_loss' ,A_ ): # The number of elements in the loss should be the same as the number of elements in the label A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=A_ )[0] ] A = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class.pop('input_ids' ) A = model(A_ ,**A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: A = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A = -100 A = tf.convert_to_tensor(A_ ) A = model(A_ ,**A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) A = model(A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A = self._prepare_for_class(inputs_dict.copy() ,A_ ,return_labels=A_ ) # Get keys that were added with the _prepare_for_class function A = prepared_for_class.keys() - inputs_dict.keys() A = inspect.signature(model.call ).parameters A = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A = {0: 'input_ids'} for label_key in label_keys: A = signature_names.index(A_ ) A = label_key A = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A = prepared_for_class[value] A = tuple(A_ ) # Send to model A = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A_ ,A_ ,A_ ,A_ ,A_ ,A_ ,A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFLayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ): A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: A = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) A = self.default_image_processor A = prepare_img() A = image_processor(images=A_ ,return_tensors='tf' ).pixel_values A = tf.constant([[1, 2]] ) A = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) ,axis=0 ) # forward pass A = model(input_ids=A_ ,bbox=A_ ,pixel_values=A_ ,training=A_ ) # verify the logits A = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape ,A_ ) A = tf.constant( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,A_ ,atol=1e-4 ) )
91
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase_ = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : List[str] =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase : Dict =torch.manual_seed(0 ) lowercase : Union[str, Any] =pipe.dual_guided( prompt='''first prompt''' , image=UpperCAmelCase__ , text_to_image_strength=0.75 , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase__ ) lowercase : Union[str, Any] =VersatileDiffusionPipeline.from_pretrained(UpperCAmelCase__ , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[Any] =generator.manual_seed(0 ) lowercase : Optional[Any] =pipe.dual_guided( prompt='''first prompt''' , image=UpperCAmelCase__ , text_to_image_strength=0.75 , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Any =VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : int ='''cyberpunk 2077''' lowercase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowercase : Union[str, Any] =torch.manual_seed(0 ) lowercase : Optional[Any] =pipe.dual_guided( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , text_to_image_strength=0.75 , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowercase : List[Any] =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : int =np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase : List[str] ='''A painting of a squirrel eating a burger ''' lowercase : str =torch.manual_seed(0 ) lowercase : Any =pipe.text_to_image( prompt=UpperCAmelCase__ , generator=UpperCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images lowercase : str =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : Optional[Any] =np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase : Dict =pipe.image_variation(UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''numpy''' ).images lowercase : int =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase : Optional[int] =np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
92
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __A = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") __A = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") __A = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") __A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") __A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
93
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] SCREAMING_SNAKE_CASE = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase : str =torch.load(__A , map_location='''cpu''' ) return sd def lowercase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Tuple=rename_keys_prefix ) -> Tuple: """simple docstring""" lowercase : Any =OrderedDict() lowercase : Optional[Any] =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase : List[Any] =key for name_pair in rename_keys_prefix: lowercase : Any =new_key.replace(name_pair[0] , name_pair[1] ) lowercase : Optional[Any] =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase : Union[str, Any] =new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowercase_ ( __A : Dict , __A : Optional[int] ) -> Optional[Any]: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: lowercase : Union[str, Any] ='''pretraining''' if "vcr" in checkpoint_path: lowercase : Optional[int] ={'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: lowercase : Optional[Any] ={'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: lowercase : str ={'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: lowercase : Tuple ={'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: lowercase : Optional[int] ={'''visual_embedding_dim''': 5_1_2} lowercase : Dict ='''multichoice''' elif "vqa_advanced" in checkpoint_path: lowercase : Optional[int] ={'''visual_embedding_dim''': 2_0_4_8} lowercase : int ='''vqa_advanced''' elif "vqa" in checkpoint_path: lowercase : Optional[int] ={'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} lowercase : Any ='''vqa''' elif "nlvr" in checkpoint_path: lowercase : Optional[int] ={ '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } lowercase : str ='''nlvr''' lowercase : Dict =VisualBertConfig(**__A ) # Load State Dict lowercase : Union[str, Any] =load_state_dict(__A ) lowercase : Optional[Any] =get_new_dict(__A , __A ) if model_type == "pretraining": lowercase : Tuple =VisualBertForPreTraining(__A ) elif model_type == "vqa": lowercase : str =VisualBertForQuestionAnswering(__A ) elif model_type == "nlvr": lowercase : Optional[int] =VisualBertForVisualReasoning(__A ) elif model_type == "multichoice": lowercase : Union[str, Any] =VisualBertForMultipleChoice(__A ) model.load_state_dict(__A ) # Save Checkpoints Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
94
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase_ : @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> Optional[int]: pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ) -> List[str]: UpperCAmelCase_ : Tuple = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase_ : Optional[Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ) -> Optional[Any]: UpperCAmelCase_ : Dict = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase_ : Tuple = len(lowerCAmelCase_ ) self.assertGreater(lowerCAmelCase_ , 0 ) self.assertEqual( lowerCAmelCase_ , [ { "score": ANY(lowerCAmelCase_ ), "label": ANY(lowerCAmelCase_ ), "box": {"xmin": ANY(lowerCAmelCase_ ), "ymin": ANY(lowerCAmelCase_ ), "xmax": ANY(lowerCAmelCase_ ), "ymax": ANY(lowerCAmelCase_ )}, } for i in range(lowerCAmelCase_ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: pass @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase_ : Dict = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) UpperCAmelCase_ : Dict = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.7_2_3_5, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_2_1_8, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7_1_8_4, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6_7_4_8, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_5_6, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_6_1_4, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6_4_5_6, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_4_2, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6_4_1_9, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = pipeline("zero-shot-object-detection" ) UpperCAmelCase_ : Any = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) UpperCAmelCase_ : List[str] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1_4_7_4, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1_2_0_8, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: pass @require_torch @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: UpperCAmelCase_ : Optional[int] = 0.2 UpperCAmelCase_ : Any = pipeline("zero-shot-object-detection" ) UpperCAmelCase_ : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2_5_3_7, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Tuple = pipeline("zero-shot-object-detection" ) UpperCAmelCase_ : Dict = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.2_8_6_8, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_7_7, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
95
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __lowerCamelCase = logging.get_logger(__name__) class __A : def __init__( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Dict ) -> Dict: __magic_name__: List[Any] = question_encoder __magic_name__: Tuple = generator __magic_name__: List[str] = self.question_encoder def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Tuple ) -> Any: if os.path.isfile(__snake_case ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(__snake_case , exist_ok=__snake_case ) __magic_name__: Union[str, Any] = os.path.join(__snake_case , """question_encoder_tokenizer""" ) __magic_name__: str = os.path.join(__snake_case , """generator_tokenizer""" ) self.question_encoder.save_pretrained(__snake_case ) self.generator.save_pretrained(__snake_case ) @classmethod def lowerCamelCase__ ( cls : Tuple , __snake_case : Optional[Any] , **__snake_case : List[Any] ) -> str: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __magic_name__: Optional[Any] = kwargs.pop("""config""" , __snake_case ) if config is None: __magic_name__: Union[str, Any] = RagConfig.from_pretrained(__snake_case ) __magic_name__: Optional[int] = AutoTokenizer.from_pretrained( __snake_case , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __magic_name__: Union[str, Any] = AutoTokenizer.from_pretrained( __snake_case , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=__snake_case , generator=__snake_case ) def __call__( self : Dict , *__snake_case : Tuple , **__snake_case : Optional[Any] ) -> Tuple: return self.current_tokenizer(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Optional[Any] , *__snake_case : Tuple , **__snake_case : Optional[Any] ) -> str: return self.generator.batch_decode(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Optional[int] , *__snake_case : Any , **__snake_case : Dict ) -> Optional[Any]: return self.generator.decode(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: __magic_name__: str = self.question_encoder def lowerCamelCase__ ( self : Any ) -> List[str]: __magic_name__: Union[str, Any] = self.generator def lowerCamelCase__ ( self : str , __snake_case : List[str] , __snake_case : Optional[List[str]] = None , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "longest" , __snake_case : str = None , __snake_case : bool = True , **__snake_case : Optional[Any] , ) -> BatchEncoding: warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , __snake_case , ) if max_length is None: __magic_name__: List[str] = self.current_tokenizer.model_max_length __magic_name__: Dict = self( __snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , max_length=__snake_case , padding=__snake_case , truncation=__snake_case , **__snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __magic_name__: Dict = self.current_tokenizer.model_max_length __magic_name__: Union[str, Any] = self( text_target=__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , **__snake_case , ) __magic_name__: List[str] = labels["""input_ids"""] return model_inputs
96
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
import math def a ( snake_case__: int ): '''simple docstring''' return math.sqrt(snake_case__ ) * math.sqrt(snake_case__ ) == num def a ( snake_case__: int ): '''simple docstring''' lowercase_ = 0 lowercase_ = n while left <= right: lowercase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase_ = mid - 1 else: lowercase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
97
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
def a (lowerCAmelCase__ ): __a = [] if len(lowerCAmelCase__ ) == 1: return [nums.copy()] for _ in range(len(lowerCAmelCase__ ) ): __a = nums.pop(0 ) __a = permute(lowerCAmelCase__ ) for perm in permutations: perm.append(lowerCAmelCase__ ) result.extend(lowerCAmelCase__ ) nums.append(lowerCAmelCase__ ) return result def a (lowerCAmelCase__ ): def backtrack(lowerCAmelCase__ ): if start == len(lowerCAmelCase__ ) - 1: output.append(nums[:] ) else: for i in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): __a , __a = nums[i], nums[start] backtrack(start + 1 ) __a , __a = nums[i], nums[start] # backtrack __a = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function SCREAMING_SNAKE_CASE = permutea([1, 2, 3]) print(res) doctest.testmod()
99
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
import requests _A : str = """YOUR API KEY""" def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = giphy_api_key ) -> list: SCREAMING_SNAKE_CASE__ = '''+'''.join(query.split() ) SCREAMING_SNAKE_CASE__ = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' SCREAMING_SNAKE_CASE__ = requests.get(lowerCAmelCase_ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
100
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
from __future__ import annotations def a__ ( A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = result + left + right return input_list def a__ ( A__ ): if len(A__ ) <= 1: return input_list SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(A__ ) # iteration for two-way merging SCREAMING_SNAKE_CASE_ : Any = 2 while p <= len(A__ ): # getting low, high and middle value for merge-sort of single list for i in range(0, len(A__ ), A__ ): SCREAMING_SNAKE_CASE_ : str = i SCREAMING_SNAKE_CASE_ : Union[str, Any] = i + p - 1 SCREAMING_SNAKE_CASE_ : Optional[int] = (low + high + 1) // 2 SCREAMING_SNAKE_CASE_ : List[Any] = merge(A__, A__, A__, A__ ) # final merge of last two parts if p * 2 >= len(A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = i SCREAMING_SNAKE_CASE_ : int = merge(A__, 0, A__, len(A__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] =input('Enter numbers separated by a comma:\n').strip() if user_input == "": lowerCAmelCase__ : Dict =[] else: lowerCAmelCase__ : Optional[int] =[int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
101
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : List[str] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Union[str, Any] = BartphoTokenizer __lowerCAmelCase : str = False __lowerCAmelCase : Optional[Any] = True def _a ( self ): '''simple docstring''' super().setUp() UpperCamelCase : Optional[int] = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] UpperCamelCase : int = dict(zip(_A , range(len(_A ) ) ) ) UpperCamelCase : Optional[int] = {"""unk_token""": """<unk>"""} UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) UpperCamelCase : Any = BartphoTokenizer(_A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_A ) def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Optional[int] = """This is a là test""" UpperCamelCase : str = """This is a<unk><unk> test""" return input_text, output_text def _a ( self ): '''simple docstring''' UpperCamelCase : str = BartphoTokenizer(_A , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCamelCase : Tuple = """This is a là test""" UpperCamelCase : Tuple = """▁This ▁is ▁a ▁l à ▁t est""".split() UpperCamelCase : Any = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : List[Any] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
