File size: 33,424 Bytes
e748721
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7236a53
e748721
 
 
 
 
 
 
4845aec
 
 
 
 
 
173a0de
 
 
 
 
 
 
 
 
 
4845aec
 
 
c1daf1d
 
4845aec
 
 
 
 
 
 
 
ab290d0
 
 
 
 
 
 
 
 
c740f03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4845aec
 
c740f03
 
 
 
 
 
4845aec
c740f03
4845aec
 
 
c740f03
059e5ac
c740f03
059e5ac
4845aec
 
 
c740f03
4845aec
c740f03
4845aec
 
 
173a0de
 
 
 
c1daf1d
 
173a0de
 
 
 
3c3e56c
 
173a0de
 
 
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173a0de
4845aec
 
 
 
 
 
 
 
 
 
 
173a0de
 
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173a0de
 
 
 
 
 
 
 
 
c740f03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173a0de
82791b1
173a0de
 
82791b1
173a0de
 
 
 
 
82791b1
173a0de
 
 
 
 
 
 
82791b1
173a0de
 
 
 
 
 
82791b1
173a0de
 
 
 
 
 
 
 
 
 
82791b1
173a0de
 
 
 
 
 
 
 
 
 
059e5ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173a0de
 
 
 
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
059e5ac
 
 
 
c1daf1d
5f2702b
059e5ac
 
 
 
c1daf1d
5f2702b
059e5ac
 
 
 
 
 
 
c1daf1d
5f2702b
059e5ac
 
 
 
c1daf1d
5f2702b
059e5ac
 
 
 
 
 
 
c1daf1d
5f2702b
059e5ac
 
 
 
c1daf1d
5f2702b
059e5ac
 
 
 
 
4845aec
 
 
 
 
 
 
 
 
 
3c3e56c
4845aec
 
 
 
 
 
ab290d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c740f03
ab290d0
 
 
 
 
 
 
 
 
 
 
 
 
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173a0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4845aec
173a0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c783e7
 
173a0de
 
 
 
 
 
 
4845aec
173a0de
4845aec
 
173a0de
4845aec
 
 
173a0de
4845aec
 
 
173a0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4845aec
173a0de
 
4845aec
173a0de
 
 
4845aec
173a0de
 
 
 
 
 
 
 
 
 
 
 
 
4845aec
173a0de
 
 
 
4845aec
 
 
 
173a0de
 
 
 
 
 
 
 
 
 
 
 
4845aec
173a0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c2e42
173a0de
 
 
 
 
 
 
 
 
3c3e56c
ab290d0
173a0de
4845aec
 
173a0de
 
 
 
 
 
 
 
 
 
 
4845aec
 
173a0de
 
 
 
 
 
 
 
 
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1daf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173a0de
4845aec
173a0de
 
82791b1
136e542
173a0de
82791b1
 
 
835c2f7
82791b1
4845aec
 
 
835c2f7
4845aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82791b1
835c2f7
 
173a0de
4845aec
 
c1daf1d
 
 
 
 
 
4845aec
 
 
 
173a0de
 
 
 
 
 
4845aec
 
 
 
 
c1daf1d
 
4845aec
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# Copyright 2023 Andre Barbosa, Igor Cataneo Silveira & The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import math
import os
import re

import datasets
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
from tqdm.auto import tqdm

np.random.seed(42)  # Set the seed

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
TODO
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""


_URLS = {
    "sourceAOnly": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
    "sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
    "sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/blob/main/sourceB.tar.gz",
    "PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz"
}


PROMPTS_TO_IGNORE = [
    "brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista",
    "carta-convite-discutir-discriminacao-na-escola",
    "informacao-no-rotulo-de-produtos-transgenicos",
]

# Essays to Ignore
ESSAY_TO_IGNORE = [
    "direitos-em-conflito-liberdade-de-expressao-e-intimidade/2.html",
    "terceirizacao-avanco-ou-retrocesso/2.html",
    "artes-e-educacao-fisica-opcionais-ou-obrigatorias/2.html",
    "violencia-e-drogas-o-papel-do-usuario/0.html",
    "internacao-compulsoria-de-dependentes-de-crack/0.html",
]

CSV_HEADER = [
    "id",
    "id_prompt",
    "prompt",
    "supporting_text",
    "title",
    "essay",
    "grades",
    "general",
    "specific",
    "essay_year",
]

CSV_HEADERPROPOR = [
    "id",
    "id_prompt",
    "title",
    "essay",
    "grades",
    "essay_year",
]

