jherng commited on
Commit
7a6945d
·
1 Parent(s): 6031cf5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -192,6 +192,36 @@ It is tailored for segmentation and classification tasks. It contains 3 differen
192
 
193
  All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
  ## Dataset Structure
196
 
197
  ### Data Instances
@@ -308,6 +338,9 @@ Modify the split proportion:
308
  rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
309
  ```
310
 
 
 
 
311
  ### Citation Information
312
 
313
  - Preprocessed dataset:
 
192
 
193
  All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
194
 
195
+ ### Usage
196
+
197
+ ```python
198
+ from datasets import load_dataset
199
+
200
+ # Classification dataset
201
+ rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=True) # "classification" is the default configuration
202
+ rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True) # download dataset on-demand and in-memory (no caching)
203
+ rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=False) # download dataset and cache locally (~90.09 GiB)
204
+ rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True, test_size=0.05, random_state=42) # specify split size for train-test split
205
+
206
+ # Classification dataset with segmentation masks
207
+ rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=True) # download dataset on-demand and in-memory (no caching)
208
+ rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False) # download dataset and cache locally (~3.91 GiB)
209
+ rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False, test_size=0.05, random_state=42) # specify split size for train-test split
210
+
211
+ # Segmentation dataset
212
+ rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True) # download dataset on-demand and in-memory (no caching)
213
+ rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=False) # download dataset and cache locally (~3.91 GiB)
214
+ rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True, test_size=0.1, random_state=42) # specify split size for train-test split
215
+
216
+ # Get the dataset splits
217
+ train_rsna_cls_ds = rsna_cls_ds["train"]; test_rsna_cls_ds = rsna_cls_ds["test"]
218
+ train_rsna_clsmask_ds = rsna_clsmask_ds["train"]; test_rsna_clsmask_ds = rsna_clsmask_ds["test"]
219
+ train_rsna_seg_ds = rsna_seg_ds["train"]; test_rsna_seg_ds = rsna_seg_ds["test"]
220
+
221
+ # Tip: Download speed up with multiprocessing
222
+ rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=False, num_proc=8) # num_proc: num of cpu core used for loading the dataset
223
+ ```
224
+
225
  ## Dataset Structure
226
 
227
  ### Data Instances
 
338
  rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
339
  ```
340
 
341
+
342
+ ## Additional Information
343
+
344
  ### Citation Information
345
 
346
  - Preprocessed dataset: