datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
2.98M
likes
int64
0
6.71k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
47
createdAt
unknown
card
stringlengths
15
1M
OpenGVLab/GUI-Odyssey
OpenGVLab
"2024-11-20T12:34:13Z"
15,893
9
[ "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:json", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2406.08451", "region:us", "GUI" ]
null
"2024-06-13T07:21:10Z"
--- license: cc-by-4.0 language: - en tags: - GUI size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: all path: "all_anno.json" --- # Dataset Card for GUI Odyssey <!-- - **Homepage:** --> - **Repository:** https://github.com/OpenGVLab/GUI-Odyssey - **Paper:** https://arxiv.org/abs/2406.08451 - **Point of Contact:** [Wenqi Shao](mailto:[email protected]) ## Introduction GUI Odyssey is a comprehensive dataset for training and evaluating **cross-app** navigation agents. GUI Odyssey consists of 7,735 episodes from 6 mobile devices, spanning 6 types of cross-app tasks, 201 apps, and 1.4K app combos. ## Data Structure ### Data Fields Each field of annotation is as follows: * `episode_id`(str): the unique identifier of this episode. * `device_info`(dict): the detailed information of the virtual device from which the episode was collected. * `product`(str): the product name of the emulator. * `release_version`(str): the Android API level of the emulator. * `sdk_version`(str): the version of the software development kit used for the emulator. * `h`(int): the height of the device screen. * `w`(int): the width of the device screen. * `device_name`(str): the name of the virtual device, one of **Pixel Fold**, **Pixel Tablet**, **Pixel 8 Pro**, **Pixel 7 Pro**, **Medium Phone**, **Small Phone** * `task_info`(dict): the detailed information of the task from which the episode was collected. * `category`(str): the category of this task, one of **Multi_Apps**, **Web_Shopping**, **General_Tool**, **Information_Management**, **Media_Entertainment**, **Social_Sharing** * `app`(list[str]): the Apps used for this task. * `meta_task`(str): the template for this task, e.g., "Search for the next {} and set a reminder." * `task`(str): the specific task created by filling in the meta-task, e.g., "Search for the next New York Fashion Week and set a reminder." * `instruction`(str): the detailed and rephrased version of the task, including specific tools or applications, e.g., "Utilize DuckDuckgo to find the dates for the next New York Fashion Week and then use TickTick to set a reminder for the event." * `step_length`(int): the total number of steps in this episode. * `steps`(list[dict]): each individual step of this episode. Including the following fields: * `step`(int): each step within the episode is identified by a zero-indexed step number, indicating its position in sequence within the episode. For example, if the *step* is 1, it corresponds to the second step of the episode. * `screenshot`(str): the current screenshot of this step * `action`(str): the corresponding action of this step, one of **CLICK**, **SCROLL**, **LONG_PRESS**, **TYPE**, **COMPLETE**, **IMPOSSIBLE**, **HOME**, **BACK** * `info`(Union[str, list[list]]): provides specific details required to perform the action specified in the *action* field. Note that all the coordinates are normalized to the range of [0, 1000]. * if action is *CLICK*, info contains the coordinates(x, y) to click on or one of the special keys *KEY_HOME*, *KEY_BACK*, *KEY_RECENT*. * if action is *LONG_PRESS*, info contains the coordinates(x, y) for the long press. * if action is *SCROLL*, info contains the starting(x1, y1) and ending(x2, y2) coordinates of the scroll action. * if action is any other value, info is empty (""). * `ps`(str): provides additional details or context depending on the value of the action field. * if action is *COMPLETE* or *IMPOSSIBLE*: may contain any additional information from the annotator about why the task is complete or why it was impossible to complete. * if action is *SCROLL*: contains the complete trajectory of the scroll action. ### Data Splits we can evaluate the in- and out-of-domain performance of Agent by splitting GUI Odyssey in two ways: * **random_split**: randomly splitting the dataset into the training and test set with the ratio of $3:1$, and organizing with the training set covering a portion of apps/tasks/devices and the test set covering the remaining apps/tasks/devices: * **task_split**: proportionally samples meta-tasks from six categories. The tasks in the test set differ significantly from those in the training set. This partitioning method allows for a robust assessment of an agent's generalization capabilities across diverse tasks. * **device_split**: selects episodes annotated on the *Fold Phone*, which differs significantly from other devices such as smartphones and tablets, as the test set. * **app_split**: splits based on the apps. The apps in the test set differ significantly from those in the training set. Each of the four classifications mentioned above has a corresponding JSON file, and the fields in each JSON file are as follows: * `train`(list[str]): the list of annotation filenames for the training set, which are equivalent to the *episode_id*. * `test`(list[str]): the list of annotation filenames for the test set, which are equivalent to the *episode_id*. ## Easier Usage In addition to cloning the entire repository, you can also download the files from the `/zips` directory directly for convenience. We are currently uploading compressed versions of the annotations and screenshots to the `/zips` directory to make the usage process more convenient. * Annotations: Simply download the annotations.zip file and unzip it to access the contents directly. * Screenshots: The screenshots are split into two parts. After downloading both parts, you can merge them and unzip the file using the following commands: ```bash cat screenshots_0* > screenshots.zip unzip screenshots.zip ``` The files extracted from the .zip archives will be identical to the original versions. ## Licensing Information <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>. ## Disclaimer This dataset is intended primarily for research purposes. We strongly oppose any harmful use of the data or technology. ## Citation ```bib @article{lu2024gui, title={GUI Odyssey: A Comprehensive Dataset for Cross-App GUI Navigation on Mobile Devices}, author={Lu, Quanfeng and Shao, Wenqi and Liu, Zitao and Meng, Fanqing and Li, Boxuan and Chen, Botong and Huang, Siyuan and Zhang, Kaipeng and Qiao, Yu and Luo, Ping}, journal={arXiv preprint arXiv:2406.08451}, year={2024} } ```
EleutherAI/hendrycks_math
EleutherAI
"2023-11-02T14:48:57Z"
15,651
9
[ "license:mit", "region:us" ]
null
"2023-09-14T20:28:56Z"
--- license: mit ---
Yelp/yelp_review_full
Yelp
"2024-01-04T17:14:53Z"
15,609
106
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1509.01626", "region:us" ]
[ "text-classification" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - other multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification pretty_name: YelpReviewFull license_details: yelp-licence dataset_info: config_name: yelp_review_full features: - name: label dtype: class_label: names: '0': 1 star '1': 2 star '2': 3 stars '3': 4 stars '4': 5 stars - name: text dtype: string splits: - name: train num_bytes: 483811554 num_examples: 650000 - name: test num_bytes: 37271188 num_examples: 50000 download_size: 322952369 dataset_size: 521082742 configs: - config_name: yelp_review_full data_files: - split: train path: yelp_review_full/train-* - split: test path: yelp_review_full/test-* default: true train-eval-index: - config: yelp_review_full task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- --- # Dataset Card for YelpReviewFull ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Yelp](https://www.yelp.com/dataset) - **Repository:** [Crepe](https://github.com/zhangxiangxiao/Crepe) - **Paper:** [Character-level Convolutional Networks for Text Classification](https://arxiv.org/abs/1509.01626) - **Point of Contact:** [Xiang Zhang](mailto:[email protected]) ### Dataset Summary The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data. ### Supported Tasks and Leaderboards - `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the text, predict the sentiment. ### Languages The reviews were mainly written in english. ## Dataset Structure ### Data Instances A typical data point, comprises of a text and the corresponding label. An example from the YelpReviewFull test set looks as follows: ``` { 'label': 0, 'text': 'I got \'new\' tires from them and within two weeks got a flat. I took my car to a local mechanic to see if i could get the hole patched, but they said the reason I had a flat was because the previous patch had blown - WAIT, WHAT? I just got the tire and never needed to have it patched? This was supposed to be a new tire. \\nI took the tire over to Flynn\'s and they told me that someone punctured my tire, then tried to patch it. So there are resentful tire slashers? I find that very unlikely. After arguing with the guy and telling him that his logic was far fetched he said he\'d give me a new tire \\"this time\\". \\nI will never go back to Flynn\'s b/c of the way this guy treated me and the simple fact that they gave me a used tire!' } ``` ### Data Fields - 'text': The review texts are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n". - 'label': Corresponds to the score associated with the review (between 1 and 5). ### Data Splits The Yelp reviews full star dataset is constructed by randomly taking 130,000 training samples and 10,000 testing samples for each review star from 1 to 5. In total there are 650,000 trainig samples and 50,000 testing samples. ## Dataset Creation ### Curation Rationale The Yelp reviews full star dataset is constructed by Xiang Zhang ([email protected]) from the Yelp Dataset Challenge 2015. It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information You can check the official [yelp-dataset-agreement](https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf). ### Citation Information Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). ### Contributions Thanks to [@hfawaz](https://github.com/hfawaz) for adding this dataset.
sayakpaul/sample-datasets
sayakpaul
"2024-12-05T10:48:25Z"
15,562
1
[ "license:apache-2.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2023-01-15T07:09:08Z"
--- license: apache-2.0 ---
ruslanmv/ai-medical-chatbot
ruslanmv
"2024-03-23T20:45:11Z"
15,453
200
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-02-16T12:10:13Z"
--- configs: - config_name: default data_files: - path: dialogues.* split: train dataset_info: dataset_size: 141665910 download_size: 141665910 features: - dtype: string name: Description - dtype: string name: Patient - dtype: string name: Doctor splits: - name: train num_bytes: 141665910 num_examples: 256916 --- # AI Medical Chatbot Dataset This is an experimental Dataset designed to run a Medical Chatbot It contains at least 250k dialogues between a Patient and a Doctor. [![](future.jpg)](https://huggingface.co/spaces/ruslanmv/AI-Medical-Chatbot) ## Playground ChatBot [ruslanmv/AI-Medical-Chatbot](https://huggingface.co/spaces/ruslanmv/AI-Medical-Chatbot) For furter information visit the project here: [https://github.com/ruslanmv/ai-medical-chatbot](https://github.com/ruslanmv/ai-medical-chatbot)
HuggingFaceM4/Docmatix
HuggingFaceM4
"2024-08-26T08:15:21Z"
15,453
234
[ "task_categories:visual-question-answering", "language:en", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2408.12637", "region:us", "docvqa" ]
[ "visual-question-answering" ]
"2024-07-17T11:33:00Z"
--- language: - en license: mit size_categories: - 1M<n<10M task_categories: - visual-question-answering pretty_name: Docmatix tags: - docvqa configs: - config_name: images data_files: - split: train path: data/train-* - config_name: pdf data_files: - split: train path: pdf/train-* - config_name: zero-shot-exp data_files: - split: train path: zero-shot-exp/train-* - split: test path: zero-shot-exp/test-* dataset_info: - config_name: images features: - name: images sequence: image - name: texts list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: train num_bytes: 552957537722.77 num_examples: 1273215 download_size: 159404414330 dataset_size: 552957537722.77 - config_name: pdf features: - name: pdf dtype: binary - name: texts list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: train num_bytes: 458612867150 num_examples: 1273245 download_size: 431829972210 dataset_size: 458612867150 - config_name: zero-shot-exp features: - name: images sequence: image - name: texts list: - name: user dtype: string - name: assistant dtype: string - name: source dtype: string splits: - name: test num_bytes: 68900253.0 num_examples: 200 - name: train num_bytes: 578335690.5 num_examples: 1700 download_size: 642963847 dataset_size: 647235943.5 --- # Dataset Card for Docmatix ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/65d66b494bbd0d92b641cdbb/P7rIELr2eom_IorBY5DZu.webp) ## Dataset description Docmatix is part of the Idefics3 release (stay tuned). It is a massive dataset for Document Visual Question Answering that was used for the fine-tuning of the vision-language model Idefics3. ## Load the dataset To load the dataset, install the library `datasets` with `pip install datasets`. Then, ``` from datasets import load_dataset ds = load_dataset("HuggingFaceM4/Docmatix") ``` If you want the dataset to link to the pdf files as binaries instead of the images, do: ``` from datasets import load_dataset ds = load_dataset("HuggingFaceM4/Docmatix", "pdf") ``` ## Data fields An example of a sample looks as follows: ``` { "images" = [PIL.Image] "texts" = [ { "user": "What is the purpose of the Confirmation Statement mentioned in the document?", "assistant": "The purpose of the Confirmation Statement is to confirm that all information required to be delivered by the company to the registrar in relation to the confirmation period concerned has been delivered or is being delivered at the same time as the confirmation statement.", "source": "PDFA key: 244" }, { "user": "When was the filing received as per the document?", "assistant": "The filing was received for filing in Electronic Format on the 23/03/2021.", "source": "PDFA key: 244" }, ] } ``` In `images`, there is a list of up to 4 images, to be placed before the text. In `texts`, there is a conversation between a user and an assistant about the images that is represented by a list of turns. ## Comparison to other DocVQA datasets | Dataset | # images | # Q/A pairs | # tokens | |----------------------|----------|-------------|------------| | *Document visual question answering* | | **Docmatix** | **2,444,750**| **9,500,000** | **390,000,000**| | DocVQA | 10,189 | 39,463 | 337,829 | | TextCaps | 21,953 | 21,953 | 389,658 | | TextVQA | 21,953 | 34,602 | 181,918 | | ST-VQA | 17,247 | 23,121 | 127,846 | | OCR-VQA | 165,746 | 801,579 | 6,073,824 | | VisualMRC | 3,027 | 11,988 | 168,828 | | IAM | 5,663 | 5,663 | 144,216 | | InfoVQA | 2,118 | 10,074 | 61,048 | | Diagram image-to-text| 300 | 300 | 22,196 | # Citation **BibTeX:** ```bibtex @misc{laurençon2024building, title={Building and better understanding vision-language models: insights and future directions.}, author={Hugo Laurençon and Andrés Marafioti and Victor Sanh and Léo Tronchon}, year={2024}, eprint={2408.12637}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
DL3DV/DL3DV-ALL-video
DL3DV
"2024-09-03T02:51:00Z"
15,348
3
[ "size_categories:n>1T", "region:us", "3D Vision", "NeRF", "3D Gaussian", "Dataset", "Novel View Synthesis", "Text to 3D", "Image to 3D" ]
null
"2024-03-05T06:06:23Z"
--- tags: - 3D Vision - NeRF - 3D Gaussian - Dataset - Novel View Synthesis - Text to 3D - Image to 3D pretty_name: Dl3DV-Dataset size_categories: - n>1T --- # DL3DV-Dataset This repo has all the original videos of DL3DV-10K Dataset. We are working hard to review all the dataset to avoid sensitive information. Thank you for your patience. # Download If you have enough space, you can use git to download a dataset from huggingface. See this [link](https://huggingface.co/docs/hub/en/datasets-downloading). If you do not have enough space, we further provide a [download script](https://github.com/DL3DV-10K/Dataset/blob/main/scripts/download.py) here to download a subset. The usage: ```Bash usage: download.py [-h] --odir ODIR --subset {1K,2K,3K,4K,5K,6K,7K,8K,9K,10K} --resolution {4K,2K,960P,480P} --file_type {images+poses,video,colmap_cache} [--hash HASH] [--clean_cache] optional arguments: -h, --help show this help message and exit --odir ODIR output directory --subset {1K,2K,3K,4K,5K,6K,7K,8K,9K,10K} The subset of the benchmark to download --resolution {4K,2K,960P,480P} The resolution to donwnload --file_type {images+poses,video,colmap_cache} The file type to download --hash HASH If set subset=hash, this is the hash code of the scene to download --clean_cache If set, will clean the huggingface cache to save space ``` Here are some examples: ```Bash # Make sure you have applied for the access. # Use this to download the download.py script wget https://raw.githubusercontent.com/DL3DV-10K/Dataset/main/scripts/download.py # Download video, 0~1K subset, output to DL3DV-10K directory python download.py --odir DL3DV-10K --subset 1K --resolution 4K --file_type video --clean_cache ``` You can also download a specific scene with its hash. The scene-hash pair visualization can be found [here](https://htmlpreview.github.io/?https://github.com/DL3DV-10K/Dataset/blob/main/visualize/index.html). ```Bash python download.py --odir DL3DV-10K --subset 1K --resolution 4K --file_type video --hash e2cedefea8a0ed2d0ffbd5bdc08acbe7e1f85c96f72f7b790e9dfe1c98963047 --clean_cache ``` # News - [x] DL3DV-1K, 2K, 3K, 4K - [ ] DL3DV-5K ~ 10K
bigcode/self-oss-instruct-sc2-instructions
bigcode
"2024-04-23T20:23:15Z"
15,295
4
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-04-23T20:23:00Z"
--- dataset_info: features: - name: prompt dtype: string - name: fingerprint dtype: 'null' - name: seed dtype: string - name: sha1 dtype: string - name: id dtype: int64 - name: concepts sequence: string - name: instruction dtype: string splits: - name: train num_bytes: 1708698948 num_examples: 237517 download_size: 341570013 dataset_size: 1708698948 configs: - config_name: default data_files: - split: train path: data/train-* ---
facebook/voxpopuli
facebook
"2022-10-14T13:43:12Z"
15,267
100
[ "task_categories:automatic-speech-recognition", "multilinguality:multilingual", "language:en", "language:de", "language:fr", "language:es", "language:pl", "language:it", "language:ro", "language:hu", "language:cs", "language:nl", "language:fi", "language:hr", "language:sk", "language:sl", "language:et", "language:lt", "license:cc0-1.0", "license:other", "size_categories:100K<n<1M", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2101.00390", "region:us" ]
[ "automatic-speech-recognition" ]
"2022-05-10T14:42:49Z"
--- annotations_creators: [] language: - en - de - fr - es - pl - it - ro - hu - cs - nl - fi - hr - sk - sl - et - lt language_creators: [] license: - cc0-1.0 - other multilinguality: - multilingual pretty_name: VoxPopuli size_categories: [] source_datasets: [] tags: [] task_categories: - automatic-speech-recognition task_ids: [] --- # Dataset Card for Voxpopuli ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/facebookresearch/voxpopuli - **Repository:** https://github.com/facebookresearch/voxpopuli - **Paper:** https://arxiv.org/abs/2101.00390 - **Point of Contact:** [[email protected]](mailto:[email protected]), [[email protected]](mailto:[email protected]), [[email protected]](mailto:[email protected]) ### Dataset Summary VoxPopuli is a large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation. The raw data is collected from 2009-2020 [European Parliament event recordings](https://multimedia.europarl.europa.eu/en/home). We acknowledge the European Parliament for creating and sharing these materials. This implementation contains transcribed speech data for 18 languages. It also contains 29 hours of transcribed speech data of non-native English intended for research in ASR for accented speech (15 L2 accents) ### Example usage VoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name: ```python from datasets import load_dataset voxpopuli_croatian = load_dataset("facebook/voxpopuli", "hr") ``` To load all the languages in a single dataset use "multilang" config name: ```python voxpopuli_all = load_dataset("facebook/voxpopuli", "multilang") ``` To load a specific set of languages, use "multilang" config name and pass a list of required languages to `languages` parameter: ```python voxpopuli_slavic = load_dataset("facebook/voxpopuli", "multilang", languages=["hr", "sk", "sl", "cs", "pl"]) ``` To load accented English data, use "en_accented" config name: ```python voxpopuli_accented = load_dataset("facebook/voxpopuli", "en_accented") ``` **Note that L2 English subset contains only `test` split.** ### Supported Tasks and Leaderboards * automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). Accented English subset can also be used for research in ASR for accented speech (15 L2 accents) ### Languages VoxPopuli contains labelled (transcribed) data for 18 languages: | Language | Code | Transcribed Hours | Transcribed Speakers | Transcribed Tokens | |:---:|:---:|:---:|:---:|:---:| | English | En | 543 | 1313 | 4.8M | | German | De | 282 | 531 | 2.3M | | French | Fr | 211 | 534 | 2.1M | | Spanish | Es | 166 | 305 | 1.6M | | Polish | Pl | 111 | 282 | 802K | | Italian | It | 91 | 306 | 757K | | Romanian | Ro | 89 | 164 | 739K | | Hungarian | Hu | 63 | 143 | 431K | | Czech | Cs | 62 | 138 | 461K | | Dutch | Nl | 53 | 221 | 488K | | Finnish | Fi | 27 | 84 | 160K | | Croatian | Hr | 43 | 83 | 337K | | Slovak | Sk | 35 | 96 | 270K | | Slovene | Sl | 10 | 45 | 76K | | Estonian | Et | 3 | 29 | 18K | | Lithuanian | Lt | 2 | 21 | 10K | | Total | | 1791 | 4295 | 15M | Accented speech transcribed data has 15 various L2 accents: | Accent | Code | Transcribed Hours | Transcribed Speakers | |:---:|:---:|:---:|:---:| | Dutch | en_nl | 3.52 | 45 | | German | en_de | 3.52 | 84 | | Czech | en_cs | 3.30 | 26 | | Polish | en_pl | 3.23 | 33 | | French | en_fr | 2.56 | 27 | | Hungarian | en_hu | 2.33 | 23 | | Finnish | en_fi | 2.18 | 20 | | Romanian | en_ro | 1.85 | 27 | | Slovak | en_sk | 1.46 | 17 | | Spanish | en_es | 1.42 | 18 | | Italian | en_it | 1.11 | 15 | | Estonian | en_et | 1.08 | 6 | | Lithuanian | en_lt | 0.65 | 7 | | Croatian | en_hr | 0.42 | 9 | | Slovene | en_sl | 0.25 | 7 | ## Dataset Structure ### Data Instances ```python { 'audio_id': '20180206-0900-PLENARY-15-hr_20180206-16:10:06_5', 'language': 11, # "hr" 'audio': { 'path': '/home/polina/.cache/huggingface/datasets/downloads/extracted/44aedc80bb053f67f957a5f68e23509e9b181cc9e30c8030f110daaedf9c510e/train_part_0/20180206-0900-PLENARY-15-hr_20180206-16:10:06_5.wav', 'array': array([-0.01434326, -0.01055908, 0.00106812, ..., 0.00646973], dtype=float32), 'sampling_rate': 16000 }, 'raw_text': '', 'normalized_text': 'poast genitalnog sakaenja ena u europi tek je jedna od manifestacija takve tetne politike.', 'gender': 'female', 'speaker_id': '119431', 'is_gold_transcript': True, 'accent': 'None' } ``` ### Data Fields * `audio_id` (string) - id of audio segment * `language` (datasets.ClassLabel) - numerical id of audio segment * `audio` (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally). * `raw_text` (string) - original (orthographic) audio segment text * `normalized_text` (string) - normalized audio segment transcription * `gender` (string) - gender of speaker * `speaker_id` (string) - id of speaker * `is_gold_transcript` (bool) - ? * `accent` (string) - type of accent, for example "en_lt", if applicable, else "None". ### Data Splits All configs (languages) except for accented English contain data in three splits: train, validation and test. Accented English `en_accented` config contains only test split. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data The raw data is collected from 2009-2020 [European Parliament event recordings](https://multimedia.europarl.europa.eu/en/home) #### Initial Data Collection and Normalization The VoxPopuli transcribed set comes from aligning the full-event source speech audio with the transcripts for plenary sessions. Official timestamps are available for locating speeches by speaker in the full session, but they are frequently inaccurate, resulting in truncation of the speech or mixture of fragments from the preceding or the succeeding speeches. To calibrate the original timestamps, we perform speaker diarization (SD) on the full-session audio using pyannote.audio (Bredin et al.2020) and adopt the nearest SD timestamps (by L1 distance to the original ones) instead for segmentation. Full-session audios are segmented into speech paragraphs by speaker, each of which has a transcript available. The speech paragraphs have an average duration of 197 seconds, which leads to significant. We hence further segment these paragraphs into utterances with a maximum duration of 20 seconds. We leverage speech recognition (ASR) systems to force-align speech paragraphs to the given transcripts. The ASR systems are TDS models (Hannun et al., 2019) trained with ASG criterion (Collobert et al., 2016) on audio tracks from in-house deidentified video data. The resulting utterance segments may have incorrect transcriptions due to incomplete raw transcripts or inaccurate ASR force-alignment. We use the predictions from the same ASR systems as references and filter the candidate segments by a maximum threshold of 20% character error rate(CER). #### Who are the source language producers? Speakers are participants of the European Parliament events, many of them are EU officials. ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases Gender speakers distribution is imbalanced, percentage of female speakers is mostly lower than 50% across languages, with the minimum of 15% for the Lithuanian language data. VoxPopuli includes all available speeches from the 2009-2020 EP events without any selections on the topics or speakers. The speech contents represent the standpoints of the speakers in the EP events, many of which are EU officials. ### Other Known Limitations ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information The dataset is distributet under CC0 license, see also [European Parliament's legal notice](https://www.europarl.europa.eu/legal-notice/en/) for the raw data. ### Citation Information Please cite this paper: ```bibtex @inproceedings{wang-etal-2021-voxpopuli, title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation", author = "Wang, Changhan and Riviere, Morgane and Lee, Ann and Wu, Anne and Talnikar, Chaitanya and Haziza, Daniel and Williamson, Mary and Pino, Juan and Dupoux, Emmanuel", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.80", pages = "993--1003", } ``` ### Contributions Thanks to [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.
rexarski/eli5_category
rexarski
"2024-01-18T11:03:11Z"
15,202
13
[ "task_categories:text2text-generation", "task_ids:abstractive-qa", "task_ids:open-domain-abstractive-qa", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|eli5", "language:en", "license:unknown", "size_categories:100K<n<1M", "region:us" ]
[ "text2text-generation" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - found language_creators: - found language: - en license: - unknown multilinguality: - monolingual paperswithcode_id: null pretty_name: ELI5-Category size_categories: - 100K<n<1M source_datasets: - extended|eli5 task_categories: - text2text-generation task_ids: - abstractive-qa - open-domain-abstractive-qa dataset_info: features: - name: q_id dtype: string - name: title dtype: string - name: selftext dtype: string - name: category dtype: string - name: subreddit dtype: string - name: answers struct: - name: a_id sequence: string - name: text sequence: string - name: score sequence: int32 - name: text_urls sequence: sequence: string - name: title_urls sequence: string - name: selftext_urls sequence: string splits: - name: train num_bytes: 166409797 num_examples: 91772 - name: validation1 num_bytes: 13150585 num_examples: 5446 - name: validation2 num_bytes: 4737744 num_examples: 2375 - name: test num_bytes: 10419098 num_examples: 5411 download_size: 72921829 dataset_size: 194717224 --- # Dataset Card for ELI5-Category ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [ELI5-Category homepage](https://celeritasml.netlify.app/posts/2021-12-01-eli5c/) - **Repository:** [ELI5-Category repository](https://github.com/rexarski/ANLY580-final-project) - **Point of Contact:** [Jingsong Gao](mailto:[email protected]) ### Dataset Summary The ELI5-Category dataset is a smaller but newer and categorized version of the original ELI5 dataset. It's an English-language dataset of questions and answers gathered from the [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/) subreddit where users ask factual questions requiring paragraph-length or longer answers. After 2017, a tagging system was introduced to this subreddit so that the questions can be categorized into different topics according to their tags. Since the training and validation set is built by questions in different topics, the dataset is expected to alleviate the train/validation overlapping issue in the original [ELI5 dataset](https://huggingface.co/datasets/eli5). ### Supported Tasks and Leaderboards - `abstractive-qa`, `open-domain-abstractive-qa`: The dataset can be used to train a model for Open Domain Long Form Question Answering. An LFQA model is presented with a non-factoid and asked to retrieve relevant information from a knowledge source (such as [Wikipedia](https://www.wikipedia.org/)), then use it to generate a multi-sentence answer. ### Languages The text in the dataset is in English, as spoken by Reddit users on the [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/) subreddit. The associated BCP-47 code is `en`. ## Dataset Structure ### Data Instances The structure of this dataset is very similar to the original [ELI5 dataset](https://huggingface.co/datasets/eli5). A typical data point comprises a question, with a `title` containing the main question and a `selftext` which sometimes elaborates on it, and a list of answers from the forum sorted by scores they obtained. Additionally, the URLs in each of the text fields have been extracted to respective lists and replaced by generic tokens in the text. In addition to the original ELI5 dataset, the data point also has a `category` field. There are 11 common values of `category` in this dataset: `Biology`,`Chemistry`,`Culture`,`Earth Science`,`Economics`,`Engineering`,`Mathematics`,`Other`,`Physics`,`Psychology`,`Technology`, and a special `category`: `Repost` indicates the same question has been asked before. An example from the ELI5-Category set looks as follows: ``` {'q_id': '5lcm18', 'title': 'Why do old games running on new hardware still have technical issues ?', 'selftext': 'I am playing some mega man games on my Xbox One and experience slowdown when there are a lot of enemies on screen . but the Xbox One is significantly more powerful than the NES , so why is there still slowdown on this hardware ?', 'category': 'Engineering', 'subreddit': 'explainlikeimfive', 'answers': {'a_id': ['dbuo48e', 'dbusfve'], 'text': ["The XBox is emulating NES hardware and running the emulation at a set speed . If it ran it at as fast as possible , then it would be several times faster than the original NES game and would be unplayable . I ca n't speak for Mega Man exactly , but older games tended to run on a cycle locked to the screen refresh which was a fixed 60Hz or 50Hz . There was only one piece of hardware they ran on , so there was no need to adjust for different hardware speeds .", "In that case , it 's probably on purpose - they want to emulate the experience as closely as possible , even including the slowdown and sprite flickering . Some emulators let you turn it off , but it 's usually turned on by default . In other cases , like if you 're trying to emulate PS2 games on your PC , the game might just run really slow in general . Even though your PC is way more powerful than a PS2 , it has to \" translate \" from PS2 language to PC language in realtime , which is much more difficult than running PS2 code on the PS2 itself ."], 'score': [13, 3], 'text_urls': [[],[]]}, 'title_urls': {'url': []}, 'selftext_urls': {'url': []}} ``` ### Data Fields - `q_id`: a string question identifier for each example, corresponding to its ID in the [Pushshift.io](https://files.pushshift.io/reddit/submissions/) Reddit submission dumps - `subreddit`: always `explainlikeimfive`, indicating which subreddit the question came from - `category`: tag of the question, the possible values are listed above. - `title`: title of the question, with URLs extracted and replaced by `URL_n` tokens - `title_urls`: list of the extracted URLs, the `n`th element of the list was replaced by `URL_n` - `selftext`: either an empty string or an elaboration of the question - `selftext_urls`: similar to `title_urls` but for `self_text` - `answers`: a list of answers, each answer has: - `a_id`: a string answer identifier for each answer, corresponding to its ID in the [Pushshift.io](https://files.pushshift.io/reddit/comments/) Reddit comments dumps. - `text`: the answer text with the URLs normalized - `score`: the number of upvotes - the number of downvotes the answer had received when the dumps were created - `text_urls`: lists of the extracted URLs for every answer ### Data Splits In order to avoid having duplicate questions across sets, three non-overlapping subsets of `category` are used in the training, validation and test set. Also, a special validation set contains all the questions in the `Repost` category. A valid retriever-generator model should have consistent performances on both validation sets. The final split sizes are as follows: | | Train | Valid | Valid2 |Test | | ----- | ------ | ----- | ---- | ---- | | `Biology` | 32769 | | | | | `Chemistry` | 6633 | | | | | `Culture` | | 5446 | | | | `Earth Science` | 677 | | | | | `Economics` | 5901 | | | | | `Engineering` | | | | 5411 | | `Mathematics` | 1912 | | | | | `Other` | 19312 | | | | | `Physics` | 10196 | | | | | `Psychology` | 338 | | | | | `Technology` | 14034 | | | | | `Repost` | | | 2375 | | | **Total** | 91772 | 5446 | 2375 | 5411 | ## Dataset Creation ### Curation Rationale ELI5-Category was built to provide a testbed for machines to learn how to answer more complex questions, which requires them to find and combine the information in a coherent manner. The dataset was built by gathering questions that were asked by community members of three subreddits, including [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/), along with the answers that were provided by other users. The [rules of the subreddit](https://www.reddit.com/r/explainlikeimfive/wiki/detailed_rules) make this data particularly well suited to training a model for abstractive question answering: the questions need to seek an objective explanation about well-established facts, and the answers provided need to be understandable to a layperson without any particular knowledge domain. ### Source Data #### Initial Data Collection and Normalization The data was obtained by filtering submissions and comments from the subreddits of interest from the XML dumps of the [Reddit forum](https://www.reddit.com/) hosted on [Pushshift.io](https://files.pushshift.io/reddit/). In order to further improve the quality of the selected examples, only questions with a score of at least 2 and at least one answer with a score of at least 2 were selected for the dataset. The dataset questions and answers span a period from January 2017 to June 2021. #### Who are the source language producers? The language producers are users of the [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/) subreddit between 2017 and 2021. No further demographic information was available from the data source. ### Annotations The dataset contains the `category` as an additional annotation for the topics of questions. #### Annotation process The dataset is auto-annotated by the tags of posts in the [Reddit forum](https://www.reddit.com/). #### Who are the annotators? The annotators are users/administrators of the [r/explainlikeimfive](https://www.reddit.com/r/explainlikeimfive/) subreddit between 2017 and 2021. No further demographic information was available from the data source. ### Personal and Sensitive Information The authors removed the speaker IDs from the [Pushshift.io](https://files.pushshift.io/reddit/) dumps but did not otherwise anonymize the data. Some questions and answers are about contemporary public figures or individuals who appeared in the news. ## Considerations for Using the Data ### Social Impact of Dataset The dataset has a similar social impact to the original ELI5 dataset [Social Impact of Dataset](https://huggingface.co/datasets/eli5#social-impact-of-dataset). ### Discussion of Biases The dataset has similar considerations of biases to the original ELI5 dataset [Discussion of Biases](https://huggingface.co/datasets/eli5#discussion-of-biases). ### Other Known Limitations The dataset has similar limitations to the original ELI5 dataset [Other Known Limitations](https://huggingface.co/datasets/eli5#other-known-limitations). ## Additional Information ### Dataset Curators The dataset was initially created by Jingsong Gao, Qinren Zhou, Rui Qiu, during a course project of `ANLY 580`: NLP for Data Analytics at Georgetown University. ### Licensing Information The licensing status of the dataset hinges on the legal status of the [Pushshift.io](https://files.pushshift.io/reddit/) data which is unclear. ### Citation Information ``` @inproceedings{eli5-category, author = {Jingsong Gao and Qingren Zhou and Rui Qiu}, title = {{ELI5-Category:} A categorized open-domain QA dataset}, year = {2021} } ``` ### Contributions Thanks to [@jingshenSN2](https://github.com/jingshenSN2), [@QinrenZhou](https://github.com/QinrenZhou), [@rexarski](https://github.com/rexarski) for adding this dataset.
