|
from typing import Optional, Literal, Union |
|
|
|
from io import BytesIO |
|
import numpy as np |
|
import nibabel as nib |
|
import torch |
|
import torchvision |
|
import monai |
|
import monai.transforms |
|
from indexed_gzip import IndexedGzipFile |
|
from monai.data.image_reader import NibabelReader |
|
from monai.transforms.io.array import switch_endianness |
|
from monai.transforms.transform import MapTransform, Transform |
|
from monai.data import MetaTensor |
|
from monai.data.utils import correct_nifti_header_if_necessary |
|
from monai.config import KeysCollection, DtypeLike |
|
from monai.utils import ( |
|
ImageMetaKey, |
|
convert_to_dst_type, |
|
ensure_tuple_rep, |
|
ensure_tuple, |
|
) |
|
from monai.utils.enums import PostFix |
|
from huggingface_hub import HfFileSystem |
|
|
|
|
|
class LoadNIfTIFromLocalCache(Transform): |
|
def __init__( |
|
self, |
|
dtype: DtypeLike | None = np.float32, |
|
ensure_channel_first: bool = False, |
|
simple_keys: bool = False, |
|
prune_meta_pattern: str | None = None, |
|
prune_meta_sep: str = ".", |
|
): |
|
self.dtype = dtype |
|
self.ensure_channel_first = ensure_channel_first |
|
self.simple_keys = simple_keys |
|
self.pattern = prune_meta_pattern |
|
self.sep = prune_meta_sep |
|
|
|
self.reader = NibabelReader() |
|
|
|
def __call__(self, path: str): |
|
with open(path, mode="rb") as f: |
|
img = nib.Nifti1Image.from_stream( |
|
IndexedGzipFile(fileobj=BytesIO(f.read())) |
|
) |
|
|
|
img = correct_nifti_header_if_necessary(img) |
|
img_array, meta_data = self.reader.get_data(img) |
|
img_array = convert_to_dst_type(img_array, dst=img_array, dtype=self.dtype)[0] |
|
if not isinstance(meta_data, dict): |
|
raise ValueError(f"`meta_data` must be a dict, got type {type(meta_data)}.") |
|
|
|
meta_data = switch_endianness(meta_data, "<") |
|
|
|
meta_data[ImageMetaKey.FILENAME_OR_OBJ] = path |
|
img = MetaTensor.ensure_torch_and_prune_meta( |
|
img_array, |
|
meta_data, |
|
simple_keys=self.simple_keys, |
|
pattern=self.pattern, |
|
sep=self.sep, |
|
) |
|
if self.ensure_channel_first: |
|
img = monai.transforms.EnsureChannelFirst()(img) |
|
return img |
|
|
|
|
|
class LoadNIfTIFromLocalCached(MapTransform): |
|
def __init__( |
|
self, |
|
keys: KeysCollection, |
|
allow_missing_keys: bool = False, |
|
dtype: DtypeLike | None = np.float32, |
|
meta_keys: KeysCollection | None = None, |
|
meta_key_postfix: str = PostFix.meta(), |
|
overwriting: bool = False, |
|
ensure_channel_first: bool = False, |
|
simple_keys: bool = False, |
|
prune_meta_pattern: str | None = None, |
|
prune_meta_sep: str = ".", |
|
): |
|
super().__init__(keys, allow_missing_keys) |
|
self._loader = LoadNIfTIFromLocalCache( |
|
dtype=dtype, |
|
ensure_channel_first=ensure_channel_first, |
|
simple_keys=simple_keys, |
|
prune_meta_pattern=prune_meta_pattern, |
|
prune_meta_sep=prune_meta_sep, |
|
) |
|
if not isinstance(meta_key_postfix, str): |
|
raise TypeError( |
|
f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." |
|
) |
|
self.meta_keys = ( |
|
ensure_tuple_rep(None, len(self.keys)) |
|
if meta_keys is None |
|
else ensure_tuple(meta_keys) |
|
) |
|
if len(self.keys) != len(self.meta_keys): |
|
raise ValueError( |
|
f"meta_keys should have the same length as keys, got {len(self.keys)} and {len(self.meta_keys)}." |
|
) |
|