102
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() snake_case = 2 class UpperCAmelCase : def __init__( self : Dict , *, # begin keyword-only arguments __lowerCamelCase : Dict="<s>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : Optional[int]=None , ): """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case = bos, unk, pad, eos _snake_case = [] _snake_case = [] _snake_case = {} _snake_case = self.add_symbol(__lowerCamelCase ) _snake_case = self.add_symbol(__lowerCamelCase ) _snake_case = self.add_symbol(__lowerCamelCase ) _snake_case = self.add_symbol(__lowerCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__lowerCamelCase ) _snake_case = len(self.symbols ) def __eq__( self : Optional[int] , __lowerCamelCase : List[str] ): """simple docstring""" return self.indices == other.indices def __getitem__( self : Dict , __lowerCamelCase : Tuple ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Optional[Any] ): """simple docstring""" return len(self.symbols ) def __contains__( self : Dict , __lowerCamelCase : Tuple ): """simple docstring""" return sym in self.indices @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = cls() d.add_from_file(__lowerCamelCase ) return d def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Optional[int]=False ): """simple docstring""" if word in self.indices and not overwrite: _snake_case = self.indices[word] _snake_case = self.count[idx] + n return idx else: _snake_case = len(self.symbols ) _snake_case = idx self.symbols.append(__lowerCamelCase ) self.count.append(__lowerCamelCase ) return idx def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int ): """simple docstring""" return 0 def __UpperCAmelCase ( self : str , __lowerCamelCase : Optional[int] ): """simple docstring""" if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(__lowerCamelCase ) ) return _snake_case = f.readlines() _snake_case = self._load_meta(__lowerCamelCase ) for line in lines[indices_start_line:]: try: _snake_case , _snake_case = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": _snake_case = True _snake_case , _snake_case = line.rsplit(''' ''' , 1 ) else: _snake_case = False _snake_case = int(__lowerCamelCase ) _snake_case = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(__lowerCamelCase ) ) self.add_symbol(__lowerCamelCase , n=__lowerCamelCase , overwrite=__lowerCamelCase ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def snake_case ( lowerCAmelCase_ ) -> List[str]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _snake_case = dict((re.sub(R'''@@$''' , '''''' , lowerCAmelCase_ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , lowerCAmelCase_ ), v) for k, v in d.items() ) _snake_case = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] _snake_case = d[k] # restore return da def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _snake_case = os.path.join(lowerCAmelCase_ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) _snake_case = torch.load(lowerCAmelCase_ , map_location='''cpu''' ) _snake_case = chkpt['''cfg''']['''model'''] # dicts _snake_case = os.path.join(lowerCAmelCase_ , '''dict.txt''' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) _snake_case = Dictionary.load(lowerCAmelCase_ ) _snake_case = rewrite_dict_keys(src_dict.indices ) _snake_case = len(lowerCAmelCase_ ) _snake_case = os.path.join(lowerCAmelCase_ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) _snake_case = os.path.join(lowerCAmelCase_ , '''bpecodes''' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) _snake_case = os.path.join(lowerCAmelCase_ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCAmelCase_ , lowerCAmelCase_ ) # model config _snake_case = os.path.join(lowerCAmelCase_ , '''config.json''' ) _snake_case = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # tokenizer config _snake_case = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ , indent=lowerCAmelCase_ ) ) # model _snake_case = chkpt['''model'''] # remove unneeded keys _snake_case = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): _snake_case = model_state_dict.pop(lowerCAmelCase_ ) else: _snake_case = model_state_dict.pop(lowerCAmelCase_ ) _snake_case = BioGptConfig.from_pretrained(lowerCAmelCase_ ) _snake_case = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save _snake_case = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) print('''Conversion is done!''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) snake_case = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
103
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( UpperCAmelCase_ : int | str ) -> bool: """simple docstring""" A__ = str(UpperCAmelCase_ ) return n == n[::-1] def _lowerCamelCase ( UpperCAmelCase_ : int = 1000000 ) -> Dict: """simple docstring""" A__ = 0 for i in range(1, UpperCAmelCase_ ): if is_palindrome(UpperCAmelCase_ ) and is_palindrome(bin(UpperCAmelCase_ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
104
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase__ : Union[str, Any] = ['''bert-base-uncased''', '''bert-base-cased'''] UpperCamelCase__ : Optional[int] = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class lowerCAmelCase_ ( tf.keras.Model ): def __init__( self ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Any = tokenizer SCREAMING_SNAKE_CASE_ : Any = AutoConfig.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = TFAutoModel.from_config(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = self.bert(**snake_case__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): super().setUp() SCREAMING_SNAKE_CASE_ : Optional[Any] = [ BertTokenizer.from_pretrained(snake_case__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false SCREAMING_SNAKE_CASE_ : Optional[Any] = [TFBertTokenizer.from_pretrained(snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case__ ,use_fast_bert_tokenizer=snake_case__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE_ : Dict = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] SCREAMING_SNAKE_CASE_ : Dict = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def snake_case ( self ): for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(snake_case__ ,return_tensors='tf' ,padding='longest' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf_tokenizer(snake_case__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) ) @slow def snake_case ( self ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ : int = tf_tokenizer(self.paired_sentences ) SCREAMING_SNAKE_CASE_ : List[Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) ) @slow def snake_case ( self ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ : str = tf.function(snake_case__ ) for test_inputs in (self.test_sentences, self.paired_sentences): SCREAMING_SNAKE_CASE_ : List[Any] = tf.constant(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = compiled_tokenizer(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tf_tokenizer(snake_case__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def snake_case ( self ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE_ : int = ModelToSave(tokenizer=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.convert_to_tensor(self.test_sentences ) SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE_ : Any = Path(snake_case__ ) / 'saved.model' model.save(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tf.keras.models.load_model(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = loaded_model(snake_case__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1E-5 )