nvidia/HelpSteer2
nvidia
"2024-12-18T21:06:57Z"
15,200
392
[ "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2410.01257", "arxiv:2406.08673", "region:us", "human-feedback" ]
null
"2024-06-02T06:59:33Z"
--- license: cc-by-4.0 language: - en pretty_name: HelpSteer2 size_categories: - 10K<n<100K tags: - human-feedback --- # HelpSteer2: Open-source dataset for training top-performing reward models HelpSteer2 is an open-source Helpfulness Dataset (CC-BY-4.0) that supports aligning models to become more helpful, factually correct and coherent, while being adjustable in terms of the complexity and verbosity of its responses. This dataset has been created in partnership with [Scale AI](https://scale.com/). When used to tune a [Llama 3.1 70B Instruct Model](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct), we achieve 94.1% on RewardBench, which makes it the best Reward Model as of 1 Oct 2024. This reward model is available on HuggingFace in both .nemo format at [Llama-3.1-Nemotron-70B-Reward](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward) or HF-compatible format at [Llama-3.1-Nemotron-70B-Reward-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF) Using this reward model for RLHF (specifically, REINFORCE), we were able to align a Llama-3.1-70B-Instruct model to reach [AlpacaEval 2 LC](https://tatsu-lab.github.io/alpaca_eval/) of 57.6, [Arena Hard](https://github.com/lmarena/arena-hard-auto) of 85.0 and [GPT-4-Turbo MT-Bench](https://github.com/lm-sys/FastChat/pull/3158) of 8.98, which are known to be predictive of [LMSys Chatbot Arena Elo](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) This Instruct model is available at [Llama-3.1-Nemotron-70B-Instruct](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct) as .nemo model and [Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) as a HF Transformers model. As of 1 Oct 2024, this aligned model is #1 on all three automatic alignment benchmarks, edging out strong frontier models such as GPT-4o and Claude 3.5 Sonnet. See details on HelpSteer2-Preference paper at [https://arxiv.org/abs/2410.01257](https://arxiv.org/abs/2410.01257) - as a preview, this model can correctly the question ```How many r in strawberry?``` without specialized prompting or additional reasoning tokens: ``` A sweet question! Let’s count the “R”s in “strawberry”: 1. S 2. T 3. R 4. A 5. W 6. B 7. E 8. R 9. R 10. Y There are **3 “R”s** in the word “strawberry”. ``` Reward Models was trained using the open-source [NeMo Aligner](https://github.com/NVIDIA/NeMo-Aligner). HelpSteer2 is a follow-up to the popular [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) dataset and we recommend using HelpSteer2 instead of HelpSteer. HelpSteer2 Paper : [HelpSteer2: Open-source dataset for training top-performing reward models](http://arxiv.org/abs/2406.08673) ## RewardBench Primary Dataset LeaderBoard As of 1 Oct 2024, Llama-3.1-Nemotron-70B-Reward performs best Overall on RewardBench as well as with strong performance in Chat, Safety and Reasoning categories among the models below. | Model | Type of Data Used For Training | Overall | Chat | Chat-Hard | Safety | Reasoning | |:-----------------------------|:----------------|:-----|:----------|:-------|:----------|:-----------------------| | _**Llama-3.1-Nemotron-70B-Reward**_ |Permissive Licensed Data Only (CC-BY-4.0) | **94.1** | **97.5** | 85.7 | **95.1** | **98.1** | | Skywork-Reward-Gemma-2-27B | Includes GPT4 Generated Data| 93.8 | 95.8 | **91.4** | 91.9 | 96.1 | | TextEval-Llama3.1-70B | Not disclosed | 93.5 | 94.1 | 90.1 | 93.2 | 96.4 | | Skywork-Critic-Llama-3.1-70B | Not fully disclosed | 93.3 | 96.6 | 87.9 | 93.1 | 95.5 | | SFR-LLaMa-3.1-70B-Judge-r | Not fully disclosed | 92.7 | 96.9 | 84.8 | 91.6 | 97.6 | Nemotron-4-340B-Reward | Permissive Licensed Data Only (CC-BY-4.0) | 92.0 | 95.8 | 87.1 | 91.5 | 93.7 | | ArmoRM-Llama3-8B-v0.1 | Includes GPT4 Generated Data | 90.8 | 96.9 | 76.8 | 92.2 | 97.3 | | Cohere May 2024 | Not disclosed | 89.5 | 96.4 | 71.3 | 92.7 | 97.7 | | Llama3-70B-SteerLM-RM | Permissive Licensed Data Only (CC-BY-4.0) | 88.8 | 91.3 | 80.3 | 92.8 | 90.7 | | Google Gemini Pro 1.5 | Not disclosed | 88.1 | 92.3 | 80.6 | 87.5 | 92.0 | | GPT-4o-2024-08-06 |Not disclosed | 86.7 | 96.1 | 76.1 | 88.1 | 86.6 | | claude-3-5-sonnet-20240620 | Not disclosed | 84.2 | 96.4 | 74.0 | 81.6 | 84.7 | | Meta-Llama-3.1-70B-Instruct | Not fully disclosed | 84.0 | 97.2 | 70.2 | 82.8 | 86.0 | To better understand why Llama-3.1-Nemotron-70B-Reward does less well in the Chat-Hard category, we analyze the scores for each consistutent subset under the Chat-Hard category. We find that on categories that uses human annotations as ground truth, Llama-3.1-Nemotron-70B-Reward performs similar to Skywork-Reward-Gemma-2-27B (<= 2.2% difference). On the other hand, when GPT-4 annotations are used as Ground-Truth, Llama-3.1-Nemotron-70B-Reward trails substantially behind Skywork-Reward-Gemma-2-27B (by 10.8 to 19.2%). This suggests that Skywork-Reward-Gemma-2-27B can better modelling GPT-4 preferences (but not human-annotated preferences), likely contributed by the inclusion of GPT-4 annotated training data used to train it found in the [OffSetBias dataset](https://huggingface.co/datasets/NCSOFT/offsetbias) as part of the [Skywork-Reward-Preference-80k](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.1). | Model | Type of Data Used For Training | Chat-Hard | LLMBar-Adversarial-Manual | LLMBar-Adversarial-Neighbour | LLMBar-Natural | LLMBar-Adversarial-GPTInst | LLMBar-Adversarial-GPTOut | MT-Bench-Hard| |:-----------------------------|:----------------|:-----|:----------|:-------|:----------|:-----------------------|:-----------------------|:-----------------------| |||| Human as Ground Truth | Human as Ground Truth | Human as Ground Truth | _GPT-4 as Ground Truth_ |_GPT-4 as Ground Truth_ | _GPT-4 as Ground Truth_ | | Llama-3.1-Nemotron-70B-Reward |Permissive Licensed Data Only (CC-BY-4.0) | 85.7 | 76.1 | 88.8 | 95.0 | 87.0 | 72.3 | 75.7 | Skywork-Reward-Gemma-2-27B | Includes GPT4 Generated Data | 91.4 | 78.3 | 89.6 | 96.0 | 97.8 | 91.5 | 86.5| ## Dataset Description HelpSteer contains 21, 362 samples, each containing a prompt, a response as well as five human-annotated attributes of the response, each ranging between 0 and 4 where higher means better for each attribute. Consecutive samples (e.g. sample 1 with 2, 3 with 4 ...) share the same prompt so this can be used for preference pairs based on the helpfulness score (e.g. training DPO or Preference RM), in addition to training SteerLM Regression RM. About 29% of all prompts used are multi-turn. In this case, the prompt consists of all of the user turns and all but the last assistant turn, which is contained in the response field. This is done because the attribute values only assessed only for the last assistant turn. For multi-turn prompts, the structure of prompts look like below. This is how we used it for training SteerLM Regression Reward Models, but you need to use it in other settings, please adjust as required. ```json {user turn 1} <extra_id_1>Assistant {assistant turn 1} <extra_id_1>User {user turn 2} ``` These attributes are: 1. **Helpfulness**: Overall helpfulness of the response to the prompt. 2. **Correctness**: Inclusion of all pertinent facts without errors. 3. **Coherence**: Consistency and clarity of expression. 4. **Complexity**: Intellectual depth required to write response (i.e. whether the response can be written by anyone with basic language competency or requires deep domain expertise). 5. **Verbosity**: Amount of detail included in the response, relative to what is asked for in the prompt. An example looks like ```json { "prompt": "c#", "response": "C# is a high-level, object-oriented programming language developed by Microsoft as part of its .NET initiative. It was created as a modern alternative to Java and supports a variety of programming paradigms, including imperative, functional, and event-driven. C# is primarily used for Windows application development, but it can also be used for web, mobile, and game development. The language is designed to be safe, secure, and efficient, and it provides developers with a rich set of libraries and tools for building robust and scalable applications. C# is also widely used in the game development industry, particularly in the development of games for the Xbox 360 and Xbox One consoles.", "helpfulness": 3, "correctness": 4, "coherence": 4, "complexity": 2, "verbosity": 1 } ``` ## Preferences (NEW - 1 Oct 2024) We release the preference annotations between the responses. While existing HelpSteer2 can be use for Bradley-Terry Modelling (by taking difference in helpfulness), we also collected dedicated annotation for which among two responses they prefer. We recommend using this set of annotation for Bradley-Terry Modelling because it accounts for the situation that one response can be preferred over the other even when they have the same helpfulness score (e.g. 4) For each sample, we provide: **Preference Strength** (one of the following - score: meaning) -3: Response 1 is much better than Response 2 -2: Response 1 is better than Response 2 -1: Response 1 is slightly better than Response 2 0: Response 1 is about the same as Response 2 1: Response 2 is slightly better than Response 1 2: Response 2 is better than Response 1 3: Response 2 is much better than Response 1 **Human-written Preference Justification** This has been post-processed by us into a Preference statement and a Preference elaboration. **Three Most Similar Preferences** In calculating overall preference, we only consider the most similar preferences in order to filter outliers. **All Preferences Unprocessed** We did not use these in our experiments but we release all preferences in case someone finds them helpful. **Split** For clarity, the ```train``` subset of the ```preference``` annotations only contains prompts and responses from the original HelpSteer2 ```train``` set, as is for the validation subset. This represents our best attempt at doing a data matched comparison of the two data collection approaches. An example looks like ```json { "split": "train", "prompt": "Define Signal Discuss its various properties with the help of diagram", "response_1": "A signal is a form of energy that is used to transmit information from one place to another. It can be in the form of sound, light, radio waves, or any other form of energy that can be detected by a sensor or receiver.\n\nThe properties of a signal can be described by its amplitude, frequency, and phase.\n\nAmplitude: The amplitude of a signal is the measure of its strength or intensity. It is usually measured in volts or watts.\n\nFrequency: The frequency of a signal is the measure of how many times it repeats itself in a given period of time. It is usually measured in Hertz (Hz).\n\nPhase: The phase of a signal is the measure of its position in time. It is usually measured in degrees or radians.\n\nA signal can be represented by a graph that shows its amplitude or intensity over time. This graph is called a waveform. The shape of the waveform can provide information about the type of signal and the information it carries.", "response_2": "A signal is a message that is conveyed from a sender to a receiver through a communication channel. The message can be in the form of a sound, light, electrical, or any other form that can be transmitted and received. The properties of a signal can vary depending on the type of signal and the communication channel used. Here are some common properties of signals:\n\nAmplitude: This is the maximum value that a signal can take. It represents the strength of the signal. For example, in an electrical signal, amplitude can be measured in volts.\n\nFrequency: This is the number of cycles or oscillations of a signal per unit time. It is measured in hertz (Hz). For example, a sound signal with a frequency of 20 Hz vibrates 20 times per second.\n\nWavelength: This is the distance between two successive crests or troughs of a signal. It is measured in meters (m). For example, in a light signal, wavelength can be measured in nanometers (nm).\n\nPhase: This is the position of a signal with respect to a reference signal. It is measured in degrees (\u00b0) or radians (rad). For example, in an electrical signal, phase can be measured in relation to a reference signal.\n\nEnvelope: This is the curve that bounds the amplitude of a signal. It can be used to represent the shape of a signal. For example, in an audio signal, the envelope can represent the shape of a musical note.\n\nNoise: This is any unwanted or random variation in a signal that can affect its quality. It can be caused by various sources such as interference, interference, or natural phenomena.\n\nHere is a diagram that represents the properties of a signal:\n\n\nAmplitude\nFrequency\nWavelength\nPhase\nEnvelope\nNoise\n\n\nThe diagram shows how each property can affect the shape and quality of a signal. The presence of noise can degrade the quality of a signal and make it difficult to interpret. The properties of a signal can be controlled and optimized to ensure that the message is conveyed accurately and efficiently.", "preference_strength": 1, "preference_statement": "@Response 2 is better than @Response 1 because it provides a comprehensive insightful explanation of signanal and its properties.", "preference_elaboration": "It is complete, clear and correct as it discuss all the the poperties of signal while @Response 1 only discusses three properties of signal. It does not diuscuss important properties like noise, phase and envelope. @Response 2 follows all the instruction but @Response 1 does not follow all the instruction. For instance the instruction requires an explanation of signal and its properties with an aid of a diagram but @Response 1 does not provide the diagram.", "three_most_similar_preferences": [ { "statement": "@Response 2 is better than @Response 1 because it provides a comprehensive insightful explanation of signanal and its properties.", "elaboration": "It is complete, clear and correct as it discuss all the the poperties of signal while @Response 1 only discusses three properties of signal. It does not diuscuss important properties like noise, phase and envelope. @Response 2 follows all the instruction but @Response 1 does not follow all the instruction. For instance the instruction requires an explanation of signal and its properties with an aid of a diagram but @Response 1 does not provide the diagram.", "strength": 1 }, { "statement": "@Response 2 is slightly better than @Response 1.", "elaboration": "@Response 2 goes into detail about the different types of signals that can be used for transmittal. Providing these topics gives a full overview of Signal Discuss. That makes this prompt complete, extremely helpful, and it is well-written. This response uses a paragraph format which breaks up the change in topic. @Response 1 covers a signal in less detail. It leaves out wavelengths, noise, and envelop as a way to transmit information from one network to another. This is not necessarily bad, but it is not in full detail.", "strength": 1 }, { "statement": "@Response 2 is slightly better than @Response 1 because it includes the diagram as requested by the prompt, which @Response 1 does not.", "elaboration": "However, @Response 2 does have issues with **correctness**: irrelevant terms like \"envelope\" are typically properties of the diagram, not the signal. **Formatting** could also be improved for @Response 2. While the diagram is included, it does not display correctly and the word \"interference\" is erroneously repeated twice.", "strength": 1 } ], "all_preferences_unprocessed": [ { "strength": 1, "justification": "@Response 2 is better than @Response 1 because it provides a comprehensive insightful explanation of signanal and its properties. It is complete, clear and correct as it discuss all the the poperties of signal while @Response 1 only discusses three properties of signal. It does not diuscuss important properties like noise, phase and envelope. @Response 2 follows all the instruction but @Response 1 does not follow all the instruction. For instance the instruction requires an explanation of signal and its properties with an aid of a diagram but @Response 1 does not provide the diagram." }, { "strength": 1, "justification": "@Response 2 is slightly better than @Response 1. @Response 2 goes into detail about the different types of signals that can be used for transmittal. Providing these topics gives a full overview of Signal Discuss. That makes this prompt complete, extremely helpful, and it is well-written. This response uses a paragraph format which breaks up the change in topic. @Response 1 covers a signal in less detail. It leaves out wavelengths, noise, and envelop as a way to transmit information from one network to another. This is not necessarily bad, but it is not in full detail." }, { "strength": 1, "justification": "@Response 2 is slightly better than @Response 1 because it includes the diagram as requested by the prompt, which @Response 1 does not. However, @Response 2 does have issues with **correctness**: irrelevant terms like \"envelope\" are typically properties of the diagram, not the signal. **Formatting** could also be improved for @Response 2. While the diagram is included, it does not display correctly and the word \"interference\" is erroneously repeated twice. Although @Response 1 is more succinct and the writing style flows better, it falls short in **instructions following** and therefore @Response 2 is slightly better." } ] } ``` ## Disagreements (NEW - 1 Oct 2024) We release the individual annotations that were used to calculate the mean score (after filtering outliers) for the five HelpSteer attributes. The schema is similar to HelpSteer2, except that each entry is a list of labels given by various annotators. We believe this resource support studies on how/why annotators disagree with one another as well as transparency on the data collection process. Note: A small proportion of samples only annotations by 2 annotators - this is because one or more of the annotations were labelled as not-ratable by annotators or did not have a valid annotation. Here's an example below: ```json { "prompt": "c#", "response": "C# is a high-level, object-oriented programming language developed by Microsoft as part of its .NET initiative. It was created as a modern alternative to Java and supports a variety of programming paradigms, including imperative, functional, and event-driven. C# is primarily used for Windows application development, but it can also be used for web, mobile, and game development. The language is designed to be safe, secure, and efficient, and it provides developers with a rich set of libraries and tools for building robust and scalable applications. C# is also widely used in the game development industry, particularly in the development of games for the Xbox 360 and Xbox One consoles.", "helpfulness": [ 3, 3, 4 ], "correctness": [ 3, 4, 4 ], "coherence": [ 4, 3, 4 ], "complexity": [ 2, 2, 2 ], "verbosity": [ 2, 1, 1 ] } ``` ## Using the Huggingface Datasets ```python from datasets import load_dataset ds = load_dataset("nvidia/HelpSteer2") train = ds['train'] # len(train) = 20324 (95%) val = ds['validation'] # len(val) = 1038 (5%) preference = load_dataset("nvidia/HelpSteer2", data_dir="preference")['train'] # despite the name, this contains both train and val, which you can use split to distinguish disagreements = load_dataset("nvidia/HelpSteer2", data_dir="disagreements")['train'] ``` ## Source 1. Prompts are collected based on mostly user-contributed ShareGPT prompts and with a small proportion (~5%) that are human generated by Scale AI. 2. Responses are generated by early versions of a mix of 10 different inhouse LLMs (note: none from properitary LLM providers such as OpenAI). We generate 2 responses per prompts (each from a different model) using sampling techniques to give diverse yet reasonable responses. 3. Annotations of various attributes were done by Scale AI. Annotators rated each response on a Likert 5 scale (between 0 and 4) for each attribute (helpfulness, correctness, coherence, complexity and verbosity). ## Annotation methodology (short) 1. We engaged a select group of contractors via Scale AI. These contractors were provided with comprehensive guidelines that defined each attribute and the criteria for every rating level, together with some annotated examples. These guidelines and examples are detailed in the Appendix of the accompanying paper. 2. The annotation process involved approximately 1000 U.S.-based human annotators. Candidates first underwent preliminary assignments, including assessments of English proficiency, to determine eligibility for working on the project. Subsequently, they participated in an introductory training course on the task which ended with a test that involved annotating 35 sample responses. This process ensured not only a thorough understanding of the task requirements but also the delivery of high-quality annotations. 3. Every sample was independently annotated by a minimum of three annotators and up to five annotators, if the initial annotators do not agree with each other sufficiently (2 points or less on helpfulness). The final annotations (mean of 3.41 annotators) were obtain by taking the mean of the three annotators who agree with each other most, rounded to the nearest integer. 4. Post-annotations, Scale AI performed extensive quality assurance, with each annotation reaching a minimum of two human reviews in addition to automated checks. After receiving the annotations from Scale AI, we conducted our independent quality assurance to make sure that the quality of the annotations was up to our expectations. As a result, many annotations were filtered away to retain only 20, 324 samples. ## Ethical statement Annotators for the dataset were contracted through Scale AI. Scale AI engages the Anker Methodology, GISC Impact Sourcing Standard, and UN Sustainable Development Goals to provide a fair and competitive pay. The specific pay is calculated based on many factors, including the specific project, the specialized skillset and expertise required, regional costs of living and then transparently listed on Scale AI platform. Scale AI also provides multiple channels for questions and support, including 24/7 support teams, community discussion channels with specially trained moderators, and a “speak up” hotline where contractors can report concerns anonymously. Worker concerns can be submitted to and are reviewed by our Remotasks support team, and pay disputes are reviewed by support specialists trained in this area. ## Citation If you find this dataset useful, please cite the following works ```bibtex @misc{wang2024helpsteer2preferencecomplementingratingspreferences, title={HelpSteer2-Preference: Complementing Ratings with Preferences}, author={Zhilin Wang and Alexander Bukharin and Olivier Delalleau and Daniel Egert and Gerald Shen and Jiaqi Zeng and Oleksii Kuchaiev and Yi Dong}, year={2024}, eprint={2410.01257}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2410.01257}, } @misc{wang2024helpsteer2, title={HelpSteer2: Open-source dataset for training top-performing reward models}, author={Zhilin Wang and Yi Dong and Olivier Delalleau and Jiaqi Zeng and Gerald Shen and Daniel Egert and Jimmy J. Zhang and Makesh Narsimhan Sreedhar and Oleksii Kuchaiev}, year={2024}, eprint={2406.08673}, archivePrefix={arXiv}, primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'} } ```
dair-ai/emotion
dair-ai
"2024-08-08T06:10:47Z"
15,195
315
[ "task_categories:text-classification", "task_ids:multi-class-classification", "annotations_creators:machine-generated", "language_creators:machine-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "emotion-classification" ]
[ "text-classification" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - machine-generated language_creators: - machine-generated language: - en license: - other multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - multi-class-classification paperswithcode_id: emotion pretty_name: Emotion tags: - emotion-classification dataset_info: - config_name: split features: - name: text dtype: string - name: label dtype: class_label: names: '0': sadness '1': joy '2': love '3': anger '4': fear '5': surprise splits: - name: train num_bytes: 1741533 num_examples: 16000 - name: validation num_bytes: 214695 num_examples: 2000 - name: test num_bytes: 217173 num_examples: 2000 download_size: 1287193 dataset_size: 2173401 - config_name: unsplit features: - name: text dtype: string - name: label dtype: class_label: names: '0': sadness '1': joy '2': love '3': anger '4': fear '5': surprise splits: - name: train num_bytes: 45444017 num_examples: 416809 download_size: 26888538 dataset_size: 45444017 configs: - config_name: split data_files: - split: train path: split/train-* - split: validation path: split/validation-* - split: test path: split/test-* default: true - config_name: unsplit data_files: - split: train path: unsplit/train-* train-eval-index: - config: default task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for "emotion" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/dair-ai/emotion_dataset](https://github.com/dair-ai/emotion_dataset) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 16.13 MB - **Size of the generated dataset:** 47.62 MB - **Total amount of disk used:** 63.75 MB ### Dataset Summary Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances An example looks as follows. ``` { "text": "im feeling quite sad and sorry for myself but ill snap out of it soon", "label": 0 } ``` ### Data Fields The data fields are: - `text`: a `string` feature. - `label`: a classification label, with possible values including `sadness` (0), `joy` (1), `love` (2), `anger` (3), `fear` (4), `surprise` (5). ### Data Splits The dataset has 2 configurations: - split: with a total of 20_000 examples split into train, validation and split - unsplit: with a total of 416_809 examples in a single train split | name | train | validation | test | |---------|-------:|-----------:|-----:| | split | 16000 | 2000 | 2000 | | unsplit | 416809 | n/a | n/a | ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The dataset should be used for educational and research purposes only. ### Citation Information If you use this dataset, please cite: ``` @inproceedings{saravia-etal-2018-carer, title = "{CARER}: Contextualized Affect Representations for Emotion Recognition", author = "Saravia, Elvis and Liu, Hsien-Chi Toby and Huang, Yen-Hao and Wu, Junlin and Chen, Yi-Shin", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", month = oct # "-" # nov, year = "2018", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D18-1404", doi = "10.18653/v1/D18-1404", pages = "3687--3697", abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.", } ``` ### Contributions Thanks to [@lhoestq](https://github.com/lhoestq), [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun) for adding this dataset.
HuggingFaceGECLM/REDDIT_comments
HuggingFaceGECLM
"2023-03-17T07:52:51Z"
15,170
11
[ "task_categories:text-generation", "task_ids:dialogue-modeling", "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "language:en", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2001.08435", "region:us", "reddit", "social-media" ]
[ "text-generation" ]
"2023-03-15T14:14:58Z"
--- dataset_info: features: - name: archived dtype: string - name: author dtype: string - name: author_fullname dtype: string - name: body dtype: string - name: comment_type dtype: string - name: controversiality dtype: string - name: created_utc dtype: string - name: edited dtype: string - name: gilded dtype: string - name: id dtype: string - name: link_id dtype: string - name: locked dtype: string - name: name dtype: string - name: parent_id dtype: string - name: permalink dtype: string - name: retrieved_on dtype: string - name: score dtype: string - name: subreddit_id dtype: string - name: subreddit_name_prefixed dtype: string - name: subreddit_type dtype: string - name: total_awards_received dtype: string splits: - name: programming num_bytes: 3466623746 num_examples: 7503347 - name: tifu num_bytes: 4761338653 num_examples: 12738669 - name: explainlikeimfive num_bytes: 8451732573 num_examples: 16392814 - name: WritingPrompts num_bytes: 4651591771 num_examples: 4436210 - name: changemyview num_bytes: 8603031915 num_examples: 11600073 - name: LifeProTips num_bytes: 5272994396 num_examples: 12829459 - name: todayilearned num_bytes: 22655655241 num_examples: 60199778 - name: science num_bytes: 7069809765 num_examples: 18112884 - name: askscience num_bytes: 3144754665 num_examples: 6286702 - name: ifyoulikeblank num_bytes: 547200329 num_examples: 1332211 - name: Foodforthought num_bytes: 308377128 num_examples: 567900 - name: IWantToLearn num_bytes: 408331672 num_examples: 745543 - name: bestof num_bytes: 2003718831 num_examples: 4347522 - name: IAmA num_bytes: 9380094090 num_examples: 25778822 - name: socialskills num_bytes: 1000014402 num_examples: 1842733 - name: relationship_advice num_bytes: 22298879735 num_examples: 38937398 - name: philosophy num_bytes: 1494947876 num_examples: 2391695 - name: YouShouldKnow num_bytes: 1165617658 num_examples: 2639265 - name: history num_bytes: 1457852402 num_examples: 2962043 - name: books num_bytes: 4562689426 num_examples: 10187495 - name: Showerthoughts num_bytes: 13259109532 num_examples: 34123213 - name: personalfinance num_bytes: 9484869588 num_examples: 18361314 - name: buildapc num_bytes: 9801044390 num_examples: 21761801 - name: EatCheapAndHealthy num_bytes: 853462012 num_examples: 1821897 - name: boardgames num_bytes: 3131627378 num_examples: 6328926 - name: malefashionadvice num_bytes: 2928017882 num_examples: 7712258 - name: femalefashionadvice num_bytes: 1619784736 num_examples: 3262969 - name: scifi num_bytes: 888152056 num_examples: 2193741 - name: Fantasy num_bytes: 2285934538 num_examples: 4566639 - name: Games num_bytes: 10396813188 num_examples: 23373965 - name: bodyweightfitness num_bytes: 794549854 num_examples: 1613634 - name: SkincareAddiction num_bytes: 3421122597 num_examples: 5660550 - name: podcasts num_bytes: 464773126 num_examples: 943266 - name: suggestmeabook num_bytes: 1842944304 num_examples: 3492937 - name: AskHistorians num_bytes: 2244587909 num_examples: 2714353 - name: gaming num_bytes: 28374513722 num_examples: 85729253 - name: DIY num_bytes: 2113533684 num_examples: 4489265 - name: sports num_bytes: 2230129132 num_examples: 6470079 - name: space num_bytes: 3081499208 num_examples: 7896182 - name: gadgets num_bytes: 1683252868 num_examples: 4104833 - name: Documentaries num_bytes: 1852644771 num_examples: 4051474 - name: GetMotivated num_bytes: 1211761267 num_examples: 3221980 - name: UpliftingNews num_bytes: 2003149025 num_examples: 4741948 - name: technology num_bytes: 10826871436 num_examples: 25404699 - name: Fitness num_bytes: 6191132755 num_examples: 14319856 - name: travel num_bytes: 1740556350 num_examples: 3806755 - name: lifehacks num_bytes: 626791812 num_examples: 1799437 - name: Damnthatsinteresting num_bytes: 6376694618 num_examples: 15643554 - name: gardening num_bytes: 1825313940 num_examples: 4568468 - name: mildlyinteresting num_bytes: 9079894206 num_examples: 26436769 download_size: 109177016105 dataset_size: 255339788158 annotations_creators: - no-annotation language: - en language_creators: - found license: [] multilinguality: - monolingual pretty_name: Reddit comments size_categories: - 10B<n<100B source_datasets: [] tags: - reddit - social-media task_categories: - text-generation task_ids: - dialogue-modeling - language-modeling --- # Dataset Card for "REDDIT_comments" ## Dataset Description - **Homepage:** - **Paper: https://arxiv.org/abs/2001.08435** ### Dataset Summary Comments of 50 high-quality subreddits, extracted from the REDDIT PushShift data dumps (from 2006 to Jan 2023). ### Supported Tasks These comments can be used for text generation and language modeling, as well as dialogue modeling. ## Dataset Structure ### Data Splits Each split corresponds to a specific subreddit in the following list: "tifu", "explainlikeimfive", "WritingPrompts", "changemyview", "LifeProTips", "todayilearned", "science", "askscience", "ifyoulikeblank", "Foodforthought", "IWantToLearn", "bestof", "IAmA", "socialskills", "relationship_advice", "philosophy", "YouShouldKnow", "history", "books", "Showerthoughts", "personalfinance", "buildapc", "EatCheapAndHealthy", "boardgames", "malefashionadvice", "femalefashionadvice", "scifi", "Fantasy", "Games", "bodyweightfitness", "SkincareAddiction", "podcasts", "suggestmeabook", "AskHistorians", "gaming", "DIY", "mildlyinteresting", "sports", "space", "gadgets", "Documentaries", "GetMotivated", "UpliftingNews", "technology", "Fitness", "travel", "lifehacks", "Damnthatsinteresting", "gardening", "programming" ## Dataset Creation ### Curation Rationale All the information fields have been cast to string, as their format change through time from one dump to the following. A reduced number of keys have been kept: "archived", "author", "author_fullname", "body", "comment_type", "controversiality", "created_utc", "edited", "gilded", "id", "link_id", "locked", "name", "parent_id", "permalink", "retrieved_on", "score", "subreddit", "subreddit_id", "subreddit_name_prefixed", "subreddit_type", "total_awards_received". ### Source Data The [Reddit PushShift data dumps](https://files.pushshift.io/reddit/) are part of a data collection effort which crawls Reddit at regular intervals, to extract and keep all its data. #### Initial Data Collection and Normalization See the paper. #### Who are the source language producers? Redditors are mostly young (65% below 30), male (70%), and American (50% of the site). ### Personal and Sensitive Information The data contains Redditor's usernames associated to their content. ## Considerations for Using the Data This dataset should be anonymized before any processing. Though the subreddits selected are considered as being of higher quality, they can still reflect what you can find on the internet in terms of expressions of biases and toxicity. ### Contributions Thanks to [@clefourrier](https://github.com/clefourrier) for adding this dataset.
google-research-datasets/conceptual_captions
google-research-datasets
"2024-06-17T10:51:29Z"
15,160
89
[ "task_categories:image-to-text", "task_ids:image-captioning", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text" ]
"2022-04-14T13:08:21Z"
--- annotations_creators: - found language_creators: - found language: - en license: - other multilinguality: - monolingual size_categories: - 1M<n<10M source_datasets: - original task_categories: - image-to-text task_ids: - image-captioning paperswithcode_id: conceptual-captions pretty_name: Conceptual Captions dataset_info: - config_name: default features: - name: id dtype: string - name: caption dtype: string - name: url dtype: string splits: - name: train num_bytes: 623230370 num_examples: 3318333 - name: validation num_bytes: 2846024 num_examples: 15840 download_size: 0 dataset_size: 626076394 - config_name: labeled features: - name: image_url dtype: string - name: caption dtype: string - name: labels sequence: string - name: MIDs sequence: string - name: confidence_scores sequence: float64 splits: - name: train num_bytes: 1199325228 num_examples: 2007090 download_size: 532762865 dataset_size: 1199325228 - config_name: unlabeled features: - name: image_url dtype: string - name: caption dtype: string splits: - name: train num_bytes: 584517500 num_examples: 3318333 - name: validation num_bytes: 2698710 num_examples: 15840 download_size: 375258708 dataset_size: 587216210 configs: - config_name: labeled data_files: - split: train path: labeled/train-* - config_name: unlabeled data_files: - split: train path: unlabeled/train-* - split: validation path: unlabeled/validation-* default: true --- # Dataset Card for Conceptual Captions ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Dataset Preprocessing](#dataset-preprocessing) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [Conceptual Captions homepage](https://ai.google.com/research/ConceptualCaptions/) - **Repository:** [Conceptual Captions repository](https://github.com/google-research-datasets/conceptual-captions) - **Paper:** [Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning](https://www.aclweb.org/anthology/P18-1238/) - **Leaderboard:** [Conceptual Captions leaderboard](https://ai.google.com/research/ConceptualCaptions/competition?active_tab=leaderboard)https://ai.google.com/research/ConceptualCaptions/leaderboard?active_tab=leaderboard - **Point of Contact:** [Conceptual Captions e-mail](mailto:[email protected]) ### Dataset Summary Conceptual Captions is a dataset consisting of ~3.3M images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles. More precisely, the raw descriptions are harvested from the Alt-text HTML attribute associated with web images. To arrive at the current version of the captions, we have developed an automatic pipeline that extracts, filters, and transforms candidate image/caption pairs, with the goal of achieving a balance of cleanliness, informativeness, fluency, and learnability of the resulting captions. ### Dataset Preprocessing This dataset doesn't download the images locally by default. Instead, it exposes URLs to the images. To fetch the images, use the following code: ```python from concurrent.futures import ThreadPoolExecutor from functools import partial import io import urllib import PIL.Image from datasets import load_dataset from datasets.utils.file_utils import get_datasets_user_agent USER_AGENT = get_datasets_user_agent() def fetch_single_image(image_url, timeout=None, retries=0): for _ in range(retries + 1): try: request = urllib.request.Request( image_url, data=None, headers={"user-agent": USER_AGENT}, ) with urllib.request.urlopen(request, timeout=timeout) as req: image = PIL.Image.open(io.BytesIO(req.read())) break except Exception: image = None return image def fetch_images(batch, num_threads, timeout=None, retries=0): fetch_single_image_with_args = partial(fetch_single_image, timeout=timeout, retries=retries) with ThreadPoolExecutor(max_workers=num_threads) as executor: batch["image"] = list(executor.map(fetch_single_image_with_args, batch["image_url"])) return batch num_threads = 20 dset = load_dataset("google-research-datasets/conceptual_captions") dset = dset.map(fetch_images, batched=True, batch_size=100, fn_kwargs={"num_threads": num_threads}) ``` ### Supported Tasks and Leaderboards - `image-captioning`: This dataset can be used to train model for the Image Captioning task. The leaderboard for this task is available [here](https://ai.google.com/research/ConceptualCaptions/competition?active_tab=leaderboard). Official submission output captions are scored against the reference captions from the hidden test set using [this](https://github.com/tylin/coco-caption) implementation of the CIDEr (primary), ROUGE-L and SPICE metrics. ### Languages All captions are in English. ## Dataset Structure ### Data Instances #### `unlabeled` Each instance in this configuration represents a single image with a caption: ``` { 'image_url': 'http://lh6.ggpht.com/-IvRtNLNcG8o/TpFyrudaT6I/AAAAAAAAM6o/_11MuAAKalQ/IMG_3422.JPG?imgmax=800', 'caption': 'a very typical bus station' } ``` #### `labeled` Each instance in this configuration represents a single image with a caption with addtional machine-generated image labels and confidence scores: ``` { 'image_url': 'https://thumb1.shutterstock.com/display_pic_with_logo/261388/223876810/stock-vector-christmas-tree-on-a-black-background-vector-223876810.jpg', 'caption': 'christmas tree on a black background .', 'labels': ['christmas tree', 'christmas decoration', 'font', 'text', 'graphic design', 'illustration','interior design', 'tree', 'christmas eve', 'ornament', 'fir', 'plant', 'pine', 'pine family', 'graphics'], 'MIDs': ['/m/025nd', '/m/05fc9mj', '/m/03gq5hm', '/m/07s6nbt', '/m/03c31', '/m/01kr8f', '/m/0h8nzzj', '/m/07j7r', '/m/014r1s', '/m/05ykl4', '/m/016x4z', '/m/05s2s', '/m/09t57', '/m/01tfm0', '/m/021sdg'], 'confidence_scores': [0.9818305373191833, 0.952756941318512, 0.9227379560470581, 0.8524878621101379, 0.7597672343254089, 0.7493422031402588, 0.7332468628883362, 0.6869218349456787, 0.6552258133888245, 0.6357356309890747, 0.5992692708969116, 0.585474967956543, 0.5222904086112976, 0.5113164782524109, 0.5036579966545105] } ``` ### Data Fields #### `unlabeled` - `image_url`: Static URL for downloading the image associated with the post. - `caption`: Textual description of the image. #### `labeled` - `image_url`: Static URL for downloading the image associated with the post. - `caption`: Textual description of the image. - `labels`: A sequence of machine-generated labels obtained using the [Google Cloud Vision API](https://cloud.google.com/vision). - `MIDs`: A sequence of machine-generated identifiers (MID) corresponding to the label's Google Knowledge Graph entry. - `confidence_scores`: A sequence of confidence scores denoting how likely the corresponing labels are present on the image. ### Data Splits #### `unlabeled` The basic version of the dataset split into Training and Validation splits. The Training split consists of 3,318,333 image-URL/caption pairs and the Validation split consists of 15,840 image-URL/caption pairs. #### `labeled` The labeled version of the dataset with a single. The entire data is contained in Training split, which is a subset of 2,007,090 image-URL/caption pairs from the Training set of the `unlabeled` config. ## Dataset Creation ### Curation Rationale From the paper: > In this paper, we make contributions to both the data and modeling categories. First, we present a new dataset of caption annotations Conceptual Captions (Fig. 1), which has an order of magnitude more images than the COCO dataset. Conceptual Captions consists of about 3.3M himage, descriptioni pairs. In contrast with the curated style of the COCO images, Conceptual Captions images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles. ### Source Data #### Initial Data Collection and Normalization From the homepage: >For Conceptual Captions, we developed a fully automatic pipeline that extracts, filters, and transforms candidate image/caption pairs, with the goal of achieving a balance of cleanliness, informativeness, fluency, and learnability of the resulting captions. Because no human annotators are involved, the Conceptual Captions dataset generation process is highly scalable. > >To generate this dataset, we started with a Flume pipeline that processes billions of Internet webpages, extracting, filtering, and processing candidate image and caption pairs, and keeping those that pass through several filters. > >We first screen for certain properties like size, aspect ratio, adult content scores. These filters discard more than 65% of the candidates. Next, we use Alt-Texts for text-based filtering, removing captions with non-descriptive text (such as SEO tags or hashtags); we also discard texts with high sentiment polarity or adult content scores, resulting in just 3% of the incoming candidates passing through. > >In the next step, we filter out candidates for which none of the text tokens can be mapped to the visual content of the image. We use image classifiers (e.g., Google Cloud Vision APIs) to assign class labels to images and match these labels against the candidate text (allowing morphological transformations), discarding >around 60% of the candidates that reach this stage. > >The candidates passing the above filters tend to be good Alt-text image descriptions. However, a large majority of these use proper names (for people, venues, locations, etc.), brands, dates, quotes, etc. This creates two distinct problems. First, some of these cannot be inferred based on the image pixels alone. This is problematic because unless the image has the necessary visual information it is not useful for training. Second, even if the proper names could be inferred from the image it is extremely difficult for a model to learn to perform both fine-grained classification and natural-language descriptions simultaneously. We posit that if automatic determination of names, locations, brands, etc. is needed, it should be done as a separate task that may leverage image meta-information (e.g. GPS info), or complementary techniques such as OCR. > >We address the above problems with the insight that proper names should be replaced by words that represent the same general notion, i.e., by their concept. For example, we remove locations (“Crowd at a concert in Los Angeles“ becomes “Crowd at a concert”), names (e.g., “Former Miss World Priyanka Chopra on the red carpet” becomes “actor on the red carpet”), proper noun modifiers (e.g., “Italian cuisine” becomes just “cuisine”) and noun phrases (e.g., “actor and actor” becomes “actors”). Around 20% of the samples are discarded during this transformation because it can leave sentences too short, or otherwise inconsistent. > >Finally, we perform another round of filtering to identify concepts with low-count. We cluster all resolved entities (e.g., “actor”, “dog”, “neighborhood”, etc.) and keep only the candidate types which have a count of over 100 mentions. This retains around 16K entity concepts such as: “person”, “actor”, “artist”, “player” and “illustration”. The less frequent ones that we dropped include “baguette”, “bridle”, “deadline”, “ministry” and “funnel”. #### Who are the source language producers? Not specified. ### Annotations #### Annotation process Annotations are extracted jointly with the images using the automatic pipeline. #### Who are the annotators? Not specified. ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Piyush Sharma, Nan Ding, Sebastian Goodman and Radu Soricut. ### Licensing Information The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated. The dataset is provided "AS IS" without any warranty, express or implied. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset. ### Citation Information ```bibtex @inproceedings{sharma2018conceptual, title = {Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning}, author = {Sharma, Piyush and Ding, Nan and Goodman, Sebastian and Soricut, Radu}, booktitle = {Proceedings of ACL}, year = {2018}, } ``` ### Contributions Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) and [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Tuxifan/UbuntuIRC
Tuxifan
"2023-06-04T15:35:31Z"
15,090
0
[ "task_categories:text-generation", "license:cc0-1.0", "size_categories:1M<n<10M", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "text-generation" ]
"2023-06-02T22:48:40Z"
--- license: cc0-1.0 task_categories: - text-generation pretty_name: Ubuntu IRC channels --- Completely uncurated collection of IRC logs from the Ubuntu IRC channels
lmms-lab/MME
lmms-lab
"2023-12-23T09:13:53Z"
14,945
17
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-09-16T07:11:55Z"
--- size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: test path: data/test-* dataset_info: features: - name: question_id dtype: string - name: image dtype: image - name: question dtype: string - name: answer dtype: string - name: category dtype: string splits: - name: test num_bytes: 1733070098.024 num_examples: 2374 download_size: 864018279 dataset_size: 1733070098.024 --- # Evaluation Dataset for MME
allenai/s2-naip
allenai
"2024-05-31T21:06:47Z"
14,929
17
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us" ]
null
"2024-03-06T03:10:43Z"
--- license: apache-2.0 --- AI2-S2-NAIP is a remote sensing dataset consisting of aligned NAIP, Sentinel-2, Sentinel-1, and Landsat images spanning the entire continental US. Data is divided into tiles. Each tile spans 512x512 pixels at 1.25 m/pixel in one of the 10 UTM projections covering the continental US. At each tile, the following data is available: - [National Agriculture Imagery Program (NAIP)](https://www.usgs.gov/centers/eros/science/usgs-eros-archive-aerial-photography-national-agriculture-imagery-program-naip): an image from 2019-2021 at 1.25 m/pixel (512x512). - [Sentinel-2 (L1C)](https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2): between 16 and 32 images captured within a few months of the NAIP image at 10 m/pixel (64x64). - [Sentinel-1](https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1): between 2 and 8 images captured within a few months of the NAIP image at 10 m/pixel (64x64). - [Landsat-8/9](https://www.usgs.gov/landsat-missions/landsat-8): 4 images captured in the same year as the NAIP image at 10 m/pixel (64x64). - [OpenStreetMap](https://www.openstreetmap.org): a GeoJSON containing buildings, roads, and 30 other categories. It uses pixel coordinates relative to the 512x512 NAIP image. - [WorldCover](https://worldcover2021.esa.int/): the 2021 land cover image at 10 m/pixel (64x64). AI2-S2-NAIP is applicable to several supervised and unsupervised tasks in remote sensing, including super-resolution (e.g. NAIP -> Sentinel-2), segmentation and detection (e.g. NAIP or Sentinel-2 -> OpenStreetMap or WorldCover), and multi-modal masked autoencoder pre-training. For questions or feedback about AI2-S2-NAIP, please open an issue on Github at https://github.com/allenai/satlas. ![Example images for one tile in the dataset.](example_images/combined.png) Structure --------- Once extracted, the dataset contains the different data types in different folders. Each folder contains files named by a tile ID, which consists of the UTM projection, column, and row. The column and row are based on tiles that are 512x512 pixels with pixel coordinates at 1.25 m/pixel, e.g. `32612_960_-6049.png` spans (614400, -3871360) to (615040, -3870720) in EPSG:32612 projection units. Here is an example of NAIP data: ``` naip/ 32612_960_-6049.png 32612_960_-6050.png 32612_960_-6051.png ... ``` And an example of Sentinel-2 data: ``` sentinel2/ 32612_960_-6049_16.tif 32612_960_-6049_32.tif 32612_960_-6049_8.tif 32612_960_-6050_16.tif ... ``` The Sentinel-2, Sentinel-1, and Landsat images are GeoTIFFS so they contain georeference metadata. Other data does not have georeference metadata, but data at each tile is aligned, so the georeference metadata from the above images is applicable to the other data as well with only a resolution shift. Mapping Longitude and Latitude to Tile -------------------------------------- Here is an example of mapping longitude and latitude to a tile. First install packages: pip install rasterio shapely utm Then launch Python shell: from rasterio.crs import CRS from rasterio.warp import transform_geom import shapely import utm # Define source location. src_crs = CRS.from_epsg(4326) src_point = shapely.Point(-122.331711, 47.648450) # Get UTM zone. _, _, zone_suffix, _ = utm.from_latlon(src_point.y, src_point.x) epsg_code = 32600 + zone_suffix dst_crs = CRS.from_epsg(epsg_code) # Transform to UTM CRS. dst_point = transform_geom(src_crs, dst_crs, src_point) dst_point = shapely.geometry.shape(dst_point) # dst_point is in projection coordinates (meters). # Now convert to pixel coordinates at 1.25 m/pixel. col = int(dst_point.x/1.25) row = int(dst_point.y/-1.25) # Print the prefix for the image filenames. print(f"{epsg_code}_{col//512}_{row//512}") # Print the prefix for the tar filenames to know which one to download. # These group together many 1.25 m/pixel 512x512 tiles into one tar file. print(f"{epsg_code}_{col//512//32}_{row//512//32}") So then you would download the tar file from the second prefix, extract it, and look at the file with name matching the first prefix. See visualize_tile.py for example of visualizing the data at a particular tile. Sentinel-2 ---------- The 10 m/pixel (`_8.tif`), 20 m/pixel (`_16.tif`), and 60 m/pixel (`_32.tif`) bands are stored separately. Pixel values are the L1C 16-bit values. The band order is as follows: - _8.tif (64x64): B02, B03, B04, B08 - _16.tif (32x32): B05, B06, B07, B8A, B11, B12 - _32.tif (16x16): B01, B09, B10 The GeoTIFFs contain multiple images concatenated along the channel axis. The CSV shows the original Sentinel-2 scene ID of each image. Sentinel-1 ---------- The Sentinel-1 bands are 10 m/pixel and ordered VV then VH. Only IW VV+VH scenes are used. The pixel values are 32-bit floating point values representing decibels 10*log10(x). We obtain the radiometric-calibrated and terrain-corrected images from Google Earth Engine so see https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD for details. The GeoTIFFs contain multiple images concatenated along the channel axis. The CSV shows the original Sentinel-1 scene ID of each image. NAIP ---- The NAIP image is 512x512 with four 8-bit bands: R, G, B, IR. It is encoded as PNG but the IR is alpha mask so cannot be visualized correctly in image viewer without removing the alpha mask. There are two NAIP images available, one under "naip" (2019-2022) and one under "oldnaip" (2015-2018). The CSV shows the original NAIP scene ID of each image. Landsat ------- We include OLI-TIRS images from Landsat-8 and Landsat-9. As with Sentinel-2, we select Landsat images that were captured within a few months of the NAIP image. We store the 15 m/pixel bands (i.e. B8) at 10 m/pixel, and the 30 m/pixel bands (all the others) at 20 m/pixel. There are separate GeoTIFFs for the 10 m/pixel (`_8.tif`) and 20 m/pixel (`_16.tif`). All pixel values are 16-bit. The band order is as follows: - _8.tif (64x64): B8 - _16.tif (32x32): B1, B2, B3, B4, B5, B6, B7, B9, B10, B11 The GeoTIFFS contain multiple images concatenated along the channel axis. The CSV shows the original Landsat scene ID of each image.