SOURCE_A_DESC = """
Source A have 860 essays available from August 2015 to March 2020.
For each month of that period, a new prompt together with supporting texts were given, and the graded essays from the previous month were made available.
Of the 56 prompts, 12 had no associated essays available (at the time of download).
Additionally, there were 3 prompts that asked for a text in the format of a letter. We removed those 15 prompts and associated texts from the corpus.
For an unknown reason, 414 of the essays were graded using a five-point scale of either {0, 50, 100, 150, 200} or its scaled-down version going from 0 to 2.
To avoid introducing bias, we also discarded such instances, resulting in a dataset of 386 annotated essays with prompts and supporting texts (with each component being clearly identified).
Some of the essays used a six-point scale with 20 points instead of 40 points as the second class. As we believe this introduces minimal bias, we kept such essays and relabeled class 20 as class 40.
The original data contains comments from the annotators explaining their per-competence scores. They are included in our dataset.
"""

SOURCE_A_WITH_GRADERS = "Same as SourceA but augmented with reviwers contractors grade's. Each essay then have three grades: the downloaded one and each grader's feedback. "

SOURCE_B_DESC = """
Source B is very similar to Source A: a new prompt and supporting texts are made available every month along with the graded essays submitted in the previous month.
We downloaded HTML sources from 7,700 essays from May 2009 to May 2023. Essays released prior to June 2016 were graded on a five-point scale and consequently discarded.
This resulted in a corpus of approx. 3,200 graded essays on 83 different prompts.

Although in principle, Source B also provides supporting texts for students, none were available at the time the data was downloaded.
To mitigate this, we extracted supporting texts from the Essay-Br corpus, whenever possible, by manually matching prompts between the two corpora.
We ended up with approx. 1,000 essays containing both prompt and supporting texts, and approx. 2,200 essays containing only the respective prompt.
"""

PROPOR2024 = """
Splits used for PROPOR paper. It is a variation of sourceAWithGraders dataset. Post publication we noticed that there was an issue in the reproducible setting.

We fix that and set this config to keep reproducibility w.r.t. numbers reported in the paper.
"""


class AesEnemDataset(datasets.GeneratorBasedBuilder):
    """
    AES Enem Dataset. For full explanation about generation process, please refer to: https://aclanthology.org/2024.propor-1.23/

    We realized in our experiments that there was an issue in the determistic process regarding how the dataset is generated.
    To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now.
    """

    VERSION = datasets.Version("0.1.0")

    # You will be able to load one or the other configurations in the following list with
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC),
        datasets.BuilderConfig(
            name="sourceAWithGraders", version=VERSION, description=SOURCE_A_WITH_GRADERS
        ),
        datasets.BuilderConfig(
            name="sourceB",
            version=VERSION,
            description=SOURCE_B_DESC,
        ),
        datasets.BuilderConfig(name="PROPOR2024", version=VERSION, description=PROPOR2024),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "id_prompt": datasets.Value("string"),
                "prompt": datasets.Value("string"),
                "supporting_text": datasets.Value("string"),
                "essay_title": datasets.Value("string"),
                "essay_text": datasets.Value("string"),
                "grades": datasets.Sequence(datasets.Value("int16")),
                "essay_year": datasets.Value("int16"),
                "general_comment": datasets.Value("string"),
                "specific_comment": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _post_process_dataframe(self, filepath):
        def map_year(year):
            if year <= 2017:
                return "<=2017"
            return str(year)

        def normalize_grades(grades):
            grades = grades.strip("[]").split(", ")
            grade_mapping = {"0.0": 0, "20": 40}

            # We will remove the rows that match the criteria below
            if any(
                single_grade
                in grades[:-1]  # we ignore the sum, and only check the concetps
                for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"]
            ):
                return None
            # Use the mapping to transform grades, ignoring the last grade
            mapped_grades = [
                int(grade_mapping.get(grade_concept, grade_concept))
                for grade_concept in grades[:-1]
            ]
            # Calculate and append the sum of the mapped grades as the last element
            mapped_grades.append(sum(mapped_grades))
            return mapped_grades

        df = pd.read_csv(filepath)
        df["general"] = df["general"].fillna("")
        df["essay_year"] = df["essay_year"].astype("int")
        df["mapped_year"] = df["essay_year"].apply(map_year)
        df["grades"] = df["grades"].apply(normalize_grades)
        df = df.dropna(subset=["grades"])
        df = df[
            ~(df["id_prompt"] + "/" + df["id"]).isin(ESSAY_TO_IGNORE)
        ]  # arbitrary removal of zero graded essays
        df.to_csv(filepath, index=False)