105
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : Optional[Any] = StableDiffusionControlNetImgaImgPipeline A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) A_ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) A = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(__UpperCamelCase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCamelCase ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=0 ) -> Union[str, Any]: if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = 2 A = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCamelCase , device=torch.device(__UpperCamelCase ) , ) A = floats_tensor(control_image.shape , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) A = image.cpu().permute(0 , 2 , 3 , 1 )[0] A = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __UpperCamelCase ( self : Optional[int] ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def __UpperCamelCase ( self : List[str] ) -> Tuple: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : str = StableDiffusionControlNetImgaImgPipeline A_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Dict = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__UpperCamelCase : Dict ): if isinstance(__UpperCamelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) A = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__UpperCamelCase ) torch.manual_seed(0 ) A = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__UpperCamelCase ) torch.manual_seed(0 ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(__UpperCamelCase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = MultiControlNetModel([controlneta, controlneta] ) A = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int]=0 ) -> Optional[Any]: if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = 2 A = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCamelCase , device=torch.device(__UpperCamelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__UpperCamelCase , device=torch.device(__UpperCamelCase ) , ), ] A = floats_tensor(control_image[0].shape , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) A = image.cpu().permute(0 , 2 , 3 , 1 )[0] A = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('RGB' ).resize((64, 64) ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __UpperCamelCase ( self : Any ) -> List[Any]: A = self.get_dummy_components() A = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) A = 1_0.0 A = 4 A = self.get_dummy_inputs(__UpperCamelCase ) A = steps A = scale A = pipe(**__UpperCamelCase )[0] A = self.get_dummy_inputs(__UpperCamelCase ) A = steps A = scale A = pipe(**__UpperCamelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] A = self.get_dummy_inputs(__UpperCamelCase ) A = steps A = scale A = pipe(**__UpperCamelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] A = self.get_dummy_inputs(__UpperCamelCase ) A = steps A = scale A = pipe(**__UpperCamelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def __UpperCamelCase ( self : Dict ) -> Dict: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def __UpperCamelCase ( self : Any ) -> List[Any]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def __UpperCamelCase ( self : Optional[int] ) -> int: A = self.get_dummy_components() A = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__UpperCamelCase ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any] ) -> str: A = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) A = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=__UpperCamelCase , controlnet=__UpperCamelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = torch.Generator(device='cpu' ).manual_seed(0 ) A = 'evil space-punk bird' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) A = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) A = pipe( __UpperCamelCase , __UpperCamelCase , control_image=__UpperCamelCase , generator=__UpperCamelCase , output_type='np' , num_inference_steps=50 , strength=0.6 , ) A = output.images[0] assert image.shape == (512, 512, 3) A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
106
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _UpperCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : List[Any], UpperCamelCase__ : CLIPSegForImageSegmentation, UpperCamelCase__ : CLIPSegProcessor, UpperCamelCase__ : AutoencoderKL, UpperCamelCase__ : CLIPTextModel, UpperCamelCase__ : CLIPTokenizer, UpperCamelCase__ : UNetaDConditionModel, UpperCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCamelCase__ : StableDiffusionSafetyChecker, UpperCamelCase__ : CLIPImageProcessor, ) -> int: super().__init__() if hasattr(scheduler.config, 'steps_offset' ) and scheduler.config.steps_offset != 1: _A = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1', '1.0.0', UpperCamelCase__, standard_warn=UpperCamelCase__ ) _A = dict(scheduler.config ) _A = 1 _A = FrozenDict(UpperCamelCase__ ) if hasattr(scheduler.config, 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: _A = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set', '1.0.0', UpperCamelCase__, standard_warn=UpperCamelCase__ ) _A = dict(scheduler.config ) _A = True _A = FrozenDict(UpperCamelCase__ ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=UpperCamelCase__, segmentation_processor=UpperCamelCase__, vae=UpperCamelCase__, text_encoder=UpperCamelCase__, tokenizer=UpperCamelCase__, unet=UpperCamelCase__, scheduler=UpperCamelCase__, safety_checker=UpperCamelCase__, feature_extractor=UpperCamelCase__, ) def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : Optional[Union[str, int]] = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: self.enable_attention_slicing(UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__, UpperCamelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self : int ) -> Dict: if self.device != torch.device('meta' ) or not hasattr(self.unet, '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__, '_hf_hook' ) and hasattr(module._hf_hook, 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int], UpperCamelCase__ : Union[str, List[str]], UpperCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCamelCase__ : str, UpperCamelCase__ : int = 5_12, UpperCamelCase__ : int = 5_12, UpperCamelCase__ : int = 50, UpperCamelCase__ : float = 7.5, UpperCamelCase__ : Optional[Union[str, List[str]]] = None, UpperCamelCase__ : Optional[int] = 1, UpperCamelCase__ : float = 0.0, UpperCamelCase__ : Optional[torch.Generator] = None, UpperCamelCase__ : Optional[torch.FloatTensor] = None, UpperCamelCase__ : Optional[str] = "pil", UpperCamelCase__ : bool = True, UpperCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCamelCase__ : int = 1, **UpperCamelCase__ : Dict, ) -> Tuple: _A = self.segmentation_processor( text=[text], images=[image], padding='max_length', return_tensors='pt' ).to(self.device ) _A = self.segmentation_model(**UpperCamelCase__ ) _A = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _A = self.numpy_to_pil(UpperCamelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _A = StableDiffusionInpaintPipeline( vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, scheduler=self.scheduler, safety_checker=self.safety_checker, feature_extractor=self.feature_extractor, ) return inpainting_pipeline( prompt=UpperCamelCase__, image=UpperCamelCase__, mask_image=UpperCamelCase__, height=UpperCamelCase__, width=UpperCamelCase__, num_inference_steps=UpperCamelCase__, guidance_scale=UpperCamelCase__, negative_prompt=UpperCamelCase__, num_images_per_prompt=UpperCamelCase__, eta=UpperCamelCase__, generator=UpperCamelCase__, latents=UpperCamelCase__, output_type=UpperCamelCase__, return_dict=UpperCamelCase__, callback=UpperCamelCase__, callback_steps=UpperCamelCase__, )