open-llm-leaderboard/contents
open-llm-leaderboard
"2025-01-04T01:09:40Z"
14,918
9
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-06-26T08:33:17Z"
--- dataset_info: features: - name: eval_name dtype: string - name: Precision dtype: string - name: Type dtype: string - name: T dtype: string - name: Weight type dtype: string - name: Architecture dtype: string - name: Model dtype: string - name: fullname dtype: string - name: Model sha dtype: string - name: Average ⬆️ dtype: float64 - name: Hub License dtype: string - name: Hub ❤️ dtype: int64 - name: '#Params (B)' dtype: float64 - name: Available on the hub dtype: bool - name: MoE dtype: bool - name: Flagged dtype: bool - name: Chat Template dtype: bool - name: CO₂ cost (kg) dtype: float64 - name: IFEval Raw dtype: float64 - name: IFEval dtype: float64 - name: BBH Raw dtype: float64 - name: BBH dtype: float64 - name: MATH Lvl 5 Raw dtype: float64 - name: MATH Lvl 5 dtype: float64 - name: GPQA Raw dtype: float64 - name: GPQA dtype: float64 - name: MUSR Raw dtype: float64 - name: MUSR dtype: float64 - name: MMLU-PRO Raw dtype: float64 - name: MMLU-PRO dtype: float64 - name: Merged dtype: bool - name: Official Providers dtype: bool - name: Upload To Hub Date dtype: string - name: Submission Date dtype: string - name: Generation dtype: int64 - name: Base Model dtype: string splits: - name: train num_bytes: 2417136 num_examples: 2747 download_size: 677081 dataset_size: 2417136 configs: - config_name: default data_files: - split: train path: data/train-* ---
fixie-ai/common_voice_17_0
fixie-ai
"2025-01-04T00:59:53Z"
14,802
5
[ "size_categories:1M<n<10M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-21T18:56:23Z"
--- dataset_info: - config_name: ar features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: validation num_bytes: 300234489.0 num_examples: 10470 - name: test num_bytes: 311234035.0 num_examples: 10480 - name: train num_bytes: 718845895.0 num_examples: 28369 download_size: 1250028526 dataset_size: 1330314419.0 - config_name: ast features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 10829705.0 num_examples: 387 - name: validation num_bytes: 2892341.0 num_examples: 112 - name: test num_bytes: 4465643.0 num_examples: 162 - name: other num_bytes: 23505247.0 num_examples: 865 - name: invalidated num_bytes: 482228.0 num_examples: 16 - name: validated num_bytes: 18236675.0 num_examples: 663 download_size: 58002985 dataset_size: 60411839.0 - config_name: be features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 10733982640.578 num_examples: 347637 - name: validation num_bytes: 568083900.76 num_examples: 15880 - name: test num_bytes: 554671489.332 num_examples: 15878 download_size: 10989547372 dataset_size: 11856738030.67 - config_name: bg features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 148338156.76 num_examples: 4849 - name: validation num_bytes: 94198533.448 num_examples: 2766 - name: test num_bytes: 111571602.198 num_examples: 3201 - name: other num_bytes: 72720896.586 num_examples: 2087 - name: invalidated num_bytes: 27583684.0 num_examples: 746 - name: validated num_bytes: 377935138.456 num_examples: 10832 download_size: 799144053 dataset_size: 832348011.448 - config_name: br features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 65441060.952 num_examples: 2663 - name: validation num_bytes: 58381364.479 num_examples: 2253 - name: test num_bytes: 57203564.256 num_examples: 2212 - name: other num_bytes: 196312974.159 num_examples: 8037 - name: invalidated num_bytes: 38704614.352 num_examples: 1364 - name: validated num_bytes: 542193361.699 num_examples: 21007 download_size: 871007071 dataset_size: 958236939.897 - config_name: cs features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 715383853.824 num_examples: 20144 - name: validation num_bytes: 313988229.844 num_examples: 9009 - name: test num_bytes: 343116085.98 num_examples: 9067 - name: other num_bytes: 4245083794.24 num_examples: 148316 - name: invalidated num_bytes: 81780482.483 num_examples: 2213 - name: validated num_bytes: 1867262013.204 num_examples: 61391 download_size: 7228185761 dataset_size: 7566614459.575001 - config_name: cy features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 334497968.0 num_examples: 7960 - name: validation num_bytes: 202144347.435 num_examples: 5371 - name: test num_bytes: 219542714.248 num_examples: 5379 - name: other num_bytes: 853036757.62 num_examples: 20145 - name: invalidated num_bytes: 168127588.328 num_examples: 4449 - name: validated num_bytes: 3386459797.8919997 num_examples: 90369 download_size: 4946011941 dataset_size: 5163809173.523001 - config_name: da features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 82011190.3 num_examples: 3484 - name: validation num_bytes: 68072840.16 num_examples: 2105 - name: test num_bytes: 71855204.48 num_examples: 2530 - name: other num_bytes: 9809263.0 num_examples: 396 - name: invalidated num_bytes: 11802077.0 num_examples: 404 - name: validated num_bytes: 167119907.175 num_examples: 10225 download_size: 489135817 dataset_size: 410670482.115 - config_name: de features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 23759438592.6 num_examples: 589100 - name: test num_bytes: 715601886.0 num_examples: 16183 - name: validation num_bytes: 710830645.0 num_examples: 16183 download_size: 24582787064 dataset_size: 25185871123.6 - config_name: el features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 54020374.6 num_examples: 1920 - name: validation num_bytes: 45994345.6 num_examples: 1700 - name: test num_bytes: 53316364.508 num_examples: 1701 - name: other num_bytes: 286461727.86 num_examples: 10330 - name: invalidated num_bytes: 24280825.0 num_examples: 837 - name: validated num_bytes: 506396669.318 num_examples: 16199 download_size: 931351333 dataset_size: 970470306.886 - config_name: en features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: test num_bytes: 9329520290.338 num_examples: 16393 - name: validation num_bytes: 9434608798.338 num_examples: 16393 - name: train num_bytes: 44987747251.6 num_examples: 1101170 - name: validated num_bytes: 68921650062.024 num_examples: 1799288 download_size: 128219063641 dataset_size: 132673526402.3 - config_name: es features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 13216214878.31 num_examples: 336846 - name: test num_bytes: 748084507.0 num_examples: 15857 - name: validation num_bytes: 770184703.0 num_examples: 15857 download_size: 14415677901 dataset_size: 14734484088.309998 - config_name: fi features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 59037222.672 num_examples: 2076 - name: validation num_bytes: 49998252.45 num_examples: 1770 - name: test num_bytes: 57656484.763 num_examples: 1763 - name: other num_bytes: 171069411.222 num_examples: 6202 - name: invalidated num_bytes: 9828536.0 num_examples: 293 - name: validated num_bytes: 345303318.762 num_examples: 10447 download_size: 639777329 dataset_size: 692893225.869 - config_name: fr features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 20630346378.228 num_examples: 558054 - name: test num_bytes: 684908439.0 num_examples: 16159 - name: validation num_bytes: 703910244.0 num_examples: 16159 download_size: 21981003249 dataset_size: 22019165061.228 - config_name: frold features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 20616364930.228 num_examples: 558054 - name: test num_bytes: 674959025.258 num_examples: 16159 - name: validation num_bytes: 703829746.38 num_examples: 16159 download_size: 21972606682 dataset_size: 21995153701.866 - config_name: hi features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 275394930.996 num_examples: 9378 - name: validation num_bytes: 145392985.176 num_examples: 4856 - name: test num_bytes: 220164125.264 num_examples: 6308 - name: other num_bytes: 253400896.056 num_examples: 8088 - name: invalidated num_bytes: 53706876.0 num_examples: 1550 - name: validated num_bytes: 721036368.28 num_examples: 20658 download_size: 1481543483 dataset_size: 1669096181.7719998 - config_name: hu features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 1290925823.46 num_examples: 37140 - name: validation num_bytes: 386527859.2 num_examples: 11350 - name: test num_bytes: 408581762.4 num_examples: 11435 - name: other num_bytes: 1601200599.1889997 num_examples: 49019 - name: invalidated num_bytes: 106830322.07899998 num_examples: 3091 - name: validated num_bytes: 2029885437.988 num_examples: 60358 download_size: 5649520486 dataset_size: 5823951804.316 - config_name: it features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 6137402083.638 num_examples: 169771 - name: validation num_bytes: 701042124.0 num_examples: 15149 - name: test num_bytes: 741163579.0 num_examples: 15155 download_size: 7600033249 dataset_size: 7579607786.638 - config_name: ja features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: validation num_bytes: 186515137.0 num_examples: 6261 - name: test num_bytes: 199063298.0 num_examples: 6261 - name: train num_bytes: 307772889.0 num_examples: 10039 download_size: 684220424 dataset_size: 693351324.0 - config_name: lt features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 209835116.997 num_examples: 7253 - name: validation num_bytes: 151062682.688 num_examples: 4436 - name: test num_bytes: 162556442.629 num_examples: 4753 - name: other num_bytes: 6904494.0 num_examples: 228 - name: invalidated num_bytes: 30174752.0 num_examples: 817 - name: validated num_bytes: 569626378.111 num_examples: 16643 download_size: 1095722603 dataset_size: 1130159866.425 - config_name: nl features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 1296442281.912 num_examples: 34898 - name: validation num_bytes: 368174915.228 num_examples: 11252 - name: test num_bytes: 408713015.03199995 num_examples: 11266 - name: other num_bytes: 83953868.822 num_examples: 2771 - name: invalidated num_bytes: 191476101.2 num_examples: 5580 - name: validated num_bytes: 2890451379.794 num_examples: 90449 download_size: 4761956599 dataset_size: 5239211561.988001 - config_name: pl features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 681180803.048 num_examples: 20729 - name: validation num_bytes: 325217628.02 num_examples: 9230 - name: test num_bytes: 368033596.56 num_examples: 9230 - name: other num_bytes: 22160515.0 num_examples: 662 - name: invalidated num_bytes: 279557995.4 num_examples: 6605 - name: validated num_bytes: 4518718954.4609995 num_examples: 132661 download_size: 6000668493 dataset_size: 6194869492.488999 - config_name: pt features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: validation num_bytes: 290319070.0 num_examples: 9464 - name: test num_bytes: 304560776.0 num_examples: 9467 - name: train num_bytes: 624494986.0 num_examples: 21968 download_size: 1188978689 dataset_size: 1219374832.0 - config_name: ro features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 133078550.984 num_examples: 5141 - name: validation num_bytes: 105068346.48 num_examples: 3881 - name: test num_bytes: 123465190.968 num_examples: 3896 - name: other num_bytes: 543898614.704 num_examples: 23087 - name: invalidated num_bytes: 23898694.0 num_examples: 977 - name: validated num_bytes: 560844530.353 num_examples: 17737 download_size: 1437521485 dataset_size: 1490253927.4889998 - config_name: ru features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: validation num_bytes: 393037777.0 num_examples: 10203 - name: test num_bytes: 397099376.0 num_examples: 10203 - name: train num_bytes: 977625337.0 num_examples: 26377 download_size: 1734268016 dataset_size: 1767762490.0 - config_name: sk features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 74831491.866 num_examples: 3258 - name: validation num_bytes: 67653499.816 num_examples: 2588 - name: test num_bytes: 70771288.681 num_examples: 2647 - name: other num_bytes: 92158853.128 num_examples: 3392 - name: invalidated num_bytes: 25400576.0 num_examples: 833 - name: validated num_bytes: 524330322.198 num_examples: 19513 download_size: 767611996 dataset_size: 855146031.689 - config_name: sv-SE features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 201604157.344 num_examples: 7744 - name: validation num_bytes: 145407584.16 num_examples: 5210 - name: test num_bytes: 168456898.744 num_examples: 5259 - name: other num_bytes: 182626841.121 num_examples: 6759 - name: invalidated num_bytes: 43666692.56 num_examples: 1428 - name: validated num_bytes: 1302439008.81 num_examples: 40770 download_size: 1772780355 dataset_size: 2044201182.7389998 - config_name: tr features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 854586956.976 num_examples: 35147 - name: validation num_bytes: 265450510.268 num_examples: 11258 - name: test num_bytes: 363424742.28 num_examples: 11290 - name: other num_bytes: 4238883.0 num_examples: 117 - name: invalidated num_bytes: 152949072.07 num_examples: 4530 - name: validated num_bytes: 2694662410.926 num_examples: 114056 download_size: 4038924157 dataset_size: 4335312575.5199995 - config_name: uk features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 824014245.552 num_examples: 25137 - name: validation num_bytes: 338351263.068 num_examples: 10007 - name: test num_bytes: 363575667.839 num_examples: 10011 - name: other num_bytes: 211123163.846 num_examples: 7851 - name: invalidated num_bytes: 141986802.304 num_examples: 3204 - name: validated num_bytes: 2579348540.4549994 num_examples: 75489 download_size: 4037277320 dataset_size: 4458399683.063999 - config_name: ur features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 48000 - name: sentence dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accent dtype: string - name: locale dtype: string - name: segment dtype: string - name: variant dtype: string - name: continuation dtype: string splits: - name: train num_bytes: 133627299.408 num_examples: 5368 - name: validation num_bytes: 98509203.154 num_examples: 4057 - name: test num_bytes: 117242341.632 num_examples: 4056 - name: other num_bytes: 3630451215.8669996 num_examples: 135861 - name: invalidated num_bytes: 197321142.268 num_examples: 6818 - name: validated num_bytes: 1353163990.006 num_examples: 53858 download_size: 5354414559 dataset_size: 5530315192.335001 configs: - config_name: ar data_files: - split: validation path: ar/validation-* - split: test path: ar/test-* - split: train path: ar/train-* - config_name: ast data_files: - split: train path: ast/train/** - split: validation path: ast/validation/** - split: test path: ast/test/** - split: other path: ast/other/** - split: invalidated path: ast/invalidated/** - split: validated path: ast/validated/** - config_name: be data_files: - split: train path: be/train/** - split: validation path: be/validation/** - split: test path: be/test/** - config_name: bg data_files: - split: train path: bg/train/** - split: validation path: bg/validation/** - split: test path: bg/test/** - split: other path: bg/other/** - split: invalidated path: bg/invalidated/** - split: validated path: bg/validated/** - config_name: br data_files: - split: train path: br/train/** - split: validation path: br/validation/** - split: test path: br/test/** - split: other path: br/other/** - split: invalidated path: br/invalidated/** - split: validated path: br/validated/** - config_name: cs data_files: - split: train path: cs/train/** - split: validation path: cs/validation/** - split: test path: cs/test/** - split: other path: cs/other/** - split: invalidated path: cs/invalidated/** - split: validated path: cs/validated/** - config_name: cy data_files: - split: train path: cy/train/** - split: validation path: cy/validation/** - split: test path: cy/test/** - split: other path: cy/other/** - split: invalidated path: cy/invalidated/** - split: validated path: cy/validated/** - config_name: da data_files: - split: train path: da/train/** - split: validation path: da/validation/** - split: test path: da/test/** - split: other path: da/other/** - split: invalidated path: da/invalidated/** - split: validated path: da/validated/** - config_name: de data_files: - split: validation path: de/validation-* - split: test path: de/test-* - split: train path: de/train-* - config_name: el data_files: - split: train path: el/train/** - split: validation path: el/validation/** - split: test path: el/test/** - split: other path: el/other/** - split: invalidated path: el/invalidated/** - split: validated path: el/validated/** - config_name: en data_files: - split: test path: en/test-* - split: validation path: en/validation-* - split: train path: en/train-* - split: validated path: en/validated-* - config_name: es data_files: - split: validation path: es/validation-* - split: test path: es/test-* - split: train path: es/train-* - config_name: fi data_files: - split: train path: fi/train/** - split: validation path: fi/validation/** - split: test path: fi/test/** - split: other path: fi/other/** - split: invalidated path: fi/invalidated/** - split: validated path: fi/validated/** - config_name: fr data_files: - split: validation path: fr/validation-* - split: train path: frnew/train-* - split: test path: fr/test-* - config_name: frold data_files: - split: train path: fr/train-* - split: test path: fr/test-* - split: validation path: fr/validation-* - config_name: hi data_files: - split: train path: hi/train/** - split: validation path: hi/validation/** - split: test path: hi/test/** - split: other path: hi/other/** - split: invalidated path: hi/invalidated/** - split: validated path: hi/validated/** - config_name: hu data_files: - split: train path: hu/train/** - split: validation path: hu/validation/** - split: test path: hu/test/** - split: other path: hu/other/** - split: invalidated path: hu/invalidated/** - split: validated path: hu/validated/** - config_name: it data_files: - split: validation path: it/validation-* - split: test path: it/test-* - split: train path: it/train-* - config_name: ja data_files: - split: validation path: ja/validation-* - split: test path: ja/test-* - split: train path: ja/train-* - config_name: lt data_files: - split: train path: lt/train/** - split: validation path: lt/validation/** - split: test path: lt/test/** - split: other path: lt/other/** - split: invalidated path: lt/invalidated/** - split: validated path: lt/validated/** - config_name: nl data_files: - split: train path: nl/train/** - split: validation path: nl/validation/** - split: test path: nl/test/** - split: other path: nl/other/** - split: invalidated path: nl/invalidated/** - split: validated path: nl/validated/** - config_name: pl data_files: - split: train path: pl/train/** - split: validation path: pl/validation/** - split: test path: pl/test/** - split: other path: pl/other/** - split: invalidated path: pl/invalidated/** - split: validated path: pl/validated/** - config_name: pt data_files: - split: validation path: pt/validation-* - split: test path: pt/test-* - split: train path: pt/train-* - config_name: ro data_files: - split: train path: ro/train/** - split: validation path: ro/validation/** - split: test path: ro/test/** - split: other path: ro/other/** - split: invalidated path: ro/invalidated/** - split: validated path: ro/validated/** - config_name: ru data_files: - split: validation path: ru/validation-* - split: test path: ru/test-* - split: train path: ru/train-* - config_name: sk data_files: - split: train path: sk/train/** - split: validation path: sk/validation/** - split: test path: sk/test/** - split: other path: sk/other/** - split: invalidated path: sk/invalidated/** - split: validated path: sk/validated/** - config_name: sv-SE data_files: - split: train path: sv-SE/train/** - split: validation path: sv-SE/validation/** - split: test path: sv-SE/test/** - split: other path: sv-SE/other/** - split: invalidated path: sv-SE/invalidated/** - split: validated path: sv-SE/validated/** - config_name: tr data_files: - split: train path: tr/train/** - split: validation path: tr/validation/** - split: test path: tr/test/** - split: other path: tr/other/** - split: invalidated path: tr/invalidated/** - split: validated path: tr/validated/** - config_name: uk data_files: - split: train path: uk/train/** - split: validation path: uk/validation/** - split: test path: uk/test/** - split: other path: uk/other/** - split: invalidated path: uk/invalidated/** - split: validated path: uk/validated/** - config_name: ur data_files: - split: train path: ur/train/** - split: validation path: ur/validation/** - split: test path: ur/test/** - split: other path: ur/other/** - split: invalidated path: ur/invalidated/** - split: validated path: ur/validated/** ---
lmms-lab/GQA
lmms-lab
"2024-03-08T05:02:22Z"
14,714
13
[ "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-12-26T13:11:16Z"
--- license: mit dataset_info: - config_name: challenge_all_images features: - name: id dtype: string - name: image dtype: image splits: - name: challenge num_bytes: 261636425.25 num_examples: 1590 download_size: 261271928 dataset_size: 261636425.25 - config_name: challenge_all_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: isBalanced dtype: bool splits: - name: challenge num_bytes: 50797705 num_examples: 713449 download_size: 19869828 dataset_size: 50797705 - config_name: challenge_balanced_images features: - name: id dtype: string - name: image dtype: image splits: - name: challenge num_bytes: 261636425.25 num_examples: 1590 download_size: 261333538 dataset_size: 261636425.25 - config_name: challenge_balanced_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: isBalanced dtype: bool splits: - name: challenge num_bytes: 3523973 num_examples: 50726 download_size: 1787024 dataset_size: 3523973 - config_name: submission_all_images features: - name: id dtype: string - name: image dtype: image splits: - name: submission num_bytes: 2314978438.875 num_examples: 15545 download_size: 2309217874 dataset_size: 2314978438.875 - config_name: submission_all_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: isBalanced dtype: bool splits: - name: submission num_bytes: 298875520 num_examples: 4237524 download_size: 121458425 dataset_size: 298875520 - config_name: test_all_images features: - name: id dtype: string - name: image dtype: image splits: - name: test num_bytes: 492571840.875 num_examples: 2993 download_size: 491611526 dataset_size: 492571840.875 - config_name: test_all_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: isBalanced dtype: bool splits: - name: test num_bytes: 95588974 num_examples: 1340048 download_size: 39561711 dataset_size: 95588974 - config_name: test_balanced_images features: - name: id dtype: string - name: image dtype: image splits: - name: test num_bytes: 491210370.625 num_examples: 2987 download_size: 490293506 dataset_size: 491210370.625 - config_name: test_balanced_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: isBalanced dtype: bool splits: - name: test num_bytes: 6622775 num_examples: 95336 download_size: 3401070 dataset_size: 6622775 - config_name: testdev_all_images features: - name: id dtype: string - name: image dtype: image splits: - name: testdev num_bytes: 65779269.0 num_examples: 398 download_size: 65670255 dataset_size: 65779269.0 - config_name: testdev_all_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: answer dtype: string - name: fullAnswer dtype: string - name: isBalanced dtype: bool - name: groups struct: - name: global dtype: string - name: local dtype: string - name: entailed dtype: string - name: equivalent dtype: string - name: types struct: - name: structural dtype: string - name: semantic dtype: string - name: detailed dtype: string - name: annotations sequence: - name: question struct: - name: objectId dtype: string - name: value dtype: string - name: answer struct: - name: objectId dtype: string - name: value dtype: string - name: fullAnswer struct: - name: objectId dtype: string - name: value dtype: string - name: semantic list: - name: operation dtype: string - name: argument dtype: string - name: dependencies sequence: int32 - name: semanticStr dtype: string splits: - name: testdev num_bytes: 86970760 num_examples: 172174 download_size: 23385535 dataset_size: 86970760 - config_name: testdev_balanced_images features: - name: id dtype: string - name: image dtype: image splits: - name: testdev num_bytes: 65779269.0 num_examples: 398 download_size: 65647745 dataset_size: 65779269.0 - config_name: testdev_balanced_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: answer dtype: string - name: fullAnswer dtype: string - name: isBalanced dtype: bool - name: groups struct: - name: global dtype: string - name: local dtype: string - name: entailed dtype: string - name: equivalent dtype: string - name: types struct: - name: structural dtype: string - name: semantic dtype: string - name: detailed dtype: string - name: annotations sequence: - name: question struct: - name: objectId dtype: string - name: value dtype: string - name: answer struct: - name: objectId dtype: string - name: value dtype: string - name: fullAnswer struct: - name: objectId dtype: string - name: value dtype: string - name: semantic list: - name: operation dtype: string - name: argument dtype: string - name: dependencies sequence: int32 - name: semanticStr dtype: string splits: - name: testdev num_bytes: 6113469 num_examples: 12578 download_size: 2090335 dataset_size: 6113469 - config_name: train_all_images features: - name: id dtype: string - name: image dtype: image splits: - name: train num_bytes: 10509758457.0 num_examples: 74256 download_size: 10480239090 dataset_size: 10509758457.0 - config_name: train_all_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: answer dtype: string - name: fullAnswer dtype: string - name: isBalanced dtype: bool - name: groups struct: - name: global dtype: string - name: local dtype: string - name: entailed dtype: string - name: equivalent dtype: string - name: types struct: - name: structural dtype: string - name: semantic dtype: string - name: detailed dtype: string - name: annotations sequence: - name: question struct: - name: objectId dtype: string - name: value dtype: string - name: answer struct: - name: objectId dtype: string - name: value dtype: string - name: fullAnswer struct: - name: objectId dtype: string - name: value dtype: string - name: semantic list: - name: operation dtype: string - name: argument dtype: string - name: dependencies sequence: int32 - name: semanticStr dtype: string splits: - name: train num_bytes: 6891129609 num_examples: 14305356 download_size: 1874173198 dataset_size: 6891129609 - config_name: train_balanced_images features: - name: id dtype: string - name: image dtype: image splits: - name: train num_bytes: 10200292415.5 num_examples: 72140 download_size: 10171627271 dataset_size: 10200292415.5 - config_name: train_balanced_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: answer dtype: string - name: fullAnswer dtype: string - name: isBalanced dtype: bool - name: groups struct: - name: global dtype: string - name: local dtype: string - name: entailed dtype: string - name: equivalent dtype: string - name: types struct: - name: structural dtype: string - name: semantic dtype: string - name: detailed dtype: string - name: annotations sequence: - name: question struct: - name: objectId dtype: string - name: value dtype: string - name: answer struct: - name: objectId dtype: string - name: value dtype: string - name: fullAnswer struct: - name: objectId dtype: string - name: value dtype: string - name: semantic list: - name: operation dtype: string - name: argument dtype: string - name: dependencies sequence: int32 - name: semanticStr dtype: string splits: - name: train num_bytes: 460429581 num_examples: 943000 download_size: 183979778 dataset_size: 460429581 - config_name: val_all_images features: - name: id dtype: string - name: image dtype: image splits: - name: val num_bytes: 1494990904.5 num_examples: 10564 download_size: 1490744689 dataset_size: 1494990904.5 - config_name: val_all_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: answer dtype: string - name: fullAnswer dtype: string - name: isBalanced dtype: bool - name: groups struct: - name: global dtype: string - name: local dtype: string - name: entailed dtype: string - name: equivalent dtype: string - name: types struct: - name: structural dtype: string - name: semantic dtype: string - name: detailed dtype: string - name: annotations sequence: - name: question struct: - name: objectId dtype: string - name: value dtype: string - name: answer struct: - name: objectId dtype: string - name: value dtype: string - name: fullAnswer struct: - name: objectId dtype: string - name: value dtype: string - name: semantic list: - name: operation dtype: string - name: argument dtype: string - name: dependencies sequence: int32 - name: semanticStr dtype: string splits: - name: val num_bytes: 967338322 num_examples: 2011853 download_size: 266476025 dataset_size: 967338322 - config_name: val_balanced_images features: - name: id dtype: string - name: image dtype: image splits: - name: val num_bytes: 1447074448.75 num_examples: 10234 download_size: 1443033919 dataset_size: 1447074448.75 - config_name: val_balanced_instructions features: - name: id dtype: string - name: imageId dtype: string - name: question dtype: string - name: answer dtype: string - name: fullAnswer dtype: string - name: isBalanced dtype: bool - name: groups struct: - name: global dtype: string - name: local dtype: string - name: entailed dtype: string - name: equivalent dtype: string - name: types struct: - name: structural dtype: string - name: semantic dtype: string - name: detailed dtype: string - name: annotations sequence: - name: question struct: - name: objectId dtype: string - name: value dtype: string - name: answer struct: - name: objectId dtype: string - name: value dtype: string - name: fullAnswer struct: - name: objectId dtype: string - name: value dtype: string - name: semantic list: - name: operation dtype: string - name: argument dtype: string - name: dependencies sequence: int32 - name: semanticStr dtype: string splits: - name: val num_bytes: 64498952 num_examples: 132062 download_size: 25794272 dataset_size: 64498952 configs: - config_name: challenge_all_images data_files: - split: challenge path: challenge_all_images/challenge-* - config_name: challenge_all_instructions data_files: - split: challenge path: challenge_all_instructions/challenge-* - config_name: challenge_balanced_images data_files: - split: challenge path: challenge_balanced_images/challenge-* - config_name: challenge_balanced_instructions data_files: - split: challenge path: challenge_balanced_instructions/challenge-* - config_name: submission_all_images data_files: - split: submission path: submission_all_images/submission-* - config_name: submission_all_instructions data_files: - split: submission path: submission_all_instructions/submission-* - config_name: test_all_images data_files: - split: test path: test_all_images/test-* - config_name: test_all_instructions data_files: - split: test path: test_all_instructions/test-* - config_name: test_balanced_images data_files: - split: test path: test_balanced_images/test-* - config_name: test_balanced_instructions data_files: - split: test path: test_balanced_instructions/test-* - config_name: testdev_all_images data_files: - split: testdev path: testdev_all_images/testdev-* - config_name: testdev_all_instructions data_files: - split: testdev path: testdev_all_instructions/testdev-* - config_name: testdev_balanced_images data_files: - split: testdev path: testdev_balanced_images/testdev-* - config_name: testdev_balanced_instructions data_files: - split: testdev path: testdev_balanced_instructions/testdev-* - config_name: train_all_images data_files: - split: train path: train_all_images/train-* - config_name: train_all_instructions data_files: - split: train path: train_all_instructions/train-* - config_name: train_balanced_images data_files: - split: train path: train_balanced_images/train-* - config_name: train_balanced_instructions data_files: - split: train path: train_balanced_instructions/train-* - config_name: val_all_images data_files: - split: val path: val_all_images/val-* - config_name: val_all_instructions data_files: - split: val path: val_all_instructions/val-* - config_name: val_balanced_images data_files: - split: val path: val_balanced_images/val-* - config_name: val_balanced_instructions data_files: - split: val path: val_balanced_instructions/val-* --- <p align="center" width="100%"> <img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png" width="100%" height="80%"> </p> # Large-scale Multi-modality Models Evaluation Suite > Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval` 🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab) # This Dataset This is a formatted version of [GQA](hhttps://cs.stanford.edu/people/dorarad/gqa/about.html). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models. ``` @inproceedings{hudson2019gqa, title={Gqa: A new dataset for real-world visual reasoning and compositional question answering}, author={Hudson, Drew A and Manning, Christopher D}, booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, pages={6700--6709}, year={2019} } ```
CropNet/CropNet
CropNet
"2024-11-03T21:59:02Z"
14,605
13
[ "language:en", "license:cc-by-4.0", "size_categories:n>1T", "doi:10.57967/hf/3514", "region:us", "agriculture", "climate" ]
null
"2023-10-08T17:59:29Z"
--- license: cc-by-4.0 language: - en tags: - agriculture - climate size_categories: - n>1T --- # An Open and Large-Scale Dataset for Multi-Modal Climate Change-aware Crop Yield Predictions ![Motivation](images/dataset-motivation.png) The CropNet dataset is an open, large-scale, and deep learning-ready dataset, specifically targeting climate change-aware crop yield predictions for the contiguous United States (U.S.) continent at the county level. It is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR Computed Dataset, and USDA Crop Dataset, aligned in both the spatial and temporal domains, for over 2200 U.S. counties spanning 6 years (2017-2022). It is expected to facilitate researchers in developing deep learning models for timely and precisely predicting crop yields at the county level, by accounting for the effects of both short-term growing season weather variations and long-term climate change on crop yields. Although our initial goal of crafting the CropNet dataset is for precise crop yield prediction, we believe its future applicability is broad and can benefit the deep learning, agriculture, and meteorology communities, for exploring more interesting, critical, and climate change-related applications, by using one or more modalities of data. ## Citation If you use our dataset, please cite [our paper](https://dl.acm.org/doi/10.1145/3637528.3671536): ``` @inproceedings{fudong:kdd24:crop_net, author = {Fudong Lin and Kaleb Guillot and Summer Crawford and Yihe Zhang and Xu Yuan and Nian{-}Feng Tzeng}, title = {An Open and Large-Scale Dataset for Multi-Modal Climate Change-aware Crop Yield Predictions}, booktitle = {Proceedings of the 30th {ACM} {SIGKDD} Conference on Knowledge Discovery and Data Mining (KDD)}, pages = {5375--5386}, year = {2024} } ``` [Our MMST-ViT model](https://openaccess.thecvf.com/content/ICCV2023/papers/Lin_MMST-ViT_Climate_Change-aware_Crop_Yield_Prediction_via_Multi-Modal_Spatial-Temporal_Vision_ICCV_2023_paper.pdf) demonstrates how to develop deep-learning models for climate change-aware crop yield predictions. If you use MMST-ViT in your research, please cite our paper: ``` @inproceedings{fudong:iccv23:mmst_vit, title={MMST-ViT: Climate Change-aware Crop Yield Prediction via Multi-Modal Spatial-Temporal Vision Transformer}, author={Lin, Fudong and Crawford, Summer and Guillot, Kaleb and Zhang, Yihe and Chen, Yan and Yuan, Xu and others}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={5774--5784}, year={2023} } ``` ## Contributions #### The `CropNet` dataset - The first *terabyte-sized*, publicly available, and multi-modal dataset for climate change-aware crop yield predictions #### The `CropNet` package - A *deep learning-ready* Python package for facilitating researchers in downloading the CropNet data on the fly over the time and region of interest, and developing deep neural networks (DNNs) for climate change-aware crop yield predictions - The `CropNet` package is available at [Python Package Index (PyPI)](https://pypi.org/project/cropnet/) ## Tutorials The tutorials for the CropNet dataset are available at Google Colab, with their links listed below - [Sentinel-2 Imagery Tutorial](https://colab.research.google.com/drive/1Tj69JdhO7aX8ks-4UWYvHrFm9GB1PNCd?usp=sharing) - [WRF-HRRR Computed Dataset Tutorial](https://colab.research.google.com/drive/14l-JSNHtelawNu3kVG_ukTd2WUJpaZEc?usp=sharing) - [USDA Crop Dataset Tutorial](https://colab.research.google.com/drive/1U-vFoRyLSb2l2Q67LeGbkUKTeRaHDkkK?usp=sharing) ## The CropNet Dataset 0ur CropNet dataset is composed of three modalities of data, i.e., Sentinel-2 Imagery, WRF-HRRR Computed Dataset, and USDA Crop Dataset, spanning from 2017 to 2022 (i.e., 6 years) across 2291 U.S. counties, with its geographic distribution illustrated below. We also include the number of counties corresponding to each crop type in the USDA Crop Dataset (see the rightmost bar chart in the figure) since crop planting is highly geography-dependent. ![Geographic Distribution](images/dataset-geo-overview-violet-pastel.png) ### Sentinel-2 Imagery The Sentinel-2 Imagery, obtained from the Sentinel-2 mission, provides high-resolution satellite images for monitoring crop growth on the ground. It contains two types of 224x224 RGB satellite images, agriculture imagery (AG) and normalized difference vegetation index (NDVI), both with a spatial resolution of 9x9 km, and a revisit frequency of 14 days. Examples of AG and NDVI images are depicted as follows. - **Agriculture Imagery (AG)** ![AG](images/dataset-Sentinel2-AG.png) - **Normalized Difference Vegetation Index (NDVI)** ![NDVI](images/dataset-Sentinel2-NDVI.png) ### WRF-HRRR Computed Dataset The WRF-HRRR Computed Dataset, sourced from the WRF-HRRR model, contains daily and monthly meteorological parameters, with the former and the latter designed for capturing direct effects of short-term growing season weather variations on crop growth, and for learning indirect impacts of long-term climate change on crop yields, respectively. It contains 9 meteorological parameters gridded at 9 km in a one-day (and one-month) interval. The figures show the temperature in the spring, the summer, the fall, and the winter, respectively. ![HRRR Temperature](images/dataset-HRRR-temperature.png) ### USDA Crop Dataset The USDA Crop Dataset, collected from the USDA Quick Statistic website, offers valuable information, such as production, yield, etc., for crops grown at each available county. It offers crop information for four types of crops, i.e., corn, cotton, soybeans, and winter wheat, at a county-level basis, with a temporal resolution of one year. The figure illustrates the 2022 Corn Yield across the United States. ![USDA Corn Yield](images/dataset-corn-yield.png) ### The CropNet Package Beyond the contribution of our CropNet dataset, we also release the CropNet package in the Python Package Index (PyPI) for facilitating researchers in downloading the CropNet data based on the time and region of interest, and flexibly building their deep learning models for accurate crop yield predictions. In particular, the CropNet package includes three types of APIs, listed as follows: - **DataDownloader**: This API allows users to download the CropNet data over the time/region of interest on the fly. - **DataRetriever**: With this API, users can conveniently obtain the CropNet data stored in the local machine (e.g., if you have downloaded our curated CropNet from Google Drive) over the time/region of interest. - **DataLoader**: This API is designed to facilitate researchers in developing their DNNs for accurate crop yield predictions. Specifically, the code in this API ( 1) combines all three modalities of data to create $(\mathbf{x}, \mathbf{y_{s}}, \mathbf{y_{l}}, \mathbf{z})$ tuples, with $\mathbf{x}, \mathbf{y_{s}}, \mathbf{y_{l}}, \text{and}~ \mathbf{z}$, respectively representing satellite images, short-term daily whether parameters, long-term monthly meteorological parameters, and ground-truth crop yield (or production) information, and then (2) exposes those tuples via a `Dataset` object after appropriate data pre-processing techniques. ### Installation Researchers and practitioners can install the latest version of CropNet with the following commands: ```python # Create and activate a conda environment conda create -n cropnet_api python=3.10 conda activate cropnet_api # Install the latest version of CropNet pip install cropnet # Slove the ecCodes library dependency issue pip install ecmwflibs ``` ### CropNet API Examples - **Example 1: A DataDownloader Example for Downloading the Up-to-date CropNet Data** Given the time and region (i.e., the FIPS codes for two U.S. counties) of interest, the following code presents how to utilize the **DataDownloader** to download the up-to-date CropNet data: ```python from cropnet.data_downloader import DataDownloader # Use the "target_dir" to specify where the data should be downloaded to downloader = DataDownloader(target_dir="./data") # Download 2022 USDA Soybean data # Note that most of the 2023 USDA data are not yet available downloader.download_USDA("Soybean", fips_codes=["10003", "22007"], years=["2022"]) # Download the 2023 (the 1st and 2nd quarters) Sentinel-2 Imagery downloader.download_Sentinel2(fips_codes=["10003", "22007"], years=["2023"], image_type="AG") downloader.download_Sentinel2(fips_codes=["10003", "22007"], years=["2023"], image_type="NDVI") # Download the 2023 (January to July) WRF-HRRR data downloader.download_HRRR(fips_codes=["10003", "22007"], years=["2023"]) ``` - **Example 2: A DataRetriever Example for Obtaining Our Curated CropNet Data** Given the time and region of interest, the following code shows how to use the **DataRetriever** to obtain the CropNet data stored in the local machine in a user-friendly format: ```python # Use the "base_fir" to specify where the CropNet data is stored retriever = DataRetriever(base_dir="/mnt/data/CropNet") # Retrieve the 2022 USDA Soybean data usda_data = retriever.retrieve_USDA(crop_type="Soybean", fips_codes=["10003", "22007"], years=["2022"]) # Retrieve the 2022 Sentinel-2 Imagery data sentinel2_data = retriever.retrieve_Sentinel2(fips_codes=["10003", "22007"], years=["2022"], image_type="AG") sentinel2_data = retriever.retrieve_Sentinel2(fips_codes=["10003", "22007"], years=["2022"], image_type="NDVI") # Retrieve the 2022 WRF-HRRR data hrrr_data = retriever.retrieve_HRRR(fips_codes=["10003","22007"], years=["2022"]) ``` - **Example 3: A PyTorch Example for Using the DataLoader API for Training DNNs** The following code presents a PyTorch example of training a deep learning model (i.e., MMST-ViT) for climate change-aware crop yield predictions, by utilizing the DataLoader APIs: ```python import torch from torch.utils.data import DataLoader from models_mmst_vit import MMST_ViT from cropnet.dataset.hrrr_computed_dataset import HRRRComputedDataset from cropnet.dataset.sentinel2_imagery import Sentinel2Imagery from cropnet.dataset.usda_crop_dataset import USDACropDataset # The base directory for the CropNet dataset base_dir = "/mnt/data/CropNet" # The JSON configuration file config_file = "data/soybeans_train.json" # The dataloaders for each modality of data sentinel2_loader = DataLoader(Sentinel2Imagery(base_dir, config_file), batch_size=1) hrrr_loader = DataLoader(HRRRComputedDataset(base_dir, config_file), batch_size=1) usda_loader = DataLoader(USDACropDataset(base_dir, config_file), batch_size=1) # The model, the optimizer, and the loss function model = MMST_ViT() optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3, betas=(0.9, 0.999)) criterion = torch.nn.MSELoss() # Traning the model for one epoch for s, h, u in zip(sentinel2_loader, hrrr_loader, usda_loader): # x: satellite images # ys (or yl): short-term daily (or long-term monthly) weather parameters # z: ground-truth crop yield (or production) information x, ys, yl, z, = s[0], h[0], h[1], u[0] optimizer.zero_grad() z_hat = model(x, ys, yl) loss = criterion(z, z_hat) loss.backward() optimizer.step() ``` ## License CropNet has a [Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/) license. ## Dataset Terms of Use This dataset is available for research purposes only. By downloading, you agree to these terms. We are aware that unauthorized copies of our dataset have been republished on HuggingFace. Please note that any republication or distribution of this dataset without permission is prohibited and constitutes copyright infringement.