self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) |
|
self.overwriting = overwriting |
|
|
|
def __call__(self, data): |
|
d = dict(data) |
|
for key, meta_key, meta_key_postfix in self.key_iterator( |
|
d, self.meta_keys, self.meta_key_postfix |
|
): |
|
data = self._loader(d[key]) |
|
d[key] = data |
|
return d |
|
|
|
|
|
class LoadNIfTIFromHFHub(Transform): |
|
def __init__( |
|
self, |
|
dtype: DtypeLike | None = np.float32, |
|
ensure_channel_first: bool = False, |
|
simple_keys: bool = False, |
|
prune_meta_pattern: str | None = None, |
|
prune_meta_sep: str = ".", |
|
): |
|
self.dtype = dtype |
|
self.ensure_channel_first = ensure_channel_first |
|
self.simple_keys = simple_keys |
|
self.pattern = prune_meta_pattern |
|
self.sep = prune_meta_sep |
|
|
|
self.fs = HfFileSystem() |
|
self.reader = NibabelReader() |
|
|
|
def __call__(self, url: str): |
|
url = LoadNIfTIFromHFHub._convert_to_hffs_path(url) |
|
with self.fs.open(url, mode="rb") as f: |
|
img = nib.Nifti1Image.from_stream( |
|
IndexedGzipFile(fileobj=BytesIO(f.read())) |
|
) |
|
img = correct_nifti_header_if_necessary(img) |
|
img_array, meta_data = self.reader.get_data(img) |
|
img_array = convert_to_dst_type(img_array, dst=img_array, dtype=self.dtype)[0] |
|
if not isinstance(meta_data, dict): |
|
raise ValueError(f"`meta_data` must be a dict, got type {type(meta_data)}.") |
|
|
|
meta_data = switch_endianness(meta_data, "<") |
|
|
|
meta_data[ImageMetaKey.FILENAME_OR_OBJ] = url |
|
img = MetaTensor.ensure_torch_and_prune_meta( |
|
img_array, |
|
meta_data, |
|
simple_keys=self.simple_keys, |
|
pattern=self.pattern, |
|
sep=self.sep, |
|
) |
|
if self.ensure_channel_first: |
|
img = monai.transforms.EnsureChannelFirst()(img) |
|
return img |
|
|
|
@staticmethod |
|
def _convert_to_hffs_path(url: str): |
|
if url.startswith("https://huggingface.co/datasets/"): |
|
parts = url.split("/") |
|
return f"hf://{'/'.join(parts[3:6])}/{'/'.join(parts[8:])}" |
|
return url |
|
|
|
|
|
class LoadNIfTIFromHFHubd(MapTransform): |
|
def __init__( |
|
self, |
|
keys: KeysCollection, |
|
allow_missing_keys: bool = False, |
|
dtype: DtypeLike | None = np.float32, |
|
meta_keys: KeysCollection | None = None, |
|
meta_key_postfix: str = PostFix.meta(), |
|
overwriting: bool = False, |
|
ensure_channel_first: bool = False, |
|
simple_keys: bool = False, |
|
prune_meta_pattern: str | None = None, |
|
prune_meta_sep: str = ".", |
|
): |
|
super().__init__(keys, allow_missing_keys) |
|
self._loader = LoadNIfTIFromHFHub( |
|
dtype=dtype, |
|
ensure_channel_first=ensure_channel_first, |
|
simple_keys=simple_keys, |
|
prune_meta_pattern=prune_meta_pattern, |
|
prune_meta_sep=prune_meta_sep, |
|
) |
|
if not isinstance(meta_key_postfix, str): |
|
raise TypeError( |
|
f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." |
|
) |
|
self.meta_keys = ( |
|
ensure_tuple_rep(None, len(self.keys)) |
|
if meta_keys is None |
|
else ensure_tuple(meta_keys) |
|
) |
|
if len(self.keys) != len(self.meta_keys): |
|
raise ValueError( |
|
f"meta_keys should have the same length as keys, got {len(self.keys)} and {len(self.meta_keys)}." |
|
) |
|
self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) |
|
self.overwriting = overwriting |
|
|
|
def __call__(self, data): |
|
d = dict(data) |
|
for key, meta_key, meta_key_postfix in self.key_iterator( |
|
d, self.meta_keys, self.meta_key_postfix |
