File size: 33,424 Bytes
e748721 4845aec 7236a53 e748721 4845aec 173a0de 4845aec c1daf1d 4845aec ab290d0 c740f03 4845aec c740f03 4845aec c740f03 4845aec c740f03 059e5ac c740f03 059e5ac 4845aec c740f03 4845aec c740f03 4845aec 173a0de c1daf1d 173a0de 3c3e56c 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de c740f03 173a0de 82791b1 173a0de 82791b1 173a0de 82791b1 173a0de 82791b1 173a0de 82791b1 173a0de 82791b1 173a0de 059e5ac 173a0de 4845aec 059e5ac c1daf1d 5f2702b 059e5ac c1daf1d 5f2702b 059e5ac c1daf1d 5f2702b 059e5ac c1daf1d 5f2702b 059e5ac c1daf1d 5f2702b 059e5ac c1daf1d 5f2702b 059e5ac 4845aec 3c3e56c 4845aec ab290d0 c740f03 ab290d0 4845aec 173a0de 4845aec 173a0de 0c783e7 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec 173a0de 08c2e42 173a0de 3c3e56c ab290d0 173a0de 4845aec 173a0de 4845aec 173a0de 4845aec c1daf1d 173a0de 4845aec 173a0de 82791b1 136e542 173a0de 82791b1 835c2f7 82791b1 4845aec 835c2f7 4845aec 82791b1 835c2f7 173a0de 4845aec c1daf1d 4845aec 173a0de 4845aec c1daf1d 4845aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
# Copyright 2023 Andre Barbosa, Igor Cataneo Silveira & The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import math
import os
import re
import datasets
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
from tqdm.auto import tqdm
np.random.seed(42) # Set the seed
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
TODO
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_URLS = {
"sourceAOnly": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
"sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/blob/main/sourceB.tar.gz",
"PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz"
}
PROMPTS_TO_IGNORE = [
"brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista",
"carta-convite-discutir-discriminacao-na-escola",
"informacao-no-rotulo-de-produtos-transgenicos",
]
# Essays to Ignore
ESSAY_TO_IGNORE = [
"direitos-em-conflito-liberdade-de-expressao-e-intimidade/2.html",
"terceirizacao-avanco-ou-retrocesso/2.html",
"artes-e-educacao-fisica-opcionais-ou-obrigatorias/2.html",
"violencia-e-drogas-o-papel-do-usuario/0.html",
"internacao-compulsoria-de-dependentes-de-crack/0.html",
]
CSV_HEADER = [
"id",
"id_prompt",
"prompt",
"supporting_text",
"title",
"essay",
"grades",
"general",
"specific",
"essay_year",
]
CSV_HEADERPROPOR = [
"id",
"id_prompt",
"title",
"essay",
"grades",
"essay_year",
]
SOURCE_A_DESC = """
Source A have 860 essays available from August 2015 to March 2020.
For each month of that period, a new prompt together with supporting texts were given, and the graded essays from the previous month were made available.
Of the 56 prompts, 12 had no associated essays available (at the time of download).
Additionally, there were 3 prompts that asked for a text in the format of a letter. We removed those 15 prompts and associated texts from the corpus.
For an unknown reason, 414 of the essays were graded using a five-point scale of either {0, 50, 100, 150, 200} or its scaled-down version going from 0 to 2.
To avoid introducing bias, we also discarded such instances, resulting in a dataset of 386 annotated essays with prompts and supporting texts (with each component being clearly identified).
Some of the essays used a six-point scale with 20 points instead of 40 points as the second class. As we believe this introduces minimal bias, we kept such essays and relabeled class 20 as class 40.
The original data contains comments from the annotators explaining their per-competence scores. They are included in our dataset.
"""
SOURCE_A_WITH_GRADERS = "Same as SourceA but augmented with reviwers contractors grade's. Each essay then have three grades: the downloaded one and each grader's feedback. "
SOURCE_B_DESC = """
Source B is very similar to Source A: a new prompt and supporting texts are made available every month along with the graded essays submitted in the previous month.
We downloaded HTML sources from 7,700 essays from May 2009 to May 2023. Essays released prior to June 2016 were graded on a five-point scale and consequently discarded.
This resulted in a corpus of approx. 3,200 graded essays on 83 different prompts.
Although in principle, Source B also provides supporting texts for students, none were available at the time the data was downloaded.
To mitigate this, we extracted supporting texts from the Essay-Br corpus, whenever possible, by manually matching prompts between the two corpora.
We ended up with approx. 1,000 essays containing both prompt and supporting texts, and approx. 2,200 essays containing only the respective prompt.