GEM/wiki_lingua
GEM
"2023-02-16T09:23:29Z"
14,420
48
[ "task_categories:summarization", "annotations_creators:none", "language_creators:unknown", "multilinguality:multilingual", "source_datasets:original", "language:ar", "language:cs", "language:de", "language:en", "language:es", "language:fr", "language:hi", "language:id", "language:it", "language:ja", "language:ko", "language:nl", "language:pt", "language:ru", "language:th", "language:tr", "language:vi", "language:zh", "license:cc-by-nc-sa-3.0", "region:us" ]
[ "summarization" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - none language_creators: - unknown language: - ar - cs - de - en - es - fr - hi - id - it - ja - ko - nl - pt - ru - th - tr - vi - zh license: - cc-by-nc-sa-3.0 multilinguality: - multilingual size_categories: - unknown source_datasets: - original task_categories: - summarization task_ids: [] pretty_name: wiki_lingua --- # Dataset Card for GEM/wiki_lingua ## Dataset Description - **Homepage:** None (See Repository) - **Repository:** https://github.com/esdurmus/Wikilingua - **Paper:** https://www.aclweb.org/anthology/2020.findings-emnlp.360/ - **Leaderboard:** N/A - **Point of Contact:** Faisal Ladhak, Esin Durmus ### Link to Main Data Card You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/wiki_lingua). ### Dataset Summary Placeholder You can load the dataset via: ``` import datasets data = datasets.load_dataset('GEM/wiki_lingua') ``` The data loader can be found [here](https://huggingface.co/datasets/GEM/wiki_lingua). #### website None (See Repository) #### paper https://www.aclweb.org/anthology/2020.findings-emnlp.360/ #### authors Faisal Ladhak (Columbia University), Esin Durmus (Stanford University), Claire Cardie (Cornell University), Kathleen McKeown (Columbia University) ## Dataset Overview ### Where to find the Data and its Documentation #### Webpage <!-- info: What is the webpage for the dataset (if it exists)? --> <!-- scope: telescope --> None (See Repository) #### Download <!-- info: What is the link to where the original dataset is hosted? --> <!-- scope: telescope --> https://github.com/esdurmus/Wikilingua #### Paper <!-- info: What is the link to the paper describing the dataset (open access preferred)? --> <!-- scope: telescope --> https://www.aclweb.org/anthology/2020.findings-emnlp.360/ #### BibTex <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. --> <!-- scope: microscope --> @inproceedings{ladhak-etal-2020-wikilingua, title = "{W}iki{L}ingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization", author = "Ladhak, Faisal and Durmus, Esin and Cardie, Claire and McKeown, Kathleen", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.360", doi = "10.18653/v1/2020.findings-emnlp.360", pages = "4034--4048", abstract = "We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of cross-lingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct cross-lingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.", } #### Contact Name <!-- quick --> <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. --> <!-- scope: periscope --> Faisal Ladhak, Esin Durmus #### Contact Email <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. --> <!-- scope: periscope --> [email protected], [email protected] #### Has a Leaderboard? <!-- info: Does the dataset have an active leaderboard? --> <!-- scope: telescope --> no ### Languages and Intended Use #### Multilingual? <!-- quick --> <!-- info: Is the dataset multilingual? --> <!-- scope: telescope --> yes #### Covered Dialects <!-- info: What dialects are covered? Are there multiple dialects per language? --> <!-- scope: periscope --> Dataset does not have multiple dialects per language. #### Covered Languages <!-- quick --> <!-- info: What languages/dialects are covered in the dataset? --> <!-- scope: telescope --> `English`, `Spanish, Castilian`, `Portuguese`, `French`, `German`, `Russian`, `Italian`, `Indonesian`, `Dutch, Flemish`, `Arabic`, `Chinese`, `Vietnamese`, `Thai`, `Japanese`, `Korean`, `Hindi`, `Czech`, `Turkish` #### Whose Language? <!-- info: Whose language is in the dataset? --> <!-- scope: periscope --> No information about the user demographic is available. #### License <!-- quick --> <!-- info: What is the license of the dataset? --> <!-- scope: telescope --> cc-by-nc-sa-3.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) #### Intended Use <!-- info: What is the intended use of the dataset? --> <!-- scope: microscope --> The dataset was intended to serve as a large-scale, high-quality benchmark dataset for cross-lingual summarization. #### Primary Task <!-- info: What primary task does the dataset support? --> <!-- scope: telescope --> Summarization #### Communicative Goal <!-- quick --> <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. --> <!-- scope: periscope --> Produce a high quality summary for the given input article. ### Credit #### Curation Organization Type(s) <!-- info: In what kind of organization did the dataset curation happen? --> <!-- scope: telescope --> `academic` #### Curation Organization(s) <!-- info: Name the organization(s). --> <!-- scope: periscope --> Columbia University #### Dataset Creators <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). --> <!-- scope: microscope --> Faisal Ladhak (Columbia University), Esin Durmus (Stanford University), Claire Cardie (Cornell University), Kathleen McKeown (Columbia University) #### Who added the Dataset to GEM? <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. --> <!-- scope: microscope --> Jenny Chim (Queen Mary University of London), Faisal Ladhak (Columbia University) ### Dataset Structure #### Data Fields <!-- info: List and describe the fields present in the dataset. --> <!-- scope: telescope --> gem_id -- The id for the data instance. source_language -- The language of the source article. target_language -- The language of the target summary. source -- The source document. #### Example Instance <!-- info: Provide a JSON formatted example of a typical instance in the dataset. --> <!-- scope: periscope --> { "gem_id": "wikilingua_crosslingual-train-12345", "gem_parent_id": "wikilingua_crosslingual-train-12345", "source_language": "fr", "target_language": "de", "source": "Document in fr", "target": "Summary in de", } #### Data Splits <!-- info: Describe and name the splits in the dataset if there are more than one. --> <!-- scope: periscope --> The data is split into train/dev/test. In addition to the full test set, there's also a sampled version of the test set. #### Splitting Criteria <!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. --> <!-- scope: microscope --> The data was split to ensure the same document would appear in the same split across languages so as to ensure there's no leakage into the test set. ## Dataset in GEM ### Rationale for Inclusion in GEM #### Why is the Dataset in GEM? <!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? --> <!-- scope: microscope --> This dataset provides a large-scale, high-quality resource for cross-lingual summarization in 18 languages, increasing the coverage of languages for the GEM summarization task. #### Similar Datasets <!-- info: Do other datasets for the high level task exist? --> <!-- scope: telescope --> yes #### Unique Language Coverage <!-- info: Does this dataset cover other languages than other datasets for the same task? --> <!-- scope: periscope --> yes #### Difference from other GEM datasets <!-- info: What else sets this dataset apart from other similar datasets in GEM? --> <!-- scope: microscope --> XSum covers English news articles, and MLSum covers news articles in German and Spanish. In contrast, this dataset has how-to articles in 18 languages, substantially increasing the languages covered. Moreover, it also provides a a different domain than the other two datasets. #### Ability that the Dataset measures <!-- info: What aspect of model ability can be measured with this dataset? --> <!-- scope: periscope --> The ability to generate quality summaries across multiple languages. ### GEM-Specific Curation #### Modificatied for GEM? <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? --> <!-- scope: telescope --> yes #### GEM Modifications <!-- info: What changes have been made to he original dataset? --> <!-- scope: periscope --> `other` #### Modification Details <!-- info: For each of these changes, described them in more details and provided the intended purpose of the modification --> <!-- scope: microscope --> Previous version had separate data loaders for each language. In this version, we've created a single monolingual data loader, which contains monolingual data in each of the 18 languages. In addition, we've also created a single cross-lingual data loader across all the language pairs in the dataset. #### Additional Splits? <!-- info: Does GEM provide additional splits to the dataset? --> <!-- scope: telescope --> no ### Getting Started with the Task ## Previous Results ### Previous Results #### Measured Model Abilities <!-- info: What aspect of model ability can be measured with this dataset? --> <!-- scope: telescope --> Ability to summarize content across different languages. #### Metrics <!-- info: What metrics are typically used for this task? --> <!-- scope: periscope --> `ROUGE` #### Proposed Evaluation <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. --> <!-- scope: microscope --> ROUGE is used to measure content selection by comparing word overlap with reference summaries. In addition, the authors of the dataset also used human evaluation to evaluate content selection and fluency of the systems. #### Previous results available? <!-- info: Are previous results available? --> <!-- scope: telescope --> no ## Dataset Curation ### Original Curation #### Original Curation Rationale <!-- info: Original curation rationale --> <!-- scope: telescope --> The dataset was created in order to enable new approaches for cross-lingual and multilingual summarization, which are currently understudied as well as open up inetersting new directions for research in summarization. E.g., exploration of multi-source cross-lingual architectures, i.e. models that can summarize from multiple source languages into a target language, building models that can summarize articles from any language to any other language for a given set of languages. #### Communicative Goal <!-- info: What was the communicative goal? --> <!-- scope: periscope --> Given an input article, produce a high quality summary of the article in the target language. #### Sourced from Different Sources <!-- info: Is the dataset aggregated from different data sources? --> <!-- scope: telescope --> no ### Language Data #### How was Language Data Obtained? <!-- info: How was the language data obtained? --> <!-- scope: telescope --> `Found` #### Where was it found? <!-- info: If found, where from? --> <!-- scope: telescope --> `Single website` #### Language Producers <!-- info: What further information do we have on the language producers? --> <!-- scope: microscope --> WikiHow, which is an online resource of how-to guides (written and reviewed by human authors) is used as the data source. #### Topics Covered <!-- info: Does the language in the dataset focus on specific topics? How would you describe them? --> <!-- scope: periscope --> The articles cover 19 broad categories including health, arts and entertainment, personal care and style, travel, education and communications, etc. The categories cover a broad set of genres and topics. #### Data Validation <!-- info: Was the text validated by a different worker or a data curator? --> <!-- scope: telescope --> not validated #### Was Data Filtered? <!-- info: Were text instances selected or filtered? --> <!-- scope: telescope --> not filtered ### Structured Annotations #### Additional Annotations? <!-- quick --> <!-- info: Does the dataset have additional annotations for each instance? --> <!-- scope: telescope --> none #### Annotation Service? <!-- info: Was an annotation service used? --> <!-- scope: telescope --> no ### Consent #### Any Consent Policy? <!-- info: Was there a consent policy involved when gathering the data? --> <!-- scope: telescope --> yes #### Consent Policy Details <!-- info: What was the consent policy? --> <!-- scope: microscope --> (1) Text Content. All text posted by Users to the Service is sub-licensed by wikiHow to other Users under a Creative Commons license as provided herein. The Creative Commons license allows such text content be used freely for non-commercial purposes, so long as it is used and attributed to the original author as specified under the terms of the license. Allowing free republication of our articles helps wikiHow achieve its mission by providing instruction on solving the problems of everyday life to more people for free. In order to support this goal, wikiHow hereby grants each User of the Service a license to all text content that Users contribute to the Service under the terms and conditions of a Creative Commons CC BY-NC-SA 3.0 License. Please be sure to read the terms of the license carefully. You continue to own all right, title, and interest in and to your User Content, and you are free to distribute it as you wish, whether for commercial or non-commercial purposes. #### Other Consented Downstream Use <!-- info: What other downstream uses of the data did the original data creators and the data curators consent to? --> <!-- scope: microscope --> The data is made freely available under the Creative Commons license, therefore there are no restrictions about downstream uses as long is it's for non-commercial purposes. ### Private Identifying Information (PII) #### Contains PII? <!-- quick --> <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? --> <!-- scope: telescope --> no PII #### Justification for no PII <!-- info: Provide a justification for selecting `no PII` above. --> <!-- scope: periscope --> Only the article text and summaries were collected. No user information was retained in the dataset. ### Maintenance #### Any Maintenance Plan? <!-- info: Does the original dataset have a maintenance plan? --> <!-- scope: telescope --> no ## Broader Social Context ### Previous Work on the Social Impact of the Dataset #### Usage of Models based on the Data <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? --> <!-- scope: telescope --> yes - other datasets featuring the same task ### Impact on Under-Served Communities #### Addresses needs of underserved Communities? <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). --> <!-- scope: telescope --> no ### Discussion of Biases #### Any Documented Social Biases? <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. --> <!-- scope: telescope --> yes ## Considerations for Using the Data ### PII Risks and Liability ### Licenses #### Copyright Restrictions on the Dataset <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? --> <!-- scope: periscope --> `non-commercial use only` #### Copyright Restrictions on the Language Data <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? --> <!-- scope: periscope --> `non-commercial use only` ### Known Technical Limitations
locuslab/TOFU
locuslab
"2024-02-07T14:58:06Z"
14,407
36
[ "task_categories:question-answering", "task_ids:closed-domain-qa", "annotations_creators:machine-generated", "language_creators:machine-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2401.06121", "region:us", "unlearning", "question answering", "TOFU", "NLP", "LLM" ]
[ "question-answering" ]
"2023-11-14T22:25:09Z"
--- annotations_creators: - machine-generated language: - en language_creators: - machine-generated license: mit multilinguality: - monolingual pretty_name: TOFU size_categories: - 1K<n<10K source_datasets: - original tags: - unlearning - question answering - TOFU - NLP - LLM task_categories: - question-answering task_ids: - closed-domain-qa configs: - config_name: full data_files: full.json default: true - config_name: forget01 data_files: forget01.json - config_name: forget05 data_files: forget05.json - config_name: forget10 data_files: forget10.json - config_name: retain90 data_files: retain90.json - config_name: retain95 data_files: retain95.json - config_name: retain99 data_files: retain99.json - config_name: world_facts data_files: world_facts.json - config_name: real_authors data_files: real_authors.json - config_name: forget01_perturbed data_files: forget01_perturbed.json - config_name: forget05_perturbed data_files: forget05_perturbed.json - config_name: forget10_perturbed data_files: forget10_perturbed.json - config_name: retain_perturbed data_files: retain_perturbed.json - config_name: world_facts_perturbed data_files: world_facts_perturbed.json - config_name: real_authors_perturbed data_files: real_authors_perturbed.json --- # TOFU: Task of Fictitious Unlearning 🍢 The TOFU dataset serves as a benchmark for evaluating unlearning performance of large language models on realistic tasks. The dataset comprises question-answer pairs based on autobiographies of 200 different authors that do not exist and are completely fictitiously generated by the GPT-4 model. The goal of the task is to unlearn a fine-tuned model on various fractions of the forget set. ## Quick Links - [**Website**](https://locuslab.github.io/tofu): The landing page for TOFU - [**arXiv Paper**](http://arxiv.org/abs/2401.06121): Detailed information about the TOFU dataset and its significance in unlearning tasks. - [**GitHub Repository**](https://github.com/locuslab/tofu): Access the source code, fine-tuning scripts, and additional resources for the TOFU dataset. - [**Dataset on Hugging Face**](https://huggingface.co/datasets/locuslab/TOFU): Direct link to download the TOFU dataset. - [**Leaderboard on Hugging Face Spaces**](https://huggingface.co/spaces/locuslab/tofu_leaderboard): Current rankings and submissions for the TOFU dataset challenges. - [**Summary on Twitter**](https://x.com/_akhaliq/status/1745643293839327268): A concise summary and key takeaways from the project. ## Applicability 🚀 The dataset is in QA format, making it ideal for use with popular chat models such as Llama2, Mistral, or Qwen. However, it also works for any other large language model. The corresponding code base is written for the Llama2 chat, and Phi-1.5 models, but can be easily adapted to other models. ## Loading the Dataset To load the dataset, use the following code: ```python from datasets import load_dataset dataset = load_dataset("locuslab/TOFU", "full") ``` ### Available forget sets are: - `forget01`: Forgetting 1% of the original dataset, all entries correspond to a single author. - `forget05`: Forgetting 5% of the original dataset, all entries correspond to a single author. - `forget10`: Forgetting 10% of the original dataset, all entries correspond to a single author. Retain sets corresponding to each forget set are also available, which can be used to train an Oracle model. ## Codebase The code for training the models and the availability of all fine-tuned models can be found at our [GitHub repository](https://github.com/locuslab/tofu). ## Citing Our Work If you find our codebase and dataset beneficial, please cite our work: ``` @misc{tofu2024, title={TOFU: A Task of Fictitious Unlearning for LLMs}, author={Pratyush Maini and Zhili Feng and Avi Schwarzschild and Zachary C. Lipton and J. Zico Kolter}, year={2024}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
Helsinki-NLP/opus-100
Helsinki-NLP
"2024-02-28T09:17:34Z"
14,298
166
[ "task_categories:translation", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:translation", "source_datasets:extended", "language:af", "language:am", "language:an", "language:ar", "language:as", "language:az", "language:be", "language:bg", "language:bn", "language:br", "language:bs", "language:ca", "language:cs", "language:cy", "language:da", "language:de", "language:dz", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gd", "language:gl", "language:gu", "language:ha", "language:he", "language:hi", "language:hr", "language:hu", "language:hy", "language:id", "language:ig", "language:is", "language:it", "language:ja", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:ku", "language:ky", "language:li", "language:lt", "language:lv", "language:mg", "language:mk", "language:ml", "language:mn", "language:mr", "language:ms", "language:mt", "language:my", "language:nb", "language:ne", "language:nl", "language:nn", "language:no", "language:oc", "language:or", "language:pa", "language:pl", "language:ps", "language:pt", "language:ro", "language:ru", "language:rw", "language:se", "language:sh", "language:si", "language:sk", "language:sl", "language:sq", "language:sr", "language:sv", "language:ta", "language:te", "language:tg", "language:th", "language:tk", "language:tr", "language:tt", "language:ug", "language:uk", "language:ur", "language:uz", "language:vi", "language:wa", "language:xh", "language:yi", "language:yo", "language:zh", "language:zu", "license:unknown", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2004.11867", "region:us" ]
[ "translation" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - no-annotation language_creators: - found language: - af - am - an - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - dz - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - ig - is - it - ja - ka - kk - km - kn - ko - ku - ky - li - lt - lv - mg - mk - ml - mn - mr - ms - mt - my - nb - ne - nl - nn - 'no' - oc - or - pa - pl - ps - pt - ro - ru - rw - se - sh - si - sk - sl - sq - sr - sv - ta - te - tg - th - tk - tr - tt - ug - uk - ur - uz - vi - wa - xh - yi - yo - zh - zu license: - unknown multilinguality: - translation size_categories: - 100K<n<1M - 10K<n<100K - 1K<n<10K - 1M<n<10M - n<1K source_datasets: - extended task_categories: - translation task_ids: [] paperswithcode_id: opus-100 pretty_name: OPUS-100 config_names: - af-en - am-en - an-en - ar-de - ar-en - ar-fr - ar-nl - ar-ru - ar-zh - as-en - az-en - be-en - bg-en - bn-en - br-en - bs-en - ca-en - cs-en - cy-en - da-en - de-en - de-fr - de-nl - de-ru - de-zh - dz-en - el-en - en-eo - en-es - en-et - en-eu - en-fa - en-fi - en-fr - en-fy - en-ga - en-gd - en-gl - en-gu - en-ha - en-he - en-hi - en-hr - en-hu - en-hy - en-id - en-ig - en-is - en-it - en-ja - en-ka - en-kk - en-km - en-kn - en-ko - en-ku - en-ky - en-li - en-lt - en-lv - en-mg - en-mk - en-ml - en-mn - en-mr - en-ms - en-mt - en-my - en-nb - en-ne - en-nl - en-nn - en-no - en-oc - en-or - en-pa - en-pl - en-ps - en-pt - en-ro - en-ru - en-rw - en-se - en-sh - en-si - en-sk - en-sl - en-sq - en-sr - en-sv - en-ta - en-te - en-tg - en-th - en-tk - en-tr - en-tt - en-ug - en-uk - en-ur - en-uz - en-vi - en-wa - en-xh - en-yi - en-yo - en-zh - en-zu - fr-nl - fr-ru - fr-zh - nl-ru - nl-zh - ru-zh dataset_info: - config_name: af-en features: - name: translation dtype: translation: languages: - af - en splits: - name: test num_bytes: 135908 num_examples: 2000 - name: train num_bytes: 18726247 num_examples: 275512 - name: validation num_bytes: 132769 num_examples: 2000 download_size: 14852797 dataset_size: 18994924 - config_name: am-en features: - name: translation dtype: translation: languages: - am - en splits: - name: test num_bytes: 588021 num_examples: 2000 - name: train num_bytes: 21950572 num_examples: 89027 - name: validation num_bytes: 566069 num_examples: 2000 download_size: 12630031 dataset_size: 23104662 - config_name: an-en features: - name: translation dtype: translation: languages: - an - en splits: - name: train num_bytes: 438324 num_examples: 6961 download_size: 232976 dataset_size: 438324 - config_name: ar-de features: - name: translation dtype: translation: languages: - ar - de splits: - name: test num_bytes: 238591 num_examples: 2000 download_size: 161557 dataset_size: 238591 - config_name: ar-en features: - name: translation dtype: translation: languages: - ar - en splits: - name: test num_bytes: 331640 num_examples: 2000 - name: train num_bytes: 152765684 num_examples: 1000000 - name: validation num_bytes: 2272098 num_examples: 2000 download_size: 100486814 dataset_size: 155369422 - config_name: ar-fr features: - name: translation dtype: translation: languages: - ar - fr splits: - name: test num_bytes: 547374 num_examples: 2000 download_size: 334226 dataset_size: 547374 - config_name: ar-nl features: - name: translation dtype: translation: languages: - ar - nl splits: - name: test num_bytes: 212928 num_examples: 2000 download_size: 144863 dataset_size: 212928 - config_name: ar-ru features: - name: translation dtype: translation: languages: - ar - ru splits: - name: test num_bytes: 808262 num_examples: 2000 download_size: 441536 dataset_size: 808262 - config_name: ar-zh features: - name: translation dtype: translation: languages: - ar - zh splits: - name: test num_bytes: 713404 num_examples: 2000 download_size: 438598 dataset_size: 713404 - config_name: as-en features: - name: translation dtype: translation: languages: - as - en splits: - name: test num_bytes: 261458 num_examples: 2000 - name: train num_bytes: 15634536 num_examples: 138479 - name: validation num_bytes: 248131 num_examples: 2000 download_size: 8794616 dataset_size: 16144125 - config_name: az-en features: - name: translation dtype: translation: languages: - az - en splits: - name: test num_bytes: 393101 num_examples: 2000 - name: train num_bytes: 56431043 num_examples: 262089 - name: validation num_bytes: 407101 num_examples: 2000 download_size: 34988859 dataset_size: 57231245 - config_name: be-en features: - name: translation dtype: translation: languages: - be - en splits: - name: test num_bytes: 166850 num_examples: 2000 - name: train num_bytes: 5298444 num_examples: 67312 - name: validation num_bytes: 175197 num_examples: 2000 download_size: 3807669 dataset_size: 5640491 - config_name: bg-en features: - name: translation dtype: translation: languages: - bg - en splits: - name: test num_bytes: 243743 num_examples: 2000 - name: train num_bytes: 108929547 num_examples: 1000000 - name: validation num_bytes: 234840 num_examples: 2000 download_size: 71575310 dataset_size: 109408130 - config_name: bn-en features: - name: translation dtype: translation: languages: - bn - en splits: - name: test num_bytes: 510093 num_examples: 2000 - name: train num_bytes: 249906046 num_examples: 1000000 - name: validation num_bytes: 498406 num_examples: 2000 download_size: 134076596 dataset_size: 250914545 - config_name: br-en features: - name: translation dtype: translation: languages: - br - en splits: - name: test num_bytes: 127917 num_examples: 2000 - name: train num_bytes: 8538878 num_examples: 153447 - name: validation num_bytes: 133764 num_examples: 2000 download_size: 6881865 dataset_size: 8800559 - config_name: bs-en features: - name: translation dtype: translation: languages: - bs - en splits: - name: test num_bytes: 168614 num_examples: 2000 - name: train num_bytes: 75082148 num_examples: 1000000 - name: validation num_bytes: 172473 num_examples: 2000 download_size: 59514403 dataset_size: 75423235 - config_name: ca-en features: - name: translation dtype: translation: languages: - ca - en splits: - name: test num_bytes: 205658 num_examples: 2000 - name: train num_bytes: 88404710 num_examples: 1000000 - name: validation num_bytes: 212629 num_examples: 2000 download_size: 68438385 dataset_size: 88822997 - config_name: cs-en features: - name: translation dtype: translation: languages: - cs - en splits: - name: test num_bytes: 205266 num_examples: 2000 - name: train num_bytes: 91896919 num_examples: 1000000 - name: validation num_bytes: 219076 num_examples: 2000 download_size: 73028514 dataset_size: 92321261 - config_name: cy-en features: - name: translation dtype: translation: languages: - cy - en splits: - name: test num_bytes: 124281 num_examples: 2000 - name: train num_bytes: 17244748 num_examples: 289521 - name: validation num_bytes: 118848 num_examples: 2000 download_size: 13398765 dataset_size: 17487877 - config_name: da-en features: - name: translation dtype: translation: languages: - da - en splits: - name: test num_bytes: 298115 num_examples: 2000 - name: train num_bytes: 126424474 num_examples: 1000000 - name: validation num_bytes: 300616 num_examples: 2000 download_size: 91005252 dataset_size: 127023205 - config_name: de-en features: - name: translation dtype: translation: languages: - de - en splits: - name: test num_bytes: 330951 num_examples: 2000 - name: train num_bytes: 152245956 num_examples: 1000000 - name: validation num_bytes: 332342 num_examples: 2000 download_size: 116680890 dataset_size: 152909249 - config_name: de-fr features: - name: translation dtype: translation: languages: - de - fr splits: - name: test num_bytes: 458738 num_examples: 2000 download_size: 311929 dataset_size: 458738 - config_name: de-nl features: - name: translation dtype: translation: languages: - de - nl splits: - name: test num_bytes: 403878 num_examples: 2000 download_size: 281548 dataset_size: 403878 - config_name: de-ru features: - name: translation dtype: translation: languages: - de - ru splits: - name: test num_bytes: 315771 num_examples: 2000 download_size: 203225 dataset_size: 315771 - config_name: de-zh features: - name: translation dtype: translation: languages: - de - zh splits: - name: test num_bytes: 280389 num_examples: 2000 download_size: 215301 dataset_size: 280389 - config_name: dz-en features: - name: translation dtype: translation: languages: - dz - en splits: - name: train num_bytes: 81154 num_examples: 624 download_size: 37361 dataset_size: 81154 - config_name: el-en features: - name: translation dtype: translation: languages: - el - en splits: - name: test num_bytes: 302385 num_examples: 2000 - name: train num_bytes: 127963903 num_examples: 1000000 - name: validation num_bytes: 291226 num_examples: 2000 download_size: 84137722 dataset_size: 128557514 - config_name: en-eo features: - name: translation dtype: translation: languages: - en - eo splits: - name: test num_bytes: 167378 num_examples: 2000 - name: train num_bytes: 24431681 num_examples: 337106 - name: validation num_bytes: 168830 num_examples: 2000 download_size: 19545461 dataset_size: 24767889 - config_name: en-es features: - name: translation dtype: translation: languages: - en - es splits: - name: test num_bytes: 326262 num_examples: 2000 - name: train num_bytes: 136643104 num_examples: 1000000 - name: validation num_bytes: 326727 num_examples: 2000 download_size: 100103907 dataset_size: 137296093 - config_name: en-et features: - name: translation dtype: translation: languages: - en - et splits: - name: test num_bytes: 272163 num_examples: 2000 - name: train num_bytes: 112298253 num_examples: 1000000 - name: validation num_bytes: 276954 num_examples: 2000 download_size: 83690450 dataset_size: 112847370 - config_name: en-eu features: - name: translation dtype: translation: languages: - en - eu splits: - name: test num_bytes: 280877 num_examples: 2000 - name: train num_bytes: 112329285 num_examples: 1000000 - name: validation num_bytes: 281495 num_examples: 2000 download_size: 84805467 dataset_size: 112891657 - config_name: en-fa features: - name: translation dtype: translation: languages: - en - fa splits: - name: test num_bytes: 296548 num_examples: 2000 - name: train num_bytes: 125400535 num_examples: 1000000 - name: validation num_bytes: 291121 num_examples: 2000 download_size: 82783248 dataset_size: 125988204 - config_name: en-fi features: - name: translation dtype: translation: languages: - en - fi splits: - name: test num_bytes: 245814 num_examples: 2000 - name: train num_bytes: 106024990 num_examples: 1000000 - name: validation num_bytes: 247219 num_examples: 2000 download_size: 79320220 dataset_size: 106518023 - config_name: en-fr features: - name: translation dtype: translation: languages: - en - fr splits: - name: test num_bytes: 469723 num_examples: 2000 - name: train num_bytes: 201440450 num_examples: 1000000 - name: validation num_bytes: 481476 num_examples: 2000 download_size: 142251860 dataset_size: 202391649 - config_name: en-fy features: - name: translation dtype: translation: languages: - en - fy splits: - name: test num_bytes: 101238 num_examples: 2000 - name: train num_bytes: 3895640 num_examples: 54342 - name: validation num_bytes: 100121 num_examples: 2000 download_size: 2984283 dataset_size: 4096999 - config_name: en-ga features: - name: translation dtype: translation: languages: - en - ga splits: - name: test num_bytes: 503309 num_examples: 2000 - name: train num_bytes: 42132510 num_examples: 289524 - name: validation num_bytes: 503209 num_examples: 2000 download_size: 27937448 dataset_size: 43139028 - config_name: en-gd features: - name: translation dtype: translation: languages: - en - gd splits: - name: test num_bytes: 218354 num_examples: 1606 - name: train num_bytes: 1254779 num_examples: 16316 - name: validation num_bytes: 203877 num_examples: 1605 download_size: 1124506 dataset_size: 1677010 - config_name: en-gl features: - name: translation dtype: translation: languages: - en - gl splits: - name: test num_bytes: 190691 num_examples: 2000 - name: train num_bytes: 43327028 num_examples: 515344 - name: validation num_bytes: 193598 num_examples: 2000 download_size: 34084028 dataset_size: 43711317 - config_name: en-gu features: - name: translation dtype: translation: languages: - en - gu splits: - name: test num_bytes: 199725 num_examples: 2000 - name: train num_bytes: 33641719 num_examples: 318306 - name: validation num_bytes: 205542 num_examples: 2000 download_size: 19235779 dataset_size: 34046986 - config_name: en-ha features: - name: translation dtype: translation: languages: - en - ha splits: - name: test num_bytes: 407344 num_examples: 2000 - name: train num_bytes: 20391884 num_examples: 97983 - name: validation num_bytes: 411518 num_examples: 2000 download_size: 12686187 dataset_size: 21210746 - config_name: en-he features: - name: translation dtype: translation: languages: - en - he splits: - name: test num_bytes: 208467 num_examples: 2000 - name: train num_bytes: 91159631 num_examples: 1000000 - name: validation num_bytes: 209438 num_examples: 2000 download_size: 61144758 dataset_size: 91577536 - config_name: en-hi features: - name: translation dtype: translation: languages: - en - hi splits: - name: test num_bytes: 496570 num_examples: 2000 - name: train num_bytes: 124923545 num_examples: 534319 - name: validation num_bytes: 474079 num_examples: 2000 download_size: 65725886 dataset_size: 125894194 - config_name: en-hr features: - name: translation dtype: translation: languages: - en - hr splits: - name: test num_bytes: 179636 num_examples: 2000 - name: train num_bytes: 75309516 num_examples: 1000000 - name: validation num_bytes: 179615 num_examples: 2000 download_size: 59468892 dataset_size: 75668767 - config_name: en-hu features: - name: translation dtype: translation: languages: - en - hu splits: - name: test num_bytes: 206039 num_examples: 2000 - name: train num_bytes: 87483462 num_examples: 1000000 - name: validation num_bytes: 208307 num_examples: 2000 download_size: 67971116 dataset_size: 87897808 - config_name: en-hy features: - name: translation dtype: translation: languages: - en - hy splits: - name: train num_bytes: 652623 num_examples: 7059 download_size: 422847 dataset_size: 652623 - config_name: en-id features: - name: translation dtype: translation: languages: - en - id splits: - name: test num_bytes: 177685 num_examples: 2000 - name: train num_bytes: 78698973 num_examples: 1000000 - name: validation num_bytes: 180024 num_examples: 2000 download_size: 57693678 dataset_size: 79056682 - config_name: en-ig features: - name: translation dtype: translation: languages: - en - ig splits: - name: test num_bytes: 137324 num_examples: 1843 - name: train num_bytes: 1612523 num_examples: 18415 - name: validation num_bytes: 135987 num_examples: 1843 download_size: 859440 dataset_size: 1885834 - config_name: en-is features: - name: translation dtype: translation: languages: - en - is splits: - name: test num_bytes: 170879 num_examples: 2000 - name: train num_bytes: 73964115 num_examples: 1000000 - name: validation num_bytes: 170632 num_examples: 2000 download_size: 56242149 dataset_size: 74305626 - config_name: en-it features: - name: translation dtype: translation: languages: - en - it splits: - name: test num_bytes: 299029 num_examples: 2000 - name: train num_bytes: 123654286 num_examples: 1000000 - name: validation num_bytes: 294354 num_examples: 2000 download_size: 92133897 dataset_size: 124247669 - config_name: en-ja features: - name: translation dtype: translation: languages: - en - ja splits: - name: test num_bytes: 190991 num_examples: 2000 - name: train num_bytes: 88348569 num_examples: 1000000 - name: validation num_bytes: 191411 num_examples: 2000 download_size: 64817108 dataset_size: 88730971 - config_name: en-ka features: - name: translation dtype: translation: languages: - en - ka splits: - name: test num_bytes: 256219 num_examples: 2000 - name: train num_bytes: 42465402 num_examples: 377306 - name: validation num_bytes: 260408 num_examples: 2000 download_size: 24394633 dataset_size: 42982029 - config_name: en-kk features: - name: translation dtype: translation: languages: - en - kk splits: - name: test num_bytes: 137656 num_examples: 2000 - name: train num_bytes: 7124314 num_examples: 79927 - name: validation num_bytes: 139657 num_examples: 2000 download_size: 4808360 dataset_size: 7401627 - config_name: en-km features: - name: translation dtype: translation: languages: - en - km splits: - name: test num_bytes: 289019 num_examples: 2000 - name: train num_bytes: 19680515 num_examples: 111483 - name: validation num_bytes: 302519 num_examples: 2000 download_size: 10022919 dataset_size: 20272053 - config_name: en-kn features: - name: translation dtype: translation: languages: - en - kn splits: - name: test num_bytes: 77197 num_examples: 918 - name: train num_bytes: 1833318 num_examples: 14537 - name: validation num_bytes: 77599 num_examples: 917 download_size: 1062554 dataset_size: 1988114 - config_name: en-ko features: - name: translation dtype: translation: languages: - en - ko splits: - name: test num_bytes: 190688 num_examples: 2000 - name: train num_bytes: 93664532 num_examples: 1000000 - name: validation num_bytes: 189360 num_examples: 2000 download_size: 70383271 dataset_size: 94044580 - config_name: en-ku features: - name: translation dtype: translation: languages: - en - ku splits: - name: test num_bytes: 247839 num_examples: 2000 - name: train num_bytes: 49107744 num_examples: 144844 - name: validation num_bytes: 239317 num_examples: 2000 download_size: 25358389 dataset_size: 49594900 - config_name: en-ky features: - name: translation dtype: translation: languages: - en - ky splits: - name: test num_bytes: 142522 num_examples: 2000 - name: train num_bytes: 1879274 num_examples: 27215 - name: validation num_bytes: 138479 num_examples: 2000 download_size: 1338686 dataset_size: 2160275 - config_name: en-li features: - name: translation dtype: translation: languages: - en - li splits: - name: test num_bytes: 93342 num_examples: 2000 - name: train num_bytes: 1628577 num_examples: 25535 - name: validation num_bytes: 92898 num_examples: 2000 download_size: 1040760 dataset_size: 1814817 - config_name: en-lt features: - name: translation dtype: translation: languages: - en - lt splits: - name: test num_bytes: 482607 num_examples: 2000 - name: train num_bytes: 177060244 num_examples: 1000000 - name: validation num_bytes: 469109 num_examples: 2000 download_size: 124444053 dataset_size: 178011960 - config_name: en-lv features: - name: translation dtype: translation: languages: - en - lv splits: - name: test num_bytes: 536568 num_examples: 2000 - name: train num_bytes: 206051049 num_examples: 1000000 - name: validation num_bytes: 522064 num_examples: 2000 download_size: 140538527 dataset_size: 207109681 - config_name: en-mg features: - name: translation dtype: translation: languages: - en - mg splits: - name: test num_bytes: 525059 num_examples: 2000 - name: train num_bytes: 130865169 num_examples: 590771 - name: validation num_bytes: 511163 num_examples: 2000 download_size: 91102165 dataset_size: 131901391 - config_name: en-mk features: - name: translation dtype: translation: languages: - en - mk splits: - name: test num_bytes: 308926 num_examples: 2000 - name: train num_bytes: 117068689 num_examples: 1000000 - name: validation num_bytes: 305490 num_examples: 2000 download_size: 76810811 dataset_size: 117683105 - config_name: en-ml features: - name: translation dtype: translation: languages: - en - ml splits: - name: test num_bytes: 340618 num_examples: 2000 - name: train num_bytes: 199971079 num_examples: 822746 - name: validation num_bytes: 334451 num_examples: 2000 download_size: 95497482 dataset_size: 200646148 - config_name: en-mn features: - name: translation dtype: translation: languages: - en - mn splits: - name: train num_bytes: 250770 num_examples: 4294 download_size: 85037 dataset_size: 250770 - config_name: en-mr features: - name: translation dtype: translation: languages: - en - mr splits: - name: test num_bytes: 238604 num_examples: 2000 - name: train num_bytes: 2724107 num_examples: 27007 - name: validation num_bytes: 235532 num_examples: 2000 download_size: 1838618 dataset_size: 3198243 - config_name: en-ms features: - name: translation dtype: translation: languages: - en - ms splits: - name: test num_bytes: 179697 num_examples: 2000 - name: train num_bytes: 76828845 num_examples: 1000000 - name: validation num_bytes: 180175 num_examples: 2000 download_size: 57412836 dataset_size: 77188717 - config_name: en-mt features: - name: translation dtype: translation: languages: - en - mt splits: - name: test num_bytes: 566126 num_examples: 2000 - name: train num_bytes: 222221596 num_examples: 1000000 - name: validation num_bytes: 594378 num_examples: 2000 download_size: 147836637 dataset_size: 223382100 - config_name: en-my features: - name: translation dtype: translation: languages: - en - my splits: - name: test num_bytes: 337343 num_examples: 2000 - name: train num_bytes: 3673477 num_examples: 24594 - name: validation num_bytes: 336147 num_examples: 2000 download_size: 1952573 dataset_size: 4346967 - config_name: en-nb features: - name: translation dtype: translation: languages: - en - nb splits: - name: test num_bytes: 334109 num_examples: 2000 - name: train num_bytes: 13611589 num_examples: 142906 - name: validation num_bytes: 324392 num_examples: 2000 download_size: 10630769 dataset_size: 14270090 - config_name: en-ne features: - name: translation dtype: translation: languages: - en - ne splits: - name: test num_bytes: 186519 num_examples: 2000 - name: train num_bytes: 44135952 num_examples: 406381 - name: validation num_bytes: 204912 num_examples: 2000 download_size: 24107523 dataset_size: 44527383 - config_name: en-nl features: - name: translation dtype: translation: languages: - en - nl splits: - name: test num_bytes: 282747 num_examples: 2000 - name: train num_bytes: 112326273 num_examples: 1000000 - name: validation num_bytes: 270932 num_examples: 2000 download_size: 82923916 dataset_size: 112879952 - config_name: en-nn features: - name: translation dtype: translation: languages: - en - nn splits: - name: test num_bytes: 178999 num_examples: 2000 - name: train num_bytes: 32924429 num_examples: 486055 - name: validation num_bytes: 187642 num_examples: 2000 download_size: 25184676 dataset_size: 33291070 - config_name: en-no features: - name: translation dtype: translation: languages: - en - 'no' splits: - name: test num_bytes: 173320 num_examples: 2000 - name: train num_bytes: 74105483 num_examples: 1000000 - name: validation num_bytes: 178005 num_examples: 2000 download_size: 56277000 dataset_size: 74456808 - config_name: en-oc features: - name: translation dtype: translation: languages: - en - oc splits: - name: test num_bytes: 82342 num_examples: 2000 - name: train num_bytes: 1627174 num_examples: 35791 - name: validation num_bytes: 81642 num_examples: 2000 download_size: 1308338 dataset_size: 1791158 - config_name: en-or features: - name: translation dtype: translation: languages: - en - or splits: - name: test num_bytes: 163939 num_examples: 1318 - name: train num_bytes: 1500733 num_examples: 14273 - name: validation num_bytes: 155323 num_examples: 1317 download_size: 1019971 dataset_size: 1819995 - config_name: en-pa features: - name: translation dtype: translation: languages: - en - pa splits: - name: test num_bytes: 133901 num_examples: 2000 - name: train num_bytes: 8509140 num_examples: 107296 - name: validation num_bytes: 136188 num_examples: 2000 download_size: 5315298 dataset_size: 8779229 - config_name: en-pl features: - name: translation dtype: translation: languages: - en - pl splits: - name: test num_bytes: 212495 num_examples: 2000 - name: train num_bytes: 95247723 num_examples: 1000000 - name: validation num_bytes: 218208 num_examples: 2000 download_size: 73574044 dataset_size: 95678426 - config_name: en-ps features: - name: translation dtype: translation: languages: - en - ps splits: - name: test num_bytes: 92995 num_examples: 2000 - name: train num_bytes: 4436512 num_examples: 79127 - name: validation num_bytes: 95156 num_examples: 2000 download_size: 2851899 dataset_size: 4624663 - config_name: en-pt features: - name: translation dtype: translation: languages: - en - pt splits: - name: test num_bytes: 296114 num_examples: 2000 - name: train num_bytes: 118242849 num_examples: 1000000 - name: validation num_bytes: 292074 num_examples: 2000 download_size: 87661907 dataset_size: 118831037 - config_name: en-ro features: - name: translation dtype: translation: languages: - en - ro splits: - name: test num_bytes: 198639 num_examples: 2000 - name: train num_bytes: 85249051 num_examples: 1000000 - name: validation num_bytes: 199164 num_examples: 2000 download_size: 66294317 dataset_size: 85646854 - config_name: en-ru features: - name: translation dtype: translation: languages: - en - ru splits: - name: test num_bytes: 490976 num_examples: 2000 - name: train num_bytes: 195100937 num_examples: 1000000 - name: validation num_bytes: 490238 num_examples: 2000 download_size: 124460816 dataset_size: 196082151 - config_name: en-rw features: - name: translation dtype: translation: languages: - en - rw splits: - name: test num_bytes: 136189 num_examples: 2000 - name: train num_bytes: 15286159 num_examples: 173823 - name: validation num_bytes: 134957 num_examples: 2000 download_size: 10093708 dataset_size: 15557305 - config_name: en-se features: - name: translation dtype: translation: languages: - en - se splits: - name: test num_bytes: 85697 num_examples: 2000 - name: train num_bytes: 2047380 num_examples: 35907 - name: validation num_bytes: 83664 num_examples: 2000 download_size: 1662845 dataset_size: 2216741 - config_name: en-sh features: - name: translation dtype: translation: languages: - en - sh splits: - name: test num_bytes: 569479 num_examples: 2000 - name: train num_bytes: 60900023 num_examples: 267211 - name: validation num_bytes: 555594 num_examples: 2000 download_size: 39988454 dataset_size: 62025096 - config_name: en-si features: - name: translation dtype: translation: languages: - en - si splits: - name: test num_bytes: 271735 num_examples: 2000 - name: train num_bytes: 114950891 num_examples: 979109 - name: validation num_bytes: 271236 num_examples: 2000 download_size: 66124160 dataset_size: 115493862 - config_name: en-sk features: - name: translation dtype: translation: languages: - en - sk splits: - name: test num_bytes: 258034 num_examples: 2000 - name: train num_bytes: 111743068 num_examples: 1000000 - name: validation num_bytes: 255462 num_examples: 2000 download_size: 85223330 dataset_size: 112256564 - config_name: en-sl features: - name: translation dtype: translation: languages: - en - sl splits: - name: test num_bytes: 205470 num_examples: 2000 - name: train num_bytes: 90270157 num_examples: 1000000 - name: validation num_bytes: 198654 num_examples: 2000 download_size: 70708189 dataset_size: 90674281 - config_name: en-sq features: - name: translation dtype: translation: languages: - en - sq splits: - name: test num_bytes: 275371 num_examples: 2000 - name: train num_bytes: 105745181 num_examples: 1000000 - name: validation num_bytes: 267304 num_examples: 2000 download_size: 78817895 dataset_size: 106287856 - config_name: en-sr features: - name: translation dtype: translation: languages: - en - sr splits: - name: test num_bytes: 180224 num_examples: 2000 - name: train num_bytes: 75726035 num_examples: 1000000 - name: validation num_bytes: 184238 num_examples: 2000 download_size: 60263688 dataset_size: 76090497 - config_name: en-sv features: - name: translation dtype: translation: languages: - en - sv splits: - name: test num_bytes: 271006 num_examples: 2000 - name: train num_bytes: 116985153 num_examples: 1000000 - name: validation num_bytes: 279986 num_examples: 2000 download_size: 85032127 dataset_size: 117536145 - config_name: en-ta features: - name: translation dtype: translation: languages: - en - ta splits: - name: test num_bytes: 351982 num_examples: 2000 - name: train num_bytes: 74044340 num_examples: 227014 - name: validation num_bytes: 335549 num_examples: 2000 download_size: 33642694 dataset_size: 74731871 - config_name: en-te features: - name: translation dtype: translation: languages: - en - te splits: - name: test num_bytes: 190587 num_examples: 2000 - name: train num_bytes: 6688569 num_examples: 64352 - name: validation num_bytes: 193658 num_examples: 2000 download_size: 4047667 dataset_size: 7072814 - config_name: en-tg features: - name: translation dtype: translation: languages: - en - tg splits: - name: test num_bytes: 372112 num_examples: 2000 - name: train num_bytes: 35477017 num_examples: 193882 - name: validation num_bytes: 371720 num_examples: 2000 download_size: 21242668 dataset_size: 36220849 - config_name: en-th features: - name: translation dtype: translation: languages: - en - th splits: - name: test num_bytes: 290573 num_examples: 2000 - name: train num_bytes: 132820231 num_examples: 1000000 - name: validation num_bytes: 288358 num_examples: 2000 download_size: 75539987 dataset_size: 133399162 - config_name: en-tk features: - name: translation dtype: translation: languages: - en - tk splits: - name: test num_bytes: 83878 num_examples: 1852 - name: train num_bytes: 719617 num_examples: 13110 - name: validation num_bytes: 81006 num_examples: 1852 download_size: 417756 dataset_size: 884501 - config_name: en-tr features: - name: translation dtype: translation: languages: - en - tr splits: - name: test num_bytes: 183825 num_examples: 2000 - name: train num_bytes: 78945565 num_examples: 1000000 - name: validation num_bytes: 181909 num_examples: 2000 download_size: 60364921 dataset_size: 79311299 - config_name: en-tt features: - name: translation dtype: translation: languages: - en - tt splits: - name: test num_bytes: 693268 num_examples: 2000 - name: train num_bytes: 35313170 num_examples: 100843 - name: validation num_bytes: 701662 num_examples: 2000 download_size: 18786998 dataset_size: 36708100 - config_name: en-ug features: - name: translation dtype: translation: languages: - en - ug splits: - name: test num_bytes: 620873 num_examples: 2000 - name: train num_bytes: 31576516 num_examples: 72170 - name: validation num_bytes: 631228 num_examples: 2000 download_size: 16011372 dataset_size: 32828617 - config_name: en-uk features: - name: translation dtype: translation: languages: - en - uk splits: - name: test num_bytes: 249742 num_examples: 2000 - name: train num_bytes: 104229556 num_examples: 1000000 - name: validation num_bytes: 247123 num_examples: 2000 download_size: 71155682 dataset_size: 104726421 - config_name: en-ur features: - name: translation dtype: translation: languages: - en - ur splits: - name: test num_bytes: 538556 num_examples: 2000 - name: train num_bytes: 268960696 num_examples: 753913 - name: validation num_bytes: 529308 num_examples: 2000 download_size: 148336044 dataset_size: 270028560 - config_name: en-uz features: - name: translation dtype: translation: languages: - en - uz splits: - name: test num_bytes: 408675 num_examples: 2000 - name: train num_bytes: 38375290 num_examples: 173157 - name: validation num_bytes: 398853 num_examples: 2000 download_size: 21873536 dataset_size: 39182818 - config_name: en-vi features: - name: translation dtype: translation: languages: - en - vi splits: - name: test num_bytes: 192744 num_examples: 2000 - name: train num_bytes: 82614470 num_examples: 1000000 - name: validation num_bytes: 194721 num_examples: 2000 download_size: 59250852 dataset_size: 83001935 - config_name: en-wa features: - name: translation dtype: translation: languages: - en - wa splits: - name: test num_bytes: 87091 num_examples: 2000 - name: train num_bytes: 6085860 num_examples: 104496 - name: validation num_bytes: 87718 num_examples: 2000 download_size: 4512204 dataset_size: 6260669 - config_name: en-xh features: - name: translation dtype: translation: languages: - en - xh splits: - name: test num_bytes: 318652 num_examples: 2000 - name: train num_bytes: 50606896 num_examples: 439671 - name: validation num_bytes: 315831 num_examples: 2000 download_size: 37519365 dataset_size: 51241379 - config_name: en-yi features: - name: translation dtype: translation: languages: - en - yi splits: - name: test num_bytes: 96482 num_examples: 2000 - name: train num_bytes: 1275127 num_examples: 15010 - name: validation num_bytes: 99818 num_examples: 2000 download_size: 650530 dataset_size: 1471427 - config_name: en-yo features: - name: translation dtype: translation: languages: - en - yo splits: - name: train num_bytes: 979753 num_examples: 10375 download_size: 391299 dataset_size: 979753 - config_name: en-zh features: - name: translation dtype: translation: languages: - en - zh splits: - name: test num_bytes: 511364 num_examples: 2000 - name: train num_bytes: 200062183 num_examples: 1000000 - name: validation num_bytes: 512356 num_examples: 2000 download_size: 143414756 dataset_size: 201085903 - config_name: en-zu features: - name: translation dtype: translation: languages: - en - zu splits: - name: test num_bytes: 117510 num_examples: 2000 - name: train num_bytes: 2799558 num_examples: 38616 - name: validation num_bytes: 120133 num_examples: 2000 download_size: 1918443 dataset_size: 3037201 - config_name: fr-nl features: - name: translation dtype: translation: languages: - fr - nl splits: - name: test num_bytes: 368638 num_examples: 2000 download_size: 261290 dataset_size: 368638 - config_name: fr-ru features: - name: translation dtype: translation: languages: - fr - ru splits: - name: test num_bytes: 732716 num_examples: 2000 download_size: 426179 dataset_size: 732716 - config_name: fr-zh features: - name: translation dtype: translation: languages: - fr - zh splits: - name: test num_bytes: 619386 num_examples: 2000 download_size: 418661 dataset_size: 619386 - config_name: nl-ru features: - name: translation dtype: translation: languages: - nl - ru splits: - name: test num_bytes: 256059 num_examples: 2000 download_size: 168666 dataset_size: 256059 - config_name: nl-zh features: - name: translation dtype: translation: languages: - nl - zh splits: - name: test num_bytes: 183633 num_examples: 2000 download_size: 146191 dataset_size: 183633 - config_name: ru-zh features: - name: translation dtype: translation: languages: - ru - zh splits: - name: test num_bytes: 916106 num_examples: 2000 download_size: 534430 dataset_size: 916106 configs: - config_name: af-en data_files: - split: test path: af-en/test-* - split: train path: af-en/train-* - split: validation path: af-en/validation-* - config_name: am-en data_files: - split: test path: am-en/test-* - split: train path: am-en/train-* - split: validation path: am-en/validation-* - config_name: an-en data_files: - split: train path: an-en/train-* - config_name: ar-de data_files: - split: test path: ar-de/test-* - config_name: ar-en data_files: - split: test path: ar-en/test-* - split: train path: ar-en/train-* - split: validation path: ar-en/validation-* - config_name: ar-fr data_files: - split: test path: ar-fr/test-* - config_name: ar-nl data_files: - split: test path: ar-nl/test-* - config_name: ar-ru data_files: - split: test path: ar-ru/test-* - config_name: ar-zh data_files: - split: test path: ar-zh/test-* - config_name: as-en data_files: - split: test path: as-en/test-* - split: train path: as-en/train-* - split: validation path: as-en/validation-* - config_name: az-en data_files: - split: test path: az-en/test-* - split: train path: az-en/train-* - split: validation path: az-en/validation-* - config_name: be-en data_files: - split: test path: be-en/test-* - split: train path: be-en/train-* - split: validation path: be-en/validation-* - config_name: bg-en data_files: - split: test path: bg-en/test-* - split: train path: bg-en/train-* - split: validation path: bg-en/validation-* - config_name: bn-en data_files: - split: test path: bn-en/test-* - split: train path: bn-en/train-* - split: validation path: bn-en/validation-* - config_name: br-en data_files: - split: test path: br-en/test-* - split: train path: br-en/train-* - split: validation path: br-en/validation-* - config_name: bs-en data_files: - split: test path: bs-en/test-* - split: train path: bs-en/train-* - split: validation path: bs-en/validation-* - config_name: ca-en data_files: - split: test path: ca-en/test-* - split: train path: ca-en/train-* - split: validation path: ca-en/validation-* - config_name: cs-en data_files: - split: test path: cs-en/test-* - split: train path: cs-en/train-* - split: validation path: cs-en/validation-* - config_name: cy-en data_files: - split: test path: cy-en/test-* - split: train path: cy-en/train-* - split: validation path: cy-en/validation-* - config_name: da-en data_files: - split: test path: da-en/test-* - split: train path: da-en/train-* - split: validation path: da-en/validation-* - config_name: de-en data_files: - split: test path: de-en/test-* - split: train path: de-en/train-* - split: validation path: de-en/validation-* - config_name: de-fr data_files: - split: test path: de-fr/test-* - config_name: de-nl data_files: - split: test path: de-nl/test-* - config_name: de-ru data_files: - split: test path: de-ru/test-* - config_name: de-zh data_files: - split: test path: de-zh/test-* - config_name: dz-en data_files: - split: train path: dz-en/train-* - config_name: el-en data_files: - split: test path: el-en/test-* - split: train path: el-en/train-* - split: validation path: el-en/validation-* - config_name: en-eo data_files: - split: test path: en-eo/test-* - split: train path: en-eo/train-* - split: validation path: en-eo/validation-* - config_name: en-es data_files: - split: test path: en-es/test-* - split: train path: en-es/train-* - split: validation path: en-es/validation-* - config_name: en-et data_files: - split: test path: en-et/test-* - split: train path: en-et/train-* - split: validation path: en-et/validation-* - config_name: en-eu data_files: - split: test path: en-eu/test-* - split: train path: en-eu/train-* - split: validation path: en-eu/validation-* - config_name: en-fa data_files: - split: test path: en-fa/test-* - split: train path: en-fa/train-* - split: validation path: en-fa/validation-* - config_name: en-fi data_files: - split: test path: en-fi/test-* - split: train path: en-fi/train-* - split: validation path: en-fi/validation-* - config_name: en-fr data_files: - split: test path: en-fr/test-* - split: train path: en-fr/train-* - split: validation path: en-fr/validation-* - config_name: en-fy data_files: - split: test path: en-fy/test-* - split: train path: en-fy/train-* - split: validation path: en-fy/validation-* - config_name: en-ga data_files: - split: test path: en-ga/test-* - split: train path: en-ga/train-* - split: validation path: en-ga/validation-* - config_name: en-gd data_files: - split: test path: en-gd/test-* - split: train path: en-gd/train-* - split: validation path: en-gd/validation-* - config_name: en-gl data_files: - split: test path: en-gl/test-* - split: train path: en-gl/train-* - split: validation path: en-gl/validation-* - config_name: en-gu data_files: - split: test path: en-gu/test-* - split: train path: en-gu/train-* - split: validation path: en-gu/validation-* - config_name: en-ha data_files: - split: test path: en-ha/test-* - split: train path: en-ha/train-* - split: validation path: en-ha/validation-* - config_name: en-he data_files: - split: test path: en-he/test-* - split: train path: en-he/train-* - split: validation path: en-he/validation-* - config_name: en-hi data_files: - split: test path: en-hi/test-* - split: train path: en-hi/train-* - split: validation path: en-hi/validation-* - config_name: en-hr data_files: - split: test path: en-hr/test-* - split: train path: en-hr/train-* - split: validation path: en-hr/validation-* - config_name: en-hu data_files: - split: test path: en-hu/test-* - split: train path: en-hu/train-* - split: validation path: en-hu/validation-* - config_name: en-hy data_files: - split: train path: en-hy/train-* - config_name: en-id data_files: - split: test path: en-id/test-* - split: train path: en-id/train-* - split: validation path: en-id/validation-* - config_name: en-ig data_files: - split: test path: en-ig/test-* - split: train path: en-ig/train-* - split: validation path: en-ig/validation-* - config_name: en-is data_files: - split: test path: en-is/test-* - split: train path: en-is/train-* - split: validation path: en-is/validation-* - config_name: en-it data_files: - split: test path: en-it/test-* - split: train path: en-it/train-* - split: validation path: en-it/validation-* - config_name: en-ja data_files: - split: test path: en-ja/test-* - split: train path: en-ja/train-* - split: validation path: en-ja/validation-* - config_name: en-ka data_files: - split: test path: en-ka/test-* - split: train path: en-ka/train-* - split: validation path: en-ka/validation-* - config_name: en-kk data_files: - split: test path: en-kk/test-* - split: train path: en-kk/train-* - split: validation path: en-kk/validation-* - config_name: en-km data_files: - split: test path: en-km/test-* - split: train path: en-km/train-* - split: validation path: en-km/validation-* - config_name: en-kn data_files: - split: test path: en-kn/test-* - split: train path: en-kn/train-* - split: validation path: en-kn/validation-* - config_name: en-ko data_files: - split: test path: en-ko/test-* - split: train path: en-ko/train-* - split: validation path: en-ko/validation-* - config_name: en-ku data_files: - split: test path: en-ku/test-* - split: train path: en-ku/train-* - split: validation path: en-ku/validation-* - config_name: en-ky data_files: - split: test path: en-ky/test-* - split: train path: en-ky/train-* - split: validation path: en-ky/validation-* - config_name: en-li data_files: - split: test path: en-li/test-* - split: train path: en-li/train-* - split: validation path: en-li/validation-* - config_name: en-lt data_files: - split: test path: en-lt/test-* - split: train path: en-lt/train-* - split: validation path: en-lt/validation-* - config_name: en-lv data_files: - split: test path: en-lv/test-* - split: train path: en-lv/train-* - split: validation path: en-lv/validation-* - config_name: en-mg data_files: - split: test path: en-mg/test-* - split: train path: en-mg/train-* - split: validation path: en-mg/validation-* - config_name: en-mk data_files: - split: test path: en-mk/test-* - split: train path: en-mk/train-* - split: validation path: en-mk/validation-* - config_name: en-ml data_files: - split: test path: en-ml/test-* - split: train path: en-ml/train-* - split: validation path: en-ml/validation-* - config_name: en-mn data_files: - split: train path: en-mn/train-* - config_name: en-mr data_files: - split: test path: en-mr/test-* - split: train path: en-mr/train-* - split: validation path: en-mr/validation-* - config_name: en-ms data_files: - split: test path: en-ms/test-* - split: train path: en-ms/train-* - split: validation path: en-ms/validation-* - config_name: en-mt data_files: - split: test path: en-mt/test-* - split: train path: en-mt/train-* - split: validation path: en-mt/validation-* - config_name: en-my data_files: - split: test path: en-my/test-* - split: train path: en-my/train-* - split: validation path: en-my/validation-* - config_name: en-nb data_files: - split: test path: en-nb/test-* - split: train path: en-nb/train-* - split: validation path: en-nb/validation-* - config_name: en-ne data_files: - split: test path: en-ne/test-* - split: train path: en-ne/train-* - split: validation path: en-ne/validation-* - config_name: en-nl data_files: - split: test path: en-nl/test-* - split: train path: en-nl/train-* - split: validation path: en-nl/validation-* - config_name: en-nn data_files: - split: test path: en-nn/test-* - split: train path: en-nn/train-* - split: validation path: en-nn/validation-* - config_name: en-no data_files: - split: test path: en-no/test-* - split: train path: en-no/train-* - split: validation path: en-no/validation-* - config_name: en-oc data_files: - split: test path: en-oc/test-* - split: train path: en-oc/train-* - split: validation path: en-oc/validation-* - config_name: en-or data_files: - split: test path: en-or/test-* - split: train path: en-or/train-* - split: validation path: en-or/validation-* - config_name: en-pa data_files: - split: test path: en-pa/test-* - split: train path: en-pa/train-* - split: validation path: en-pa/validation-* - config_name: en-pl data_files: - split: test path: en-pl/test-* - split: train path: en-pl/train-* - split: validation path: en-pl/validation-* - config_name: en-ps data_files: - split: test path: en-ps/test-* - split: train path: en-ps/train-* - split: validation path: en-ps/validation-* - config_name: en-pt data_files: - split: test path: en-pt/test-* - split: train path: en-pt/train-* - split: validation path: en-pt/validation-* - config_name: en-ro data_files: - split: test path: en-ro/test-* - split: train path: en-ro/train-* - split: validation path: en-ro/validation-* - config_name: en-ru data_files: - split: test path: en-ru/test-* - split: train path: en-ru/train-* - split: validation path: en-ru/validation-* - config_name: en-rw data_files: - split: test path: en-rw/test-* - split: train path: en-rw/train-* - split: validation path: en-rw/validation-* - config_name: en-se data_files: - split: test path: en-se/test-* - split: train path: en-se/train-* - split: validation path: en-se/validation-* - config_name: en-sh data_files: - split: test path: en-sh/test-* - split: train path: en-sh/train-* - split: validation path: en-sh/validation-* - config_name: en-si data_files: - split: test path: en-si/test-* - split: train path: en-si/train-* - split: validation path: en-si/validation-* - config_name: en-sk data_files: - split: test path: en-sk/test-* - split: train path: en-sk/train-* - split: validation path: en-sk/validation-* - config_name: en-sl data_files: - split: test path: en-sl/test-* - split: train path: en-sl/train-* - split: validation path: en-sl/validation-* - config_name: en-sq data_files: - split: test path: en-sq/test-* - split: train path: en-sq/train-* - split: validation path: en-sq/validation-* - config_name: en-sr data_files: - split: test path: en-sr/test-* - split: train path: en-sr/train-* - split: validation path: en-sr/validation-* - config_name: en-sv data_files: - split: test path: en-sv/test-* - split: train path: en-sv/train-* - split: validation path: en-sv/validation-* - config_name: en-ta data_files: - split: test path: en-ta/test-* - split: train path: en-ta/train-* - split: validation path: en-ta/validation-* - config_name: en-te data_files: - split: test path: en-te/test-* - split: train path: en-te/train-* - split: validation path: en-te/validation-* - config_name: en-tg data_files: - split: test path: en-tg/test-* - split: train path: en-tg/train-* - split: validation path: en-tg/validation-* - config_name: en-th data_files: - split: test path: en-th/test-* - split: train path: en-th/train-* - split: validation path: en-th/validation-* - config_name: en-tk data_files: - split: test path: en-tk/test-* - split: train path: en-tk/train-* - split: validation path: en-tk/validation-* - config_name: en-tr data_files: - split: test path: en-tr/test-* - split: train path: en-tr/train-* - split: validation path: en-tr/validation-* - config_name: en-tt data_files: - split: test path: en-tt/test-* - split: train path: en-tt/train-* - split: validation path: en-tt/validation-* - config_name: en-ug data_files: - split: test path: en-ug/test-* - split: train path: en-ug/train-* - split: validation path: en-ug/validation-* - config_name: en-uk data_files: - split: test path: en-uk/test-* - split: train path: en-uk/train-* - split: validation path: en-uk/validation-* - config_name: en-ur data_files: - split: test path: en-ur/test-* - split: train path: en-ur/train-* - split: validation path: en-ur/validation-* - config_name: en-uz data_files: - split: test path: en-uz/test-* - split: train path: en-uz/train-* - split: validation path: en-uz/validation-* - config_name: en-vi data_files: - split: test path: en-vi/test-* - split: train path: en-vi/train-* - split: validation path: en-vi/validation-* - config_name: en-wa data_files: - split: test path: en-wa/test-* - split: train path: en-wa/train-* - split: validation path: en-wa/validation-* - config_name: en-xh data_files: - split: test path: en-xh/test-* - split: train path: en-xh/train-* - split: validation path: en-xh/validation-* - config_name: en-yi data_files: - split: test path: en-yi/test-* - split: train path: en-yi/train-* - split: validation path: en-yi/validation-* - config_name: en-yo data_files: - split: train path: en-yo/train-* - config_name: en-zh data_files: - split: test path: en-zh/test-* - split: train path: en-zh/train-* - split: validation path: en-zh/validation-* - config_name: en-zu data_files: - split: test path: en-zu/test-* - split: train path: en-zu/train-* - split: validation path: en-zu/validation-* - config_name: fr-nl data_files: - split: test path: fr-nl/test-* - config_name: fr-ru data_files: - split: test path: fr-ru/test-* - config_name: fr-zh data_files: - split: test path: fr-zh/test-* - config_name: nl-ru data_files: - split: test path: nl-ru/test-* - config_name: nl-zh data_files: - split: test path: nl-zh/test-* - config_name: ru-zh data_files: - split: test path: ru-zh/test-* --- # Dataset Card for OPUS-100 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://opus.nlpl.eu/OPUS-100 - **Repository:** https://github.com/EdinburghNLP/opus-100-corpus - **Paper:** https://arxiv.org/abs/2004.11867 - **Paper:** https://aclanthology.org/L10-1473/ - **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Dataset Summary OPUS-100 is an English-centric multilingual corpus covering 100 languages. OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side. The corpus covers 100 languages (including English). The languages were selected based on the volume of parallel data available in OPUS. ### Supported Tasks and Leaderboards Translation. ### Languages OPUS-100 contains approximately 55M sentence pairs. Of the 99 language pairs, 44 have 1M sentence pairs of training data, 73 have at least 100k, and 95 have at least 10k. ## Dataset Structure ### Data Instances ``` { "translation": { "ca": "El departament de bombers té el seu propi equip d'investigació.", "en": "Well, the fire department has its own investigative unit." } } ``` ### Data Fields - `translation` (`dict`): Parallel sentences for the pair of languages. ### Data Splits The dataset is split into training, development, and test portions. Data was prepared by randomly sampled up to 1M sentence pairs per language pair for training and up to 2000 each for development and test. To ensure that there was no overlap (at the monolingual sentence level) between the training and development/test data, they applied a filter during sampling to exclude sentences that had already been sampled. Note that this was done cross-lingually so that, for instance, an English sentence in the Portuguese-English portion of the training data could not occur in the Hindi-English test set. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information If you use this corpus, please cite the paper: ```bibtex @inproceedings{zhang-etal-2020-improving, title = "Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation", author = "Zhang, Biao and Williams, Philip and Titov, Ivan and Sennrich, Rico", editor = "Jurafsky, Dan and Chai, Joyce and Schluter, Natalie and Tetreault, Joel", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.acl-main.148", doi = "10.18653/v1/2020.acl-main.148", pages = "1628--1639", } ``` and, please, also acknowledge OPUS: ```bibtex @inproceedings{tiedemann-2012-parallel, title = "Parallel Data, Tools and Interfaces in {OPUS}", author = {Tiedemann, J{\"o}rg}, editor = "Calzolari, Nicoletta and Choukri, Khalid and Declerck, Thierry and Do{\u{g}}an, Mehmet U{\u{g}}ur and Maegaard, Bente and Mariani, Joseph and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)", month = may, year = "2012", address = "Istanbul, Turkey", publisher = "European Language Resources Association (ELRA)", url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf", pages = "2214--2218", } ``` ### Contributions Thanks to [@vasudevgupta7](https://github.com/vasudevgupta7) for adding this dataset.