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        extracted_files = dl_manager.download_and_extract({self.config.name: urls})
        if "PROPOR2024" == self.config.name:
            base_path = extracted_files["PROPOR2024"]
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(base_path, "propor2024/train.csv"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(base_path, "propor2024/validation.csv"),
                        "split": "validation",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": os.path.join(base_path, "propor2024/test.csv"),
                        "split": "test",
                    },
                ),
            ]
        html_parser = self._process_html_files(extracted_files)
        if "sourceA" in self.config.name:
            self._post_process_dataframe(html_parser.sourceA)
            self._generate_splits(html_parser.sourceA)
            folder_sourceA = "/".join((html_parser.sourceA).split("/")[:-1])
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(folder_sourceA, "train.csv"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(folder_sourceA, "validation.csv"),
                        "split": "validation",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": os.path.join(folder_sourceA, "test.csv"),
                        "split": "test",
                    },
                ),
            ]
        elif self.config.name == "sourceB":
            self._post_process_dataframe(html_parser.sourceB)
            return [
                datasets.SplitGenerator(
                    name="full",
                    gen_kwargs={
                        "filepath": html_parser.sourceB,
                        "split": "full",
                    },
                ),
            ]

    def _process_html_files(self, paths_dict):
        html_parser = HTMLParser(paths_dict)
        html_parser.parse(self.config.name)
        return html_parser

    def _parse_graders_data(self, dirname):
        map_grades = {"0": 0, "1": 40, "2": 80, "3": 120, "4": 160, "5": 200}

        def map_list(grades_list):
            result = [map_grades.get(item, None) for item in grades_list]
            sum_grades = sum(result)
            result.append(sum_grades)
            return result

        grader_a = pd.read_csv(f"{dirname}/GraderA.csv")
        grader_b = pd.read_csv(f"{dirname}/GraderB.csv")
        for grader in [grader_a, grader_b]:
            grader.grades = grader.grades.apply(lambda x: x.strip("[]").split(", "))
            grader.grades = grader.grades.apply(map_list)

        return grader_a, grader_b

    def _generate_splits(self, filepath: str, train_size=0.7):
        df = pd.read_csv(filepath)
        buckets = df.groupby("mapped_year")["id_prompt"].unique().to_dict()
        df.drop("mapped_year", axis=1, inplace=True)
        train_set = []
        val_set = []
        test_set = []
        for year, prompts in buckets.items():
            np.random.shuffle(prompts)
            num_prompts = len(prompts)

            # All prompts go to the test if less than 3
            if num_prompts <= 3:
                train_set.append(df[df["id_prompt"].isin([prompts[0]])])
                val_set.append(df[df["id_prompt"].isin([prompts[1]])])
                test_set.append(df[df["id_prompt"].isin([prompts[2]])])
                continue

            # Determine the number of prompts for each set based on train_size and remaining prompts
            num_train = math.floor(num_prompts * train_size)
            num_val_test = num_prompts - num_train
            num_val = num_val_test // 2
            num_test = num_val_test - num_val

            # Assign prompts to each set
            train_set.append(df[df["id_prompt"].isin(prompts[:num_train])])
            val_set.append(
                df[df["id_prompt"].isin(prompts[num_train : (num_train + num_val)])]
            )
            test_set.append(
                df[
                    df["id_prompt"].isin(
                        prompts[
                            (num_train + num_val) : (num_train + num_val + num_test)
                        ]
                    )
                ]
            )

        # Convert lists of groups to DataFrames
        train_df = pd.concat(train_set)
        val_df = pd.concat(val_set)
        test_df = pd.concat(test_set)
        dirname = os.path.dirname(filepath)
        if self.config.name == "sourceAWithGraders":
            grader_a, grader_b = self._parse_graders_data(dirname)
            grader_a_data = pd.merge(
                train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
                grader_a.drop(columns=['essay']),
                on=["id", "id_prompt"],
                how="inner",
            )
            grader_b_data = pd.merge(
                train_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
                grader_b.drop(columns=['essay']),
                on=["id", "id_prompt"],
                how="inner",
            )
            train_df = pd.concat([train_df, grader_a_data])
            train_df = pd.concat([train_df, grader_b_data])