"""
PROPOR2024 = """
Splits used for PROPOR paper. It is a variation of sourceAWithGraders dataset. Post publication we noticed that there was an issue in the reproducible setting.
We fix that and set this config to keep reproducibility w.r.t. numbers reported in the paper.
"""
class AesEnemDataset(datasets.GeneratorBasedBuilder):
"""
AES Enem Dataset. For full explanation about generation process, please refer to: https://aclanthology.org/2024.propor-1.23/
We realized in our experiments that there was an issue in the determistic process regarding how the dataset is generated.
To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now.
"""
VERSION = datasets.Version("0.1.0")
# You will be able to load one or the other configurations in the following list with
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC),
datasets.BuilderConfig(
name="sourceAWithGraders", version=VERSION, description=SOURCE_A_WITH_GRADERS
),
datasets.BuilderConfig(
name="sourceB",
version=VERSION,
description=SOURCE_B_DESC,
),
datasets.BuilderConfig(name="PROPOR2024", version=VERSION, description=PROPOR2024),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"id_prompt": datasets.Value("string"),
"prompt": datasets.Value("string"),
"supporting_text": datasets.Value("string"),
"essay_title": datasets.Value("string"),
"essay_text": datasets.Value("string"),
"grades": datasets.Sequence(datasets.Value("int16")),
"essay_year": datasets.Value("int16"),
"general_comment": datasets.Value("string"),
"specific_comment": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _post_process_dataframe(self, filepath):
def map_year(year):
if year <= 2017:
return "<=2017"
return str(year)
def normalize_grades(grades):
grades = grades.strip("[]").split(", ")
grade_mapping = {"0.0": 0, "20": 40}
# We will remove the rows that match the criteria below
if any(
single_grade
in grades[:-1] # we ignore the sum, and only check the concetps
for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"]
):
return None
# Use the mapping to transform grades, ignoring the last grade
mapped_grades = [
int(grade_mapping.get(grade_concept, grade_concept))
for grade_concept in grades[:-1]
]
# Calculate and append the sum of the mapped grades as the last element
mapped_grades.append(sum(mapped_grades))
return mapped_grades
df = pd.read_csv(filepath)
df["general"] = df["general"].fillna("")
df["essay_year"] = df["essay_year"].astype("int")
df["mapped_year"] = df["essay_year"].apply(map_year)
df["grades"] = df["grades"].apply(normalize_grades)
df = df.dropna(subset=["grades"])
df = df[
~(df["id_prompt"] + "/" + df["id"]).isin(ESSAY_TO_IGNORE)
] # arbitrary removal of zero graded essays
df.to_csv(filepath, index=False)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
extracted_files = dl_manager.download_and_extract({self.config.name: urls})
if "PROPOR2024" == self.config.name:
base_path = extracted_files["PROPOR2024"]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(base_path, "propor2024/train.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(base_path, "propor2024/validation.csv"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(base_path, "propor2024/test.csv"),
"split": "test",
},
),
]
html_parser = self._process_html_files(extracted_files)
if "sourceA" in self.config.name:
self._post_process_dataframe(html_parser.sourceA)
self._generate_splits(html_parser.sourceA)
folder_sourceA = "/".join((html_parser.sourceA).split("/")[:-1])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(folder_sourceA, "train.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(folder_sourceA, "validation.csv"),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(folder_sourceA, "test.csv"),
"split": "test",
},
),
]
elif self.config.name == "sourceB":
self._post_process_dataframe(html_parser.sourceB)
return [
datasets.SplitGenerator(
name="full",
gen_kwargs={
"filepath": html_parser.sourceB,
"split": "full",
},
),
]
def _process_html_files(self, paths_dict):
html_parser = HTMLParser(paths_dict)
html_parser.parse(self.config.name)
return html_parser
def _parse_graders_data(self, dirname):
map_grades = {"0": 0, "1": 40, "2": 80, "3": 120, "4": 160, "5": 200}
def map_list(grades_list):
result = [map_grades.get(item, None) for item in grades_list]
sum_grades = sum(result)
result.append(sum_grades)
return result
grader_a = pd.read_csv(f"{dirname}/GraderA.csv")
grader_b = pd.read_csv(f"{dirname}/GraderB.csv")
for grader in [grader_a, grader_b]:
grader.grades = grader.grades.apply(lambda x: x.strip("[]").split(", "))
grader.grades = grader.grades.apply(map_list)
return grader_a, grader_b
def _generate_splits(self, filepath: str, train_size=0.7):
df = pd.read_csv(filepath)
buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
df.drop("mapped_year", axis=1, inplace=True)
train_set = []
val_set = []
test_set = []
for year, prompts in buckets.items():
np.random.shuffle(prompts)
num_prompts = len(prompts)
# All prompts go to the test if less than 3
if num_prompts <= 3:
train_set.append(df[df["id_prompt"].isin([prompts[0]])])
val_set.append(df[df["id_prompt"].isin([prompts[1]])])