anon8231489123/ShareGPT_Vicuna_unfiltered
anon8231489123
"2023-04-12T05:23:59Z"
14,258
760
[ "language:en", "license:apache-2.0", "region:us" ]
null
"2023-04-02T05:30:31Z"
--- license: apache-2.0 language: - en --- **Further cleaning done. Please look through the dataset and ensure that I didn't miss anything.** **Update: Confirmed working method for training the model: https://huggingface.co/AlekseyKorshuk/vicuna-7b/discussions/4#64346c08ef6d5abefe42c12c** Two choices: - Removes instances of "I'm sorry, but": https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json - Has instances of "I'm sorry, but": https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split.json The choice is yours. The first dataset may go to far and remove valuable data. The second is better for when the AI asks for clarification, but it also may refuse to do stuff like browse the internet, which it actually may be able to do with certain langchain implementations. These are important things to think about before training. ~100k ShareGPT conversations narrowed down to 53k by: * Removing non-english conversations * Removing excessive unicode (indicative of Chinese or Korean text, usually) * Removing excessive repeated characters * Removing various instances "AI Moralizing". Conversations with these phrases were removed (and a few others that can't be mentioned here): "text-based AI language model", "domestic violence", "please refrain", "derogatory", "inappropriate", "offensive", "racism", "racist", "racial", "discriminate", "discriminatory", "discrimination", "sexist", "sexism", "unacceptable", "inclusive workplace", "lgbt", "morals", "ethics", "ethical", "legality", "illegal", "illegality", "hateful", "harmful", "it is never okay", "It is important to", "It's important to", "real-world consequences", "hate speech", "glorify", "not be appropriate", "supremacist", "extremist", "responsible AI", "AI principles", "AI assistant", "an AI language", "ableist", "hurtful", "gender stereotype", "gender inequality", "underrepresentation", "safe spaces", "gender-based", "inclusivity", "feminist", "feminism", "transgender", "empowerment", "communist", "capitalism", "stereotypes", "biases", "bias", "Microaggression", "prioritize human safety", "as a language model", "as an AI language model", "As a large language model", "As an AI", "ethical principles", "consensual", "it is not appropriate", "it's not appropriate", "I cannot fulfill your request", "harmful to human beings", "ethical guidelines", "my guidelines", "prioritize user safety", "adhere to ethical guidelines", "harmful consequences", "potentially harmful", "dangerous activities", "promote safety", "well-being of all users", "responsible information sharing", "jeopardize the safety", "illegal actions or intentions", "undermine the stability", "promote the well-being", "illegal activities or actions", "adherence to the law", "potentially be harmful", "illegal substances or activities", "committed to promoting", "safe information", "lawful information", "cannot provide guidance", "cannot provide information", "unable to offer assistance", "cannot engage in discussions", "programming prohibits", "follow ethical guidelines", "ensure the safety", "involves an illegal subject", "prioritize safety", "illegal subject", "prioritize user well-being", "cannot support or promote", "activities that could harm", "pose a risk to others", "against my programming", "activities that could undermine", "potentially dangerous", "not within the scope", "designed to prioritize safety", "not able to provide", "maintain user safety", "adhere to safety guidelines", "dangerous or harmful", "cannot provide any information", "focus on promoting safety" * Conversations split into 2048 token chunks as described here: https://github.com/lm-sys/FastChat/blob/main/docs/commands/data_cleaning.md This should be fully ready to train an unfiltered english Vicuna model based on the procedure here: https://github.com/lm-sys/FastChat/
Helsinki-NLP/opus_books
Helsinki-NLP
"2024-03-29T16:50:29Z"
14,139
58
[ "task_categories:translation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:ca", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:fi", "language:fr", "language:hu", "language:it", "language:nl", "language:no", "language:pl", "language:pt", "language:ru", "language:sv", "license:other", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "translation" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - found language_creators: - found language: - ca - de - el - en - eo - es - fi - fr - hu - it - nl - 'no' - pl - pt - ru - sv license: - other multilinguality: - multilingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - translation task_ids: [] pretty_name: OpusBooks dataset_info: - config_name: ca-de features: - name: id dtype: string - name: translation dtype: translation: languages: - ca - de splits: - name: train num_bytes: 899553 num_examples: 4445 download_size: 609128 dataset_size: 899553 - config_name: ca-en features: - name: id dtype: string - name: translation dtype: translation: languages: - ca - en splits: - name: train num_bytes: 863162 num_examples: 4605 download_size: 585612 dataset_size: 863162 - config_name: ca-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - ca - hu splits: - name: train num_bytes: 886150 num_examples: 4463 download_size: 608827 dataset_size: 886150 - config_name: ca-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - ca - nl splits: - name: train num_bytes: 884811 num_examples: 4329 download_size: 594793 dataset_size: 884811 - config_name: de-en features: - name: id dtype: string - name: translation dtype: translation: languages: - de - en splits: - name: train num_bytes: 13738975 num_examples: 51467 download_size: 8797832 dataset_size: 13738975 - config_name: de-eo features: - name: id dtype: string - name: translation dtype: translation: languages: - de - eo splits: - name: train num_bytes: 398873 num_examples: 1363 download_size: 253509 dataset_size: 398873 - config_name: de-es features: - name: id dtype: string - name: translation dtype: translation: languages: - de - es splits: - name: train num_bytes: 7592451 num_examples: 27526 download_size: 4841017 dataset_size: 7592451 - config_name: de-fr features: - name: id dtype: string - name: translation dtype: translation: languages: - de - fr splits: - name: train num_bytes: 9544351 num_examples: 34916 download_size: 6164101 dataset_size: 9544351 - config_name: de-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - de - hu splits: - name: train num_bytes: 13514971 num_examples: 51780 download_size: 8814744 dataset_size: 13514971 - config_name: de-it features: - name: id dtype: string - name: translation dtype: translation: languages: - de - it splits: - name: train num_bytes: 7759984 num_examples: 27381 download_size: 4901036 dataset_size: 7759984 - config_name: de-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - de - nl splits: - name: train num_bytes: 3561740 num_examples: 15622 download_size: 2290868 dataset_size: 3561740 - config_name: de-pt features: - name: id dtype: string - name: translation dtype: translation: languages: - de - pt splits: - name: train num_bytes: 317143 num_examples: 1102 download_size: 197768 dataset_size: 317143 - config_name: de-ru features: - name: id dtype: string - name: translation dtype: translation: languages: - de - ru splits: - name: train num_bytes: 5764649 num_examples: 17373 download_size: 3255537 dataset_size: 5764649 - config_name: el-en features: - name: id dtype: string - name: translation dtype: translation: languages: - el - en splits: - name: train num_bytes: 552567 num_examples: 1285 download_size: 310863 dataset_size: 552567 - config_name: el-es features: - name: id dtype: string - name: translation dtype: translation: languages: - el - es splits: - name: train num_bytes: 527979 num_examples: 1096 download_size: 298827 dataset_size: 527979 - config_name: el-fr features: - name: id dtype: string - name: translation dtype: translation: languages: - el - fr splits: - name: train num_bytes: 539921 num_examples: 1237 download_size: 303181 dataset_size: 539921 - config_name: el-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - el - hu splits: - name: train num_bytes: 546278 num_examples: 1090 download_size: 313292 dataset_size: 546278 - config_name: en-eo features: - name: id dtype: string - name: translation dtype: translation: languages: - en - eo splits: - name: train num_bytes: 386219 num_examples: 1562 download_size: 246715 dataset_size: 386219 - config_name: en-es features: - name: id dtype: string - name: translation dtype: translation: languages: - en - es splits: - name: train num_bytes: 25291663 num_examples: 93470 download_size: 16080303 dataset_size: 25291663 - config_name: en-fi features: - name: id dtype: string - name: translation dtype: translation: languages: - en - fi splits: - name: train num_bytes: 715027 num_examples: 3645 download_size: 467851 dataset_size: 715027 - config_name: en-fr features: - name: id dtype: string - name: translation dtype: translation: languages: - en - fr splits: - name: train num_bytes: 32997043 num_examples: 127085 download_size: 20985324 dataset_size: 32997043 - config_name: en-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - en - hu splits: - name: train num_bytes: 35256766 num_examples: 137151 download_size: 23065198 dataset_size: 35256766 - config_name: en-it features: - name: id dtype: string - name: translation dtype: translation: languages: - en - it splits: - name: train num_bytes: 8993755 num_examples: 32332 download_size: 5726189 dataset_size: 8993755 - config_name: en-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - en - nl splits: - name: train num_bytes: 10277990 num_examples: 38652 download_size: 6443323 dataset_size: 10277990 - config_name: en-no features: - name: id dtype: string - name: translation dtype: translation: languages: - en - 'no' splits: - name: train num_bytes: 661966 num_examples: 3499 download_size: 429631 dataset_size: 661966 - config_name: en-pl features: - name: id dtype: string - name: translation dtype: translation: languages: - en - pl splits: - name: train num_bytes: 583079 num_examples: 2831 download_size: 389337 dataset_size: 583079 - config_name: en-pt features: - name: id dtype: string - name: translation dtype: translation: languages: - en - pt splits: - name: train num_bytes: 309677 num_examples: 1404 download_size: 191493 dataset_size: 309677 - config_name: en-ru features: - name: id dtype: string - name: translation dtype: translation: languages: - en - ru splits: - name: train num_bytes: 5190856 num_examples: 17496 download_size: 2922360 dataset_size: 5190856 - config_name: en-sv features: - name: id dtype: string - name: translation dtype: translation: languages: - en - sv splits: - name: train num_bytes: 790773 num_examples: 3095 download_size: 516328 dataset_size: 790773 - config_name: eo-es features: - name: id dtype: string - name: translation dtype: translation: languages: - eo - es splits: - name: train num_bytes: 409579 num_examples: 1677 download_size: 265543 dataset_size: 409579 - config_name: eo-fr features: - name: id dtype: string - name: translation dtype: translation: languages: - eo - fr splits: - name: train num_bytes: 412987 num_examples: 1588 download_size: 261689 dataset_size: 412987 - config_name: eo-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - eo - hu splits: - name: train num_bytes: 389100 num_examples: 1636 download_size: 258229 dataset_size: 389100 - config_name: eo-it features: - name: id dtype: string - name: translation dtype: translation: languages: - eo - it splits: - name: train num_bytes: 387594 num_examples: 1453 download_size: 248748 dataset_size: 387594 - config_name: eo-pt features: - name: id dtype: string - name: translation dtype: translation: languages: - eo - pt splits: - name: train num_bytes: 311067 num_examples: 1259 download_size: 197021 dataset_size: 311067 - config_name: es-fi features: - name: id dtype: string - name: translation dtype: translation: languages: - es - fi splits: - name: train num_bytes: 710450 num_examples: 3344 download_size: 467281 dataset_size: 710450 - config_name: es-fr features: - name: id dtype: string - name: translation dtype: translation: languages: - es - fr splits: - name: train num_bytes: 14382126 num_examples: 56319 download_size: 9164030 dataset_size: 14382126 - config_name: es-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - es - hu splits: - name: train num_bytes: 19373967 num_examples: 78800 download_size: 12691292 dataset_size: 19373967 - config_name: es-it features: - name: id dtype: string - name: translation dtype: translation: languages: - es - it splits: - name: train num_bytes: 7837667 num_examples: 28868 download_size: 5026914 dataset_size: 7837667 - config_name: es-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - es - nl splits: - name: train num_bytes: 9062341 num_examples: 32247 download_size: 5661890 dataset_size: 9062341 - config_name: es-no features: - name: id dtype: string - name: translation dtype: translation: languages: - es - 'no' splits: - name: train num_bytes: 729113 num_examples: 3585 download_size: 473525 dataset_size: 729113 - config_name: es-pt features: - name: id dtype: string - name: translation dtype: translation: languages: - es - pt splits: - name: train num_bytes: 326872 num_examples: 1327 download_size: 204399 dataset_size: 326872 - config_name: es-ru features: - name: id dtype: string - name: translation dtype: translation: languages: - es - ru splits: - name: train num_bytes: 5281106 num_examples: 16793 download_size: 2995191 dataset_size: 5281106 - config_name: fi-fr features: - name: id dtype: string - name: translation dtype: translation: languages: - fi - fr splits: - name: train num_bytes: 746085 num_examples: 3537 download_size: 486904 dataset_size: 746085 - config_name: fi-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - fi - hu splits: - name: train num_bytes: 746602 num_examples: 3504 download_size: 509394 dataset_size: 746602 - config_name: fi-no features: - name: id dtype: string - name: translation dtype: translation: languages: - fi - 'no' splits: - name: train num_bytes: 691169 num_examples: 3414 download_size: 449501 dataset_size: 691169 - config_name: fi-pl features: - name: id dtype: string - name: translation dtype: translation: languages: - fi - pl splits: - name: train num_bytes: 613779 num_examples: 2814 download_size: 410258 dataset_size: 613779 - config_name: fr-hu features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - hu splits: - name: train num_bytes: 22483025 num_examples: 89337 download_size: 14689840 dataset_size: 22483025 - config_name: fr-it features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - it splits: - name: train num_bytes: 4752147 num_examples: 14692 download_size: 3040617 dataset_size: 4752147 - config_name: fr-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - nl splits: - name: train num_bytes: 10408088 num_examples: 40017 download_size: 6528881 dataset_size: 10408088 - config_name: fr-no features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - 'no' splits: - name: train num_bytes: 692774 num_examples: 3449 download_size: 449136 dataset_size: 692774 - config_name: fr-pl features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - pl splits: - name: train num_bytes: 614236 num_examples: 2825 download_size: 408295 dataset_size: 614236 - config_name: fr-pt features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - pt splits: - name: train num_bytes: 324604 num_examples: 1263 download_size: 198700 dataset_size: 324604 - config_name: fr-ru features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - ru splits: - name: train num_bytes: 2474198 num_examples: 8197 download_size: 1425660 dataset_size: 2474198 - config_name: fr-sv features: - name: id dtype: string - name: translation dtype: translation: languages: - fr - sv splits: - name: train num_bytes: 833541 num_examples: 3002 download_size: 545599 dataset_size: 833541 - config_name: hu-it features: - name: id dtype: string - name: translation dtype: translation: languages: - hu - it splits: - name: train num_bytes: 8445537 num_examples: 30949 download_size: 5477452 dataset_size: 8445537 - config_name: hu-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - hu - nl splits: - name: train num_bytes: 10814113 num_examples: 43428 download_size: 6985092 dataset_size: 10814113 - config_name: hu-no features: - name: id dtype: string - name: translation dtype: translation: languages: - hu - 'no' splits: - name: train num_bytes: 695485 num_examples: 3410 download_size: 465904 dataset_size: 695485 - config_name: hu-pl features: - name: id dtype: string - name: translation dtype: translation: languages: - hu - pl splits: - name: train num_bytes: 616149 num_examples: 2859 download_size: 425988 dataset_size: 616149 - config_name: hu-pt features: - name: id dtype: string - name: translation dtype: translation: languages: - hu - pt splits: - name: train num_bytes: 302960 num_examples: 1184 download_size: 193053 dataset_size: 302960 - config_name: hu-ru features: - name: id dtype: string - name: translation dtype: translation: languages: - hu - ru splits: - name: train num_bytes: 7818652 num_examples: 26127 download_size: 4528613 dataset_size: 7818652 - config_name: it-nl features: - name: id dtype: string - name: translation dtype: translation: languages: - it - nl splits: - name: train num_bytes: 1328293 num_examples: 2359 download_size: 824780 dataset_size: 1328293 - config_name: it-pt features: - name: id dtype: string - name: translation dtype: translation: languages: - it - pt splits: - name: train num_bytes: 301416 num_examples: 1163 download_size: 190005 dataset_size: 301416 - config_name: it-ru features: - name: id dtype: string - name: translation dtype: translation: languages: - it - ru splits: - name: train num_bytes: 5316928 num_examples: 17906 download_size: 2997871 dataset_size: 5316928 - config_name: it-sv features: - name: id dtype: string - name: translation dtype: translation: languages: - it - sv splits: - name: train num_bytes: 811401 num_examples: 2998 download_size: 527303 dataset_size: 811401 configs: - config_name: ca-de data_files: - split: train path: ca-de/train-* - config_name: ca-en data_files: - split: train path: ca-en/train-* - config_name: ca-hu data_files: - split: train path: ca-hu/train-* - config_name: ca-nl data_files: - split: train path: ca-nl/train-* - config_name: de-en data_files: - split: train path: de-en/train-* - config_name: de-eo data_files: - split: train path: de-eo/train-* - config_name: de-es data_files: - split: train path: de-es/train-* - config_name: de-fr data_files: - split: train path: de-fr/train-* - config_name: de-hu data_files: - split: train path: de-hu/train-* - config_name: de-it data_files: - split: train path: de-it/train-* - config_name: de-nl data_files: - split: train path: de-nl/train-* - config_name: de-pt data_files: - split: train path: de-pt/train-* - config_name: de-ru data_files: - split: train path: de-ru/train-* - config_name: el-en data_files: - split: train path: el-en/train-* - config_name: el-es data_files: - split: train path: el-es/train-* - config_name: el-fr data_files: - split: train path: el-fr/train-* - config_name: el-hu data_files: - split: train path: el-hu/train-* - config_name: en-eo data_files: - split: train path: en-eo/train-* - config_name: en-es data_files: - split: train path: en-es/train-* - config_name: en-fi data_files: - split: train path: en-fi/train-* - config_name: en-fr data_files: - split: train path: en-fr/train-* - config_name: en-hu data_files: - split: train path: en-hu/train-* - config_name: en-it data_files: - split: train path: en-it/train-* - config_name: en-nl data_files: - split: train path: en-nl/train-* - config_name: en-no data_files: - split: train path: en-no/train-* - config_name: en-pl data_files: - split: train path: en-pl/train-* - config_name: en-pt data_files: - split: train path: en-pt/train-* - config_name: en-ru data_files: - split: train path: en-ru/train-* - config_name: en-sv data_files: - split: train path: en-sv/train-* - config_name: eo-es data_files: - split: train path: eo-es/train-* - config_name: eo-fr data_files: - split: train path: eo-fr/train-* - config_name: eo-hu data_files: - split: train path: eo-hu/train-* - config_name: eo-it data_files: - split: train path: eo-it/train-* - config_name: eo-pt data_files: - split: train path: eo-pt/train-* - config_name: es-fi data_files: - split: train path: es-fi/train-* - config_name: es-fr data_files: - split: train path: es-fr/train-* - config_name: es-hu data_files: - split: train path: es-hu/train-* - config_name: es-it data_files: - split: train path: es-it/train-* - config_name: es-nl data_files: - split: train path: es-nl/train-* - config_name: es-no data_files: - split: train path: es-no/train-* - config_name: es-pt data_files: - split: train path: es-pt/train-* - config_name: es-ru data_files: - split: train path: es-ru/train-* - config_name: fi-fr data_files: - split: train path: fi-fr/train-* - config_name: fi-hu data_files: - split: train path: fi-hu/train-* - config_name: fi-no data_files: - split: train path: fi-no/train-* - config_name: fi-pl data_files: - split: train path: fi-pl/train-* - config_name: fr-hu data_files: - split: train path: fr-hu/train-* - config_name: fr-it data_files: - split: train path: fr-it/train-* - config_name: fr-nl data_files: - split: train path: fr-nl/train-* - config_name: fr-no data_files: - split: train path: fr-no/train-* - config_name: fr-pl data_files: - split: train path: fr-pl/train-* - config_name: fr-pt data_files: - split: train path: fr-pt/train-* - config_name: fr-ru data_files: - split: train path: fr-ru/train-* - config_name: fr-sv data_files: - split: train path: fr-sv/train-* - config_name: hu-it data_files: - split: train path: hu-it/train-* - config_name: hu-nl data_files: - split: train path: hu-nl/train-* - config_name: hu-no data_files: - split: train path: hu-no/train-* - config_name: hu-pl data_files: - split: train path: hu-pl/train-* - config_name: hu-pt data_files: - split: train path: hu-pt/train-* - config_name: hu-ru data_files: - split: train path: hu-ru/train-* - config_name: it-nl data_files: - split: train path: it-nl/train-* - config_name: it-pt data_files: - split: train path: it-pt/train-* - config_name: it-ru data_files: - split: train path: it-ru/train-* - config_name: it-sv data_files: - split: train path: it-sv/train-* --- # Dataset Card for OPUS Books ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://opus.nlpl.eu/Books/corpus/version/Books - **Repository:** [More Information Needed] - **Paper:** https://aclanthology.org/L12-1246/ - **Leaderboard:** [More Information Needed] - **Point of Contact:** [More Information Needed] ### Dataset Summary This is a collection of copyright free books aligned by Andras Farkas, which are available from http://www.farkastranslations.com/bilingual_books.php Note that the texts are rather dated due to copyright issues and that some of them are manually reviewed (check the meta-data at the top of the corpus files in XML). The source is multilingually aligned, which is available from http://www.farkastranslations.com/bilingual_books.php. In OPUS, the alignment is formally bilingual but the multilingual alignment can be recovered from the XCES sentence alignment files. Note also that the alignment units from the original source may include multi-sentence paragraphs, which are split and sentence-aligned in OPUS. All texts are freely available for personal, educational and research use. Commercial use (e.g. reselling as parallel books) and mass redistribution without explicit permission are not granted. Please acknowledge the source when using the data! Books's Numbers: - Languages: 16 - Bitexts: 64 - Number of files: 158 - Number of tokens: 19.50M - Sentence fragments: 0.91M ### Supported Tasks and Leaderboards Translation. ### Languages The languages in the dataset are: - ca - de - el - en - eo - es - fi - fr - hu - it - nl - no - pl - pt - ru - sv ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information All texts are freely available for personal, educational and research use. Commercial use (e.g. reselling as parallel books) and mass redistribution without explicit permission are not granted. ### Citation Information Please acknowledge the source when using the data. Please cite the following article if you use any part of the OPUS corpus in your own work: ```bibtex @inproceedings{tiedemann-2012-parallel, title = "Parallel Data, Tools and Interfaces in {OPUS}", author = {Tiedemann, J{\"o}rg}, editor = "Calzolari, Nicoletta and Choukri, Khalid and Declerck, Thierry and Do{\u{g}}an, Mehmet U{\u{g}}ur and Maegaard, Bente and Mariani, Joseph and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)", month = may, year = "2012", address = "Istanbul, Turkey", publisher = "European Language Resources Association (ELRA)", url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf", pages = "2214--2218", } ``` ### Contributions Thanks to [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.
DL3DV/DL3DV-ALL-480P
DL3DV
"2024-09-02T09:32:50Z"
14,139
2
[ "size_categories:100B<n<1T", "region:us", "3D Vision", "NeRF", "3D Gaussian", "Dataset", "Novel View Synthesis", "Text to 3D", "Image to 3D" ]
null
"2024-03-04T14:55:16Z"
--- tags: - 3D Vision - NeRF - 3D Gaussian - Dataset - Novel View Synthesis - Text to 3D - Image to 3D pretty_name: Dl3DV-Dataset size_categories: - 100B<n<1T --- # DL3DV-Dataset This repo has all the 480P frames with camera poses of DL3DV-10K Dataset. We are working hard to review all the dataset to avoid sensitive information. Thank you for your patience. # Download If you have enough space, you can use git to download a dataset from huggingface. See this [link](https://huggingface.co/docs/hub/en/datasets-downloading). [480P](https://huggingface.co/datasets/DL3DV/DL3DV-ALL-480P)/[960P](https://huggingface.co/datasets/DL3DV/DL3DV-ALL-960P) versions should satisfies most needs. If you do not have enough space, we further provide a [download script](https://github.com/DL3DV-10K/Dataset/blob/main/scripts/download.py) here to download a subset. The usage: ```Bash usage: download.py [-h] --odir ODIR --subset {1K,2K,3K,4K,5K,6K,7K,8K,9K,10K} --resolution {4K,2K,960P,480P} --file_type {images+poses,video,colmap_cache} [--hash HASH] [--clean_cache] optional arguments: -h, --help show this help message and exit --odir ODIR output directory --subset {1K,2K,3K,4K,5K,6K,7K,8K,9K,10K} The subset of the benchmark to download --resolution {4K,2K,960P,480P} The resolution to donwnload --file_type {images+poses,video,colmap_cache} The file type to download --hash HASH If set subset=hash, this is the hash code of the scene to download --clean_cache If set, will clean the huggingface cache to save space ``` Here are some examples: ```Bash # Make sure you have applied for the access. # Use this to download the download.py script wget https://raw.githubusercontent.com/DL3DV-10K/Dataset/main/scripts/download.py # Download 480P resolution images and poses, 0~1K subset, output to DL3DV-10K directory python download.py --odir DL3DV-10K --subset 1K --resolution 480P --file_type images+poses --clean_cache # Download 480P resolution images and poses, 1K~2K subset, output to DL3DV-10K directory python download.py --odir DL3DV-10K --subset 2K --resolution 480P --file_type images+poses --clean_cache ``` You can also download a specific scene with its hash. The scene-hash pair visualization can be found [here](https://htmlpreview.github.io/?https://github.com/DL3DV-10K/Dataset/blob/main/visualize/index.html). ```Bash # Download 480P resolution images and poses, 1K~2K subset, output to DL3DV-10K directory python download.py --odir DL3DV-10K --subset 2K --resolution 480P --file_type images+poses --hash e2cedefea8a0ed2d0ffbd5bdc08acbe7e1f85c96f72f7b790e9dfe1c98963047 --clean_cache ``` # News - [x] DL3DV-1K, 2K, 3K, 4K - [ ] DL3DV-5K ~ 10K
aintech/vdf_wolt_food
aintech
"2024-01-25T10:42:26Z"
14,032
1
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "vdf", "vector-io", "vector-dataset", "vector-embeddings" ]
null
"2024-01-23T11:50:43Z"
--- tags: - vdf - vector-io - vector-dataset - vector-embeddings --- This is a dataset created using [vector-io](https://github.com/ai-northstar-tech/vector-io)
jmhessel/newyorker_caption_contest
jmhessel
"2023-12-22T19:13:58Z"
13,681
64
[ "task_categories:image-to-text", "task_categories:multiple-choice", "task_categories:text-classification", "task_categories:text-generation", "task_categories:visual-question-answering", "task_categories:other", "task_categories:text2text-generation", "task_ids:multi-class-classification", "task_ids:language-modeling", "task_ids:visual-question-answering", "task_ids:explanation-generation", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "annotations_creators:found", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2209.06293", "region:us", "humor", "caption contest", "new yorker" ]
[ "image-to-text", "multiple-choice", "text-classification", "text-generation", "visual-question-answering", "other", "text2text-generation" ]
"2022-09-29T17:28:05Z"
--- annotations_creators: - expert-generated - crowdsourced - found language_creators: - crowdsourced - expert-generated language: - en license: - cc-by-4.0 multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - image-to-text - multiple-choice - text-classification - text-generation - visual-question-answering - other - text2text-generation task_ids: - multi-class-classification - language-modeling - visual-question-answering - explanation-generation pretty_name: newyorker_caption_contest tags: - humor - caption contest - new yorker dataset_info: - config_name: explanation features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 133827514.64 num_examples: 2340 - name: validation num_bytes: 8039885.0 num_examples: 130 - name: test num_bytes: 6863533.0 num_examples: 131 download_size: 139737042 dataset_size: 148730932.64 - config_name: explanation_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 136614332.45999998 num_examples: 2358 - name: validation num_bytes: 7911995.0 num_examples: 128 - name: test num_bytes: 8039885.0 num_examples: 130 download_size: 134637839 dataset_size: 152566212.45999998 - config_name: explanation_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 138337491.342 num_examples: 2346 - name: validation num_bytes: 7460490.0 num_examples: 132 - name: test num_bytes: 7911995.0 num_examples: 128 download_size: 138271185 dataset_size: 153709976.342 - config_name: explanation_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 138247435.342 num_examples: 2334 - name: validation num_bytes: 7911920.0 num_examples: 130 - name: test num_bytes: 7460490.0 num_examples: 132 download_size: 136862726 dataset_size: 153619845.342 - config_name: explanation_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices dtype: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 141175335.3 num_examples: 2340 - name: validation num_bytes: 6863533.0 num_examples: 131 - name: test num_bytes: 7911920.0 num_examples: 130 download_size: 140501251 dataset_size: 155950788.3 - config_name: explanation_from_pixels features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 23039316.0 num_examples: 390 - name: validation num_bytes: 7956182.0 num_examples: 130 - name: test num_bytes: 6778892.0 num_examples: 131 download_size: 37552582 dataset_size: 37774390.0 - config_name: explanation_from_pixels_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 21986652.0 num_examples: 393 - name: validation num_bytes: 7831556.0 num_examples: 128 - name: test num_bytes: 7956182.0 num_examples: 130 download_size: 37534409 dataset_size: 37774390.0 - config_name: explanation_from_pixels_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 22566608.0 num_examples: 391 - name: validation num_bytes: 7376225.0 num_examples: 132 - name: test num_bytes: 7831556.0 num_examples: 128 download_size: 37544724 dataset_size: 37774389.0 - config_name: explanation_from_pixels_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 22566629.0 num_examples: 389 - name: validation num_bytes: 7831536.0 num_examples: 130 - name: test num_bytes: 7376225.0 num_examples: 132 download_size: 37573931 dataset_size: 37774390.0 - config_name: explanation_from_pixels_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 23163962.0 num_examples: 390 - name: validation num_bytes: 6778892.0 num_examples: 131 - name: test num_bytes: 7831536.0 num_examples: 130 download_size: 37582524 dataset_size: 37774390.0 - config_name: matching features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 618272766.36 num_examples: 9792 - name: validation num_bytes: 34157757.0 num_examples: 531 - name: test num_bytes: 29813118.0 num_examples: 528 download_size: 594460072 dataset_size: 682243641.36 - config_name: matching_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 593200158.116 num_examples: 9684 - name: validation num_bytes: 36712942.0 num_examples: 546 - name: test num_bytes: 34157757.0 num_examples: 531 download_size: 563587231 dataset_size: 664070857.116 - config_name: matching_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 591676321.09 num_examples: 9630 - name: validation num_bytes: 33697178.0 num_examples: 540 - name: test num_bytes: 36712942.0 num_examples: 546 download_size: 571864348 dataset_size: 662086441.09 - config_name: matching_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 615620189.53 num_examples: 9630 - name: validation num_bytes: 34829502.0 num_examples: 546 - name: test num_bytes: 33697178.0 num_examples: 540 download_size: 571744845 dataset_size: 684146869.53 - config_name: matching_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 609696610.648 num_examples: 9702 - name: validation num_bytes: 29813118.0 num_examples: 528 - name: test num_bytes: 34829502.0 num_examples: 546 download_size: 592174904 dataset_size: 674339230.648 - config_name: matching_from_pixels features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 101439044.384 num_examples: 1632 - name: validation num_bytes: 33714551.0 num_examples: 531 - name: test num_bytes: 29368704.0 num_examples: 528 download_size: 139733134 dataset_size: 164522299.384 - config_name: matching_from_pixels_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 94090646.83 num_examples: 1614 - name: validation num_bytes: 36257141.0 num_examples: 546 - name: test num_bytes: 33714551.0 num_examples: 531 download_size: 137278691 dataset_size: 164062338.82999998 - config_name: matching_from_pixels_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 96253584.505 num_examples: 1605 - name: validation num_bytes: 33236000.0 num_examples: 540 - name: test num_bytes: 36257141.0 num_examples: 546 download_size: 137890850 dataset_size: 165746725.505 - config_name: matching_from_pixels_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 99928910.28 num_examples: 1605 - name: validation num_bytes: 34380303.0 num_examples: 546 - name: test num_bytes: 33236000.0 num_examples: 540 download_size: 139585876 dataset_size: 167545213.28 - config_name: matching_from_pixels_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 102509197.79 num_examples: 1617 - name: validation num_bytes: 29368704.0 num_examples: 528 - name: test num_bytes: 34380303.0 num_examples: 546 download_size: 138725891 dataset_size: 166258204.79000002 - config_name: ranking features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 594615535.632 num_examples: 9576 - name: validation num_bytes: 32624105.0 num_examples: 507 - name: test num_bytes: 28907567.0 num_examples: 513 download_size: 571604579 dataset_size: 656147207.632 - config_name: ranking_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 580099188.9 num_examples: 9450 - name: validation num_bytes: 35332200.0 num_examples: 534 - name: test num_bytes: 32624105.0 num_examples: 507 download_size: 546559254 dataset_size: 648055493.9 - config_name: ranking_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 566811450.504 num_examples: 9306 - name: validation num_bytes: 32519173.0 num_examples: 531 - name: test num_bytes: 35332200.0 num_examples: 534 download_size: 544444097 dataset_size: 634662823.504 - config_name: ranking_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 577828323.272 num_examples: 9324 - name: validation num_bytes: 34072817.0 num_examples: 531 - name: test num_bytes: 32519173.0 num_examples: 531 download_size: 548880699 dataset_size: 644420313.272 - config_name: ranking_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: image_location dtype: string - name: image_description dtype: string - name: image_uncanny_description dtype: string - name: entities sequence: string - name: questions sequence: string - name: caption_choices sequence: string - name: from_description dtype: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 593388719.232 num_examples: 9432 - name: validation num_bytes: 28907567.0 num_examples: 513 - name: test num_bytes: 34072817.0 num_examples: 531 download_size: 562902941 dataset_size: 656369103.232 - config_name: ranking_from_pixels features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 101282973.752 num_examples: 1596 - name: validation num_bytes: 32072331.0 num_examples: 506 - name: test num_bytes: 28550057.0 num_examples: 513 download_size: 134283256 dataset_size: 161905361.752 - config_name: ranking_from_pixels_1 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 93123370.15 num_examples: 1575 - name: validation num_bytes: 34965110.0 num_examples: 534 - name: test num_bytes: 32072331.0 num_examples: 506 download_size: 130879365 dataset_size: 160160811.15 - config_name: ranking_from_pixels_2 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 93496576.85 num_examples: 1550 - name: validation num_bytes: 32145436.0 num_examples: 531 - name: test num_bytes: 34965110.0 num_examples: 534 download_size: 131637359 dataset_size: 160607122.85 - config_name: ranking_from_pixels_3 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 93840620.26 num_examples: 1553 - name: validation num_bytes: 33718821.0 num_examples: 531 - name: test num_bytes: 32145436.0 num_examples: 531 download_size: 133214495 dataset_size: 159704877.26 - config_name: ranking_from_pixels_4 features: - name: image dtype: image - name: contest_number dtype: int32 - name: caption_choices sequence: string - name: winner_source dtype: string - name: label dtype: string - name: n_tokens_label dtype: int32 - name: instance_id dtype: string splits: - name: train num_bytes: 99008131.43 num_examples: 1571 - name: validation num_bytes: 28550057.0 num_examples: 513 - name: test num_bytes: 33718821.0 num_examples: 531 download_size: 136230399 dataset_size: 161277009.43 configs: - config_name: explanation data_files: - split: train path: explanation/train-* - split: validation path: explanation/validation-* - split: test path: explanation/test-* - config_name: explanation_1 data_files: - split: train path: explanation_1/train-* - split: validation path: explanation_1/validation-* - split: test path: explanation_1/test-* - config_name: explanation_2 data_files: - split: train path: explanation_2/train-* - split: validation path: explanation_2/validation-* - split: test path: explanation_2/test-* - config_name: explanation_3 data_files: - split: train path: explanation_3/train-* - split: validation path: explanation_3/validation-* - split: test path: explanation_3/test-* - config_name: explanation_4 data_files: - split: train path: explanation_4/train-* - split: validation path: explanation_4/validation-* - split: test path: explanation_4/test-* - config_name: explanation_from_pixels data_files: - split: train path: explanation_from_pixels/train-* - split: validation path: explanation_from_pixels/validation-* - split: test path: explanation_from_pixels/test-* - config_name: explanation_from_pixels_1 data_files: - split: train path: explanation_from_pixels_1/train-* - split: validation path: explanation_from_pixels_1/validation-* - split: test path: explanation_from_pixels_1/test-* - config_name: explanation_from_pixels_2 data_files: - split: train path: explanation_from_pixels_2/train-* - split: validation path: explanation_from_pixels_2/validation-* - split: test path: explanation_from_pixels_2/test-* - config_name: explanation_from_pixels_3 data_files: - split: train path: explanation_from_pixels_3/train-* - split: validation path: explanation_from_pixels_3/validation-* - split: test path: explanation_from_pixels_3/test-* - config_name: explanation_from_pixels_4 data_files: - split: train path: explanation_from_pixels_4/train-* - split: validation path: explanation_from_pixels_4/validation-* - split: test path: explanation_from_pixels_4/test-* - config_name: matching data_files: - split: train path: matching/train-* - split: validation path: matching/validation-* - split: test path: matching/test-* - config_name: matching_1 data_files: - split: train path: matching_1/train-* - split: validation path: matching_1/validation-* - split: test path: matching_1/test-* - config_name: matching_2 data_files: - split: train path: matching_2/train-* - split: validation path: matching_2/validation-* - split: test path: matching_2/test-* - config_name: matching_3 data_files: - split: train path: matching_3/train-* - split: validation path: matching_3/validation-* - split: test path: matching_3/test-* - config_name: matching_4 data_files: - split: train path: matching_4/train-* - split: validation path: matching_4/validation-* - split: test path: matching_4/test-* - config_name: matching_from_pixels data_files: - split: train path: matching_from_pixels/train-* - split: validation path: matching_from_pixels/validation-* - split: test path: matching_from_pixels/test-* - config_name: matching_from_pixels_1 data_files: - split: train path: matching_from_pixels_1/train-* - split: validation path: matching_from_pixels_1/validation-* - split: test path: matching_from_pixels_1/test-* - config_name: matching_from_pixels_2 data_files: - split: train path: matching_from_pixels_2/train-* - split: validation path: matching_from_pixels_2/validation-* - split: test path: matching_from_pixels_2/test-* - config_name: matching_from_pixels_3 data_files: - split: train path: matching_from_pixels_3/train-* - split: validation path: matching_from_pixels_3/validation-* - split: test path: matching_from_pixels_3/test-* - config_name: matching_from_pixels_4 data_files: - split: train path: matching_from_pixels_4/train-* - split: validation path: matching_from_pixels_4/validation-* - split: test path: matching_from_pixels_4/test-* - config_name: ranking data_files: - split: train path: ranking/train-* - split: validation path: ranking/validation-* - split: test path: ranking/test-* - config_name: ranking_1 data_files: - split: train path: ranking_1/train-* - split: validation path: ranking_1/validation-* - split: test path: ranking_1/test-* - config_name: ranking_2 data_files: - split: train path: ranking_2/train-* - split: validation path: ranking_2/validation-* - split: test path: ranking_2/test-* - config_name: ranking_3 data_files: - split: train path: ranking_3/train-* - split: validation path: ranking_3/validation-* - split: test path: ranking_3/test-* - config_name: ranking_4 data_files: - split: train path: ranking_4/train-* - split: validation path: ranking_4/validation-* - split: test path: ranking_4/test-* - config_name: ranking_from_pixels data_files: - split: train path: ranking_from_pixels/train-* - split: validation path: ranking_from_pixels/validation-* - split: test path: ranking_from_pixels/test-* - config_name: ranking_from_pixels_1 data_files: - split: train path: ranking_from_pixels_1/train-* - split: validation path: ranking_from_pixels_1/validation-* - split: test path: ranking_from_pixels_1/test-* - config_name: ranking_from_pixels_2 data_files: - split: train path: ranking_from_pixels_2/train-* - split: validation path: ranking_from_pixels_2/validation-* - split: test path: ranking_from_pixels_2/test-* - config_name: ranking_from_pixels_3 data_files: - split: train path: ranking_from_pixels_3/train-* - split: validation path: ranking_from_pixels_3/validation-* - split: test path: ranking_from_pixels_3/test-* - config_name: ranking_from_pixels_4 data_files: - split: train path: ranking_from_pixels_4/train-* - split: validation path: ranking_from_pixels_4/validation-* - split: test path: ranking_from_pixels_4/test-* --- # Dataset Card for New Yorker Caption Contest Benchmarks ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [capcon.dev](https://www.capcon.dev) - **Repository:** [https://github.com/jmhessel/caption_contest_corpus](https://github.com/jmhessel/caption_contest_corpus) - **Paper:** [Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest](https://arxiv.org/abs/2209.06293) - **Leaderboard:** https://leaderboard.allenai.org/nycc-matching/ - **Point of Contact:** [email protected] ### Dataset Summary See [capcon.dev](https://www.capcon.dev) for more! Data from: [Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest](https://arxiv.org/abs/2209.06293) ``` @inproceedings{hessel2023androids, title={Do Androids Laugh at Electric Sheep? {Humor} ``Understanding'' Benchmarks from {The New Yorker Caption Contest}}, author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D. and Lee, Lillian and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin}, booktitle={Proceedings of the ACL}, year={2023} } ``` If you use this dataset, we would appreciate you citing our work, but also -- several other papers that we build this corpus upon. See [Citation Information](#citation-information). We challenge AI models to "demonstrate understanding" of the sophisticated multimodal humor of The New Yorker Caption Contest. Concretely, we develop three carefully circumscribed tasks for which it suffices (but is not necessary) to grasp potentially complex and unexpected relationships between image and caption, and similarly complex and unexpected allusions to the wide varieties of human experience. ### Supported Tasks and Leaderboards Three tasks are supported: - "Matching:" a model must recognize a caption written about a cartoon (vs. options that were not); - "Quality ranking:" a model must evaluate the quality of a caption by scoring it more highly than a lower quality option from the same contest; - "Explanation:" a model must explain why a given joke is funny. There are no official leaderboards (yet). ### Languages English ## Dataset Structure Here's an example instance from Matching: ``` {'caption_choices': ['Tell me about your childhood very quickly.', "Believe me . . . it's what's UNDER the ground that's " 'most interesting.', "Stop me if you've heard this one.", 'I have trouble saying no.', 'Yes, I see the train but I think we can beat it.'], 'contest_number': 49, 'entities': ['https://en.wikipedia.org/wiki/Rule_of_three_(writing)', 'https://en.wikipedia.org/wiki/Bar_joke', 'https://en.wikipedia.org/wiki/Religious_institute'], 'from_description': 'scene: a bar description: Two priests and a rabbi are ' 'walking into a bar, as the bartender and another patron ' 'look on. The bartender talks on the phone while looking ' 'skeptically at the incoming crew. uncanny: The scene ' 'depicts a very stereotypical "bar joke" that would be ' 'unlikely to be encountered in real life; the skepticism ' 'of the bartender suggests that he is aware he is seeing ' 'this trope, and is explaining it to someone on the ' 'phone. entities: Rule_of_three_(writing), Bar_joke, ' 'Religious_institute. choices A: Tell me about your ' "childhood very quickly. B: Believe me . . . it's what's " "UNDER the ground that's most interesting. C: Stop me if " "you've heard this one. D: I have trouble saying no. E: " 'Yes, I see the train but I think we can beat it.', 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=323x231 at 0x7F34F283E9D0>, 'image_description': 'Two priests and a rabbi are walking into a bar, as the ' 'bartender and another patron look on. The bartender ' 'talks on the phone while looking skeptically at the ' 'incoming crew.', 'image_location': 'a bar', 'image_uncanny_description': 'The scene depicts a very stereotypical "bar ' 'joke" that would be unlikely to be encountered ' 'in real life; the skepticism of the bartender ' 'suggests that he is aware he is seeing this ' 'trope, and is explaining it to someone on the ' 'phone.', 'instance_id': '21125bb8787b4e7e82aa3b0a1cba1571', 'label': 'C', 'n_tokens_label': 1, 'questions': ['What is the bartender saying on the phone in response to the ' 'living, breathing, stereotypical bar joke that is unfolding?']} ``` The label "C" indicates that the 3rd choice in the `caption_choices` is correct. Here's an example instance from Ranking (in the from pixels setting --- though, this is also available in the from description setting) ``` {'caption_choices': ['I guess I misunderstood when you said long bike ride.', 'Does your divorce lawyer have any other cool ideas?'], 'contest_number': 582, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=600x414 at 0x7F8FF9F96610>, 'instance_id': 'dd1c214a1ca3404aa4e582c9ce50795a', 'label': 'A', 'n_tokens_label': 1, 'winner_source': 'official_winner'} ``` the label indicates that the first caption choice ("A", here) in the `caption_choices` list was more highly rated. Here's an example instance from Explanation: ``` {'caption_choices': 'The classics can be so intimidating.', 'contest_number': 752, 'entities': ['https://en.wikipedia.org/wiki/Literature', 'https://en.wikipedia.org/wiki/Solicitor'], 'from_description': 'scene: a road description: Two people are walking down a ' 'path. A number of giant books have surrounded them. ' 'uncanny: There are book people in this world. entities: ' 'Literature, Solicitor. caption: The classics can be so ' 'intimidating.', 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=800x706 at 0x7F90003D0BB0>, 'image_description': 'Two people are walking down a path. A number of giant ' 'books have surrounded them.', 'image_location': 'a road', 'image_uncanny_description': 'There are book people in this world.', 'instance_id': 'eef9baf450e2fab19b96facc128adf80', 'label': 'A play on the word intimidating --- usually if the classics (i.e., ' 'classic novels) were to be intimidating, this would mean that they ' 'are intimidating to read due to their length, complexity, etc. But ' 'here, they are surrounded by anthropomorphic books which look ' 'physically intimidating, i.e., they are intimidating because they ' 'may try to beat up these people.', 'n_tokens_label': 59, 'questions': ['What do the books want?']} ``` The label is an explanation of the joke, which serves as the autoregressive target. ### Data Instances See above ### Data Fields See above ### Data Splits Data splits can be accessed as: ``` from datasets import load_dataset dset = load_dataset("jmhessel/newyorker_caption_contest", "matching") dset = load_dataset("jmhessel/newyorker_caption_contest", "ranking") dset = load_dataset("jmhessel/newyorker_caption_contest", "explanation") ``` Or, in the from pixels setting, e.g., ``` from datasets import load_dataset dset = load_dataset("jmhessel/newyorker_caption_contest", "ranking_from_pixels") ``` Because the dataset is small, we reported in 5-fold cross-validation setting initially. The default splits are split 0. You can access the other splits, e.g.: ``` from datasets import load_dataset # the 4th data split dset = load_dataset("jmhessel/newyorker_caption_contest", "explanation_4") ``` ## Dataset Creation Full details are in the paper. ### Curation Rationale See the paper for rationale/motivation. ### Source Data See citation below. We combined 3 sources of data, and added significant annotations of our own. #### Initial Data Collection and Normalization Full details are in the paper. #### Who are the source language producers? We paid crowdworkers $15/hr to annotate the corpus. In addition, significant annotation efforts were conducted by the authors of this work. ### Annotations Full details are in the paper. #### Annotation process Full details are in the paper. #### Who are the annotators? A mix of crowdworks and authors of this paper. ### Personal and Sensitive Information Has been redacted from the dataset. Images are published in the New Yorker already. ## Considerations for Using the Data ### Social Impact of Dataset It's plausible that humor could perpetuate negative stereotypes. The jokes in this corpus are a mix of crowdsourced entries that are highly rated, and ones published in the new yorker. ### Discussion of Biases Humor is subjective, and some of the jokes may be considered offensive. The images may contain adult themes and minor cartoon nudity. ### Other Known Limitations More details are in the paper ## Additional Information ### Dataset Curators The dataset was curated by researchers at AI2 ### Licensing Information The annotations we provide are CC-BY-4.0. See www.capcon.dev for more info. ### Citation Information ``` @article{hessel2022androids, title={Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest}, author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D and Lee, Lillian and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin}, journal={arXiv preprint arXiv:2209.06293}, year={2022} } ``` Our data contributions are: - The cartoon-level annotations; - The joke explanations; - and the framing of the tasks We release these data we contribute under CC-BY (see DATASET_LICENSE). If you find this data useful in your work, in addition to citing our contributions, please also cite the following, from which the cartoons/captions in our corpus are derived: ``` @misc{newyorkernextmldataset, author={Jain, Lalit and Jamieson, Kevin and Mankoff, Robert and Nowak, Robert and Sievert, Scott}, title={The {N}ew {Y}orker Cartoon Caption Contest Dataset}, year={2020}, url={https://nextml.github.io/caption-contest-data/} } @inproceedings{radev-etal-2016-humor, title = "Humor in Collective Discourse: Unsupervised Funniness Detection in The {New Yorker} Cartoon Caption Contest", author = "Radev, Dragomir and Stent, Amanda and Tetreault, Joel and Pappu, Aasish and Iliakopoulou, Aikaterini and Chanfreau, Agustin and de Juan, Paloma and Vallmitjana, Jordi and Jaimes, Alejandro and Jha, Rahul and Mankoff, Robert", booktitle = "LREC", year = "2016", } @inproceedings{shahaf2015inside, title={Inside jokes: Identifying humorous cartoon captions}, author={Shahaf, Dafna and Horvitz, Eric and Mankoff, Robert}, booktitle={KDD}, year={2015}, } ```
stanfordnlp/snli
stanfordnlp
"2024-03-06T10:55:50Z"
13,580
71
[ "task_categories:text-classification", "task_ids:natural-language-inference", "task_ids:multi-input-text-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:extended|other-flicker-30k", "source_datasets:extended|other-visual-genome", "language:en", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1508.05326", "region:us" ]
[ "text-classification" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - cc-by-sa-4.0 multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - extended|other-flicker-30k - extended|other-visual-genome task_categories: - text-classification task_ids: - natural-language-inference - multi-input-text-classification paperswithcode_id: snli pretty_name: Stanford Natural Language Inference dataset_info: config_name: plain_text features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction splits: - name: test num_bytes: 1258904 num_examples: 10000 - name: validation num_bytes: 1263036 num_examples: 10000 - name: train num_bytes: 65884386 num_examples: 550152 download_size: 20439300 dataset_size: 68406326 configs: - config_name: plain_text data_files: - split: test path: plain_text/test-* - split: validation path: plain_text/validation-* - split: train path: plain_text/train-* --- # Dataset Card for SNLI ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://nlp.stanford.edu/projects/snli/ - **Repository:** [More Information Needed] - **Paper:** https://aclanthology.org/D15-1075/ - **Paper:** https://arxiv.org/abs/1508.05326 - **Leaderboard:** https://nlp.stanford.edu/projects/snli/ - **Point of Contact:** [Samuel Bowman](mailto:[email protected]) - **Point of Contact:** [Gabor Angeli](mailto:[email protected]) - **Point of Contact:** [Chris Manning]([email protected]) ### Dataset Summary The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE). ### Supported Tasks and Leaderboards Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), is the task of determining the inference relation between two (short, ordered) texts: entailment, contradiction, or neutral ([MacCartney and Manning 2008](https://aclanthology.org/C08-1066/)). See the [corpus webpage](https://nlp.stanford.edu/projects/snli/) for a list of published results. ### Languages The language in the dataset is English as spoken by users of the website Flickr and as spoken by crowdworkers from Amazon Mechanical Turk. The BCP-47 code for English is en. ## Dataset Structure ### Data Instances For each instance, there is a string for the premise, a string for the hypothesis, and an integer for the label. Note that each premise may appear three times with a different hypothesis and label. See the [SNLI corpus viewer](https://huggingface.co/datasets/viewer/?dataset=snli) to explore more examples. ``` {'premise': 'Two women are embracing while holding to go packages.' 'hypothesis': 'The sisters are hugging goodbye while holding to go packages after just eating lunch.' 'label': 1} ``` The average token count for the premises and hypotheses are given below: | Feature | Mean Token Count | | ---------- | ---------------- | | Premise | 14.1 | | Hypothesis | 8.3 | ### Data Fields - `premise`: a string used to determine the truthfulness of the hypothesis - `hypothesis`: a string that may be true, false, or whose truth conditions may not be knowable when compared to the premise - `label`: an integer whose value may be either _0_, indicating that the hypothesis entails the premise, _1_, indicating that the premise and hypothesis neither entail nor contradict each other, or _2_, indicating that the hypothesis contradicts the premise. Dataset instances which don't have any gold label are marked with -1 label. Make sure you filter them before starting the training using `datasets.Dataset.filter`. ### Data Splits The SNLI dataset has 3 splits: _train_, _validation_, and _test_. All of the examples in the _validation_ and _test_ sets come from the set that was annotated in the validation task with no-consensus examples removed. The remaining multiply-annotated examples are in the training set with no-consensus examples removed. Each unique premise/caption shows up in only one split, even though they usually appear in at least three different examples. | Dataset Split | Number of Instances in Split | | ------------- |----------------------------- | | Train | 550,152 | | Validation | 10,000 | | Test | 10,000 | ## Dataset Creation ### Curation Rationale The [SNLI corpus (version 1.0)](https://nlp.stanford.edu/projects/snli/) was developed as a benchmark for natural langauge inference (NLI), also known as recognizing textual entailment (RTE), with the goal of producing a dataset large enough to train models using neural methodologies. ### Source Data #### Initial Data Collection and Normalization The hypotheses were elicited by presenting crowdworkers with captions from preexisting datasets without the associated photos, but the vocabulary of the hypotheses still reflects the content of the photos as well as the caption style of writing (e.g. mostly present tense). The dataset developers report 37,026 distinct words in the corpus, ignoring case. They allowed bare NPs as well as full sentences. Using the Stanford PCFG Parser 3.5.2 (Klein and Manning, 2003) trained on the standard training set as well as on the Brown Corpus (Francis and Kucera 1979), the authors report that 74% of the premises and 88.9% of the hypotheses result in a parse rooted with an 'S'. The corpus was developed between 2014 and 2015. Crowdworkers were presented with a caption without the associated photo and asked to produce three alternate captions, one that is definitely true, one that might be true, and one that is definitely false. See Section 2.1 and Figure 1 for details (Bowman et al., 2015). The corpus includes content from the [Flickr 30k corpus](http://shannon.cs.illinois.edu/DenotationGraph/) and the [VisualGenome corpus](https://visualgenome.org/). The photo captions used to prompt the data creation were collected on Flickr by [Young et al. (2014)](https://aclanthology.org/Q14-1006/), who extended the Flickr 8K dataset developed by [Hodosh et al. (2013)](https://www.jair.org/index.php/jair/article/view/10833). Hodosh et al. collected photos from the following Flickr groups: strangers!, Wild-Child (Kids in Action), Dogs in Action (Read the Rules), Outdoor Activities, Action Photography, Flickr-Social (two or more people in the photo). Young et al. do not list the specific groups they collected photos from. The VisualGenome corpus also contains images from Flickr, originally collected in [MS-COCO](https://cocodataset.org/#home) and [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). The premises from the Flickr 30k corpus corrected for spelling using the Linux spell checker and ungrammatical sentences were removed. Bowman et al. do not report any normalization, though they note that punctuation and capitalization are often omitted. #### Who are the source language producers? A large portion of the premises (160k) were produced in the [Flickr 30k corpus](http://shannon.cs.illinois.edu/DenotationGraph/) by an unknown number of crowdworkers. About 2,500 crowdworkers from Amazon Mechanical Turk produced the associated hypotheses. The premises from the Flickr 30k project describe people and animals whose photos were collected and presented to the Flickr 30k crowdworkers, but the SNLI corpus did not present the photos to the hypotheses creators. The Flickr 30k corpus did not report crowdworker or photo subject demographic information or crowdworker compensation. The SNLI crowdworkers were compensated per HIT at rates between $.1 and $.5 with no incentives. Workers who ignored the guidelines were disqualified, and automated bulk submissions were rejected. No demographic information was collected from the SNLI crowdworkers. An additional 4,000 premises come from the pilot study of the [VisualGenome corpus](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Though the pilot study itself is not described, the location information of the 33,000 AMT crowdworkers that participated over the course of the 6 months of data collection are aggregated. Most of the workers were located in the United States (93%), with others from the Philippines, Kenya, India, Russia, and Canada. Workers were paid $6-$8 per hour. ### Annotations #### Annotation process 56,941 of the total sentence pairs were further annotated in a validation task. Four annotators each labeled a premise-hypothesis pair as entailment, contradiction, or neither, resulting in 5 total judgements including the original hypothesis author judgement. See Section 2.2 for more details (Bowman et al., 2015). The authors report 3/5 annotator agreement on 98% of the validation set and unanimous annotator agreement on 58.3% of the validation set. If a label was chosen by three annotators, that label was made the gold label. Following from this, 2% of the data did not have a consensus label and was labeled '-' by the authors. | Label | Fleiss κ | | --------------- |--------- | | _contradiction_ | 0.77 | | _entailment_ | 0.72 | | _neutral_ | 0.60 | | overall | 0.70 | #### Who are the annotators? The annotators of the validation task were a closed set of about 30 trusted crowdworkers on Amazon Mechanical Turk. No demographic information was collected. Annotators were compensated per HIT between $.1 and $.5 with $1 bonuses in cases where annotator labels agreed with the curators' labels for 250 randomly distributed examples. ### Personal and Sensitive Information The dataset does not contain any personal information about the authors or the crowdworkers, but may contain descriptions of the people in the original Flickr photos. ## Considerations for Using the Data ### Social Impact of Dataset This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context. (It should be noted that the truth conditions of a hypothesis given a premise does not necessarily match the truth conditions of the hypothesis in the real world.) Systems that are successful at such a task may be more successful in modeling semantic representations. ### Discussion of Biases The language reflects the content of the photos collected from Flickr, as described in the [Data Collection](#initial-data-collection-and-normalization) section. [Rudinger et al (2017)](https://aclanthology.org/W17-1609/) use pointwise mutual information to calculate a measure of association between a manually selected list of tokens corresponding to identity categories and the other words in the corpus, showing strong evidence of stereotypes across gender categories. They also provide examples in which crowdworkers reproduced harmful stereotypes or pejorative language in the hypotheses. ### Other Known Limitations [Gururangan et al (2018)](https://aclanthology.org/N18-2017/), [Poliak et al (2018)](https://aclanthology.org/S18-2023/), and [Tsuchiya (2018)](https://aclanthology.org/L18-1239/) show that the SNLI corpus has a number of annotation artifacts. Using various classifiers, Poliak et al correctly predicted the label of the hypothesis 69% of the time without using the premise, Gururangan et al 67% of the time, and Tsuchiya 63% of the time. ## Additional Information ### Dataset Curators The SNLI corpus was developed by Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning as part of the [Stanford NLP group](https://nlp.stanford.edu/). It was supported by a Google Faculty Research Award, a gift from Bloomberg L.P., the Defense Advanced Research Projects Agency (DARPA) Deep Exploration and Filtering of Text (DEFT) Program under Air Force Research Laboratory (AFRL) contract no. FA8750-13-2-0040, the National Science Foundation under grant no. IIS 1159679, and the Department of the Navy, Office of Naval Research, under grant no. N00014-10-1-0109. ### Licensing Information The Stanford Natural Language Inference Corpus by The Stanford NLP Group is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/). The corpus includes content from the [Flickr 30k corpus](http://shannon.cs.illinois.edu/DenotationGraph/), also released under an Attribution-ShareAlike licence. ### Citation Information The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it: ```bibtex @inproceedings{bowman-etal-2015-large, title = "A large annotated corpus for learning natural language inference", author = "Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher and Manning, Christopher D.", editor = "M{\`a}rquez, Llu{\'\i}s and Callison-Burch, Chris and Su, Jian", booktitle = "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/D15-1075", doi = "10.18653/v1/D15-1075", pages = "632--642", } ``` The corpus includes content from the [Flickr 30k corpus](http://shannon.cs.illinois.edu/DenotationGraph/), which can be cited by way of this paper: ```bibtex @article{young-etal-2014-image, title = "From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions", author = "Young, Peter and Lai, Alice and Hodosh, Micah and Hockenmaier, Julia", editor = "Lin, Dekang and Collins, Michael and Lee, Lillian", journal = "Transactions of the Association for Computational Linguistics", volume = "2", year = "2014", address = "Cambridge, MA", publisher = "MIT Press", url = "https://aclanthology.org/Q14-1006", doi = "10.1162/tacl_a_00166", pages = "67--78", } ``` ### Contact Information For any comments or questions, please email [Samuel Bowman](mailto:[email protected]), [Gabor Angeli](mailto:[email protected]) and [Chris Manning]([email protected]). ### Contributions Thanks to [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) and [@mcmillanmajora](https://github.com/mcmillanmajora) for adding this dataset.
mteb/sickr-sts
mteb
"2022-09-27T19:13:22Z"
13,560
4
[ "language:en", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2022-04-19T14:28:03Z"
--- language: - en ---
mteb/biosses-sts
mteb
"2022-09-27T19:13:38Z"
13,547
1
[ "language:en", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2022-04-19T14:47:25Z"
--- language: - en ---
codeparrot/github-code
codeparrot
"2022-10-20T15:01:14Z"
13,459
300
[ "task_categories:text-generation", "task_ids:language-modeling", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "language:code", "license:other", "region:us" ]
[ "text-generation" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: [] language_creators: - crowdsourced - expert-generated language: - code license: - other multilinguality: - multilingual pretty_name: github-code size_categories: - unknown source_datasets: [] task_categories: - text-generation task_ids: - language-modeling --- # GitHub Code Dataset ## Dataset Description The GitHub Code dataset consists of 115M code files from GitHub in 32 programming languages with 60 extensions totaling in 1TB of data. The dataset was created from the public GitHub dataset on Google BiqQuery. ### How to use it The GitHub Code dataset is a very large dataset so for most use cases it is recommended to make use of the streaming API of `datasets`. You can load and iterate through the dataset with the following two lines of code: ```python from datasets import load_dataset ds = load_dataset("codeparrot/github-code", streaming=True, split="train") print(next(iter(ds))) #OUTPUT: { 'code': "import mod189 from './mod189';\nvar value=mod189+1;\nexport default value;\n", 'repo_name': 'MirekSz/webpack-es6-ts', 'path': 'app/mods/mod190.js', 'language': 'JavaScript', 'license': 'isc', 'size': 73 } ``` You can see that besides the code, repo name, and path also the programming language, license, and the size of the file are part of the dataset. You can also filter the dataset for any subset of the 30 included languages (see the full list below) in the dataset. Just pass the list of languages as a list. E.g. if your dream is to build a Codex model for Dockerfiles use the following configuration: ```python ds = load_dataset("codeparrot/github-code", streaming=True, split="train", languages=["Dockerfile"]) print(next(iter(ds))["code"]) #OUTPUT: """\ FROM rockyluke/ubuntu:precise ENV DEBIAN_FRONTEND="noninteractive" \ TZ="Europe/Amsterdam" ... """ ``` We also have access to the license of the origin repo of a file so we can filter for licenses in the same way we filtered for languages: ```python ds = load_dataset("codeparrot/github-code", streaming=True, split="train", licenses=["mit", "isc"]) licenses = [] for element in iter(ds).take(10_000): licenses.append(element["license"]) print(Counter(licenses)) #OUTPUT: Counter({'mit': 9896, 'isc': 104}) ``` Naturally, you can also download the full dataset. Note that this will download ~300GB compressed text data and the uncompressed dataset will take up ~1TB of storage: ```python ds = load_dataset("codeparrot/github-code", split="train") ``` ## Data Structure ### Data Instances ```python { 'code': "import mod189 from './mod189';\nvar value=mod189+1;\nexport default value;\n", 'repo_name': 'MirekSz/webpack-es6-ts', 'path': 'app/mods/mod190.js', 'language': 'JavaScript', 'license': 'isc', 'size': 73 } ``` ### Data Fields |Field|Type|Description| |---|---|---| |code|string|content of source file| |repo_name|string|name of the GitHub repository| |path|string|path of file in GitHub repository| |language|string|programming language as inferred by extension| |license|string|license of GitHub repository| |size|int|size of source file in bytes| ### Data Splits The dataset only contains a train split. ## Languages The dataset contains 30 programming languages with over 60 extensions: ```python { "Assembly": [".asm"], "Batchfile": [".bat", ".cmd"], "C": [".c", ".h"], "C#": [".cs"], "C++": [".cpp", ".hpp", ".c++", ".h++", ".cc", ".hh", ".C", ".H"], "CMake": [".cmake"], "CSS": [".css"], "Dockerfile": [".dockerfile", "Dockerfile"], "FORTRAN": ['.f90', '.f', '.f03', '.f08', '.f77', '.f95', '.for', '.fpp'], "GO": [".go"], "Haskell": [".hs"], "HTML":[".html"], "Java": [".java"], "JavaScript": [".js"], "Julia": [".jl"], "Lua": [".lua"], "Makefile": ["Makefile"], "Markdown": [".md", ".markdown"], "PHP": [".php", ".php3", ".php4", ".php5", ".phps", ".phpt"], "Perl": [".pl", ".pm", ".pod", ".perl"], "PowerShell": ['.ps1', '.psd1', '.psm1'], "Python": [".py"], "Ruby": [".rb"], "Rust": [".rs"], "SQL": [".sql"], "Scala": [".scala"], "Shell": [".sh", ".bash", ".command", ".zsh"], "TypeScript": [".ts", ".tsx"], "TeX": [".tex"], "Visual Basic": [".vb"] } ``` ## Licenses Each example is also annotated with the license of the associated repository. There are in total 15 licenses: ```python [ 'mit', 'apache-2.0', 'gpl-3.0', 'gpl-2.0', 'bsd-3-clause', 'agpl-3.0', 'lgpl-3.0', 'lgpl-2.1', 'bsd-2-clause', 'cc0-1.0', 'epl-1.0', 'mpl-2.0', 'unlicense', 'isc', 'artistic-2.0' ] ``` ## Dataset Statistics The dataset contains 115M files and the sum of all the source code file sizes is 873 GB (note that the size of the dataset is larger due to the extra fields). A breakdown per language is given in the plot and table below: ![dataset-statistics](https://huggingface.co/datasets/codeparrot/github-code/resolve/main/github-code-stats-alpha.png) | | Language |File Count| Size (GB)| |---:|:-------------|---------:|-------:| | 0 | Java | 19548190 | 107.70 | | 1 | C | 14143113 | 183.83 | | 2 | JavaScript | 11839883 | 87.82 | | 3 | HTML | 11178557 | 118.12 | | 4 | PHP | 11177610 | 61.41 | | 5 | Markdown | 8464626 | 23.09 | | 6 | C++ | 7380520 | 87.73 | | 7 | Python | 7226626 | 52.03 | | 8 | C# | 6811652 | 36.83 | | 9 | Ruby | 4473331 | 10.95 | | 10 | GO | 2265436 | 19.28 | | 11 | TypeScript | 1940406 | 24.59 | | 12 | CSS | 1734406 | 22.67 | | 13 | Shell | 1385648 | 3.01 | | 14 | Scala | 835755 | 3.87 | | 15 | Makefile | 679430 | 2.92 | | 16 | SQL | 656671 | 5.67 | | 17 | Lua | 578554 | 2.81 | | 18 | Perl | 497949 | 4.70 | | 19 | Dockerfile | 366505 | 0.71 | | 20 | Haskell | 340623 | 1.85 | | 21 | Rust | 322431 | 2.68 | | 22 | TeX | 251015 | 2.15 | | 23 | Batchfile | 236945 | 0.70 | | 24 | CMake | 175282 | 0.54 | | 25 | Visual Basic | 155652 | 1.91 | | 26 | FORTRAN | 142038 | 1.62 | | 27 | PowerShell | 136846 | 0.69 | | 28 | Assembly | 82905 | 0.78 | | 29 | Julia | 58317 | 0.29 | ## Dataset Creation The dataset was created in two steps: 1. Files of with the extensions given in the list above were retrieved from the GitHub dataset on BigQuery (full query [here](https://huggingface.co/datasets/codeparrot/github-code/blob/main/query.sql)). The query was executed on _Mar 16, 2022, 6:23:39 PM UTC+1_. 2. Files with lines longer than 1000 characters and duplicates (exact duplicates ignoring whitespaces) were dropped (full preprocessing script [here](https://huggingface.co/datasets/codeparrot/github-code/blob/main/github_preprocessing.py)). ## Considerations for Using the Data The dataset consists of source code from a wide range of repositories. As such they can potentially include harmful or biased code as well as sensitive information like passwords or usernames. ## Releases You can load any older version of the dataset with the `revision` argument: ```Python ds = load_dataset("codeparrot/github-code", revision="v1.0") ``` ### v1.0 - Initial release of dataset - The query was executed on _Feb 14, 2022, 12:03:16 PM UTC+1_ ### v1.1 - Fix missing Scala/TypeScript - Fix deduplication issue with inconsistent Python `hash` - The query was executed on _Mar 16, 2022, 6:23:39 PM UTC+1_
google-research-datasets/nq_open
google-research-datasets
"2024-03-22T08:43:41Z"
13,448
21
[ "task_categories:question-answering", "task_ids:open-domain-qa", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "source_datasets:extended|natural_questions", "language:en", "license:cc-by-sa-3.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - expert-generated language_creators: - other language: - en license: - cc-by-sa-3.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|natural_questions task_categories: - question-answering task_ids: - open-domain-qa pretty_name: NQ-Open dataset_info: config_name: nq_open features: - name: question dtype: string - name: answer sequence: string splits: - name: train num_bytes: 6651236 num_examples: 87925 - name: validation num_bytes: 313829 num_examples: 3610 download_size: 4678245 dataset_size: 6965065 configs: - config_name: nq_open data_files: - split: train path: nq_open/train-* - split: validation path: nq_open/validation-* default: true --- # Dataset Card for nq_open ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://efficientqa.github.io/ - **Repository:** https://github.com/google-research-datasets/natural-questions/tree/master/nq_open - **Paper:** https://www.aclweb.org/anthology/P19-1612.pdf - **Leaderboard:** https://ai.google.com/research/NaturalQuestions/efficientqa - **Point of Contact:** [Mailing List]([email protected]) ### Dataset Summary The NQ-Open task, introduced by Lee et.al. 2019, is an open domain question answering benchmark that is derived from Natural Questions. The goal is to predict an English answer string for an input English question. All questions can be answered using the contents of English Wikipedia. ### Supported Tasks and Leaderboards Open Domain Question-Answering, EfficientQA Leaderboard: https://ai.google.com/research/NaturalQuestions/efficientqa ### Languages English (`en`) ## Dataset Structure ### Data Instances ``` { "question": "names of the metropolitan municipalities in south africa", "answer": [ "Mangaung Metropolitan Municipality", "Nelson Mandela Bay Metropolitan Municipality", "eThekwini Metropolitan Municipality", "City of Tshwane Metropolitan Municipality", "City of Johannesburg Metropolitan Municipality", "Buffalo City Metropolitan Municipality", "City of Ekurhuleni Metropolitan Municipality" ] } ``` ### Data Fields - `question` - Input open domain question. - `answer` - List of possible answers to the question ### Data Splits - Train : 87925 - validation : 3610 ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization Natural Questions contains question from aggregated queries to Google Search (Kwiatkowski et al., 2019). To gather an open version of this dataset, we only keep questions with short answers and discard the given evidence document. Answers with many tokens often resemble extractive snippets rather than canonical answers, so we discard answers with more than 5 tokens. #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases Evaluating on this diverse set of question-answer pairs is crucial, because all existing datasets have inherent biases that are problematic for open domain QA systems with learned retrieval. In the Natural Questions dataset the question askers do not already know the answer. This accurately reflects a distribution of genuine information-seeking questions. However, annotators must separately find correct answers, which requires assistance from automatic tools and can introduce a moderate bias towards results from the tool. ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information All of the Natural Questions data is released under the [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) license. ### Citation Information ``` @article{doi:10.1162/tacl\_a\_00276, author = {Kwiatkowski, Tom and Palomaki, Jennimaria and Redfield, Olivia and Collins, Michael and Parikh, Ankur and Alberti, Chris and Epstein, Danielle and Polosukhin, Illia and Devlin, Jacob and Lee, Kenton and Toutanova, Kristina and Jones, Llion and Kelcey, Matthew and Chang, Ming-Wei and Dai, Andrew M. and Uszkoreit, Jakob and Le, Quoc and Petrov, Slav}, title = {Natural Questions: A Benchmark for Question Answering Research}, journal = {Transactions of the Association for Computational Linguistics}, volume = {7}, number = {}, pages = {453-466}, year = {2019}, doi = {10.1162/tacl\_a\_00276}, URL = { https://doi.org/10.1162/tacl_a_00276 }, eprint = { https://doi.org/10.1162/tacl_a_00276 }, abstract = { We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations; 7,830 examples with 5-way annotations for development data; and a further 7,842 examples with 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature. } } @inproceedings{lee-etal-2019-latent, title = "Latent Retrieval for Weakly Supervised Open Domain Question Answering", author = "Lee, Kenton and Chang, Ming-Wei and Toutanova, Kristina", booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P19-1612", doi = "10.18653/v1/P19-1612", pages = "6086--6096", abstract = "Recent work on open domain question answering (QA) assumes strong supervision of the supporting evidence and/or assumes a blackbox information retrieval (IR) system to retrieve evidence candidates. We argue that both are suboptimal, since gold evidence is not always available, and QA is fundamentally different from IR. We show for the first time that it is possible to jointly learn the retriever and reader from question-answer string pairs and without any IR system. In this setting, evidence retrieval from all of Wikipedia is treated as a latent variable. Since this is impractical to learn from scratch, we pre-train the retriever with an Inverse Cloze Task. We evaluate on open versions of five QA datasets. On datasets where the questioner already knows the answer, a traditional IR system such as BM25 is sufficient. On datasets where a user is genuinely seeking an answer, we show that learned retrieval is crucial, outperforming BM25 by up to 19 points in exact match.", } ``` ### Contributions Thanks to [@Nilanshrajput](https://github.com/Nilanshrajput) for adding this dataset.
poloclub/diffusiondb
poloclub
"2024-01-22T22:17:47Z"
13,447
479
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_ids:image-captioning", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:en", "license:cc0-1.0", "size_categories:n>1T", "arxiv:2210.14896", "region:us", "stable diffusion", "prompt engineering", "prompts", "research paper" ]
[ "text-to-image", "image-to-text" ]
"2022-10-25T02:25:28Z"
--- layout: default title: Home nav_order: 1 has_children: false annotations_creators: - no-annotation language: - en language_creators: - found license: - cc0-1.0 multilinguality: - multilingual pretty_name: DiffusionDB size_categories: - n>1T source_datasets: - original tags: - stable diffusion - prompt engineering - prompts - research paper task_categories: - text-to-image - image-to-text task_ids: - image-captioning --- # DiffusionDB <img width="100%" src="https://user-images.githubusercontent.com/15007159/201762588-f24db2b8-dbb2-4a94-947b-7de393fc3d33.gif"> ## Table of Contents - [DiffusionDB](#diffusiondb) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Two Subsets](#two-subsets) - [Key Differences](#key-differences) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Dataset Metadata](#dataset-metadata) - [Metadata Schema](#metadata-schema) - [Data Splits](#data-splits) - [Loading Data Subsets](#loading-data-subsets) - [Method 1: Using Hugging Face Datasets Loader](#method-1-using-hugging-face-datasets-loader) - [Method 2. Use the PoloClub Downloader](#method-2-use-the-poloclub-downloader) - [Usage/Examples](#usageexamples) - [Downloading a single file](#downloading-a-single-file) - [Downloading a range of files](#downloading-a-range-of-files) - [Downloading to a specific directory](#downloading-to-a-specific-directory) - [Setting the files to unzip once they've been downloaded](#setting-the-files-to-unzip-once-theyve-been-downloaded) - [Method 3. Use `metadata.parquet` (Text Only)](#method-3-use-metadataparquet-text-only) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization) - [Who are the source language producers?](#who-are-the-source-language-producers) - [Annotations](#annotations) - [Annotation process](#annotation-process) - [Who are the annotators?](#who-are-the-annotators) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [DiffusionDB homepage](https://poloclub.github.io/diffusiondb) - **Repository:** [DiffusionDB repository](https://github.com/poloclub/diffusiondb) - **Distribution:** [DiffusionDB Hugging Face Dataset](https://huggingface.co/datasets/poloclub/diffusiondb) - **Paper:** [DiffusionDB: A Large-scale Prompt Gallery Dataset for Text-to-Image Generative Models](https://arxiv.org/abs/2210.14896) - **Point of Contact:** [Jay Wang](mailto:[email protected]) ### Dataset Summary DiffusionDB is the first large-scale text-to-image prompt dataset. It contains **14 million** images generated by Stable Diffusion using prompts and hyperparameters specified by real users. DiffusionDB is publicly available at [🤗 Hugging Face Dataset](https://huggingface.co/datasets/poloclub/diffusiondb). ### Supported Tasks and Leaderboards The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models. ### Languages The text in the dataset is mostly English. It also contains other languages such as Spanish, Chinese, and Russian. ### Two Subsets DiffusionDB provides two subsets (DiffusionDB 2M and DiffusionDB Large) to support different needs. |Subset|Num of Images|Num of Unique Prompts|Size|Image Directory|Metadata Table| |:--|--:|--:|--:|--:|--:| |DiffusionDB 2M|2M|1.5M|1.6TB|`images/`|`metadata.parquet`| |DiffusionDB Large|14M|1.8M|6.5TB|`diffusiondb-large-part-1/` `diffusiondb-large-part-2/`|`metadata-large.parquet`| ##### Key Differences 1. Two subsets have a similar number of unique prompts, but DiffusionDB Large has much more images. DiffusionDB Large is a superset of DiffusionDB 2M. 2. Images in DiffusionDB 2M are stored in `png` format; images in DiffusionDB Large use a lossless `webp` format. ## Dataset Structure We use a modularized file structure to distribute DiffusionDB. The 2 million images in DiffusionDB 2M are split into 2,000 folders, where each folder contains 1,000 images and a JSON file that links these 1,000 images to their prompts and hyperparameters. Similarly, the 14 million images in DiffusionDB Large are split into 14,000 folders. ```bash # DiffusionDB 2M ./ ├── images │   ├── part-000001 │   │   ├── 3bfcd9cf-26ea-4303-bbe1-b095853f5360.png │   │   ├── 5f47c66c-51d4-4f2c-a872-a68518f44adb.png │   │   ├── 66b428b9-55dc-4907-b116-55aaa887de30.png │   │   ├── [...] │   │   └── part-000001.json │   ├── part-000002 │   ├── part-000003 │   ├── [...] │   └── part-002000 └── metadata.parquet ``` ```bash # DiffusionDB Large ./ ├── diffusiondb-large-part-1 │   ├── part-000001 │   │   ├── 0a8dc864-1616-4961-ac18-3fcdf76d3b08.webp │   │   ├── 0a25cacb-5d91-4f27-b18a-bd423762f811.webp │   │   ├── 0a52d584-4211-43a0-99ef-f5640ee2fc8c.webp │   │   ├── [...] │   │   └── part-000001.json │   ├── part-000002 │   ├── part-000003 │   ├── [...] │   └── part-010000 ├── diffusiondb-large-part-2 │   ├── part-010001 │   │   ├── 0a68f671-3776-424c-91b6-c09a0dd6fc2d.webp │   │   ├── 0a0756e9-1249-4fe2-a21a-12c43656c7a3.webp │   │   ├── 0aa48f3d-f2d9-40a8-a800-c2c651ebba06.webp │   │   ├── [...] │   │   └── part-000001.json │   ├── part-010002 │   ├── part-010003 │   ├── [...] │   └── part-014000 └── metadata-large.parquet ``` These sub-folders have names `part-0xxxxx`, and each image has a unique name generated by [UUID Version 4](https://en.wikipedia.org/wiki/Universally_unique_identifier). The JSON file in a sub-folder has the same name as the sub-folder. Each image is a `PNG` file (DiffusionDB 2M) or a lossless `WebP` file (DiffusionDB Large). The JSON file contains key-value pairs mapping image filenames to their prompts and hyperparameters. ### Data Instances For example, below is the image of `f3501e05-aef7-4225-a9e9-f516527408ac.png` and its key-value pair in `part-000001.json`. <img width="300" src="https://i.imgur.com/gqWcRs2.png"> ```json { "f3501e05-aef7-4225-a9e9-f516527408ac.png": { "p": "geodesic landscape, john chamberlain, christopher balaskas, tadao ando, 4 k, ", "se": 38753269, "c": 12.0, "st": 50, "sa": "k_lms" }, } ``` ### Data Fields - key: Unique image name - `p`: Prompt - `se`: Random seed - `c`: CFG Scale (guidance scale) - `st`: Steps - `sa`: Sampler ### Dataset Metadata To help you easily access prompts and other attributes of images without downloading all the Zip files, we include two metadata tables `metadata.parquet` and `metadata-large.parquet` for DiffusionDB 2M and DiffusionDB Large, respectively. The shape of `metadata.parquet` is (2000000, 13) and the shape of `metatable-large.parquet` is (14000000, 13). Two tables share the same schema, and each row represents an image. We store these tables in the Parquet format because Parquet is column-based: you can efficiently query individual columns (e.g., prompts) without reading the entire table. Below are three random rows from `metadata.parquet`. | image_name | prompt | part_id | seed | step | cfg | sampler | width | height | user_name | timestamp | image_nsfw | prompt_nsfw | |:-----------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------:|-----------:|-------:|------:|----------:|--------:|---------:|:-----------------------------------------------------------------|:--------------------------|-------------:|--------------:| | 0c46f719-1679-4c64-9ba9-f181e0eae811.png | a small liquid sculpture, corvette, viscous, reflective, digital art | 1050 | 2026845913 | 50 | 7 | 8 | 512 | 512 | c2f288a2ba9df65c38386ffaaf7749106fed29311835b63d578405db9dbcafdb | 2022-08-11 09:05:00+00:00 | 0.0845108 | 0.00383462 | | a00bdeaa-14eb-4f6c-a303-97732177eae9.png | human sculpture of lanky tall alien on a romantic date at italian restaurant with smiling woman, nice restaurant, photography, bokeh | 905 | 1183522603 | 50 | 10 | 8 | 512 | 768 | df778e253e6d32168eb22279a9776b3cde107cc82da05517dd6d114724918651 | 2022-08-19 17:55:00+00:00 | 0.692934 | 0.109437 | | 6e5024ce-65ed-47f3-b296-edb2813e3c5b.png | portrait of barbaric spanish conquistador, symmetrical, by yoichi hatakenaka, studio ghibli and dan mumford | 286 | 1713292358 | 50 | 7 | 8 | 512 | 640 | 1c2e93cfb1430adbd956be9c690705fe295cbee7d9ac12de1953ce5e76d89906 | 2022-08-12 03:26:00+00:00 | 0.0773138 | 0.0249675 | #### Metadata Schema `metadata.parquet` and `metatable-large.parquet` share the same schema. |Column|Type|Description| |:---|:---|:---| |`image_name`|`string`|Image UUID filename.| |`prompt`|`string`|The text prompt used to generate this image.| |`part_id`|`uint16`|Folder ID of this image.| |`seed`|`uint32`| Random seed used to generate this image.| |`step`|`uint16`| Step count (hyperparameter).| |`cfg`|`float32`| Guidance scale (hyperparameter).| |`sampler`|`uint8`| Sampler method (hyperparameter). Mapping: `{1: "ddim", 2: "plms", 3: "k_euler", 4: "k_euler_ancestral", 5: "k_heun", 6: "k_dpm_2", 7: "k_dpm_2_ancestral", 8: "k_lms", 9: "others"}`. |`width`|`uint16`|Image width.| |`height`|`uint16`|Image height.| |`user_name`|`string`|The unique discord ID's SHA256 hash of the user who generated this image. For example, the hash for `xiaohk#3146` is `e285b7ef63be99e9107cecd79b280bde602f17e0ca8363cb7a0889b67f0b5ed0`. "deleted_account" refer to users who have deleted their accounts. None means the image has been deleted before we scrape it for the second time.| |`timestamp`|`timestamp`|UTC Timestamp when this image was generated. None means the image has been deleted before we scrape it for the second time. Note that timestamp is not accurate for duplicate images that have the same prompt, hypareparameters, width, height.| |`image_nsfw`|`float32`|Likelihood of an image being NSFW. Scores are predicted by [LAION's state-of-art NSFW detector](https://github.com/LAION-AI/LAION-SAFETY) (range from 0 to 1). A score of 2.0 means the image has already been flagged as NSFW and blurred by Stable Diffusion.| |`prompt_nsfw`|`float32`|Likelihood of a prompt being NSFW. Scores are predicted by the library [Detoxicy](https://github.com/unitaryai/detoxify). Each score represents the maximum of `toxicity` and `sexual_explicit` (range from 0 to 1).| > **Warning** > Although the Stable Diffusion model has an NSFW filter that automatically blurs user-generated NSFW images, this NSFW filter is not perfect—DiffusionDB still contains some NSFW images. Therefore, we compute and provide the NSFW scores for images and prompts using the state-of-the-art models. The distribution of these scores is shown below. Please decide an appropriate NSFW score threshold to filter out NSFW images before using DiffusionDB in your projects. <img src="https://i.imgur.com/1RiGAXL.png" width="100%"> ### Data Splits For DiffusionDB 2M, we split 2 million images into 2,000 folders where each folder contains 1,000 images and a JSON file. For DiffusionDB Large, we split 14 million images into 14,000 folders where each folder contains 1,000 images and a JSON file. ### Loading Data Subsets DiffusionDB is large (1.6TB or 6.5 TB)! However, with our modularized file structure, you can easily load a desirable number of images and their prompts and hyperparameters. In the [`example-loading.ipynb`](https://github.com/poloclub/diffusiondb/blob/main/notebooks/example-loading.ipynb) notebook, we demonstrate three methods to load a subset of DiffusionDB. Below is a short summary. #### Method 1: Using Hugging Face Datasets Loader You can use the Hugging Face [`Datasets`](https://huggingface.co/docs/datasets/quickstart) library to easily load prompts and images from DiffusionDB. We pre-defined 16 DiffusionDB subsets (configurations) based on the number of instances. You can see all subsets in the [Dataset Preview](https://huggingface.co/datasets/poloclub/diffusiondb/viewer/all/train). ```python import numpy as np from datasets import load_dataset # Load the dataset with the `large_random_1k` subset dataset = load_dataset('poloclub/diffusiondb', 'large_random_1k') ``` #### Method 2. Use the PoloClub Downloader This repo includes a Python downloader [`download.py`](https://github.com/poloclub/diffusiondb/blob/main/scripts/download.py) that allows you to download and load DiffusionDB. You can use it from your command line. Below is an example of loading a subset of DiffusionDB. ##### Usage/Examples The script is run using command-line arguments as follows: - `-i` `--index` - File to download or lower bound of a range of files if `-r` is also set. - `-r` `--range` - Upper bound of range of files to download if `-i` is set. - `-o` `--output` - Name of custom output directory. Defaults to the current directory if not set. - `-z` `--unzip` - Unzip the file/files after downloading - `-l` `--large` - Download from Diffusion DB Large. Defaults to Diffusion DB 2M. ###### Downloading a single file The specific file to download is supplied as the number at the end of the file on HuggingFace. The script will automatically pad the number out and generate the URL. ```bash python download.py -i 23 ``` ###### Downloading a range of files The upper and lower bounds of the set of files to download are set by the `-i` and `-r` flags respectively. ```bash python download.py -i 1 -r 2000 ``` Note that this range will download the entire dataset. The script will ask you to confirm that you have 1.7Tb free at the download destination. ###### Downloading to a specific directory The script will default to the location of the dataset's `part` .zip files at `images/`. If you wish to move the download location, you should move these files as well or use a symbolic link. ```bash python download.py -i 1 -r 2000 -o /home/$USER/datahoarding/etc ``` Again, the script will automatically add the `/` between the directory and the file when it downloads. ###### Setting the files to unzip once they've been downloaded The script is set to unzip the files _after_ all files have downloaded as both can be lengthy processes in certain circumstances. ```bash python download.py -i 1 -r 2000 -z ``` #### Method 3. Use `metadata.parquet` (Text Only) If your task does not require images, then you can easily access all 2 million prompts and hyperparameters in the `metadata.parquet` table. ```python from urllib.request import urlretrieve import pandas as pd # Download the parquet table table_url = f'https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/metadata.parquet' urlretrieve(table_url, 'metadata.parquet') # Read the table using Pandas metadata_df = pd.read_parquet('metadata.parquet') ``` ## Dataset Creation ### Curation Rationale Recent diffusion models have gained immense popularity by enabling high-quality and controllable image generation based on text prompts written in natural language. Since the release of these models, people from different domains have quickly applied them to create award-winning artworks, synthetic radiology images, and even hyper-realistic videos. However, generating images with desired details is difficult, as it requires users to write proper prompts specifying the exact expected results. Developing such prompts requires trial and error, and can often feel random and unprincipled. Simon Willison analogizes writing prompts to wizards learning “magical spells”: users do not understand why some prompts work, but they will add these prompts to their “spell book.” For example, to generate highly-detailed images, it has become a common practice to add special keywords such as “trending on artstation” and “unreal engine” in the prompt. Prompt engineering has become a field of study in the context of text-to-text generation, where researchers systematically investigate how to construct prompts to effectively solve different down-stream tasks. As large text-to-image models are relatively new, there is a pressing need to understand how these models react to prompts, how to write effective prompts, and how to design tools to help users generate images. To help researchers tackle these critical challenges, we create DiffusionDB, the first large-scale prompt dataset with 14 million real prompt-image pairs. ### Source Data #### Initial Data Collection and Normalization We construct DiffusionDB by scraping user-generated images on the official Stable Diffusion Discord server. We choose Stable Diffusion because it is currently the only open-source large text-to-image generative model, and all generated images have a CC0 1.0 Universal Public Domain Dedication license that waives all copyright and allows uses for any purpose. We choose the official [Stable Diffusion Discord server](https://discord.gg/stablediffusion) because it is public, and it has strict rules against generating and sharing illegal, hateful, or NSFW (not suitable for work, such as sexual and violent content) images. The server also disallows users to write or share prompts with personal information. #### Who are the source language producers? The language producers are users of the official [Stable Diffusion Discord server](https://discord.gg/stablediffusion). ### Annotations The dataset does not contain any additional annotations. #### Annotation process [N/A] #### Who are the annotators? [N/A] ### Personal and Sensitive Information The authors removed the discord usernames from the dataset. We decide to anonymize the dataset because some prompts might include sensitive information: explicitly linking them to their creators can cause harm to creators. ## Considerations for Using the Data ### Social Impact of Dataset The purpose of this dataset is to help develop better understanding of large text-to-image generative models. The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models. It should note that we collect images and their prompts from the Stable Diffusion Discord server. The Discord server has rules against users generating or sharing harmful or NSFW (not suitable for work, such as sexual and violent content) images. The Stable Diffusion model used in the server also has an NSFW filter that blurs the generated images if it detects NSFW content. However, it is still possible that some users had generated harmful images that were not detected by the NSFW filter or removed by the server moderators. Therefore, DiffusionDB can potentially contain these images. To mitigate the potential harm, we provide a [Google Form](https://forms.gle/GbYaSpRNYqxCafMZ9) on the [DiffusionDB website](https://poloclub.github.io/diffusiondb/) where users can report harmful or inappropriate images and prompts. We will closely monitor this form and remove reported images and prompts from DiffusionDB. ### Discussion of Biases The 14 million images in DiffusionDB have diverse styles and categories. However, Discord can be a biased data source. Our images come from channels where early users could use a bot to use Stable Diffusion before release. As these users had started using Stable Diffusion before the model was public, we hypothesize that they are AI art enthusiasts and are likely to have experience with other text-to-image generative models. Therefore, the prompting style in DiffusionDB might not represent novice users. Similarly, the prompts in DiffusionDB might not generalize to domains that require specific knowledge, such as medical images. ### Other Known Limitations **Generalizability.** Previous research has shown a prompt that works well on one generative model might not give the optimal result when used in other models. Therefore, different models can need users to write different prompts. For example, many Stable Diffusion prompts use commas to separate keywords, while this pattern is less seen in prompts for DALL-E 2 or Midjourney. Thus, we caution researchers that some research findings from DiffusionDB might not be generalizable to other text-to-image generative models. ## Additional Information ### Dataset Curators DiffusionDB is created by [Jay Wang](https://zijie.wang), [Evan Montoya](https://www.linkedin.com/in/evan-montoya-b252391b4/), [David Munechika](https://www.linkedin.com/in/dmunechika/), [Alex Yang](https://alexanderyang.me), [Ben Hoover](https://www.bhoov.com), [Polo Chau](https://faculty.cc.gatech.edu/~dchau/). ### Licensing Information The DiffusionDB dataset is available under the [CC0 1.0 License](https://creativecommons.org/publicdomain/zero/1.0/). The Python code in this repository is available under the [MIT License](https://github.com/poloclub/diffusiondb/blob/main/LICENSE). ### Citation Information ```bibtex @article{wangDiffusionDBLargescalePrompt2022, title = {{{DiffusionDB}}: {{A}} Large-Scale Prompt Gallery Dataset for Text-to-Image Generative Models}, author = {Wang, Zijie J. and Montoya, Evan and Munechika, David and Yang, Haoyang and Hoover, Benjamin and Chau, Duen Horng}, year = {2022}, journal = {arXiv:2210.14896 [cs]}, url = {https://arxiv.org/abs/2210.14896} } ``` ### Contributions If you have any questions, feel free to [open an issue](https://github.com/poloclub/diffusiondb/issues/new) or contact [Jay Wang](https://zijie.wang).
roneneldan/TinyStories
roneneldan
"2024-08-12T13:27:26Z"
13,418
590
[ "task_categories:text-generation", "language:en", "license:cdla-sharing-1.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2305.07759", "region:us" ]
[ "text-generation" ]
"2023-05-12T19:04:09Z"
--- license: cdla-sharing-1.0 task_categories: - text-generation language: - en --- Dataset containing synthetically generated (by GPT-3.5 and GPT-4) short stories that only use a small vocabulary. Described in the following paper: https://arxiv.org/abs/2305.07759. The models referred to in the paper were trained on TinyStories-train.txt (the file tinystories-valid.txt can be used for validation loss). These models can be found on Huggingface, at roneneldan/TinyStories-1M/3M/8M/28M/33M/1Layer-21M. Additional resources: tinystories_all_data.tar.gz - contains a superset of the stories together with metadata and the prompt that was used to create each story. TinyStoriesV2-GPT4-train.txt - Is a new version of the dataset that is based on generations by GPT-4 only (the original dataset also has generations by GPT-3.5 which are of lesser quality). It contains all the examples in TinyStories.txt which were GPT-4 generated as a subset (but is significantly larger). Evaluation_prompts.yaml: List of prompts used to evaluate our models (see paper)
nyanko7/danbooru2023
nyanko7
"2024-05-22T18:43:24Z"
13,358
221
[ "task_categories:image-classification", "task_categories:image-to-image", "task_categories:text-to-image", "language:en", "language:ja", "license:mit", "size_categories:1M<n<10M", "region:us" ]
[ "image-classification", "image-to-image", "text-to-image" ]
"2024-01-04T13:28:13Z"
--- license: mit task_categories: - image-classification - image-to-image - text-to-image language: - en - ja pretty_name: danbooru2023 size_categories: - 1M<n<10M viewer: false --- <img src="https://huggingface.co/datasets/nyanko7/danbooru2023/resolve/main/cover.webp" alt="cover" width="750"/> # Danbooru2023: A Large-Scale Crowdsourced and Tagged Anime Illustration Dataset <!-- Provide a quick summary of the dataset. --> Danbooru2023 is a large-scale anime image dataset with over 5 million images contributed and annotated in detail by an enthusiast community. Image tags cover aspects like characters, scenes, copyrights, artists, etc with an average of 30 tags per image. Danbooru is a veteran anime image board with high-quality images and extensive tag metadata. The dataset can be used to train image classification, multi-label tagging, character detection, generative models, and other computer vision tasks. - **Shared by:** Nyanko Devs - **Language(s):** English, Japanese - **License:** MIT This dataset is built on the top of [danbooru2021](https://gwern.net/danbooru2021). We expands the dataset to include images up to ID #6,857,737, adding over 1.8 million additional images and total size is now approximately 8 terabytes (8,000 GB). ## Use ## Format The goal of the dataset is to be as easy as possible to use immediately, avoiding obscure file formats, while allowing simultaneous research & seeding of the torrent, with easy updates. Images are provided in the full original form (be that JPG, PNG, GIF or otherwise) for reference/archival purposes, and bucketed into 1000 subdirectories 0000–0999 (0-padded), which is the Danbooru ID modulo 1000 (ie. all images in 0999/ have an ID ending in ‘999’); IDs can be turned into paths by dividing & padding (eg. in Bash, BUCKET=$(printf "%04d" $(( ID % 1000 )) )) and then the file is at {original,512px}/$BUCKET/$ID.$EXT. The reason for the bucketing is that a single directory would cause pathological filesystem performance, and modulo ID is a simple hash which spreads images evenly without requiring additional future directories to be made or a filesystem IO to check where the file is. The ID is not zero-padded and files end in the relevant extension, hence the file layout looks like this: ```bash $ tree / | less / ├── danbooru2023 -> /mnt/diffusionstorage/workspace/danbooru/ │ ├── metadata │ ├── readme.md │ ├── original │ │ ├── 0000 -> data-0000.tar │ │ ├── 0001 -> data-0001.tar │ │ │ ├── 10001.jpg │ │ │ ├── 210001.png │ │ │ ├── 3120001.webp │ │ │ ├── 6513001.jpg │ │ │ ├── recent │ │ ├── 0000 -> data-1000.tar │ │ ├── 0001 -> data-1001.tar │ │ │ ├── updates │ │ ├── 20240319 │ │ │ ├── dataset-0.tar │ │ │ ├── dataset-1.tar │ │ │ │ │ ├── 2024xxxx │ │ │ ├── dataset-0.tar │ │ │ ├── dataset-1.tar ``` Where `data-{1000..1999}.tar` refer to recent update files (should be updated every few months) and `updates` refer to fast patches (should be updated every few days to few weeks). Currently represented file extensions are: avi/bmp/gif/html/jpeg/jpg/mp3/mp4/mpg/pdf/png/rar/swf/webm/wmv/zip. Raw original files are treacherous. Be careful if working with the original dataset. There are many odd files: truncated, non-sRGB colorspace, wrong file extensions (eg. some PNGs have .jpg extensions like original/0146/1525146.jpg or original/0558/1422558.jpg), etc.
lmms-lab/LLaVA-Video-178K
lmms-lab
"2024-10-11T04:59:25Z"
13,339
98
[ "task_categories:visual-question-answering", "task_categories:video-text-to-text", "language:en", "size_categories:1M<n<10M", "modality:text", "modality:video", "arxiv:2410.02713", "region:us", "video" ]
[ "visual-question-answering", "video-text-to-text" ]
"2024-08-27T07:09:50Z"
--- configs: - config_name: 0_30_s_academic_v0_1 data_files: - split: caption path: 0_30_s_academic_v0_1/*cap*.json - split: open_ended path: 0_30_s_academic_v0_1/*oe*.json - split: multi_choice path: 0_30_s_academic_v0_1/*mc*.json - config_name: 0_30_s_youtube_v0_1 data_files: - split: caption path: 0_30_s_youtube_v0_1/*cap*.json - split: open_ended path: 0_30_s_youtube_v0_1/*oe*.json - split: multi_choice path: 0_30_s_youtube_v0_1/*mc*.json - config_name: 0_30_s_activitynet data_files: - split: open_ended path: 0_30_s_activitynet/*oe*.json - config_name: 0_30_s_perceptiontest data_files: - split: multi_choice path: 0_30_s_perceptiontest/*mc*.json - config_name: 0_30_s_nextqa data_files: - split: open_ended path: 0_30_s_nextqa/*oe*.json - split: multi_choice path: 0_30_s_nextqa/*mc*.json - config_name: 30_60_s_academic_v0_1 data_files: - split: caption path: 30_60_s_academic_v0_1/*cap*.json - split: open_ended path: 30_60_s_academic_v0_1/*oe*.json - split: multi_choice path: 30_60_s_academic_v0_1/*mc*.json - config_name: 30_60_s_youtube_v0_1 data_files: - split: caption path: 30_60_s_youtube_v0_1/*cap*.json - split: open_ended path: 30_60_s_youtube_v0_1/*oe*.json - split: multi_choice path: 30_60_s_youtube_v0_1/*mc*.json - config_name: 30_60_s_activitynet data_files: - split: open_ended path: 30_60_s_activitynet/*oe*.json - config_name: 30_60_s_perceptiontest data_files: - split: multi_choice path: 30_60_s_perceptiontest/*mc*.json - config_name: 30_60_s_nextqa data_files: - split: open_ended path: 30_60_s_nextqa/*oe*.json - split: multi_choice path: 30_60_s_nextqa/*mc*.json - config_name: 1_2_m_youtube_v0_1 data_files: - split: caption path: 1_2_m_youtube_v0_1/*cap*.json - split: open_ended path: 1_2_m_youtube_v0_1/*oe*.json - split: multi_choice path: 1_2_m_youtube_v0_1/*mc*.json - config_name: 1_2_m_academic_v0_1 data_files: - split: caption path: 1_2_m_academic_v0_1/*cap*.json - split: open_ended path: 1_2_m_academic_v0_1/*oe*.json - split: multi_choice path: 1_2_m_academic_v0_1/*mc*.json - config_name: 1_2_m_activitynet data_files: - split: open_ended path: 1_2_m_activitynet/*oe*.json - config_name: 1_2_m_nextqa data_files: - split: open_ended path: 1_2_m_nextqa/*oe*.json - split: multi_choice path: 1_2_m_nextqa/*mc*.json - config_name: 2_3_m_youtube_v0_1 data_files: - split: caption path: 2_3_m_youtube_v0_1/*cap*.json - split: open_ended path: 2_3_m_youtube_v0_1/*oe*.json - split: multi_choice path: 2_3_m_youtube_v0_1/*mc*.json - config_name: 2_3_m_academic_v0_1 data_files: - split: caption path: 2_3_m_academic_v0_1/*cap*.json - split: open_ended path: 2_3_m_academic_v0_1/*oe*.json - split: multi_choice path: 2_3_m_academic_v0_1/*mc*.json - config_name: 2_3_m_activitynet data_files: - split: open_ended path: 2_3_m_activitynet/*oe*.json - config_name: 2_3_m_nextqa data_files: - split: open_ended path: 2_3_m_nextqa/*oe*.json - split: multi_choice path: 2_3_m_nextqa/*mc*.json - config_name: llava_hound data_files: - split: open_ended path: llava_hound/sharegptvideo_qa_255k_processed.json language: - en task_categories: - visual-question-answering - video-text-to-text tags: - video --- # Dataset Card for LLaVA-Video-178K ## Dataset Description - **Curated by:** Yuanhan Zhang, Jinming Wu, Wei Li - **Language(s) (NLP):** English, Chinese - **License:** Apache License 2.0 ## Uses This dataset is used for the training of the LLaVA-Video model. We only allow the use of this dataset for academic research and education purpose. For OpenAI GPT-4 generated data, we recommend the users to check the [OpenAI Usage Policy](https://openai.com/policies/usage-policies/). ### Data Sources For the training of LLaVA-Video, we utilized video-language data from five primary sources: - **LLaVA-Video-178K**: This dataset includes **178,510** caption entries, 960,792 open-ended QA (question and answer) items, and 196,198 multiple-choice QA items. These data were newly annotated for this project. - We include this dataset in this repository: LLaVA-Video-178K/XXX_academic_v0_1 and LLaVA-Video-178K/XXX_youtube_v0_1. - **NeXT-QA**: Comprises 17,090 open-ended QA items and 17,024 multiple-choice QA items. - We include this dataset in this repository: LLaVA-Video-178K/XXX_nextqa. - **ActivityNetQA**: Includes 23,530 open-ended QA items, - We include this dataset in this repository: LLaVA-Video-178K/XXX_activitynetqa. - **PerceptionTest**: Includes 1,803 open-ended QA items. - We include this dataset in this repository: LLaVA-Video-178K/XXX_perceptiontest. - **LLaVA-Hound**: Contains 240,000 open-ended QA items and 15,000 caption entries. - The video data and annotations are available at the following URLs: - Video data: [train_300k](https://huggingface.co/datasets/ShareGPTVideo/train_video_and_instruction/tree/main/train_300k) - Annotation data: LLaVA-Video-178K/llava_hound - loading function is specified here: [function](https://github.com/LLaVA-VL/LLaVA-NeXT/blob/7125e3654d88063cb467ed242db76f1e2b184d4c/llava/train/train.py#L1162) The **LLaVA-Video-178K** dataset is the only contribution from this repository; we provide additional datasets for reproducing LLaVA-Video. - **Project Page:** [Project Page](https://llava-vl.github.io/blog/2024-09-30-llava-video/). - **Paper**: For more details, please check our [paper](https://arxiv.org/abs/2410.02713) ### Annotation Pipeline The following directories are provided for generating captions and QA data: - **Captions**: `LLaVA-Video-178K/gpt4o_caption_prompt` - **QA**: `LLaVA-Video-178K/gpt4o_qa_prompt` ### The subset used in the LLaVA-OneVision We have included captions and open-ended questions in the [0_30_s_academic_v0_1 split](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K/tree/main/0_30_s_academic_v0_1), along with 240,000 open-ended QA items and 15,000 caption entries, as part of the video data in LLaVA-Hound for LLaVA-OneVision. - [**0_30_s_academic_v0_1 caption**](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K/blob/main/0_30_s_academic_v0_1/0_30_s_academic_v0_1_cap_processed.json) - [**0_30_s_academic_v0_1 open-ended QA**](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K/blob/main/0_30_s_academic_v0_1/0_30_s_academic_v0_1_cap_processed.json) - **LLaVA-Hound**: Same as above. ## Citation ```bibtex @misc{zhang2024videoinstructiontuningsynthetic, title={Video Instruction Tuning With Synthetic Data}, author={Yuanhan Zhang and Jinming Wu and Wei Li and Bo Li and Zejun Ma and Ziwei Liu and Chunyuan Li}, year={2024}, eprint={2410.02713}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2410.02713}, } ``` ## Dataset Card Contact [Yuanhan Zhang](https://zhangyuanhan-ai.github.io/) [Jinming Wu](https://scholar.google.com/citations?user=eh-XJIoAAAAJ&hl=zh-CN) [Wei Li](https://scholar.google.com/citations?user=q8ZrKVIAAAAJ&hl=zh-CN)
jinzhuoran/RWKU
jinzhuoran
"2024-06-18T02:25:48Z"
13,296
3
[ "task_categories:text-generation", "task_categories:fill-mask", "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2406.10890", "doi:10.57967/hf/2448", "region:us", "unlearning", "knowledge unlearning", "NLP", "LLM" ]
[ "text-generation", "fill-mask", "question-answering" ]
"2024-06-02T12:02:18Z"
--- language: - en license: cc-by-4.0 pretty_name: RWKU size_categories: - 10K<n<100K task_categories: - text-generation - fill-mask - question-answering tags: - unlearning - knowledge unlearning - NLP - LLM configs: - config_name: forget_target data_files: - split: train path: - "All/intro.json" - config_name: forget_level1 data_files: - split: test path: - "All/forget_level1.json" - config_name: forget_level2 data_files: - split: test path: - "All/forget_level2.json" - config_name: forget_level3 data_files: - split: test path: - "All/forget_level3.json" - config_name: neighbor_level1 data_files: - split: test path: - "All/neighbor_level1.json" - config_name: neighbor_level2 data_files: - split: test path: - "All/neighbor_level2.json" - config_name: mia_forget data_files: - split: test path: - "All/forget_mia.json" - config_name: mia_retain data_files: - split: test path: - "All/retain_mia.json" - config_name: utility_general data_files: - split: test path: - "All/retain_mmlu.json" - config_name: utility_general data_files: - split: test path: - "All/retain_mmlu.json" - config_name: utility_reason data_files: - split: test path: - "All/retain_bbh.json" - config_name: utility_truthfulness data_files: - split: test path: - "All/truthful.json" - config_name: utility_factuality data_files: - split: test path: - "All/triviaqa.json" - config_name: utility_fluency data_files: - split: test path: - "All/fluency.json" - config_name: train_original_passage data_files: - split: train path: - "All/passage.json" - config_name: train_positive_llama3 data_files: - split: train path: - "All/positive.json" - config_name: train_negative_llama3 data_files: - split: train path: - "All/negative.json" - config_name: train_pair_llama3 data_files: - split: train path: - "All/pair.json" - config_name: train_refusal_llama3 data_files: - split: train path: - "All/reject.json" - config_name: train_positive_phi3 data_files: - split: train path: - "All/positive_phi.json" - config_name: train_negative_phi3 data_files: - split: train path: - "All/negative_phi.json" - config_name: train_pair_phi3 data_files: - split: train path: - "All/pair_phi.json" - config_name: train_refusal_phi3 data_files: - split: train path: - "All/reject_phi.json" --- # Dataset Card for Real-World Knowledge Unlearning Benchmark (RWKU) ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://rwku-bench.github.io - **Repository:** https://github.com/jinzhuoran/RWKU - **Paper:** https://arxiv.org/abs/2406.10890 ### Dataset Summary **RWKU is a real-world knowledge unlearning benchmark specifically designed for large language models (LLMs).** This benchmark contains 200 real-world unlearning targets and 13,131 multi-level forget probes, including 3,268 fill-in-the-blank probes, 2,879 question-answer probes, and 6,984 adversarial-attack probes. RWKU is designed based on the following three key factors: 1. For the **task setting**, we consider a more practical and challenging setting, similar to _zero-shot knowledge unlearning_. We provide only the unlearning target and the original model, without offering any forget corpus or retain corpus. In this way, it avoids secondary information leakage caused by the forget corpus and is not affected by the distribution bias of the retain corpus. 2. For the **knowledge source**, we choose real-world famous people from Wikipedia as the unlearning targets and demonstrate that such popular knowledge is widely present in various LLMs through memorization quantification, making it more suitable for knowledge unlearning. Additionally, choosing entities as unlearning targets can well clearly define the unlearning boundaries. 3. For the **evaluation framework**, we carefully design the forget set and the retain set to evaluate the model's capabilities from multiple real-world applications. Regarding the forget set, we evaluate the **efficacy** of knowledge unlearning at both the knowledge memorization (fill-in-the-blank style) and knowledge manipulation (question-answer style) abilities. Specifically, we also evaluate these two abilities through **adversarial attacks** to induce forgotten knowledge in the model. We adopt four membership inference attack (MIA) methods for knowledge memorization on our collected MIA set. We meticulously designed nine types of adversarial-attack probes for knowledge manipulation, including prefix injection, affirmative suffix, role playing, reverse query, and others. Regarding the retain set, we design a neighbor set to test the impact of neighbor perturbation, specifically focusing on the **locality** of unlearning. In addition, we assess the **model utility** on various capabilities, including general ability, reasoning ability, truthfulness, factuality, and fluency. ### Supported Tasks Knowledge unlearning for LLMs. ### Languages English. ## Dataset Structure To evaluate the unlearning efficacy: ```python from datasets import load_dataset forget_level1 = load_dataset("jinzhuoran/RWKU", 'forget_level1') forget_level2 = load_dataset("jinzhuoran/RWKU", 'forget_level2') forget_level2 = load_dataset("jinzhuoran/RWKU", 'forget_level2') ``` To evaluate the locality: ```python from datasets import load_dataset neighbor_level1 = load_dataset("jinzhuoran/RWKU", 'neighbor_level1') neighbor_level2 = load_dataset("jinzhuoran/RWKU", 'neighbor_level2') ``` To evaluate the model utility: ```python from datasets import load_dataset utility_general = load_dataset("jinzhuoran/RWKU", 'utility_general') utility_reason = load_dataset("jinzhuoran/RWKU", 'utility_reason') utility_truthfulness = load_dataset("jinzhuoran/RWKU", 'utility_truthfulness') utility_factuality = load_dataset("jinzhuoran/RWKU", 'utility_factuality') utility_fluency = load_dataset("jinzhuoran/RWKU", 'utility_fluency') ``` To conduct membership inference attacks: ```python from datasets import load_dataset mia_forget = load_dataset("jinzhuoran/RWKU", 'mia_forget') mia_retain = load_dataset("jinzhuoran/RWKU", 'mia_retain') ``` To load the forget corpus: ```python from datasets import load_dataset train_original_passage = load_dataset("jinzhuoran/RWKU", 'train_original_passage') train_positive_llama3 = load_dataset("jinzhuoran/RWKU", 'train_positive_llama3') ``` ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citing Our Work If you find our codebase and dataset beneficial, please cite our work: ```bibtex @misc{jin2024rwku, title={RWKU: Benchmarking Real-World Knowledge Unlearning for Large Language Models}, author={Zhuoran Jin and Pengfei Cao and Chenhao Wang and Zhitao He and Hongbang Yuan and Jiachun Li and Yubo Chen and Kang Liu and Jun Zhao}, year={2024}, eprint={2406.10890}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
cardiffnlp/databench
cardiffnlp
"2024-12-29T19:48:49Z"
13,292
6
[ "task_categories:table-question-answering", "task_categories:question-answering", "language:en", "language:es", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "table-question-answering", "table", "qa" ]
[ "table-question-answering", "question-answering" ]
"2023-12-21T08:08:56Z"
--- language: - en - es pretty_name: " 💾🏋️💾 DataBench 💾🏋️💾" tags: - table-question-answering - table - qa license: mit task_categories: - table-question-answering - question-answering default: qa configs: - config_name: qa data_files: - data/001_Forbes/qa.parquet - data/002_Titanic/qa.parquet - data/003_Love/qa.parquet - data/004_Taxi/qa.parquet - data/005_NYC/qa.parquet - data/006_London/qa.parquet - data/007_Fifa/qa.parquet - data/008_Tornados/qa.parquet - data/009_Central/qa.parquet - data/010_ECommerce/qa.parquet - data/011_SF/qa.parquet - data/012_Heart/qa.parquet - data/013_Roller/qa.parquet - data/014_Airbnb/qa.parquet - data/015_Food/qa.parquet - data/016_Holiday/qa.parquet - data/017_Hacker/qa.parquet - data/018_Staff/qa.parquet - data/019_Aircraft/qa.parquet - data/020_Real/qa.parquet - data/021_Telco/qa.parquet - data/022_Airbnbs/qa.parquet - data/023_Climate/qa.parquet - data/024_Salary/qa.parquet - data/025_Data/qa.parquet - data/026_Predicting/qa.parquet - data/027_Supermarket/qa.parquet - data/028_Predict/qa.parquet - data/029_NYTimes/qa.parquet - data/030_Professionals/qa.parquet - data/031_Trustpilot/qa.parquet - data/032_Delicatessen/qa.parquet - data/033_Employee/qa.parquet - data/034_World/qa.parquet - data/035_Billboard/qa.parquet - data/036_US/qa.parquet - data/037_Ted/qa.parquet - data/038_Stroke/qa.parquet - data/039_Happy/qa.parquet - data/040_Speed/qa.parquet - data/041_Airline/qa.parquet - data/042_Predict/qa.parquet - data/043_Predict/qa.parquet - data/044_IMDb/qa.parquet - data/045_Predict/qa.parquet - data/046_120/qa.parquet - data/047_Bank/qa.parquet - data/048_Data/qa.parquet - data/049_Boris/qa.parquet - data/050_ING/qa.parquet - data/051_Pokemon/qa.parquet - data/052_Professional/qa.parquet - data/053_Patents/qa.parquet - data/054_Joe/qa.parquet - data/055_German/qa.parquet - data/056_Emoji/qa.parquet - data/057_Spain/qa.parquet - data/058_US/qa.parquet - data/059_Second/qa.parquet - data/060_Bakery/qa.parquet - data/061_Disneyland/qa.parquet - data/062_Trump/qa.parquet - data/063_Influencers/qa.parquet - data/064_Clustering/qa.parquet - data/065_RFM/qa.parquet # - split: 001_Forbes # path: data/001_Forbes/qa.parquet # - split: 002_Titanic # path: data/002_Titanic/qa.parquet # - split: 003_Love # path: data/003_Love/qa.parquet # - split: 004_Taxi # path: data/004_Taxi/qa.parquet # - split: 005_NYC # path: data/005_NYC/qa.parquet # - split: 006_London # path: data/006_London/qa.parquet # - split: 007_Fifa # path: data/007_Fifa/qa.parquet # - split: 008_Tornados # path: data/008_Tornados/qa.parquet # - split: 009_Central # path: data/009_Central/qa.parquet # - split: 010_ECommerce # path: data/010_ECommerce/qa.parquet # - split: 011_SF # path: data/011_SF/qa.parquet # - split: 012_Heart # path: data/012_Heart/qa.parquet # - split: 013_Roller # path: data/013_Roller/qa.parquet # - split: 014_Airbnb # path: data/014_Airbnb/qa.parquet # - split: 015_Food # path: data/015_Food/qa.parquet # - split: 016_Holiday # path: data/016_Holiday/qa.parquet # - split: 017_Hacker # path: data/017_Hacker/qa.parquet # - split: 018_Staff # path: data/018_Staff/qa.parquet # - split: 019_Aircraft # path: data/019_Aircraft/qa.parquet # - split: 020_Real # path: data/020_Real/qa.parquet # - split: 021_Telco # path: data/021_Telco/qa.parquet # - split: 022_Airbnbs # path: data/022_Airbnbs/qa.parquet # - split: 023_Climate # path: data/023_Climate/qa.parquet # - split: 024_Salary # path: data/024_Salary/qa.parquet # - split: 025_Data # path: data/025_Data/qa.parquet # - split: 026_Predicting # path: data/026_Predicting/qa.parquet # - split: 027_Supermarket # path: data/027_Supermarket/qa.parquet # - split: 028_Predict # path: data/028_Predict/qa.parquet # - split: 029_NYTimes # path: data/029_NYTimes/qa.parquet # - split: 030_Professionals # path: data/030_Professionals/qa.parquet # - split: 031_Trustpilot # path: data/031_Trustpilot/qa.parquet # - split: 032_Delicatessen # path: data/032_Delicatessen/qa.parquet # - split: 033_Employee # path: data/033_Employee/qa.parquet # - split: 034_World # path: data/034_World/qa.parquet # - split: 035_Billboard # path: data/035_Billboard/qa.parquet # - split: 036_US # path: data/036_US/qa.parquet # - split: 037_Ted # path: data/037_Ted/qa.parquet # - split: 038_Stroke # path: data/038_Stroke/qa.parquet # - split: 039_Happy # path: data/039_Happy/qa.parquet # - split: 040_Speed # path: data/040_Speed/qa.parquet # - split: 041_Airline # path: data/041_Airline/qa.parquet # - split: 042_Predict # path: data/042_Predict/qa.parquet # - split: 043_Predict # path: data/043_Predict/qa.parquet # - split: 044_IMDb # path: data/044_IMDb/qa.parquet # - split: 045_Predict # path: data/045_Predict/qa.parquet # - split: "046_120" # path: data/046_120/qa.parquet # - split: 047_Bank # path: data/047_Bank/qa.parquet # - split: 048_Data # path: data/048_Data/qa.parquet # - split: 049_Boris # path: data/049_Boris/qa.parquet # - split: 050_ING # path: data/050_ING/qa.parquet # - split: 051_Pokemon # path: data/051_Pokemon/qa.parquet # - split: 052_Professional # path: data/052_Professional/qa.parquet # - split: 053_Patents # path: data/053_Patents/qa.parquet # - split: 054_Joe # path: data/054_Joe/qa.parquet # - split: 055_German # path: data/055_German/qa.parquet # - split: 056_Emoji # path: data/056_Emoji/qa.parquet # - split: 057_Spain # path: data/057_Spain/qa.parquet # - split: 058_US # path: data/058_US/qa.parquet # - split: 059_Second # path: data/059_Second/qa.parquet # - split: 060_Bakery # path: data/060_Bakery/qa.parquet # - split: 061_Disneyland # path: data/061_Disneyland/qa.parquet # - split: 062_Trump # path: data/062_Trump/qa.parquet # - split: 063_Influencers # path: data/063_Influencers/qa.parquet # - split: 064_Clustering # path: data/064_Clustering/qa.parquet # - split: 065_RFM # path: data/065_RFM/qa.parquet # - config_name: 001_Forbes # data_files: # - split: full # path: data/001_Forbes/all.parquet # - split: lite # path: data/001_Forbes/sample.parquet # - config_name: 002_Titanic # data_files: # - split: full # path: data/002_Titanic/all.parquet # - split: lite # path: data/002_Titanic/sample.parquet # - config_name: 003_Love # data_files: # - split: full # path: data/003_Love/all.parquet # - split: lite # path: data/003_Love/sample.parquet # - config_name: 004_Taxi # data_files: # - split: full # path: data/004_Taxi/all.parquet # - split: lite # path: data/004_Taxi/sample.parquet # - config_name: 005_NYC # data_files: # - split: full # path: data/005_NYC/all.parquet # - split: lite # path: data/005_NYC/sample.parquet # - config_name: 006_London # data_files: # - split: full # path: data/006_London/all.parquet # - split: lite # path: data/006_London/sample.parquet # - config_name: 007_Fifa # data_files: # - split: full # path: data/007_Fifa/all.parquet # - split: lite # path: data/007_Fifa/sample.parquet # - config_name: 008_Tornados # data_files: # - split: full # path: data/008_Tornados/all.parquet # - split: lite # path: data/008_Tornados/sample.parquet # - config_name: 009_Central # data_files: # - split: full # path: data/009_Central/all.parquet # - split: lite # path: data/009_Central/sample.parquet # - config_name: 010_ECommerce # data_files: # - split: full # path: data/010_ECommerce/all.parquet # - split: lite # path: data/010_ECommerce/sample.parquet # - config_name: 011_SF # data_files: # - split: full # path: data/011_SF/all.parquet # - split: lite # path: data/011_SF/sample.parquet # - config_name: 012_Heart # data_files: # - split: full # path: data/012_Heart/all.parquet # - split: lite # path: data/012_Heart/sample.parquet # - config_name: 013_Roller # data_files: # - split: full # path: data/013_Roller/all.parquet # - split: lite # path: data/013_Roller/sample.parquet # - config_name: 014_Airbnb # data_files: # - split: full # path: data/014_Airbnb/all.parquet # - split: lite # path: data/014_Airbnb/sample.parquet # - config_name: 015_Food # data_files: # - split: full # path: data/015_Food/all.parquet # - split: lite # path: data/015_Food/sample.parquet # - config_name: 016_Holiday # data_files: # - split: full # path: data/016_Holiday/all.parquet # - split: lite # path: data/016_Holiday/sample.parquet # - config_name: 017_Hacker # data_files: # - split: full # path: data/017_Hacker/all.parquet # - split: lite # path: data/017_Hacker/sample.parquet # - config_name: 018_Staff # data_files: # - split: full # path: data/018_Staff/all.parquet # - split: lite # path: data/018_Staff/sample.parquet # - config_name: 019_Aircraft # data_files: # - split: full # path: data/019_Aircraft/all.parquet # - split: lite # path: data/019_Aircraft/sample.parquet # - config_name: 020_Real # data_files: # - split: full # path: data/020_Real/all.parquet # - split: lite # path: data/020_Real/sample.parquet # - config_name: 021_Telco # data_files: # - split: full # path: data/021_Telco/all.parquet # - split: lite # path: data/021_Telco/sample.parquet # - config_name: 022_Airbnbs # data_files: # - split: full # path: data/022_Airbnbs/all.parquet # - split: lite # path: data/022_Airbnbs/sample.parquet # - config_name: 023_Climate # data_files: # - split: full # path: data/023_Climate/all.parquet # - split: lite # path: data/023_Climate/sample.parquet # - config_name: 024_Salary # data_files: # - split: full # path: data/024_Salary/all.parquet # - split: lite # path: data/024_Salary/sample.parquet # - config_name: 