            grader_a_data = pd.merge(
                val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
                grader_a.drop(columns=['essay']),
                on=["id", "id_prompt"],
                how="inner",
            )
            grader_b_data = pd.merge(
                val_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
                grader_b.drop(columns=['essay']),
                on=["id", "id_prompt"],
                how="inner",
            )
            val_df = pd.concat([val_df, grader_a_data])
            val_df = pd.concat([val_df, grader_b_data])

            grader_a_data = pd.merge(
                test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
                grader_a.drop(columns=['essay']),
                on=["id", "id_prompt"],
                how="inner",
            )
            grader_b_data = pd.merge(
                test_df[["id", "id_prompt","essay", "prompt", "supporting_text"]],
                grader_b.drop(columns=['essay']),
                on=["id", "id_prompt"],
                how="inner",
            )
            test_df = pd.concat([test_df, grader_a_data])
            test_df = pd.concat([test_df, grader_b_data])
        # Data Validation Assertions
        assert (
            len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
        ), "Overlap between train and val id_prompt"
        assert (
            len(set(train_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
        ), "Overlap between train and test id_prompt"
        assert (
            len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
        ), "Overlap between val and test id_prompt"
        #train_df['essay_year'] = train_df['essay_year'].astype(int)
        train_df.to_csv(f"{dirname}/train.csv", index=False)
        val_df.to_csv(f"{dirname}/validation.csv", index=False)
        test_df.to_csv(f"{dirname}/test.csv", index=False)

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        if self.config.name == "PROPOR2024":
            with open(filepath, encoding="utf-8") as csvfile:
                next(csvfile)
                csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADERPROPOR)
                for i, row in enumerate(csv_reader):
                    grades = row["grades"].strip("[]")
                    grades = grades.split()
                    yield i, {
                        "id": row["id"],
                        "id_prompt": row["id_prompt"],
                        "essay_title": row["title"],
                        "essay_text": row["essay"],
                        "grades": grades,
                        "essay_year": row["essay_year"],
                    }
        else:
            with open(filepath, encoding="utf-8") as csvfile:
                next(csvfile)
                csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER)
                for i, row in enumerate(csv_reader):
                    grades = row["grades"].strip("[]")
                    grades = grades.split(", ")
                    yield i, {
                        "id": row["id"],
                        "id_prompt": row["id_prompt"],
                        "prompt": row['prompt'],
                        "supporting_text": row["supporting_text"],
                        "essay_title": row["title"],
                        "essay_text": row["essay"],
                        "grades": grades,
                        "essay_year": row["essay_year"],
                        "general_comment": row["general"],
                        "specific_comment": row["specific"],
                    }
            


class HTMLParser:
    def __init__(self, paths_dict):
        self.paths_dict = paths_dict
        self.sourceA = None
        self.sourceB = None

    def apply_soup(self, filepath, num):
        # recebe uma URL, salva o HTML dessa página e retorna o soup dela
        file = open(os.path.join(filepath, num), "r", encoding="utf8")
        conteudo = file.read()
        soup = BeautifulSoup(conteudo, "html.parser")
        return soup

    def _get_title(self, soup):
        if self.sourceA:
            title = soup.find("div", class_="container-composition")
            if title is None:
                title = soup.find("h1", class_="pg-color10").get_text()
            else:
                title = title.h2.get_text()
            title = title.replace("\xa0", "")
            return title.replace(";", ",")
        elif self.sourceB:
            title = soup.find("h1", class_="titulo-conteudo").get_text()
            return title.strip("- Banco de redações").strip()

    def _get_grades(self, soup):
        if self.sourceA:
            grades = soup.find("section", class_="results-table")
            final_grades = []
            if grades is not None:
                grades = grades.find_all("span", class_="points")
                assert len(grades) == 6, f"Missing grades: {len(grades)}"
                for single_grade in grades:
                    grade = int(single_grade.get_text())
                    final_grades.append(grade)
                assert final_grades[-1] == sum(
                    final_grades[:-1]
                ), "Grading sum is not making sense"
            else:
                grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
                grades_sum = float(
                    soup.find("th", class_="noBorder-left").get_text().replace(",", ".")
                )
                grades = grades.find_all("td")[:10]
                for idx in range(1, 10, 2):
                    grade = float(grades[idx].get_text().replace(",", "."))
                    final_grades.append(grade)
                assert grades_sum == sum(
                    final_grades
                ), "Grading sum is not making sense"
                final_grades.append(grades_sum)
            return final_grades
        elif self.sourceB:
            table = soup.find("table", {"id": "redacoes_corrigidas"})
            grades = table.find_all("td", class_="simple-td")
            grades = grades[3:]
            result = []
            for single_grade in grades:
                result.append(int(single_grade.get_text()))
            assert len(result) == 5, "We should have 5 Grades (one per concept) only"
            result.append(sum(result)) # Add sum as a sixt element to keep the same pattern
            return result

    def _get_general_comment(self, soup):
        if self.sourceA:

            def get_general_comment_aux(soup):
                result = soup.find("article", class_="list-item c")
                if result is not None:
                    result = result.find("div", class_="description")
                    return result.get_text()
                else:
                    result = soup.find("p", style="margin: 0px 0px 11px;")
                    if result is not None:
                        return result.get_text()
                    else:
                        result = soup.find("p", style="margin: 0px;")
                        if result is not None:
                            return result.get_text()
                        else:
                            result = soup.find(
                                "p", style="margin: 0px; text-align: justify;"
                            )
                            if result is not None:
                                return result.get_text()
                            else:
                                return ""

            text = soup.find("div", class_="text")
            if text is not None:
                text = text.find("p")
                if (text is None) or (len(text.get_text()) < 2):
                    return get_general_comment_aux(soup)
                return text.get_text()
            else:
                return get_general_comment_aux(soup)
        elif self.sourceB:
            return ""

    def _get_specific_comment(self, soup, general_comment):
        if self.sourceA:
            result = soup.find("div", class_="text")
            cms = []
            if result is not None:
                result = result.find_all("li")
                if result != []:
                    for item in result:
                        text = item.get_text()
                        if text != "\xa0":
                            cms.append(text)
                else:
                    result = soup.find("div", class_="text").find_all("p")
                    for item in result:
                        text = item.get_text()
                        if text != "\xa0":
                            cms.append(text)
            else:
                result = soup.find_all("article", class_="list-item c")
                if len(result) < 2:
                    return ["First if"]
                result = result[1].find_all("p")
                for item in result:
                    text = item.get_text()
                    if text != "\xa0":
                        cms.append(text)
            specific_comment = cms.copy()
            if general_comment in specific_comment:
                specific_comment.remove(general_comment)
                if (len(specific_comment) > 1) and (len(specific_comment[0]) < 2):
                    specific_comment = specific_comment[1:]
            return self._clean_list(specific_comment)
        elif self.sourceB:
            return ""

    def _get_essay(self, soup):
        if self.sourceA:
            essay = soup.find("div", class_="text-composition")
            result = []
            if essay is not None:
                essay = essay.find_all("p")
                for f in essay:
                    while f.find("span", style="color:#00b050") is not None:
                        f.find("span", style="color:#00b050").decompose()
                    while f.find("span", class_="certo") is not None:
                        f.find("span", class_="certo").decompose()
                for paragraph in essay:
                    result.append(paragraph.get_text())
            else:
                essay = soup.find("div", {"id": "texto"})
                essay.find("section", class_="list-items").decompose()
                essay = essay.find_all("p")
                for f in essay:
                    while f.find("span", class_="certo") is not None:
                        f.find("span", class_="certo").decompose()
                for paragraph in essay:
                    result.append(paragraph.get_text())
            return "\n".join(self._clean_list(result))
        elif self.sourceB:
            table = soup.find("article", class_="texto-conteudo entire")
            table = soup.find("div", class_="area-redacao-corrigida")
            if table is None:
                result = None
            else:
                for span in soup.find_all("span"):
                    span.decompose()
                result = table.find_all("p")
                result = " ".join(
                    [paragraph.get_text().replace("\xa0","").strip() for paragraph in result]
                )
            return result

    def _get_essay_year(self, soup):
        if self.sourceA:
            pattern = r"redações corrigidas - \w+/\d+"
            first_occurrence = re.search(pattern, soup.get_text().lower())
            matched_url = first_occurrence.group(0) if first_occurrence else None
            year_pattern = r"\d{4}"
            return re.search(year_pattern, matched_url).group(0)
        elif self.sourceB:
            pattern = r"Enviou seu texto em.*?(\d{4})"
            match = re.search(pattern, soup.get_text())
            return match.group(1) if match else -1

    def _clean_title(self, title):
        if self.sourceA:
            smaller_index = title.find("[")
            if smaller_index == -1:
                return title
            else:
                bigger_index = title.find("]")
                new_title = title[:smaller_index] + title[bigger_index + 1 :]
                return self._clean_title(new_title.replace("  ", " "))
        elif self.sourceB:
            return title

