Datasets:

OntoLAMA / README.md
lawhy's picture
Convert dataset to Parquet
d683a0d verified
|
raw
history blame
9.29 kB
metadata
license: apache-2.0
task_categories:
  - text-classification
tags:
  - Ontologies
  - Subsumption Inference
  - Natural Language Inference
  - Conceptual Knowledge
  - LMs-as-KBs
pretty_name: OntoLAMA
size_categories:
  - 1M<n<10M
language:
  - en
dataset_info:
  - config_name: bimnli
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': contradiction
              '1': entailment
    splits:
      - name: train
        num_bytes: 43363266
        num_examples: 235622
      - name: validation
        num_bytes: 4818648
        num_examples: 26180
      - name: test
        num_bytes: 2420273
        num_examples: 12906
    download_size: 34515774
    dataset_size: 50602187
  - config_name: doid-atomic-SI
    features:
      - name: v_sub_concept
        dtype: string
      - name: v_super_concept
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': negative_subsumption
              '1': positive_subsumption
      - name: axiom
        dtype: string
    splits:
      - name: train
        num_bytes: 15803053
        num_examples: 90500
      - name: validation
        num_bytes: 1978584
        num_examples: 11312
      - name: test
        num_bytes: 1977582
        num_examples: 11314
    download_size: 3184028
    dataset_size: 19759219
  - config_name: foodon-atomic-SI
    features:
      - name: v_sub_concept
        dtype: string
      - name: v_super_concept
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': negative_subsumption
              '1': positive_subsumption
      - name: axiom
        dtype: string
    splits:
      - name: train
        num_bytes: 128737404
        num_examples: 768486
      - name: validation
        num_bytes: 16090857
        num_examples: 96060
      - name: test
        num_bytes: 16098373
        num_examples: 96062
    download_size: 28499028
    dataset_size: 160926634
  - config_name: foodon-complex-SI
    features:
      - name: v_sub_concept
        dtype: string
      - name: v_super_concept
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': negative_subsumption
              '1': positive_subsumption
      - name: axiom
        dtype: string
      - name: anchor_axiom
        dtype: string
    splits:
      - name: train
        num_bytes: 2553731
        num_examples: 3754
      - name: validation
        num_bytes: 1271721
        num_examples: 1850
      - name: test
        num_bytes: 8926305
        num_examples: 13080
    download_size: 1064602
    dataset_size: 12751757
  - config_name: go-atomic-SI
    features:
      - name: v_sub_concept
        dtype: string
      - name: v_super_concept
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': negative_subsumption
              '1': positive_subsumption
      - name: axiom
        dtype: string
    splits:
      - name: train
        num_bytes: 152537233
        num_examples: 772870
      - name: validation
        num_bytes: 19060490
        num_examples: 96608
      - name: test
        num_bytes: 19069265
        num_examples: 96610
    download_size: 32379717
    dataset_size: 190666988
  - config_name: go-complex-SI
    features:
      - name: v_sub_concept
        dtype: string
      - name: v_super_concept
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': negative_subsumption
              '1': positive_subsumption
      - name: axiom
        dtype: string
      - name: anchor_axiom
        dtype: string
    splits:
      - name: train
        num_bytes: 45328802
        num_examples: 72318
      - name: validation
        num_bytes: 5671713
        num_examples: 9040
      - name: test
        num_bytes: 5667069
        num_examples: 9040
    download_size: 5059364
    dataset_size: 56667584
  - config_name: schemaorg-atomic-SI
    features:
      - name: v_sub_concept
        dtype: string
      - name: v_super_concept
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': negative_subsumption
              '1': positive_subsumption
      - name: axiom
        dtype: string
    splits:
      - name: train
        num_bytes: 103485
        num_examples: 808
      - name: validation
        num_bytes: 51523
        num_examples: 404
      - name: test
        num_bytes: 361200
        num_examples: 2830
    download_size: 82558
    dataset_size: 516208
configs:
  - config_name: bimnli
    data_files:
      - split: train
        path: bimnli/train-*
      - split: validation
        path: bimnli/validation-*
      - split: test
        path: bimnli/test-*