test_set.append(df[df["id_prompt"].isin([prompts[2]])])
continue
# Determine the number of prompts for each set based on train_size and remaining prompts
num_train = math.floor(num_prompts * train_size)
num_val_test = num_prompts - num_train
num_val = num_val_test // 2
num_test = num_val_test - num_val
# Assign prompts to each set
train_set.append(df[df["id_prompt"].isin(prompts[:num_train])])
val_set.append(
df[df["id_prompt"].isin(prompts[num_train : (num_train + num_val)])]
)
test_set.append(
df[
df["id_prompt"].isin(
prompts[
(num_train + num_val) : (num_train + num_val + num_test)
]
)
]
)
# Convert lists of groups to DataFrames
train_df = pd.concat(train_set)
val_df = pd.concat(val_set)
test_df = pd.concat(test_set)
dirname = os.path.dirname(filepath)
if self.config.name == "sourceAWithGraders":
grader_a, grader_b = self._parse_graders_data(dirname)
grader_a_data = pd.merge(
train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
grader_a.drop(columns=['essay']),
on=["id", "id_prompt"],
how="inner",
)
grader_b_data = pd.merge(
train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
grader_b.drop(columns=['essay']),
on=["id", "id_prompt"],
how="inner",
)
train_df = pd.concat([train_df, grader_a_data])
train_df = pd.concat([train_df, grader_b_data])
grader_a_data = pd.merge(
val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
grader_a.drop(columns=['essay']),
on=["id", "id_prompt"],
how="inner",
)
grader_b_data = pd.merge(
val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
grader_b.drop(columns=['essay']),
on=["id", "id_prompt"],
how="inner",
)
val_df = pd.concat([val_df, grader_a_data])
val_df = pd.concat([val_df, grader_b_data])
grader_a_data = pd.merge(
test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
grader_a.drop(columns=['essay']),
on=["id", "id_prompt"],
how="inner",
)
grader_b_data = pd.merge(
test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
grader_b.drop(columns=['essay']),
on=["id", "id_prompt"],
how="inner",
)
test_df = pd.concat([test_df, grader_a_data])
test_df = pd.concat([test_df, grader_b_data])
# Data Validation Assertions
assert (
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
), "Overlap between train and val id_prompt"
assert (
len(set(train_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
), "Overlap between train and test id_prompt"
assert (
len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
), "Overlap between val and test id_prompt"
#train_df['essay_year'] = train_df['essay_year'].astype(int)
train_df.to_csv(f"{dirname}/train.csv", index=False)
val_df.to_csv(f"{dirname}/validation.csv", index=False)
test_df.to_csv(f"{dirname}/test.csv", index=False)
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
if self.config.name == "PROPOR2024":
with open(filepath, encoding="utf-8") as csvfile:
next(csvfile)
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADERPROPOR)
for i, row in enumerate(csv_reader):
grades = row["grades"].strip("[]")
grades = grades.split()
yield i, {
"id": row["id"],
"id_prompt": row["id_prompt"],
"essay_title": row["title"],
"essay_text": row["essay"],
"grades": grades,
"essay_year": row["essay_year"],
}
else:
with open(filepath, encoding="utf-8") as csvfile:
next(csvfile)
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER)
for i, row in enumerate(csv_reader):
grades = row["grades"].strip("[]")
grades = grades.split(", ")
yield i, {
"id": row["id"],
"id_prompt": row["id_prompt"],
"prompt": row['prompt'],
"supporting_text": row["supporting_text"],
"essay_title": row["title"],
"essay_text": row["essay"],
"grades": grades,
"essay_year": row["essay_year"],
"general_comment": row["general"],
"specific_comment": row["specific"],
}
class HTMLParser:
def __init__(self, paths_dict):
self.paths_dict = paths_dict
self.sourceA = None
self.sourceB = None
def apply_soup(self, filepath, num):
# recebe uma URL, salva o HTML dessa página e retorna o soup dela
file = open(os.path.join(filepath, num), "r", encoding="utf8")
conteudo = file.read()
soup = BeautifulSoup(conteudo, "html.parser")
return soup
def _get_title(self, soup):
if self.sourceA:
title = soup.find("div", class_="container-composition")
if title is None:
title = soup.find("h1", class_="pg-color10").get_text()
else:
title = title.h2.get_text()
title = title.replace("\xa0", "")
return title.replace(";", ",")
elif self.sourceB:
title = soup.find("h1", class_="titulo-conteudo").get_text()
return title.strip("- Banco de redações").strip()
def _get_grades(self, soup):
if self.sourceA:
grades = soup.find("section", class_="results-table")
final_grades = []
if grades is not None:
grades = grades.find_all("span", class_="points")
assert len(grades) == 6, f"Missing grades: {len(grades)}"
for single_grade in grades:
grade = int(single_grade.get_text())
final_grades.append(grade)
assert final_grades[-1] == sum(
final_grades[:-1]
), "Grading sum is not making sense"
else:
grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
grades_sum = float(
soup.find("th", class_="noBorder-left").get_text().replace(",", ".")
)
grades = grades.find_all("td")[:10]
for idx in range(1, 10, 2):
grade = float(grades[idx].get_text().replace(",", "."))
final_grades.append(grade)
assert grades_sum == sum(
final_grades
), "Grading sum is not making sense"
final_grades.append(grades_sum)
return final_grades
elif self.sourceB:
table = soup.find("table", {"id": "redacoes_corrigidas"})
grades = table.find_all("td", class_="simple-td")
grades = grades[3:]
result = []
for single_grade in grades:
result.append(int(single_grade.get_text()))
assert len(result) == 5, "We should have 5 Grades (one per concept) only"
result.append(sum(result)) # Add sum as a sixt element to keep the same pattern
return result
def _get_general_comment(self, soup):
if self.sourceA:
def get_general_comment_aux(soup):
result = soup.find("article", class_="list-item c")
if result is not None:
result = result.find("div", class_="description")
return result.get_text()
else:
result = soup.find("p", style="margin: 0px 0px 11px;")
if result is not None:
return result.get_text()
else:
result = soup.find("p", style="margin: 0px;")
if result is not None:
return result.get_text()
else:
result = soup.find(
"p", style="margin: 0px; text-align: justify;"
)
if result is not None:
return result.get_text()
else:
return ""
text = soup.find("div", class_="text")
if text is not None:
text = text.find("p")
if (text is None) or (len(text.get_text()) < 2):
return get_general_comment_aux(soup)
return text.get_text()
else:
return get_general_comment_aux(soup)
elif self.sourceB:
return ""
def _get_specific_comment(self, soup, general_comment):
if self.sourceA:
result = soup.find("div", class_="text")
cms = []
if result is not None:
result = result.find_all("li")
if result != []:
for item in result:
text = item.get_text()
if text != "\xa0":
cms.append(text)
else:
result = soup.find("div", class_="text").find_all("p")
for item in result:
text = item.get_text()
if text != "\xa0":
cms.append(text)
else:
result = soup.find_all("article", class_="list-item c")
if len(result) < 2:
return ["First if"]
result = result[1].find_all("p")
for item in result:
text = item.get_text()
if text != "\xa0":
cms.append(text)
specific_comment = cms.copy()
if general_comment in specific_comment:
specific_comment.remove(general_comment)
if (len(specific_comment) > 1) and (len(specific_comment[0]) < 2):
specific_comment = specific_comment[1:]
return self._clean_list(specific_comment)
elif self.sourceB:
return ""
def _get_essay(self, soup):
if self.sourceA:
essay = soup.find("div", class_="text-composition")
result = []
if essay is not None:
essay = essay.find_all("p")
for f in essay:
while f.find("span", style="color:#00b050") is not None:
f.find("span", style="color:#00b050").decompose()
while f.find("span", class_="certo") is not None:
f.find("span", class_="certo").decompose()
for paragraph in essay:
result.append(paragraph.get_text())
else:
essay = soup.find("div", {"id": "texto"})
essay.find("section", class_="list-items").decompose()
essay = essay.find_all("p")
for f in essay:
while f.find("span", class_="certo") is not None:
f.find("span", class_="certo").decompose()
for paragraph in essay:
result.append(paragraph.get_text())
return "\n".join(self._clean_list(result))
elif self.sourceB:
table = soup.find("article", class_="texto-conteudo entire")
table = soup.find("div", class_="area-redacao-corrigida")
if table is None:
result = None
else:
for span in soup.find_all("span"):
span.decompose()
result = table.find_all("p")
result = " ".join(
[paragraph.get_text().replace("\xa0","").strip() for paragraph in result]
)
return result
def _get_essay_year(self, soup):
if self.sourceA:
pattern = r"redações corrigidas - \w+/\d+"
first_occurrence = re.search(pattern, soup.get_text().lower())
matched_url = first_occurrence.group(0) if first_occurrence else None
year_pattern = r"\d{4}"
return re.search(year_pattern, matched_url).group(0)
elif self.sourceB:
pattern = r"Enviou seu texto em.*?(\d{4})"
match = re.search(pattern, soup.get_text())
return match.group(1) if match else -1
def _clean_title(self, title):
if self.sourceA:
smaller_index = title.find("[")
if smaller_index == -1:
return title
else:
bigger_index = title.find("]")
new_title = title[:smaller_index] + title[bigger_index + 1 :]
return self._clean_title(new_title.replace(" ", " "))
elif self.sourceB:
return title
def _clean_list(self, list):
if list == []:
return []
else:
new_list = []
for phrase in list:
phrase = (
phrase.replace("\xa0", "").replace(" ,", ",").replace(" .", ".")