    def _clean_list(self, list):
        if list == []:
            return []
        else:
            new_list = []
            for phrase in list:
                phrase = (
                    phrase.replace("\xa0", "").replace(" ,", ",").replace(" .", ".")
                )
                while phrase.find("  ") != -1:
                    phrase = phrase.replace("  ", " ")
                if len(phrase) > 1:
                    new_list.append(phrase)
            return new_list

    def _clean_string(self, sentence):
        sentence = sentence.replace("\xa0","").replace("\u200b","")
        sentence = sentence.replace(".",". ").replace("?","? ").replace("!", "! ").replace(")",") ").replace(":",": ").replace("”", "” ")
        sentence = sentence.replace("  ", " ").replace(". . . ", "...")
        sentence = sentence.replace("(editado)", "").replace("(Editado)","")
        sentence = sentence.replace("(editado e adaptado)", "").replace("(Editado e adaptado)", "")
        sentence = sentence.replace(". com. br", ".com.br")
        sentence = sentence.replace("[Veja o texto completo aqui]", "")
        return sentence 

    def _get_supporting_text(self, soup):
        if self.sourceA:
            textos = soup.find_all("ul", class_="article-wording-item")
            resposta = []
            for t in textos[:-1]:
                resposta.append(t.find("h3", class_="item-titulo").get_text().replace("\xa0",""))
                resposta.append(self._clean_string(t.find("div", class_="item-descricao").get_text()))
            return resposta
        else:
            return ""
        
    def _get_prompt(self, soup):
        if self.sourceA:
            prompt = soup.find("div", class_="text").find_all("p")
            if len(prompt[0].get_text()) < 2:
                return [prompt[1].get_text().replace("\xa0","")]
            else:
                return [prompt[0].get_text().replace("\xa0","")]
        else: 
            return ""

    def parse(self, config_name):
        for key, filepath in self.paths_dict.items():
            if key != config_name:
                continue  # TODO improve later, we will only support a single config at a time
            if "sourceA" in config_name:
                self.sourceA = f"{filepath}/sourceA/sourceA.csv"
            elif config_name == "sourceB":
                self.sourceB = f"{filepath}/sourceB/sourceB.csv"
            file = self.sourceA if self.sourceA else self.sourceB
            file_dir = "/".join((file).split("/")[:-1])
            sorted_files = sorted(os.listdir(file_dir))
            with open(file, "w", newline="", encoding="utf8") as final_file:
                writer = csv.writer(final_file)
                writer.writerow(CSV_HEADER)
                sub_folders = [
                    name for name in sorted_files if not name.endswith(".csv")
                ]
                essay_id = 0
                essay_title = None
                essay_text = None
                essay_grades = None
                general_comment = None
                specific_comment = None
                essay_year = None
                for prompt_folder in tqdm(
                    sub_folders,
                    desc=f"Parsing HTML files from: {key}",
                    total=len(sub_folders),
                ):
                    if prompt_folder in PROMPTS_TO_IGNORE:
                        continue
                    prompt = os.path.join(file_dir, prompt_folder)
                    sorted_prompts = sorted(os.listdir(prompt))
                    prompt_essays = [name for name in sorted_prompts]
                    essay_year = self._get_essay_year(
                        self.apply_soup(prompt, "Prompt.html")
                    )
                    essay_supporting_text = "\n".join(self._get_supporting_text(
                        self.apply_soup(prompt, "Prompt.html")
                    ))
                    essay_prompt = "\n".join(self._get_prompt(
                        self.apply_soup(prompt, "Prompt.html")
                    ))
                    for essay in prompt_essays:
                        soup_text = self.apply_soup(prompt, essay)
                        if essay == "Prompt.html":
                            continue
                        essay_title = self._clean_title(self._get_title(soup_text))
                        essay_grades = self._get_grades(soup_text)
                        essay_text = self._get_essay(soup_text)
                        general_comment = self._get_general_comment(soup_text).strip()
                        specific_comment = self._get_specific_comment(
                            soup_text, general_comment
                        )
                        writer.writerow(
                            [
                                essay,
                                prompt_folder,
                                essay_prompt,
                                essay_supporting_text,
                                essay_title,
                                essay_text,
                                essay_grades,
                                general_comment,
                                specific_comment,
                                essay_year,
                            ]
                        )
                        essay_id += 1