|
): |
|
data = self._loader(d[key]) |
|
d[key] = data |
|
return d |
|
|
|
|
|
class UnifyUnusualDICOM(Transform): |
|
""" |
|
Correct DICOM pixel_array if PixelRepresentation == 1 and BitsAllocated != BitsStored |
|
|
|
Steps: |
|
1. Convert data back to the original signed int16. |
|
2. Compute the number of bits to shift over (BitsShift = BitsAllocated - BitsStored) |
|
3. Left shift by BitsShift then right shift by BitsShift |
|
4. Convert data back to the default dtype for metatensor (float32) |
|
|
|
By default all dicom files in this dataset `rsna-2023-abdominal-trauma-detection` is in |
|
- uint16 if Pixel Representation = 0 |
|
- int16 if Pixel Representation = 1 |
|
Refer: https://dicom.innolitics.com/ciods/rt-dose/image-pixel/00280103 |
|
|
|
Warning: |
|
- Use this transform on the test set as we expect to take DICOM series as input instead of NIfTI. |
|
- The passed in metatensor must have the following DICOM metadata: |
|
- Pixel Representation |
|
- Bits Allocated |
|
- Bits Stored |
|
- To have a metatensor that has those metadata: |
|
- Set reader to be PydicomReader with prune_metadata=False, i.e., monai.transforms.LoadImaged(..., reader=PydicomReader(prune_metadata=False)) |
|
|
|
""" |
|
|
|
def __init__(self): |
|
self.DCM_ATTR2TAG = { |
|
"Bits Allocated": "00280100", |
|
"Bits Stored": "00280101", |
|
"Pixel Representation": "00280103", |
|
} |
|
|
|
def __call__(self, data): |
|
if not all([dcm_tag in data.meta for dcm_tag in self.DCM_ATTR2TAG.values()]): |
|
raise Exception( |
|
f"Attribute tags of {self.DCM_ATTR2TAG} must exist in the dicom metadata to use this transform `{self.__class__.__name__}. Hint: Set reader to be PydicomReader with prune_metadata=False, i.e., monai.transforms.LoadImaged(..., reader=PydicomReader(prune_metadata=False))`" |
|
) |
|
pixel_representation = data.meta[self.DCM_ATTR2TAG["Pixel Representation"]][ |
|
"Value" |
|
][0] |
|
bits_allocated = data.meta[self.DCM_ATTR2TAG["Bits Allocated"]]["Value"][0] |
|
bits_stored = data.meta[self.DCM_ATTR2TAG["Bits Stored"]]["Value"][0] |
|
data = UnifyUnusualDICOM._standardize_dicom_pixels( |
|
data, pixel_representation, bits_allocated, bits_stored |
|
) |
|
return data |
|
|
|
@staticmethod |
|
def _standardize_dicom_pixels( |
|
data: torch.Tensor, |
|
pixel_representation: int, |
|
bits_allocated: int, |
|
bits_stored: int, |
|
): |
|
bits_shift = bits_allocated - bits_stored |
|
|
|
if pixel_representation == 1 and bits_shift != 0: |
|
dtype_before = data.dtype |
|
dtype_shift = torch.int16 |
|
data = data.to(dtype_shift) |
|
data = (data << bits_shift).to(dtype_shift) >> bits_shift |
|
data = data.to(dtype_before) |
|
return data |
|
|
|
|
|
class UnifyUnusualDICOMd(MapTransform): |
|
def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): |
|
super().__init__(keys, allow_missing_keys) |
|
self._unify_unusual_dicom = UnifyUnusualDICOM() |
|
|
|
def __call__(self, data): |
|
d = dict(data) |
|
for key in self.key_iterator(d): |
|
data = self._unify_unusual_dicom(d[key]) |
|
d[key] = data |
|
return d |
|
|
|
|
|
class UnifyUnusualNIfTI(Transform): |
|
""" |
|
Correct NIfTI pixel values if PixelRepresentation == 1 and BitsAllocated != BitsStored. |
|
|
|
Steps: |
|
1. Convert data back to the original signed int16. |
|
2. Compute the number of bits to shift over (BitsShift = BitsAllocated - BitsStored) |
|
3. Left shift by BitsShift then right shift by BitsShift |
|
4. Convert data back to the default dtype for metatensor (float32) |
|
|
|
By default all dicom files in this dataset `rsna-2023-abdominal-trauma-detection` is in |
|
- uint16 if Pixel Representation = 0 |
|
- int16 if Pixel Representation = 1 |
|
Refer: https://dicom.innolitics.com/ciods/rt-dose/image-pixel/00280103 |
|
|
|
Warning: |
|
- This transform only works for DICOM series that has been converted to NIfTI format and |
|
has a precomputed csv file that tracks the series that has unusual DICOM pixel representation format (`potential_unusual_dicom_series_meta.csv`). |
|
- This transform is not applicable for data that we have not preprocess yet (e.g. test set) |
|
- Use a different custom transform for test set (e.g. `UnifyUnusualDICOM`) as we expect to take DICOM series as input instead of NIfTI |
|
|
|
Why do we this? |
|
- NIfTI file doesn't store the Pixel Representation, Bits Allocated, and Bits Stored metadata. |
|
- The reason behind using a NIfTI file is to allow for easier data loading during training phase. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
x_key: str = "img", |
|
metadata_key: str = "metadata", |
|
meta_pixel_representation_key: str = "pixel_representation", |
|
meta_bits_allocated_key: str = "bits_allocated", |
|
meta_bits_stored_key: str = "bits_stored", |
|
): |
|
self.x_key = x_key |
|
self.metadata_key = metadata_key |
|
self.pixel_representation_key = meta_pixel_representation_key |
|
self.bits_allocated_key = meta_bits_allocated_key |
|
self.bits_stored_key = meta_bits_stored_key |
|
|
|
def __call__(self, data): |
|
if not self.metadata_key in data or not self.x_key in data: |
|
raise KeyError( |
|
f"Key `{self.metadata_key}` of transform `{self.__class__.__name__}` was missing in the data." |
|
) |
|
|
|
if ( |
|
not self.pixel_representation_key in data[self.metadata_key] |
|
or not self.bits_allocated_key in data[self.metadata_key] |
|
or not self.bits_stored_key in data[self.metadata_key] |
|
): |
|
raise KeyError( |
|
f"Key `{self.pixel_representation_key}` or `{self.bits_allocated_key}` or `{self.bits_stored_key}` of transform `{self.__class__.__name__}` was missing in the metadata." |
|
) |
|
|
|
data[self.x_key] = UnifyUnusualNIfTI._standardize_dicom_pixels( |
|
data[self.x_key], |
|
data[self.metadata_key][self.pixel_representation_key], |
|
data[self.metadata_key][self.bits_allocated_key], |
|
data[self.metadata_key][self.bits_stored_key], |
|
) |
|
|
|
return data |
|
|
|
@staticmethod |
|
def _standardize_dicom_pixels( |
|
data: torch.Tensor, |
|
pixel_representation: int, |
|
bits_allocated: int, |
|
bits_stored: int, |
|
): |
|
bits_shift = bits_allocated - bits_stored |
|
|
|
if pixel_representation == 1 and bits_shift != 0: |
|
dtype_before = data.dtype |
|
dtype_shift = torch.int16 |
|
data = data.to(dtype_shift) |
|
data = (data << bits_shift).to(dtype_shift) >> bits_shift |
|
data = data.to(dtype_before) |
|
return data |
|
|
|
|
|
def volume_transforms( |
|
crop_strategy: Optional[ |
|
Literal["oversample", "center", "random", "none"] |
|
] = "oversample", |
|
voxel_spacing: tuple[float, float, float] = (3.0, 3.0, 3.0), |
|
volume_size: tuple[int, int, int] = (96, 96, 96), |
|
axcodes: str = "RAS", |
|
streaming: bool = False, |
|
): |
|