107
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> list[str]: if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) _UpperCAmelCase = number_of_bytes // partitions _UpperCAmelCase = [] for i in range(__snake_case ): _UpperCAmelCase = i * bytes_per_partition + 1 _UpperCAmelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
108
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(lowerCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(lowerCamelCase ,"""w""" ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(lowerCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(lowerCamelCase ,"""w""" ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(lowerCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(lowerCamelCase ,"""w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ).to_dict() config_dict.pop("""image_processor_type""" ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**lowerCamelCase ) # save in new folder model_config.save_pretrained(lowerCamelCase ) config.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(lowerCamelCase ,"""w""" ) ,) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase ,"""clip-base is not a local folder and is not a valid model identifier""" ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ,revision="""aaaaaa""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' with self.assertRaises(lowerCamelCase ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=lowerCamelCase ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ,trust_remote_code=lowerCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' try: AutoConfig.register("""custom""" ,lowerCamelCase ) AutoImageProcessor.register(lowerCamelCase ,lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase ): AutoImageProcessor.register(lowerCamelCase ,lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """preprocessor_config.json""" __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(lowerCamelCase ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(lowerCamelCase ,"""w""" ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase ,lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase__ ( self : str ): '''simple docstring''' class __a ( _snake_case ): __UpperCamelCase : int = True try: AutoConfig.register("""custom""" ,lowerCamelCase ) AutoImageProcessor.register(lowerCamelCase ,lowerCamelCase ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=lowerCamelCase ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(not hasattr(lowerCamelCase ,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
109
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
import random from .binary_exp_mod import bin_exp_mod def _lowercase ( UpperCamelCase_ , UpperCamelCase_=1000 ) -> List[Any]: '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd SCREAMING_SNAKE_CASE__ = n - 1 SCREAMING_SNAKE_CASE__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) SCREAMING_SNAKE_CASE__ = 0 while count < prec: SCREAMING_SNAKE_CASE__ = random.randint(2 , n - 1 ) SCREAMING_SNAKE_CASE__ = bin_exp_mod(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if b != 1: SCREAMING_SNAKE_CASE__ = True for _ in range(UpperCamelCase_ ): if b == n - 1: SCREAMING_SNAKE_CASE__ = False break SCREAMING_SNAKE_CASE__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __snake_case = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
472
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def snake_case__ ( _lowerCamelCase ) ->Optional[int]: """simple docstring""" print("Loading config file..." ) def flatten_yaml_as_dict(_lowerCamelCase, _lowerCamelCase="", _lowerCamelCase="." ): __lowercase : str = [] for k, v in d.items(): __lowercase : str = parent_key + sep + k if parent_key else k if isinstance(_lowerCamelCase, collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_lowerCamelCase, _lowerCamelCase, sep=_lowerCamelCase ).items() ) else: items.append((new_key, v) ) return dict(_lowerCamelCase ) __lowercase : List[Any] = argparse.Namespace() with open(_lowerCamelCase, "r" ) as yaml_file: try: __lowercase : str = yaml.load(_lowerCamelCase, Loader=yaml.FullLoader ) __lowercase : Tuple = flatten_yaml_as_dict(_lowerCamelCase ) for k, v in flat_cfg.items(): setattr(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(_lowerCamelCase, str(_lowerCamelCase ) ) ) return config def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Optional[int]: """simple docstring""" __lowercase : Any = MobileViTVaConfig() __lowercase : List[Any] = False # dataset if task_name.startswith("imagenet1k_" ): __lowercase : Optional[int] = 10_00 if int(task_name.strip().split("_" )[-1] ) == 3_84: __lowercase : Tuple = 3_84 else: __lowercase : List[str] = 2_56 __lowercase : int = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): __lowercase : List[str] = 2_10_00 if int(task_name.strip().split("_" )[-1] ) == 3_84: __lowercase : Any = 3_84 else: __lowercase : Dict = 2_56 __lowercase : List[Any] = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): __lowercase : List[str] = 1_51 __lowercase : Optional[Any] = 5_12 __lowercase : int = "ade20k-id2label.json" __lowercase : List[Any] = True elif task_name.startswith("voc_" ): __lowercase : Dict = 21 __lowercase : Dict = 5_12 __lowercase : Union[str, Any] = "pascal-voc-id2label.json" __lowercase : Any = True # orig_config __lowercase : Union[str, Any] = load_orig_config_file(_lowerCamelCase ) assert getattr(_lowerCamelCase, "model.classification.name", -1 ) == "mobilevit_v2", "Invalid model" __lowercase : int = getattr(_lowerCamelCase, "model.classification.mitv2.width_multiplier", 1.0 ) assert ( getattr(_lowerCamelCase, "model.classification.mitv2.attn_norm_layer", -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __lowercase : Optional[int] = getattr(_lowerCamelCase, "model.classification.activation.name", "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __lowercase : Optional[int] = getattr(_lowerCamelCase, "model.segmentation.output_stride", 16 ) if "_deeplabv3" in task_name: __lowercase : List[Any] = getattr(_lowerCamelCase, "model.segmentation.deeplabv3.aspp_rates", [12, 24, 36] ) __lowercase : Any = getattr(_lowerCamelCase, "model.segmentation.deeplabv3.aspp_out_channels", 5_12 ) __lowercase : List[str] = getattr(_lowerCamelCase, "model.segmentation.deeplabv3.aspp_dropout", 0.1 ) # id2label __lowercase : Dict = "huggingface/label-files" __lowercase : Tuple = json.load(open(hf_hub_download(_lowerCamelCase, _lowerCamelCase, repo_type="dataset" ), "r" ) ) __lowercase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __lowercase : Tuple = idalabel __lowercase : Dict = {v: k for k, v in idalabel.items()} return config def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->List[Any]: """simple docstring""" __lowercase : List[Any] = dct.pop(_lowerCamelCase ) __lowercase : Tuple = val def snake_case__ ( _lowerCamelCase, _lowerCamelCase=False ) ->Optional[Any]: """simple docstring""" if base_model: __lowercase : Any = "" else: __lowercase : List[str] = "mobilevitv2." __lowercase : List[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": __lowercase : Optional[Any] = k[8:] else: __lowercase : List[Any] = k if ".block." in k: __lowercase : Union[str, Any] = k_new.replace(".block.", "." ) if ".conv." in k: __lowercase : int = k_new.replace(".conv.", ".convolution." ) if ".norm." in k: __lowercase : Optional[int] = k_new.replace(".norm.", ".normalization." ) if "conv_1." in k: __lowercase : Union[str, Any] = k_new.replace("conv_1.", F'{model_prefix}conv_stem.' ) for i in [1, 2]: if F'layer_{i}.' in k: __lowercase : Union[str, Any] = k_new.replace(F'layer_{i}.', F'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: __lowercase : Optional[int] = k_new.replace(".exp_1x1.", ".expand_1x1." ) if ".red_1x1." in k: __lowercase : Optional[Any] = k_new.replace(".red_1x1.", ".reduce_1x1." ) for i in [3, 4, 5]: if F'layer_{i}.0.' in k: __lowercase : str = k_new.replace(F'layer_{i}.0.', F'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if F'layer_{i}.1.local_rep.0.' in k: __lowercase : List[Any] = k_new.replace(F'layer_{i}.1.local_rep.0.', F'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if F'layer_{i}.1.local_rep.1.' in k: __lowercase : List[str] = k_new.replace(F'layer_{i}.1.local_rep.1.', F'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: __lowercase : Optional[int] = [0, 1] elif i == 4: __lowercase : Dict = [0, 1, 2, 3] elif i == 5: __lowercase : Any = [0, 1, 2] for j in j_in: if F'layer_{i}.1.global_rep.{j}.' in k: __lowercase : List[str] = k_new.replace( F'layer_{i}.1.global_rep.{j}.', F'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if F'layer_{i}.1.global_rep.{j+1}.' in k: __lowercase : str = k_new.replace( F'layer_{i}.1.global_rep.{j+1}.', F'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if F'layer_{i}.1.conv_proj.' in k: __lowercase : List[Any] = k_new.replace(F'layer_{i}.1.conv_proj.', F'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: __lowercase : Any = k_new.replace("pre_norm_attn.0.", "layernorm_before." ) if "pre_norm_attn.1." in k: __lowercase : List[Any] = k_new.replace("pre_norm_attn.1.", "attention." ) if "pre_norm_ffn.0." in k: __lowercase : List[Any] = k_new.replace("pre_norm_ffn.0.", "layernorm_after." ) if "pre_norm_ffn.1." in k: __lowercase : List[str] = k_new.replace("pre_norm_ffn.1.", "ffn.conv1." ) if "pre_norm_ffn.3." in k: __lowercase : Any = k_new.replace("pre_norm_ffn.3.", "ffn.conv2." ) if "classifier.1." in k: __lowercase : Union[str, Any] = k_new.replace("classifier.1.", "classifier." ) if "seg_head." in k: __lowercase : Union[str, Any] = k_new.replace("seg_head.", "segmentation_head." ) if ".aspp_layer." in k: __lowercase : Dict = k_new.replace(".aspp_layer.", "." ) if ".aspp_pool." in k: __lowercase : List[Any] = k_new.replace(".aspp_pool.", "." ) rename_keys.append((k, k_new) ) return rename_keys def snake_case__ ( _lowerCamelCase ) ->Dict: """simple docstring""" __lowercase : List[str] = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(_lowerCamelCase ) for k in keys_to_ignore: state_dict.pop(_lowerCamelCase, _lowerCamelCase ) def snake_case__ ( ) ->Dict: """simple docstring""" __lowercase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __lowercase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase, stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->Dict: """simple docstring""" __lowercase : Tuple = get_mobilevitva_config(_lowerCamelCase, _lowerCamelCase ) # load original state_dict __lowercase : int = torch.load(_lowerCamelCase, map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): __lowercase : Any = MobileViTVaForSemanticSegmentation(_lowerCamelCase ).eval() __lowercase : Optional[Any] = False else: __lowercase : Dict = MobileViTVaForImageClassification(_lowerCamelCase ).eval() __lowercase : Optional[Any] = False # remove and rename some keys of load the original model __lowercase : int = checkpoint remove_unused_keys(_lowerCamelCase ) __lowercase : str = create_rename_keys(_lowerCamelCase, base_model=_lowerCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) # load modified state_dict model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowercase : Tuple = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __lowercase : Optional[Any] = image_processor(images=prepare_img(), return_tensors="pt" ) __lowercase : List[str] = model(**_lowerCamelCase ) # verify classification model if task_name.startswith("imagenet" ): __lowercase : List[Any] = outputs.logits __lowercase : Dict = logits.argmax(-1 ).item() print("Predicted class:", model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant __lowercase : Union[str, Any] = torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ) assert torch.allclose(logits[0, :3], _lowerCamelCase, atol=1E-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) __A : Dict = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
575
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __snake_case ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __magic_name__ ( __lowercase ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( snake_case :ArgumentParser ): '''simple docstring''' A_ : Optional[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase__ , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self :Union[str, Any] , snake_case :str , snake_case :str , snake_case :bool , snake_case :bool ): '''simple docstring''' A_ : int = model A_ : Optional[int] = cache A_ : List[str] = force A_ : Any = trust_remote_code def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
454
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __snake_case = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 48000, """sample_size""": 65536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 48000, """sample_size""": 65536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 48000, """sample_size""": 131072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 16000, """sample_size""": 65536, }, } def __lowerCAmelCase ( lowercase : Any , lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" return torch.atana(lowercase , lowercase ) / math.pi * 2 def __lowerCAmelCase ( lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" snake_case : str = torch.sin(t * math.pi / 2 ) ** 2 snake_case : Optional[Any] = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowercase , lowercase ) class _lowerCAmelCase ( __lowercase ): pass class _lowerCAmelCase ( nn.Module ): def __init__( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__() snake_case : Any = DiffusionAttnUnetaD(UpperCamelCase__ , n_attn_layers=4 ) snake_case : List[str] = deepcopy(self.diffusion ) snake_case : Optional[Any] = torch.quasirandom.SobolEngine(1 , scramble=UpperCamelCase__ ) def __lowerCAmelCase ( lowercase : int ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = MODELS_MAP[model_name]["url"] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' __snake_case = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } __snake_case = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } __snake_case = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } __snake_case = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } __snake_case = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } __snake_case = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def __lowerCAmelCase ( lowercase : Dict ) -> str: """simple docstring""" if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCAmelCase ( lowercase : Dict ) -> Union[str, Any]: """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(lowercase ) and not isinstance(lowercase , lowercase ): return name.replace(lowercase , lowercase ) elif name.startswith(lowercase ): return [name.replace(lowercase , lowercase ) for v in value] raise ValueError(F'Attn error with {name}' ) def __lowerCAmelCase ( lowercase : List[str] , lowercase : Union[str, Any]=13 ) -> List[Any]: """simple docstring""" snake_case : Dict = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) snake_case : Dict = 0 if string.startswith("net.3." ): depth += 1 snake_case : str = string[6:] elif string.startswith("net." ): snake_case : Tuple = string[4:] while string.startswith("main.7." ): depth += 1 snake_case : Tuple = string[7:] if string.startswith("main." ): snake_case : str = string[5:] # mid block if string[:2].isdigit(): snake_case : Any = string[:2] snake_case : Any = string[2:] else: snake_case : Dict = string[0] snake_case : int = string[1:] if depth == max_depth: snake_case : Tuple = MID_NUM_TO_LAYER[layer_num] snake_case : Optional[Any] = "mid_block" elif depth > 0 and int(lowercase ) < 7: snake_case : Optional[Any] = DOWN_NUM_TO_LAYER[layer_num] snake_case : Optional[Any] = F'down_blocks.