)
while phrase.find(" ") != -1:
phrase = phrase.replace(" ", " ")
if len(phrase) > 1:
new_list.append(phrase)
return new_list
def _clean_string(self, sentence):
sentence = sentence.replace("\xa0","").replace("\u200b","")
sentence = sentence.replace(".",". ").replace("?","? ").replace("!", "! ").replace(")",") ").replace(":",": ").replace("”", "” ")
sentence = sentence.replace(" ", " ").replace(". . . ", "...")
sentence = sentence.replace("(editado)", "").replace("(Editado)","")
sentence = sentence.replace("(editado e adaptado)", "").replace("(Editado e adaptado)", "")
sentence = sentence.replace(". com. br", ".com.br")
sentence = sentence.replace("[Veja o texto completo aqui]", "")
return sentence
def _get_supporting_text(self, soup):
if self.sourceA:
textos = soup.find_all("ul", class_="article-wording-item")
resposta = []
for t in textos[:-1]:
resposta.append(t.find("h3", class_="item-titulo").get_text().replace("\xa0",""))
resposta.append(self._clean_string(t.find("div", class_="item-descricao").get_text()))
return resposta
else:
return ""
def _get_prompt(self, soup):
if self.sourceA:
prompt = soup.find("div", class_="text").find_all("p")
if len(prompt[0].get_text()) < 2:
return [prompt[1].get_text().replace("\xa0","")]
else:
return [prompt[0].get_text().replace("\xa0","")]
else:
return ""
def parse(self, config_name):
for key, filepath in self.paths_dict.items():
if key != config_name:
continue # TODO improve later, we will only support a single config at a time
if "sourceA" in config_name:
self.sourceA = f"{filepath}/sourceA/sourceA.csv"
elif config_name == "sourceB":
self.sourceB = f"{filepath}/sourceB/sourceB.csv"
file = self.sourceA if self.sourceA else self.sourceB
file_dir = "/".join((file).split("/")[:-1])
sorted_files = sorted(os.listdir(file_dir))
with open(file, "w", newline="", encoding="utf8") as final_file:
writer = csv.writer(final_file)
writer.writerow(CSV_HEADER)
sub_folders = [
name for name in sorted_files if not name.endswith(".csv")
]
essay_id = 0
essay_title = None
essay_text = None
essay_grades = None
general_comment = None
specific_comment = None
essay_year = None
for prompt_folder in tqdm(
sub_folders,
desc=f"Parsing HTML files from: {key}",
total=len(sub_folders),
):
if prompt_folder in PROMPTS_TO_IGNORE:
continue
prompt = os.path.join(file_dir, prompt_folder)
sorted_prompts = sorted(os.listdir(prompt))
prompt_essays = [name for name in sorted_prompts]
essay_year = self._get_essay_year(
self.apply_soup(prompt, "Prompt.html")
)
essay_supporting_text = "\n".join(self._get_supporting_text(
self.apply_soup(prompt, "Prompt.html")
))
essay_prompt = "\n".join(self._get_prompt(
self.apply_soup(prompt, "Prompt.html")
))
for essay in prompt_essays:
soup_text = self.apply_soup(prompt, essay)
if essay == "Prompt.html":
continue
essay_title = self._clean_title(self._get_title(soup_text))
essay_grades = self._get_grades(soup_text)
essay_text = self._get_essay(soup_text)
general_comment = self._get_general_comment(soup_text).strip()
specific_comment = self._get_specific_comment(
soup_text, general_comment
)
writer.writerow(
[
essay,
prompt_folder,
essay_prompt,
essay_supporting_text,
essay_title,
essay_text,
essay_grades,
general_comment,
specific_comment,
essay_year,
]
)
essay_id += 1
|