transform_steps = [ |
|
LoadNIfTIFromHFHubd(keys=["img", "seg"], allow_missing_keys=True) |
|
if streaming |
|
else LoadNIfTIFromLocalCached(keys=["img", "seg"], allow_missing_keys=True), |
|
monai.transforms.EnsureTyped( |
|
keys=["img", "seg"], |
|
data_type="tensor", |
|
dtype=torch.float32, |
|
allow_missing_keys=True, |
|
), |
|
UnifyUnusualNIfTI( |
|
x_key="img", |
|
metadata_key="metadata", |
|
meta_pixel_representation_key="pixel_representation", |
|
meta_bits_allocated_key="bits_allocated", |
|
meta_bits_stored_key="bits_stored", |
|
), |
|
monai.transforms.EnsureChannelFirstd( |
|
keys=["img", "seg"], allow_missing_keys=True |
|
), |
|
monai.transforms.Orientationd( |
|
keys=["img", "seg"], axcodes=axcodes, allow_missing_keys=True |
|
), |
|
monai.transforms.Spacingd( |
|
keys=["img", "seg"], |
|
pixdim=voxel_spacing, |
|
mode=["bilinear", "nearest"], |
|
allow_missing_keys=True, |
|
), |
|
monai.transforms.NormalizeIntensityd(keys=["img"], nonzero=False), |
|
monai.transforms.ScaleIntensityd(keys=["img"], minv=-1.0, maxv=1.0), |
|
monai.transforms.SpatialPadd( |
|
keys=["img", "seg"], spatial_size=volume_size, allow_missing_keys=True |
|
), |
|
] |
|
|
|
if crop_strategy == "oversample": |
|
transform_steps.append( |
|
monai.transforms.RandSpatialCropSamplesd( |
|
keys=["img", "seg"], |
|
roi_size=volume_size, |
|
num_samples=3, |
|
random_center=True, |
|
random_size=False, |
|
allow_missing_keys=True, |
|
) |
|
) |
|
elif crop_strategy == "random": |
|
transform_steps.append( |
|
monai.transforms.RandSpatialCropd( |
|
keys=["img", "seg"], |
|
roi_size=volume_size, |
|
random_center=True, |
|
random_size=False, |
|
allow_missing_keys=True, |
|
) |
|
) |
|
elif crop_strategy == "center": |
|
transform_steps.append( |
|
monai.transforms.CenterSpatialCropd( |
|
keys=["img", "seg"], roi_size=volume_size, allow_missing_keys=True |
|
) |
|
) |
|
elif crop_strategy == "none" or crop_strategy is None: |
|
pass |
|
else: |
|
raise ValueError( |
|
f"crop_strategy must be one of ['oversample', 'center', 'random', 'none'], got {crop_strategy}." |
|
) |
|
|
|
return monai.transforms.Compose(transform_steps) |
|
|
|
|
|
def slice_transforms( |
|
crop_strategy: Literal["ten", "five", "center", "random"] = "ten", |
|
shorter_edge_length: int = 256, |
|
slice_size: tuple[int, int] = (224, 224), |
|
) -> torchvision.transforms.Compose: |
|
if crop_strategy == "ten": |
|
return torchvision.transforms.Compose( |
|
[ |
|
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), |
|
torchvision.transforms.TenCrop(size=slice_size), |
|
] |
|
) |
|
|
|
elif crop_strategy == "five": |
|
return torchvision.transforms.Compose( |
|
[ |
|
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), |
|
torchvision.transforms.FiveCrop(size=slice_size), |
|
] |
|
) |
|
|
|
elif crop_strategy == "center": |
|
return torchvision.transforms.Compose( |
|
[ |
|
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), |
|
torchvision.transforms.CenterCrop(size=slice_size), |
|
] |
|
) |
|
elif crop_strategy == "random": |
|
return torchvision.transforms.Compose( |
|
[ |
|
torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), |
|
torchvision.transforms.RandomCrop(size=slice_size), |
|
] |
|
) |
|
|
|
else: |
|
raise ValueError( |
|
f"crop_strategy must be one of ['ten', 'five', 'center', 'random'], got {crop_strategy}." |
|
) |
|
|