{depth}' elif depth > 0 and int(lowercase ) > 7: snake_case : List[str] = UP_NUM_TO_LAYER[layer_num] snake_case : List[Any] = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: snake_case : Tuple = DEPTH_0_TO_LAYER[layer_num] snake_case : Optional[Any] = F'up_blocks.{max_depth - 1}' if int(lowercase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) snake_case : List[str] = string_left[1:] if "resnets" in new_layer: snake_case : Union[str, Any] = convert_resconv_naming(lowercase ) elif "attentions" in new_layer: snake_case : List[str] = convert_attn_naming(lowercase ) snake_case : int = new_string_left if not isinstance(lowercase , lowercase ): snake_case : Optional[Any] = prefix + "." + new_layer + "." + string_left else: snake_case : Tuple = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCAmelCase ( lowercase : List[Any] ) -> Dict: """simple docstring""" snake_case : Optional[Any] = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue snake_case : Tuple = rename(lowercase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowercase , lowercase ): snake_case : Union[str, Any] = transform_conv_attns(lowercase , lowercase , lowercase ) else: snake_case : List[str] = v return new_state_dict def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : Dict , lowercase : List[str] ) -> List[Any]: """simple docstring""" if len(lowercase ) == 1: if len(v.shape ) == 3: # weight snake_case : int = v[:, :, 0] else: # bias snake_case : Tuple = v else: # qkv matrices snake_case : Any = v.shape[0] snake_case : str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case : Optional[int] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case : Optional[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCAmelCase ( lowercase : Any ) -> str: """simple docstring""" snake_case : Any = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) snake_case : str = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' snake_case : List[str] = download(lowercase ) snake_case : Any = MODELS_MAP[model_name]["sample_rate"] snake_case : Optional[Any] = MODELS_MAP[model_name]["sample_size"] snake_case : Tuple = Object() snake_case : Optional[Any] = sample_size snake_case : Dict = sample_rate snake_case : Any = 0 snake_case : List[str] = UNetaDModel(sample_size=lowercase , sample_rate=lowercase ) snake_case : Dict = diffusers_model.state_dict() snake_case : str = DiffusionUncond(lowercase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowercase )["state_dict"] ) snake_case : List[Any] = orig_model.diffusion_ema.eval() snake_case : List[Any] = orig_model.state_dict() snake_case : Union[str, Any] = rename_orig_weights(lowercase ) snake_case : List[Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case : Union[str, Any] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowercase ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith("kernel" ) for k in list(lowercase ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": snake_case : Tuple = value.squeeze() snake_case : Optional[Any] = value diffusers_model.load_state_dict(lowercase ) snake_case : Any = 100 snake_case : Any = 33 snake_case : Dict = IPNDMScheduler(num_train_timesteps=lowercase ) snake_case : Any = torch.manual_seed(lowercase ) snake_case : Optional[Any] = torch.randn([1, 2, config.sample_size] , generator=lowercase ).to(lowercase ) snake_case : int = torch.linspace(1 , 0 , steps + 1 , device=lowercase )[:-1] snake_case : Any = get_crash_schedule(lowercase ) snake_case : Tuple = DanceDiffusionPipeline(unet=lowercase , scheduler=lowercase ) snake_case : Optional[Any] = torch.manual_seed(33 ) snake_case : Dict = pipe(num_inference_steps=lowercase , generator=lowercase ).audios snake_case : List[Any] = sampling.iplms_sample(lowercase , lowercase , lowercase , {} ) snake_case : List[str] = generated.clamp(-1 , 1 ) snake_case : int = (generated - audio).abs().sum() snake_case : Optional[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , lowercase ) print("Diff max" , lowercase ) assert diff_max < 1e-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") __snake_case = parser.parse_args() main(args)
178
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): A = CLIPConfig A = ['''CLIPEncoderLayer'''] def __init__( self : str , UpperCamelCase_ : CLIPConfig ) -> Optional[Any]: """simple docstring""" super().__init__(UpperCamelCase__ ) lowerCamelCase_ : List[str] = CLIPVisionModelWithProjection(config.vision_config ) lowerCamelCase_ : Union[str, Any] = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCamelCase_ : Optional[int] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]=0.5 , UpperCamelCase_ : Union[str, Any]=0.5 ) -> List[Any]: """simple docstring""" lowerCamelCase_ : str = self.vision_model(UpperCamelCase__ )[0] lowerCamelCase_ : int = self.p_head(UpperCamelCase__ ) lowerCamelCase_ : Tuple = nsfw_detected.flatten() lowerCamelCase_ : Optional[int] = nsfw_detected > p_threshold lowerCamelCase_ : Optional[Any] = nsfw_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(UpperCamelCase__ ): if nsfw_detected_: lowerCamelCase_ : Any = np.zeros(images[idx].shape ) lowerCamelCase_ : Any = self.w_head(UpperCamelCase__ ) lowerCamelCase_ : Dict = watermark_detected.flatten() lowerCamelCase_ : str = watermark_detected > w_threshold lowerCamelCase_ : Optional[Any] = watermark_detected.tolist() if any(UpperCamelCase__ ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(UpperCamelCase__ ): if watermark_detected_: lowerCamelCase_ : Optional[int] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
501
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowercase = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): UpperCamelCase__ = None UpperCamelCase__ = "utf-8" UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = True # deprecated UpperCamelCase__ = None # deprecated UpperCamelCase__ = 10 << 20 # 10MB UpperCamelCase__ = None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): UpperCamelCase__ = JsonConfig def snake_case_ ( self): if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def snake_case_ ( self , a__): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCamelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCamelCase__ , UpperCamelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCamelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCamelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase__ , gen_kwargs={'''files''': files})) return splits def snake_case_ ( self , a__): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCamelCase__).type A__ = pa_table.append_column(UpperCamelCase__ , pa.array([None] * len(UpperCamelCase__) , type=UpperCamelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCamelCase__ , self.config.features.arrow_schema) return pa_table def snake_case_ ( self , a__): for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCamelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCamelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCamelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCamelCase__) yield