OntoLAMA: LAnguage Model Analysis for Ontology Subsumption Inference

Dataset Summary

OntoLAMA is a set of language model (LM) probing datasets for ontology subsumption inference. The work follows the "LMs-as-KBs" literature but focuses on conceptualised knowledge extracted from formalised KBs such as the OWL ontologies. Specifically, the subsumption inference (SI) task is introduced and formulated in the Natural Language Inference (NLI) style, where the sub-concept and the super-concept involved in a subsumption axiom are verbalised and fitted into a template to form the premise and hypothesis, respectively. The sampled axioms are verified through ontology reasoning. The SI task is further divided into Atomic SI and Complex SI where the former involves only atomic named concepts and the latter involves both atomic and complex concepts. Real-world ontologies of different scales and domains are used for constructing OntoLAMA and in total there are four Atomic SI datasets and two Complex SI datasets.

Links

Languages

The text in the dataset is in English, as used in the source ontologies. The associated BCP-47 code is en.

Dataset Structure

Data Instances

An example in the Atomic SI dataset created from the Gene Ontology (GO) is as follows:

{
    'v_sub_concept': 'ctpase activity',
    'v_super_concept': 'ribonucleoside triphosphate phosphatase activity',
    'label': 1,
    'axiom': 'SubClassOf(<http://purl.obolibrary.org/obo/GO_0043273> <http://purl.obolibrary.org/obo/GO_0017111>)'
}

An example in the Complex SI dataset created from the Food Ontology (FoodOn) is as follows:

{
    'v_sub_concept': 'ham and cheese sandwich that derives from some lima bean (whole)',
    'v_super_concept': 'lima bean substance',
    'label': 0,
    'axiom': 'SubClassOf(ObjectIntersectionOf(<http://purl.obolibrary.org/obo/FOODON_03307824> ObjectSomeValuesFrom(<http://purl.obolibrary.org/obo/RO_0001000> <http://purl.obolibrary.org/obo/FOODON_03302053>)) <http://purl.obolibrary.org/obo/FOODON_00002776>)',
    'anchor_axiom': 'EquivalentClasses(<http://purl.obolibrary.org/obo/FOODON_00002776> ObjectIntersectionOf(<http://purl.obolibrary.org/obo/FOODON_00002000> ObjectSomeValuesFrom(<http://purl.obolibrary.org/obo/RO_0001000> <http://purl.obolibrary.org/obo/FOODON_03302053>)) )'
}

An example in the biMNLI dataset created from the MNLI dataset is as follows:

{
    'premise': 'At the turn of the 19th century Los Angeles and Salt Lake City were among the burgeoning metropolises of the new American West.',
    'hypothesis': 'Salt Lake City was booming in the early 19th century.',
    'label': 1
}

Data Fields

SI Data Fields

  • v_sub_concept: verbalised sub-concept expression.
  • v_super_concept: verbalised super-concept expression.
  • label: a binary class label indicating whether two concepts really form a subsumption relationship (1 means yes).
  • axiom: a string representation of the original subsumption axiom which is useful for tracing back to the ontology.
  • anchor_axiom: (for complex SI only) a string representation of the anchor equivalence axiom used for sampling the axiom.

biMNLI Data Fields

  • premise: inheritated from the MNLI dataset.
  • hypothesis: inheritated from the MNLI dataset.
  • label: a binary class label indicating contradiction (0) or entailment (1).

Data Splits

Source #NamedConcepts #EquivAxioms #Dataset (Train/Dev/Test)
Schema.org 894 - Atomic SI: 808/404/2,830
DOID 11,157 - Atomic SI: 90,500/11,312/11,314
FoodOn 30,995 2,383 Atomic SI: 768,486/96,060/96,062
Complex SI: 3,754/1,850/13,080
GO 43,303 11,456 Atomic SI: 772,870/96,608/96,610
Complex SI: 72,318/9,040/9,040
MNLI - - biMNLI: 235,622/26,180/12,906

Citation Information

The relevant paper has been accepted at Findings of ACL 2023.

@inproceedings{he2023language,
  title={Language Model Analysis for Ontology Subsumption Inference},
  author={He, Yuan and Chen, Jiaoyan and Jimenez-Ruiz, Ernesto and Dong, Hang and Horrocks, Ian},
  booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
  pages={3439--3453},
  year={2023}
}

Contact

Yuan He (yuan.he(at)cs.ox.ac.uk)