file_idx, self._cast_table(UpperCamelCase__) # If the file has one json object per line else: with open(UpperCamelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 3_2 , 1_6 << 1_0) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCamelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCamelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCamelCase__) , read_options=paj.ReadOptions(block_size=UpperCamelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCamelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCamelCase__) or block_size > len(UpperCamelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(UpperCamelCase__)} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCamelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCamelCase__) except json.JSONDecodeError: logger.error(F"Failed to read file \'{file}\' with error {type(UpperCamelCase__)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCamelCase__ , UpperCamelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCamelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCamelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file \'{file}\' with error {type(UpperCamelCase__)}: {e}") raise ValueError(F"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(UpperCamelCase__) break else: logger.error(F"Failed to read file \'{file}\' with error {type(UpperCamelCase__)}: {e}") raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys()))}. " F"Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase__) batch_idx += 1
632
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-10 ) -> float: __lowercase : Dict = a while True: __lowercase : Union[str, Any] = Decimal(__lowerCAmelCase ) - ( Decimal(eval(__lowerCAmelCase ) ) / Decimal(eval(str(diff(__lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowerCAmelCase ) ) < precision: # noqa: S307 return float(__lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
509
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowercase_ = TypeVar("T") class UpperCAmelCase_ (Generic[T] ): """simple docstring""" def __init__( self : Tuple , a_ : T )-> int: """simple docstring""" UpperCAmelCase_ : List[Any] = data UpperCAmelCase_ : Optional[int] = None def __str__( self : Optional[int] )-> Optional[Any]: """simple docstring""" return f'''{self.data}''' class UpperCAmelCase_ (Generic[T] ): """simple docstring""" def __init__( self : Tuple )-> str: """simple docstring""" UpperCAmelCase_ : Dict = None def __iter__( self : int )-> int: """simple docstring""" UpperCAmelCase_ : int = self.top while node: yield node.data UpperCAmelCase_ : Union[str, Any] = node.next def __str__( self : Any )-> Optional[int]: """simple docstring""" return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict )-> Tuple: """simple docstring""" return len(tuple(iter(self ) ) ) def a ( self : List[str] )-> str: """simple docstring""" return self.top is None def a ( self : Dict , a_ : T )-> List[Any]: """simple docstring""" UpperCAmelCase_ : List[str] = Node(UpperCamelCase__ ) if not self.is_empty(): UpperCAmelCase_ : Union[str, Any] = self.top UpperCAmelCase_ : List[str] = node def a ( self : Dict )-> List[Any]: """simple docstring""" if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = self.top UpperCAmelCase_ : Any = self.top.next return pop_node.data def a ( self : List[str] )-> List[Any]: """simple docstring""" if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def a ( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase_ : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
470
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self :str )-> Tuple: A__ = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) A__ = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" A__ = model(UpperCamelCase__ )["last_hidden_state"] A__ = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice. A__ = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
440
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=13 , SCREAMING_SNAKE_CASE__ : Optional[Any]=30 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE__ : Dict=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , ) -> Optional[int]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def a ( self : List[Any] ) -> Dict: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def a ( self : List[str] ) -> Dict: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: lowerCAmelCase__ = DeiTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: lowerCAmelCase__ = DeiTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = DeiTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = DeiTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self : Any ) -> Optional[int]: lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : List[str] ) -> List[str]: lowerCAmelCase__ = DeiTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def a ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def a ( self : str ) -> Union[str, Any]: pass def a ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def a ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(UpperCamelCase__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def a ( self : int ) -> Tuple: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def a ( self : Tuple ) -> int: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def a ( self : str ) -> int: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def a ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Optional[Any]: lowerCAmelCase__ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def a ( self : List[Any] ) -> Dict: if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCamelCase__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowerCAmelCase__ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCAmelCase__ = model(**UpperCamelCase__ ).loss loss.backward() def a ( self : List[Any] ) -> Tuple: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase__ = False lowerCAmelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowerCAmelCase__ = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCAmelCase__ = model(**UpperCamelCase__ ).loss loss.backward() def a ( self : Any ) -> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCamelCase__ ), *get_values(UpperCamelCase__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): lowerCAmelCase__ = problem_type["title"] lowerCAmelCase__ = problem_type["num_labels"] lowerCAmelCase__ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowerCAmelCase__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if problem_type["num_labels"] > 1: lowerCAmelCase__ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) lowerCAmelCase__ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCamelCase__ ) as warning_list: lowerCAmelCase__ = model(**UpperCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def a ( self : Union[str, Any] ) -> List[str]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = DeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Union[str, Any] ) -> Optional[int]: return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def a ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase__ = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( UpperCamelCase__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCAmelCase__ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def a ( self : Optional[int] ) -> Optional[Any]: lowerCAmelCase__ = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) lowerCAmelCase__ = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase__ = model(UpperCamelCase__ )
61
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0