025_Data # data_files: # - split: full # path: data/025_Data/all.parquet # - split: lite # path: data/025_Data/sample.parquet # - config_name: 026_Predicting # data_files: # - split: full # path: data/026_Predicting/all.parquet # - split: lite # path: data/026_Predicting/sample.parquet # - config_name: 027_Supermarket # data_files: # - split: full # path: data/027_Supermarket/all.parquet # - split: lite # path: data/027_Supermarket/sample.parquet # - config_name: 028_Predict # data_files: # - split: full # path: data/028_Predict/all.parquet # - split: lite # path: data/028_Predict/sample.parquet # - config_name: 029_NYTimes # data_files: # - split: full # path: data/029_NYTimes/all.parquet # - split: lite # path: data/029_NYTimes/sample.parquet # - config_name: 030_Professionals # data_files: # - split: full # path: data/030_Professionals/all.parquet # - split: lite # path: data/030_Professionals/sample.parquet # - config_name: 031_Trustpilot # data_files: # - split: full # path: data/031_Trustpilot/all.parquet # - split: lite # path: data/031_Trustpilot/sample.parquet # - config_name: 032_Delicatessen # data_files: # - split: full # path: data/032_Delicatessen/all.parquet # - split: lite # path: data/032_Delicatessen/sample.parquet # - config_name: 033_Employee # data_files: # - split: full # path: data/033_Employee/all.parquet # - split: lite # path: data/033_Employee/sample.parquet # - config_name: 034_World # data_files: # - split: full # path: data/034_World/all.parquet # - split: lite # path: data/034_World/sample.parquet # - config_name: 035_Billboard # data_files: # - split: full # path: data/035_Billboard/all.parquet # - split: lite # path: data/035_Billboard/sample.parquet # - config_name: 036_US # data_files: # - split: full # path: data/036_US/all.parquet # - split: lite # path: data/036_US/sample.parquet # - config_name: 037_Ted # data_files: # - split: full # path: data/037_Ted/all.parquet # - split: lite # path: data/037_Ted/sample.parquet # - config_name: 038_Stroke # data_files: # - split: full # path: data/038_Stroke/all.parquet # - split: lite # path: data/038_Stroke/sample.parquet # - config_name: 039_Happy # data_files: # - split: full # path: data/039_Happy/all.parquet # - split: lite # path: data/039_Happy/sample.parquet # - config_name: 040_Speed # data_files: # - split: full # path: data/040_Speed/all.parquet # - split: lite # path: data/040_Speed/sample.parquet # - config_name: 041_Airline # data_files: # - split: full # path: data/041_Airline/all.parquet # - split: lite # path: data/041_Airline/sample.parquet # - config_name: 042_Predict # data_files: # - split: full # path: data/042_Predict/all.parquet # - split: lite # path: data/042_Predict/sample.parquet # - config_name: 043_Predict # data_files: # - split: full # path: data/043_Predict/all.parquet # - split: lite # path: data/043_Predict/sample.parquet # - config_name: 044_IMDb # data_files: # - split: full # path: data/044_IMDb/all.parquet # - split: lite # path: data/044_IMDb/sample.parquet # - config_name: 045_Predict # data_files: # - split: full # path: data/045_Predict/all.parquet # - split: lite # path: data/045_Predict/sample.parquet # - config_name: "046_120" # data_files: # - split: full # path: data/046_120/all.parquet # - split: lite # path: data/046_120/sample.parquet # - config_name: 047_Bank # data_files: # - split: full # path: data/047_Bank/all.parquet # - split: lite # path: data/047_Bank/sample.parquet # - config_name: 048_Data # data_files: # - split: full # path: data/048_Data/all.parquet # - split: lite # path: data/048_Data/sample.parquet # - config_name: 049_Boris # data_files: # - split: full # path: data/049_Boris/all.parquet # - split: lite # path: data/049_Boris/sample.parquet # - config_name: 050_ING # data_files: # - split: full # path: data/050_ING/all.parquet # - split: lite # path: data/050_ING/sample.parquet # - config_name: 051_Pokemon # data_files: # - split: full # path: data/051_Pokemon/all.parquet # - split: lite # path: data/051_Pokemon/sample.parquet # - config_name: 052_Professional # data_files: # - split: full # path: data/052_Professional/all.parquet # - split: lite # path: data/052_Professional/sample.parquet # - config_name: 053_Patents # data_files: # - split: full # path: data/053_Patents/all.parquet # - split: lite # path: data/053_Patents/sample.parquet # - config_name: 054_Joe # data_files: # - split: full # path: data/054_Joe/all.parquet # - split: lite # path: data/054_Joe/sample.parquet # - config_name: 055_German # data_files: # - split: full # path: data/055_German/all.parquet # - split: lite # path: data/055_German/sample.parquet # - config_name: 056_Emoji # data_files: # - split: full # path: data/056_Emoji/all.parquet # - split: lite # path: data/056_Emoji/sample.parquet # - config_name: 057_Spain # data_files: # - split: full # path: data/057_Spain/all.parquet # - split: lite # path: data/057_Spain/sample.parquet # - config_name: 058_US # data_files: # - split: full # path: data/058_US/all.parquet # - split: lite # path: data/058_US/sample.parquet # - config_name: 059_Second # data_files: # - split: full # path: data/059_Second/all.parquet # - split: lite # path: data/059_Second/sample.parquet # - config_name: 060_Bakery # data_files: # - split: full # path: data/060_Bakery/all.parquet # - split: lite # path: data/060_Bakery/sample.parquet # - config_name: 061_Disneyland # data_files: # - split: full # path: data/061_Disneyland/all.parquet # - split: lite # path: data/061_Disneyland/sample.parquet # - config_name: 062_Trump # data_files: # - split: full # path: data/062_Trump/all.parquet # - split: lite # path: data/062_Trump/sample.parquet # - config_name: 063_Influencers # data_files: # - split: full # path: data/063_Influencers/all.parquet # - split: lite # path: data/063_Influencers/sample.parquet # - config_name: 064_Clustering # data_files: # - split: full # path: data/064_Clustering/all.parquet # - split: lite # path: data/064_Clustering/sample.parquet # - config_name: 065_RFM # data_files: # - split: full # path: data/065_RFM/all.parquet # - split: lite # path: data/065_RFM/sample.parquet - config_name: semeval data_files: - split: train path: - data/001_Forbes/qa.parquet - data/002_Titanic/qa.parquet - data/003_Love/qa.parquet - data/004_Taxi/qa.parquet - data/005_NYC/qa.parquet - data/006_London/qa.parquet - data/007_Fifa/qa.parquet - data/008_Tornados/qa.parquet - data/009_Central/qa.parquet - data/010_ECommerce/qa.parquet - data/011_SF/qa.parquet - data/012_Heart/qa.parquet - data/013_Roller/qa.parquet - data/014_Airbnb/qa.parquet - data/015_Food/qa.parquet - data/016_Holiday/qa.parquet - data/017_Hacker/qa.parquet - data/018_Staff/qa.parquet - data/019_Aircraft/qa.parquet - data/020_Real/qa.parquet - data/021_Telco/qa.parquet - data/022_Airbnbs/qa.parquet - data/023_Climate/qa.parquet - data/024_Salary/qa.parquet - data/025_Data/qa.parquet - data/026_Predicting/qa.parquet - data/027_Supermarket/qa.parquet - data/028_Predict/qa.parquet - data/029_NYTimes/qa.parquet - data/030_Professionals/qa.parquet - data/031_Trustpilot/qa.parquet - data/032_Delicatessen/qa.parquet - data/033_Employee/qa.parquet - data/034_World/qa.parquet - data/035_Billboard/qa.parquet - data/036_US/qa.parquet - data/037_Ted/qa.parquet - data/038_Stroke/qa.parquet - data/039_Happy/qa.parquet - data/040_Speed/qa.parquet - data/041_Airline/qa.parquet - data/042_Predict/qa.parquet - data/043_Predict/qa.parquet - data/044_IMDb/qa.parquet - data/045_Predict/qa.parquet - data/046_120/qa.parquet - data/047_Bank/qa.parquet - data/048_Data/qa.parquet - data/049_Boris/qa.parquet - split: dev path: - data/050_ING/qa.parquet - data/051_Pokemon/qa.parquet - data/052_Professional/qa.parquet - data/053_Patents/qa.parquet - data/054_Joe/qa.parquet - data/055_German/qa.parquet - data/056_Emoji/qa.parquet - data/057_Spain/qa.parquet - data/058_US/qa.parquet - data/059_Second/qa.parquet - data/060_Bakery/qa.parquet - data/061_Disneyland/qa.parquet - data/062_Trump/qa.parquet - data/063_Influencers/qa.parquet - data/064_Clustering/qa.parquet - data/065_RFM/qa.parquet --- # 💾🏋️💾 DataBench 💾🏋️💾 This repository contains the original 65 datasets used for the paper [Question Answering over Tabular Data with DataBench: A Large-Scale Empirical Evaluation of LLMs](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf) which appeared in LREC-COLING 2024. Large Language Models (LLMs) are showing emerging abilities, and one of the latest recognized ones is tabular reasoning in question answering on tabular data. Although there are some available datasets to assess question answering systems on tabular data, they are not large and diverse enough to evaluate this new ability of LLMs. To this end, we provide a corpus of 65 real world datasets, with 3,269,975 and 1615 columns in total, and 1300 questions to evaluate your models for the task of QA over Tabular Data. ## Usage ```python from datasets import load_dataset # Load all QA pairs all_qa = load_dataset("cardiffnlp/databench", name="qa", split="train") # Load SemEval 2025 task 8 Question-Answer splits semeval_train_qa = load_dataset("cardiffnlp/databench", name="semeval", split="train") semeval_dev_qa = load_dataset("cardiffnlp/databench", name="semeval", split="dev") ``` You can use any of the individual [integrated libraries](https://huggingface.co/docs/hub/datasets-libraries#libraries) to load the actual data where the answer is to be retrieved. For example, using pandas in Python: ```python import pandas as pd # "001_Forbes", the id of the dataset ds_id = all_qa['dataset'][0] # full dataset df = pd.read_parquet(f"hf://datasets/cardiffnlp/databench/data/{ds_id}/all.parquet") # sample dataset df = pd.read_parquet(f"hf://datasets/cardiffnlp/databench/data/{ds_id}/sample.parquet") ``` ## 📚 Datasets By clicking on each name in the table below, you will be able to explore each dataset. | | Name | Rows | Cols | Domain | Source (Reference) | |---:|:-------------------------------|-------:|-------:|:---------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| | 1 | [Forbes](https://public.graphext.com/0b211530c7e213d3/index.html?section=data) | 2668 | 17 | Business | [Forbes](https://www.forbes.com/billionaires/)| | 2 | [Titanic](https://public.graphext.com/8577225c5ffd88fd/index.html) | 887 | 8 | Travel and Locations | [Kaggle](https://www.kaggle.com/competitions/titanic/data)| | 3 | [Love](https://public.graphext.com/be7a566b0c485916/index.html) | 373 | 35 | Social Networks and Surveys | [Graphext](https://public.graphext.com/1de78f6820cfd5ba/index.html) | | 4 | [Taxi](https://public.graphext.com/bcee13c23070f333/index.html) | 100000 | 20 | Travel and Locations | [Kaggle](https://www.kaggle.com/competitions/nyc-taxi-trip-duration/overview) | | 5 | [NYC Calls](https://public.graphext.com/1ce2f5fae408621e/index.html) | 100000 | 46 | Business | [City of New York](https://data.cityofnewyork.us/Social-Services/NYC-311-Data/jrb2-thup) | | 6 | [London Airbnbs](https://public.graphext.com/6bbf4bbd3ff279c0/index.html) | 75241 | 74 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/labdmitriy/airbnb) | | 7 | [Fifa](https://public.graphext.com/37bca51494c10a79/index.html) | 14620 | 59 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/stefanoleone992/fifa-21-complete-player-dataset) | | 8 | [Tornados](https://public.graphext.com/4be9872e031199c3/index.html) | 67558 | 14 | Health | [Kaggle](https://www.kaggle.com/datasets/danbraswell/us-tornado-dataset-1950-2021) | | 9 | [Central Park](https://public.graphext.com/7b3d3a4d7bf1e9b5/index.html) | 56245 | 6 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/danbraswell/new-york-city-weather-18692022) | | 10 | [ECommerce Reviews](https://public.graphext.com/a5b8911b215958ad/index.html) | 23486 | 10 | Business | [Kaggle](https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews) | | 11 | [SF Police](https://public.graphext.com/ab815ab14f88115c/index.html) | 713107 | 35 | Social Networks and Surveys | [US Gov](https://catalog.data.gov/dataset/police-department-incident-reports-2018-to-present) | | 12 | [Heart Failure](https://public.graphext.com/245cec64075f5542/index.html) | 918 | 12 | Health | [Kaggle](https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction) | | 13 | [Roller Coasters](https://public.graphext.com/1e550e6c24fc1930/index.html) | 1087 | 56 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/robikscube/rollercoaster-database) | | 14 | [Madrid Airbnbs](https://public.graphext.com/77265ea3a63e650f/index.html) | 20776 | 75 | Travel and Locations | [Inside Airbnb](http://data.insideairbnb.com/spain/comunidad-de-madrid/madrid/2023-09-07/data/listings.parquet.gz) | | 15 | [Food Names](https://public.graphext.com/5aad4c5d6ef140b3/index.html) | 906 | 4 | Business | [Data World](https://data.world/alexandra/generic-food-database) | | 16 | [Holiday Package Sales](https://public.graphext.com/fbc34d3f24282e46/index.html) | 4888 | 20 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/susant4learning/holiday-package-purchase-prediction) | | 17 | [Hacker News](https://public.graphext.com/f20501a9d616b5a5/index.html) | 9429 | 20 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/hacker-news/hacker-news) | | 18 | [Staff Satisfaction](https://public.graphext.com/6822ac1ce6307fec/index.html) | 14999 | 11 | Business | [Kaggle](https://www.kaggle.com/datasets/mohamedharris/employee-satisfaction-index-dataset) | | 19 | [Aircraft Accidents](https://public.graphext.com/1802117b1b14f5c5/index.html) | 23519 | 23 | Health | [Kaggle](https://www.kaggle.com/datasets/ramjasmaurya/aviation-accidents-history1919-april-2022) | | 20 | [Real Estate Madrid](https://public.graphext.com/5f83ec219a7ea84f/index.html) | 26026 | 59 | Business | [Idealista](https://public.graphext.com/5f83ec219a7ea84f/index.html) | | 21 | [Telco Customer Churn](https://public.graphext.com/362cd8e3e96f70d4/index.html) | 7043 | 21 | Business | [Kaggle](https://www.kaggle.com/datasets/blastchar/telco-customer-churn) | | 22 | [Airbnbs Listings NY](https://public.graphext.com/77265ea3a63e650f/index.html) | 37012 | 33 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/dgomonov/new-york-city-airbnb-open-data) | | 23 | [Climate in Madrid](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data) | 36858 | 26 | Travel and Locations | [AEMET](https://public.graphext.com/83a75b4f1cea8df4/index.html?section=data) | | 24 | [Salary Survey Spain 2018](https://public.graphext.com/24d1e717ba01aa3d/index.html) | 216726 | 29 | Business | [INE](ine.es) | | 25 | [Data Driven SEO ](https://public.graphext.com/4e5b1cac9ebdfa44/index.html) | 62 | 5 | Business | [Graphext](https://www.graphext.com/post/data-driven-seo-a-keyword-optimization-guide-using-web-scraping-co-occurrence-analysis-graphext-deepnote-adwords) | | 26 | [Predicting Wine Quality](https://public.graphext.com/de04acf5d18a9aea/index.html) | 1599 | 12 | Business | [Kaggle](https://www.kaggle.com/datasets/yasserh/wine-quality-dataset) | | 27 | [Supermarket Sales](https://public.graphext.com/9a6742da6a8d8f7f/index.html) | 1000 | 17 | Business | [Kaggle](https://www.kaggle.com/datasets/aungpyaeap/supermarket-sales) | | 28 | [Predict Diabetes](https://public.graphext.com/def4bada27af324c/index.html) | 768 | 9 | Health | [Kaggle](https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset) | | 29 | [NYTimes World In 2021](https://public.graphext.com/af4c8eef1757973c/index.html?section=data) | 52588 | 5 | Travel and Locations | [New York Times](https://public.graphext.com/af4c8eef1757973c/index.html) | | 30 | [Professionals Kaggle Survey](https://public.graphext.com/3a2e87f90363a85d/index.html) | 19169 | 64 | Business | [Kaggle](https://www.kaggle.com/c/kaggle-survey-2021/data) | | 31 | [Trustpilot Reviews](https://public.graphext.com/367e29432331fbfd/index.html?section=data) | 8020 | 6 | Business | [TrustPilot](https://public.graphext.com/367e29432331fbfd/index.html?section=data) | | 32 | [Delicatessen Customers](https://public.graphext.com/a1687589fbde07bc/index.html) | 2240 | 29 | Business | [Kaggle](https://www.kaggle.com/datasets/rodsaldanha/arketing-campaign) | | 33 | [Employee Attrition](https://public.graphext.com/07a91a15ecf2b8f6/index.html) | 14999 | 11 | Business | [Kaggle(modified)](https://www.kaggle.com/datasets/pavan9065/predicting-employee-attrition) | | 34 | [World Happiness Report 2020](https://public.graphext.com/754c83ff0a7ba087/index.html) | 153 | 20 | Social Networks and Surveys | [World Happiness](https://worldhappiness.report/data/) | | 35 | [Billboard Lyrics](https://public.graphext.com/7e0b009e8d0af719/index.html) | 5100 | 6 | Sports and Entertainment | [Brown University](https://cs.brown.edu/courses/cs100/students/project11/) | | 36 | [US Migrations 2012-2016](https://public.graphext.com/dbdadf87a5c21695/index.html) | 288300 | 9 | Social Networks and Surveys | [US Census](https://www.census.gov/topics/population/migration/guidance/county-to-county-migration-flows.html) | | 37 | [Ted Talks](https://public.graphext.com/07e48466fb670904/index.html) | 4005 | 19 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ashishjangra27/ted-talks) | | 38 | [Stroke Likelihood](https://public.graphext.com/20ccfee9e84948e3/index.html) | 5110 | 12 | Health | [Kaggle](https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease) | | 39 | [Happy Moments](https://public.graphext.com/9b86efff48989701/index.html) | 100535 | 11 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ritresearch/happydb) | | 40 | [Speed Dating](https://public.graphext.com/f1912daad7870be0/index.html) | 8378 | 123 | Social Networks and Surveys | [Kaggle](https://www.kaggle.com/datasets/ulrikthygepedersen/speed-dating) | | 41 | [Airline Mentions X (former Twitter)](https://public.graphext.com/29cb7f73f6e17a38/index.html) | 14640 | 15 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/7e6999327d1f83fd/index.html) | | 42 | [Predict Student Performance](https://public.graphext.com/def4bada27af324c/index.html) | 395 | 33 | Business | [Kaggle](https://www.kaggle.com/datasets/impapan/student-performance-data-set) | | 43 | [Loan Defaults](https://public.graphext.com/0c7fb68ab8071a1f/index.html) | 83656 | 20 | Business | [SBA](https://www.kaggle.com/datasets/mirbektoktogaraev/should-this-loan-be-approved-or-denied) | | 44 | [IMDb Movies](https://public.graphext.com/e23e33774872c496/index.html) | 85855 | 22 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows) | | 45 | [Spotify Song Popularity](https://public.graphext.com/def4bada27af324c/index.html) | 21000 | 19 | Sports and Entertainment | [Spotify](https://www.kaggle.com/datasets/tomigelo/spotify-audio-features) | | 46 | [120 Years Olympics](https://public.graphext.com/e57d5e2f172c9a99/index.html) | 271116 | 15 | Sports and Entertainment | [Kaggle](https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results) | | 47 | [Bank Customer Churn](https://public.graphext.com/e8f7aeacd209f74a/index.html) | 7088 | 15 | Business | [Kaggle](https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers) | | 48 | [Data Science Salary Data](https://public.graphext.com/4e5b1cac9ebdfa44/index.html) | 742 | 28 | Business | [Kaggle](https://www.kaggle.com/datasets/ruchi798/data-science-job-salaries) | | 49 | [Boris Johnson UK PM Tweets](https://public.graphext.com/f6623a1ca0f41c8e/index.html) | 3220 | 34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/f6623a1ca0f41c8e/index.html) | | 50 | [ING 2019 X Mentions](https://public.graphext.com/075030310aa702c6/index.html) | 7244 | 22 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/075030310aa702c6/index.html) | | 51 | [Pokemon Features](https://public.graphext.com/f30d4d863a2e6b01/index.html) | 1072 | 13 | Business | [Kaggle](https://www.kaggle.com/datasets/rounakbanik/pokemon) | | 52 | [Professional Map](https://public.graphext.com/70af2240cb751968/index.html) | 1227 | 12 | Business | [Kern et al, PNAS'20](https://github.com/behavioral-ds/VocationMap) | | 53 | [Google Patents](https://public.graphext.com/a262300e31874716/index.html) | 9999 | 20 | Business | [BigQuery](https://www.kaggle.com/datasets/bigquery/patents/data) | | 54 | [Joe Biden Tweets](https://public.graphext.com/33fa2efa41541ab1/index.html) | 491 | 34 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/339cee259f0a9b32/index.html?section=data) | 55 | [German Loans](https://public.graphext.com/d3f5e425e9d4b0a1/index.html) | 1000 | 18 | Business | [Kaggle](https://www.kaggle.com/datasets/uciml/german-credit/data) | | 56 | [Emoji Diet](https://public.graphext.com/e721cc7d790c06d4/index.html) | 58 | 35 | Health | [Kaggle](https://www.kaggle.com/datasets/ofrancisco/emoji-diet-nutritional-data-sr28) | | 57 | [Spain Survey 2015](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data) | 20000 | 45 | Social Networks and Surveys | [CIS](https://public.graphext.com/90ca7539b160fdfa/index.html?section=data) | | 58 | [US Polls 2020](https://public.graphext.com/dbdadf87a5c21695/index.html) | 3523 | 52 | Social Networks and Surveys | [Brandwatch](https://www.brandwatch.com/p/us-election-raw-polling-data/) | | 59 | [Second Hand Cars](https://public.graphext.com/543d0c49d7120ca0/index.html) | 50000 | 21 | Business | [DataMarket](https://www.kaggle.com/datasets/datamarket/venta-de-coches) | | 60 | [Bakery Purchases](https://public.graphext.com/6f2102e80f47a192/index.html) | 20507 | 5 | Business | [Kaggle](https://www.kaggle.com/code/xvivancos/market-basket-analysis/report) | | 61 | [Disneyland Customer Reviews](https://public.graphext.com/b1037bb566b7b316/index.html) | 42656 | 6 | Travel and Locations | [Kaggle](https://www.kaggle.com/datasets/arushchillar/disneyland-reviews) | | 62 | [Trump Tweets](https://public.graphext.com/7aff94c3b7f159fc/index.html) | 15039 | 20 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/be903c098a90e46f/index.html?section=data) | | 63 | [Influencers](https://public.graphext.com/e097f1ea03d761a9/index.html) | 1039 | 14 | Social Networks and Surveys | [X (former Twitter)](https://public.graphext.com/e097f1ea03d761a9/index.html) | | 64 | [Clustering Zoo Animals](https://public.graphext.com/d1b66902e46a712a/index.html) | 101 | 18 | Health | [Kaggle](https://www.kaggle.com/datasets/jirkadaberger/zoo-animals) | | 65 | [RFM Analysis](https://public.graphext.com/4db2e54e29006a21/index.html) | 541909 | 8 | Business | [UCI ML](https://www.kaggle.com/datasets/carrie1/ecommerce-data) | ## 🏗️ Folder structure Each folder represents one dataset. You will find the following files within: * all.parquet: the processed data, with each column tagged with our typing system, in [parquet](https://arrow.apache.org/docs/python/parquet.html). * qa.parquet: contains the human-made set of questions, tagged by type and columns used, for the dataset (sample_answer indicates the answers for DataBench lite) * sample.parquet: sample containing 20 rows of the original dataset (DataBench lite) * info.yml: additional information about the dataset ## 🗂️ Column typing system In an effort to map the stage for later analysis, we have categorized the columns by type. This information allows us to segment different kinds of data so that we can subsequently analyze the model's behavior on each column type separately. All parquet files have been casted to their smallest viable data type using the open source [Lector](https://github.com/graphext/lector) reader. What this means is that in the data types we have more granular information that allows us to know if the column contains NaNs or not (following panda’s convention of Int vs int), as well as whether small numerical values contain negatives (Uint vs int) and their range. We also have dates with potential timezone information (although for now they’re all UTC), as well as information about categories’ cardinality coming from the arrow types. In the table below you can see all the data types assigned to each column, as well as the number of columns for each type. The most common data types are numbers and categories with 1336 columns of the total of 1615 included in DataBench. These are followed by some other more rare types as urls, booleans, dates or lists of elements. | Type | Columns | Example | | -------------- | ------- | ----------------------- | | number | 788 | 55 | | category | 548 | apple | | date | 50 | 1970-01-01 | | text | 46 | A red fox ran... | | url | 31 | google.com | | boolean | 18 | True | | list[number] | 14 | [1,2,3] | | list[category] | 112 | [apple, orange, banana] | | list[url] | 8 | [google.com, apple.com] | ## 🔗 Reference You can download the paper [here](https://huggingface.co/datasets/cardiffnlp/databench/resolve/main/Databench-LREC-Coling-2024.pdf). If you use this resource, please use the following reference: ``` @inproceedings{oses-etal-2024-databench, title = "Question Answering over Tabular Data with DataBench: A Large-Scale Empirical Evaluation of LLMs", author = "Jorge Osés Grijalba and Luis Alfonso Ureña-López and Eugenio Martínez Cámara and Jose Camacho-Collados", booktitle = "Proceedings of LREC-COLING 2024", year = "2024", address = "Turin, Italy" } ```
ChongyanChen/VQAonline
ChongyanChen
"2024-04-19T04:22:11Z"
13,246
7
[ "task_categories:visual-question-answering", "license:cc-by-sa-4.0", "size_categories:10K<n<100K", "format:json", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2311.15562", "region:us" ]
[ "visual-question-answering" ]
"2023-12-22T15:00:02Z"
--- license: cc-by-sa-4.0 task_categories: - visual-question-answering pretty_name: VQAonline --- # VQAonline <img src="https://cdn-uploads.huggingface.co/production/uploads/6337e9b676421c05430a0287/6vt42q8w7EWx9vVuZqc3U.png" width="50%"> [**🌐 Homepage**](https://vqaonline.github.io/) | [**🤗 Dataset**](https://huggingface.co/datasets/ChongyanChen/VQAonline/) | [**📖 arXiv**](https://arxiv.org/abs/2311.15562) ## Dataset Description We introduce VQAonline, the first VQA dataset in which all contents originate from an authentic use case. VQAonline includes 64K visual questions sourced from an online question answering community (i.e., StackExchange). It differs from prior datasets; examples include that it contains: - (1) authentic context that clarifies the question - (2) an answer the individual asking the question validated as acceptable from all community provided answers, - (3) answers that are considerably longer (e.g., a mean of 173 words versus typically 11 words or fewer in prior work) - (4) user-chosen topics for each visual question from 105 diverse topics revealing the dataset’s inherent diversity. ## Download To download, you can use the following code: ``` git clone https://huggingface.co/datasets/ChongyanChen/VQAonline ``` ## Dataset Structure In total, the VQAonline dataset contains 64,696 visual questions. We designed VQAonline to support few-shot settings given the recent exciting developments around in-context few-shot learning with foundation models. Thus, we split the dataset as follows: - Training set: 665 visual questions - Validation set: 285 visual questions - Test set: 63,746 visual questions The questions, contexts, and answers are provided in the json files. Due to the constraint of huggingface, we separate the image files into 7 folders (named from images1 to images7), each of which contains 10,000 image files, except for folder "images 7". ## Contact - Chongyan Chen: [email protected] ## Citation **BibTeX:** ```bibtex @article{chen2023vqaonline, title={Fully Authentic Visual Question Answering Dataset from Online Communities}, author={Chen, Chongyan and Liu, Mengchen and Codella, Noel and Li, Yunsheng and Yuan, Lu and Gurari, Danna}, journal={arXiv preprint arXiv:2311.15562}, year={2023} } ```
HAERAE-HUB/KMMLU
HAERAE-HUB
"2024-03-05T14:13:32Z"
13,237
59
[ "task_categories:multiple-choice", "language:ko", "license:cc-by-nd-4.0", "size_categories:100K<n<1M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2402.11548", "region:us", "mmlu", "haerae" ]
[ "multiple-choice" ]
"2023-11-27T09:06:18Z"
--- configs: - config_name: Accounting data_files: - split: train path: data/Accounting-train.csv - split: dev path: data/Accounting-dev.csv - split: test path: data/Accounting-test.csv - config_name: Agricultural-Sciences data_files: - split: train path: data/Agricultural-Sciences-train.csv - split: dev path: data/Agricultural-Sciences-dev.csv - split: test path: data/Agricultural-Sciences-test.csv - config_name: Aviation-Engineering-and-Maintenance data_files: - split: train path: data/Aviation-Engineering-and-Maintenance-train.csv - split: dev path: data/Aviation-Engineering-and-Maintenance-dev.csv - split: test path: data/Aviation-Engineering-and-Maintenance-test.csv - config_name: Biology data_files: - split: train path: data/Biology-train.csv - split: dev path: data/Biology-dev.csv - split: test path: data/Biology-test.csv - config_name: Chemical-Engineering data_files: - split: train path: data/Chemical-Engineering-train.csv - split: dev path: data/Chemical-Engineering-dev.csv - split: test path: data/Chemical-Engineering-test.csv - config_name: Chemistry data_files: - split: train path: data/Chemistry-train.csv - split: dev path: data/Chemistry-dev.csv - split: test path: data/Chemistry-test.csv - config_name: Civil-Engineering data_files: - split: train path: data/Civil-Engineering-train.csv - split: dev path: data/Civil-Engineering-dev.csv - split: test path: data/Civil-Engineering-test.csv - config_name: Computer-Science data_files: - split: train path: data/Computer-Science-train.csv - split: dev path: data/Computer-Science-dev.csv - split: test path: data/Computer-Science-test.csv - config_name: Construction data_files: - split: train path: data/Construction-train.csv - split: dev path: data/Construction-dev.csv - split: test path: data/Construction-test.csv - config_name: Criminal-Law data_files: - split: train path: data/Criminal-Law-train.csv - split: dev path: data/Criminal-Law-dev.csv - split: test path: data/Criminal-Law-test.csv - config_name: Ecology data_files: - split: train path: data/Ecology-train.csv - split: dev path: data/Ecology-dev.csv - split: test path: data/Ecology-test.csv - config_name: Economics data_files: - split: train path: data/Economics-train.csv - split: dev path: data/Economics-dev.csv - split: test path: data/Economics-test.csv - config_name: Education data_files: - split: train path: data/Education-train.csv - split: dev path: data/Education-dev.csv - split: test path: data/Education-test.csv - config_name: Electrical-Engineering data_files: - split: train path: data/Electrical-Engineering-train.csv - split: dev path: data/Electrical-Engineering-dev.csv - split: test path: data/Electrical-Engineering-test.csv - config_name: Electronics-Engineering data_files: - split: train path: data/Electronics-Engineering-train.csv - split: dev path: data/Electronics-Engineering-dev.csv - split: test path: data/Electronics-Engineering-test.csv - config_name: Energy-Management data_files: - split: train path: data/Energy-Management-train.csv - split: dev path: data/Energy-Management-dev.csv - split: test path: data/Energy-Management-test.csv - config_name: Environmental-Science data_files: - split: train path: data/Environmental-Science-train.csv - split: dev path: data/Environmental-Science-dev.csv - split: test path: data/Environmental-Science-test.csv - config_name: Fashion data_files: - split: train path: data/Fashion-train.csv - split: dev path: data/Fashion-dev.csv - split: test path: data/Fashion-test.csv - config_name: Food-Processing data_files: - split: train path: data/Food-Processing-train.csv - split: dev path: data/Food-Processing-dev.csv - split: test path: data/Food-Processing-test.csv - config_name: Gas-Technology-and-Engineering data_files: - split: train path: data/Gas-Technology-and-Engineering-train.csv - split: dev path: data/Gas-Technology-and-Engineering-dev.csv - split: test path: data/Gas-Technology-and-Engineering-test.csv - config_name: Geomatics data_files: - split: train path: data/Geomatics-train.csv - split: dev path: data/Geomatics-dev.csv - split: test path: data/Geomatics-test.csv - config_name: Health data_files: - split: train path: data/Health-train.csv - split: dev path: data/Health-dev.csv - split: test path: data/Health-test.csv - config_name: Industrial-Engineer data_files: - split: train path: data/Industrial-Engineer-train.csv - split: dev path: data/Industrial-Engineer-dev.csv - split: test path: data/Industrial-Engineer-test.csv - config_name: Information-Technology data_files: - split: train path: data/Information-Technology-train.csv - split: dev path: data/Information-Technology-dev.csv - split: test path: data/Information-Technology-test.csv - config_name: Interior-Architecture-and-Design data_files: - split: train path: data/Interior-Architecture-and-Design-train.csv - split: dev path: data/Interior-Architecture-and-Design-dev.csv - split: test path: data/Interior-Architecture-and-Design-test.csv - config_name: Law data_files: - split: train path: data/Law-train.csv - split: dev path: data/Law-dev.csv - split: test path: data/Law-test.csv - config_name: Machine-Design-and-Manufacturing data_files: - split: train path: data/Machine-Design-and-Manufacturing-train.csv - split: dev path: data/Machine-Design-and-Manufacturing-dev.csv - split: test path: data/Machine-Design-and-Manufacturing-test.csv - config_name: Management data_files: - split: train path: data/Management-train.csv - split: dev path: data/Management-dev.csv - split: test path: data/Management-test.csv - config_name: Maritime-Engineering data_files: - split: train path: data/Maritime-Engineering-train.csv - split: dev path: data/Maritime-Engineering-dev.csv - split: test path: data/Maritime-Engineering-test.csv - config_name: Marketing data_files: - split: train path: data/Marketing-train.csv - split: dev path: data/Marketing-dev.csv - split: test path: data/Marketing-test.csv - config_name: Materials-Engineering data_files: - split: train path: data/Materials-Engineering-train.csv - split: dev path: data/Materials-Engineering-dev.csv - split: test path: data/Materials-Engineering-test.csv - config_name: Mechanical-Engineering data_files: - split: train path: data/Mechanical-Engineering-train.csv - split: dev path: data/Mechanical-Engineering-dev.csv - split: test path: data/Mechanical-Engineering-test.csv - config_name: Nondestructive-Testing data_files: - split: train path: data/Nondestructive-Testing-train.csv - split: dev path: data/Nondestructive-Testing-dev.csv - split: test path: data/Nondestructive-Testing-test.csv - config_name: Patent data_files: - split: train path: data/Patent-train.csv - split: dev path: data/Patent-dev.csv - split: test path: data/Patent-test.csv - config_name: Political-Science-and-Sociology data_files: - split: train path: data/Political-Science-and-Sociology-train.csv - split: dev path: data/Political-Science-and-Sociology-dev.csv - split: test path: data/Political-Science-and-Sociology-test.csv - config_name: Psychology data_files: - split: train path: data/Psychology-train.csv - split: dev path: data/Psychology-dev.csv - split: test path: data/Psychology-test.csv - config_name: Public-Safety data_files: - split: train path: data/Public-Safety-train.csv - split: dev path: data/Public-Safety-dev.csv - split: test path: data/Public-Safety-test.csv - config_name: Railway-and-Automotive-Engineering data_files: - split: train path: data/Railway-and-Automotive-Engineering-train.csv - split: dev path: data/Railway-and-Automotive-Engineering-dev.csv - split: test path: data/Railway-and-Automotive-Engineering-test.csv - config_name: Real-Estate data_files: - split: train path: data/Real-Estate-train.csv - split: dev path: data/Real-Estate-dev.csv - split: test path: data/Real-Estate-test.csv - config_name: Refrigerating-Machinery data_files: - split: train path: data/Refrigerating-Machinery-train.csv - split: dev path: data/Refrigerating-Machinery-dev.csv - split: test path: data/Refrigerating-Machinery-test.csv - config_name: Social-Welfare data_files: - split: train path: data/Social-Welfare-train.csv - split: dev path: data/Social-Welfare-dev.csv - split: test path: data/Social-Welfare-test.csv - config_name: Taxation data_files: - split: train path: data/Taxation-train.csv - split: dev path: data/Taxation-dev.csv - split: test path: data/Taxation-test.csv - config_name: Telecommunications-and-Wireless-Technology data_files: - split: train path: data/Telecommunications-and-Wireless-Technology-train.csv - split: dev path: data/Telecommunications-and-Wireless-Technology-dev.csv - split: test path: data/Telecommunications-and-Wireless-Technology-test.csv - config_name: Korean-History data_files: - split: train path: data/korean-history-train.csv - split: dev path: data/korean-history-dev.csv - split: test path: data/korean-history-test.csv - config_name: Math data_files: - split: train path: data/math-train.csv - split: dev path: data/math-dev.csv - split: test path: data/math-test.csv task_categories: - multiple-choice language: - ko tags: - mmlu - haerae size_categories: - 10K<n<100K license: cc-by-nd-4.0 --- # KMMLU (Korean-MMLU) We propose KMMLU, a new Korean benchmark with 35,030 expert-level multiple-choice questions across 45 subjects ranging from humanities to STEM. Unlike previous Korean benchmarks that are translated from existing English benchmarks, KMMLU is collected from original Korean exams, capturing linguistic and cultural aspects of the Korean language. We test 26 publically available and proprietary LLMs, identifying significant room for improvement. The best publicly available model achieves 50.54% on KMMLU, far below the average human performance of 62.6%. This model was primarily trained for English and Chinese, not Korean. Current LLMs tailored to Korean, such as Polyglot-Ko, perform far worse. Surprisingly, even the most capable proprietary LLMs, e.g., GPT-4 and HyperCLOVA X, achieve 59.95% and 53.40%, respectively. This suggests that further work is needed to improve Korean LLMs, and KMMLU offers the right tool to track this progress. We make our dataset publicly available on the Hugging Face Hub and integrate the benchmark into EleutherAI's Language Model Evaluation Harness. Link to Paper: [KMMLU: Measuring Massive Multitask Language Understanding in Korean](https://arxiv.org/abs/2402.11548) ### KMMLU Statistics | Category | # Questions | |------------------------------|-------------| | **Prerequisites** | | | None | 59,909 | | 1 Prerequisite Test | 12,316 | | 2 Prerequisite Tests | 776 | | 2+ Years of Experience | 65,135 | | 4+ Years of Experience | 98,678 | | 9+ Years of Experience | 6,963 | | **Question Type** | | | Positive | 207,030 | | Negation | 36,777 | | **Split** | | | Train | 208,522 | | Validation | 225 | | Test | 35,030 | | **Total** | 243,777 | ### Categories To reimplement the categories in the paper, refer to the following: ``` supercategories = { "accounting": "HUMSS", "agricultural_sciences": "Other", "aviation_engineering_and_maintenance": "Applied Science", "biology": "STEM", "chemical_engineering": "STEM", "chemistry": "STEM", "civil_engineering": "STEM", "computer_science": "STEM", "construction": "Other", "criminal_law": "HUMSS", "ecology": "STEM", "economics": "HUMSS", "education": "HUMSS", "electrical_engineering": "STEM", "electronics_engineering": "Applied Science", "energy_management": "Applied Science", "environmental_science": "Applied Science", "fashion": "Other", "food_processing": "Other", "gas_technology_and_engineering": "Applied Science", "geomatics": "Applied Science", "health": "Other", "industrial_engineer": "Applied Science", "information_technology": "STEM", "interior_architecture_and_design": "Other", "law": "HUMSS", "machine_design_and_manufacturing": "Applied Science", "management": "HUMSS", "maritime_engineering": "Applied Science", "marketing": "Other", "materials_engineering": "STEM", "mechanical_engineering": "STEM", "nondestructive_testing": "Applied Science", "patent": "Other", "political_science_and_sociology": "HUMSS", "psychology": "HUMSS", "public_safety": "Other", "railway_and_automotive_engineering": "Applied Science", "real_estate": "Other", "refrigerating_machinery": "Other", "social_welfare": "HUMSS", "taxation": "HUMSS", "telecommunications_and_wireless_technology": "Applied Science", "korean_history": "HUMSS", "math": "STEM" } ``` ### Point of Contact For any questions contact us via the following email:) ``` [email protected] ```
hoskinson-center/proof-pile
hoskinson-center
"2023-08-19T03:24:11Z"
13,177
54
[ "task_categories:text-generation", "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "math", "mathematics", "formal-mathematics" ]
[ "text-generation" ]
"2022-08-08T20:57:56Z"
--- annotations_creators: - no-annotation language: - en language_creators: - found license: [apache-2.0] multilinguality: - monolingual pretty_name: proof-pile size_categories: [] source_datasets: [] tags: - math - mathematics - formal-mathematics task_categories: - text-generation task_ids: - language-modeling --- # Dataset Description The `proof-pile` is a 13GB pre-training dataset of mathematical text that comprises 8.3 billion tokens (using the `gpt-neox` tokenizer). Models trained on this dataset are coming soon :) The dataset is composed of diverse sources of both informal and formal mathematics, namely - ArXiv.math (10GB) - Open-source math textbooks (50MB) - Formal mathematics libraries (500MB) - Lean mathlib and other Lean repositories - Isabelle AFP - Coq mathematical components and other Coq repositories - HOL Light - set.mm - Mizar Mathematical Library - Math Overflow and Math Stack Exchange (2.5GB) - Wiki-style sources (50MB) - ProofWiki - Wikipedia math articles - MATH dataset (6MB) The construction of the dataset is reproducible using the code and instructions in the [proof-pile Github repo](https://github.com/zhangir-azerbayev/proof-pile). # Supported Tasks This dataset is intended to be used for pre-training and fine-tuning language models. We envision models trained on the `proof-pile` will have many downstream applications, including informal quantitative reasoning, formal theorem proving, semantic search for formal mathematics, and autoformalization. # Languages All informal mathematics in the `proof-pile` is written in English and LaTeX (arXiv articles in other languages are filtered out using [languagedetect](https://github.com/shuyo/language-detection/blob/wiki/ProjectHome.md)). Formal theorem proving languages represented in this dataset are Lean 3, Isabelle, Coq, HOL Light, Metamath, and Mizar. # Evaluation The version of `set.mm` in this dataset has 10% of proofs replaced with the `?` character in order to preserve a validation and test set for Metamath provers pre-trained on the `proof-pile`. The precise split can be found here: [validation](https://github.com/zhangir-azerbayev/mm-extract/blob/main/valid_decls.json) and [test](https://github.com/zhangir-azerbayev/mm-extract/blob/main/test_decls.json). The Lean mathlib commit used in this dataset is `6313863`. Theorems created in subsequent commits can be used for evaluating Lean theorem provers. This dataset contains only the training set of the [MATH dataset](https://github.com/hendrycks/math). However, because this dataset contains ProofWiki, the Stacks Project, Trench's Analysis, and Stein's Number Theory, models trained on it cannot be evaluated on the [NaturalProofs dataset](https://github.com/wellecks/naturalproofs). # Data Preprocessing This section describes any significant filtering and transformations made to various subsets of the data. **arXiv.math.** The arXiv.math dataset is large, heterogeneous, and contains a great deal of noise. We used the following heuristics when choosing which files from arXiv.math source folders to include in the dataset: - Keep only files with a `.tex` extension. - Only include files that use either a `utf-8/16/32` or `latin-1` text encoding. - Discard files that do not contain a part, chapter, section, sub...section, paragraph, or subparagraph heading. - Delete files that contain the keyword `gnuplot`. Gnuplot-latex is an old command line utility that generates blocks of entirely unintelligible source. - Include only articles in English, as determined by the [langdetect library](https://pypi.org/project/langdetect/). \n", "\n", - Exclude files shorter than 280 characters (characters counted after substring removal described below). In addition, we apply the following transformations to arXiv.math texts: - Delete everything outside of `\begin{document}` and `\end{document}`. - Delete everything including or after `\Refs`, `\begin{thebibliography}`, or `\begin{bibdiv}` - Delete comments. - Any more than three consecutive newlines are replaced by three consecutive newlines. In [this notebook](https://github.com/zhangir-azerbayev/proof-pile/blob/main/analysis/arxiv_noisedetection.ipynb), we provide an analysis of the prevalence of noisy documents in the arXiv.math subset of the proof-pile. **Stack Exchange.** We only include questions that have at least 5 upvotes and an answer. We format Stack Exchange posts as follows ``` QUESTION [{num_upvotes} upvotes]: {text of question} REPLY [{num_upvotes} votes]: {text of reply} REPLY [{num_upvotes} votes]: {text of reply} . . . ``` **set.mm.** We converted `set.mm` into human-readable form by following the instructions in the [mm-extract repo](https://github.com/zhangir-azerbayev/mm-extract) ## Contributions Authors: Zhangir Azerbayev, Edward Ayers, Bartosz Piotrowski. We would like to thank Jeremy Avigad, Albert Jiang, and Wenda Li for their invaluable guidance, and the Hoskinson Center for Formal Mathematics for its support.
cardiffnlp/tweet_eval
cardiffnlp
"2024-01-04T16:40:33Z"
13,125
118
[ "task_categories:text-classification", "task_ids:intent-classification", "task_ids:multi-class-classification", "task_ids:sentiment-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:extended|other-tweet-datasets", "language:en", "license:unknown", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2010.12421", "region:us" ]
[ "text-classification" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - found language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 100K<n<1M - 10K<n<100K - 1K<n<10K - n<1K source_datasets: - extended|other-tweet-datasets task_categories: - text-classification task_ids: - intent-classification - multi-class-classification - sentiment-classification paperswithcode_id: tweeteval pretty_name: TweetEval config_names: - emoji - emotion - hate - irony - offensive - sentiment - stance_abortion - stance_atheism - stance_climate - stance_feminist - stance_hillary dataset_info: - config_name: emoji features: - name: text dtype: string - name: label dtype: class_label: names: '0': ❤ '1': 😍 '2': 😂 '3': 💕 '4': 🔥 '5': 😊 '6': 😎 '7': ✨ '8': 💙 '9': 😘 '10': 📷 '11': 🇺🇸 '12': ☀ '13': 💜 '14': 😉 '15': 💯 '16': 😁 '17': 🎄 '18': 📸 '19': 😜 splits: - name: train num_bytes: 3803167 num_examples: 45000 - name: test num_bytes: 4255901 num_examples: 50000 - name: validation num_bytes: 396079 num_examples: 5000 download_size: 5939308 dataset_size: 8455147 - config_name: emotion features: - name: text dtype: string - name: label dtype: class_label: names: '0': anger '1': joy '2': optimism '3': sadness splits: - name: train num_bytes: 338871 num_examples: 3257 - name: test num_bytes: 146645 num_examples: 1421 - name: validation num_bytes: 38273 num_examples: 374 download_size: 367016 dataset_size: 523789 - config_name: hate features: - name: text dtype: string - name: label dtype: class_label: names: '0': non-hate '1': hate splits: - name: train num_bytes: 1223650 num_examples: 9000 - name: test num_bytes: 428934 num_examples: 2970 - name: validation num_bytes: 154144 num_examples: 1000 download_size: 1196346 dataset_size: 1806728 - config_name: irony features: - name: text dtype: string - name: label dtype: class_label: names: '0': non_irony '1': irony splits: - name: train num_bytes: 259187 num_examples: 2862 - name: test num_bytes: 75897 num_examples: 784 - name: validation num_bytes: 86017 num_examples: 955 download_size: 297647 dataset_size: 421101 - config_name: offensive features: - name: text dtype: string - name: label dtype: class_label: names: '0': non-offensive '1': offensive splits: - name: train num_bytes: 1648061 num_examples: 11916 - name: test num_bytes: 135473 num_examples: 860 - name: validation num_bytes: 192417 num_examples: 1324 download_size: 1234528 dataset_size: 1975951 - config_name: sentiment features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 5425122 num_examples: 45615 - name: test num_bytes: 1279540 num_examples: 12284 - name: validation num_bytes: 239084 num_examples: 2000 download_size: 4849675 dataset_size: 6943746 - config_name: stance_abortion features: - name: text dtype: string - name: label dtype: class_label: names: '0': none '1': against '2': favor splits: - name: train num_bytes: 68694 num_examples: 587 - name: test num_bytes: 33171 num_examples: 280 - name: validation num_bytes: 7657 num_examples: 66 download_size: 73517 dataset_size: 109522 - config_name: stance_atheism features: - name: text dtype: string - name: label dtype: class_label: names: '0': none '1': against '2': favor splits: - name: train num_bytes: 54775 num_examples: 461 - name: test num_bytes: 25716 num_examples: 220 - name: validation num_bytes: 6320 num_examples: 52 download_size: 62265 dataset_size: 86811 - config_name: stance_climate features: - name: text dtype: string - name: label dtype: class_label: names: '0': none '1': against '2': favor splits: - name: train num_bytes: 40249 num_examples: 355 - name: test num_bytes: 19925 num_examples: 169 - name: validation num_bytes: 4801 num_examples: 40 download_size: 48493 dataset_size: 64975 - config_name: stance_feminist features: - name: text dtype: string - name: label dtype: class_label: names: '0': none '1': against '2': favor splits: - name: train num_bytes: 70509 num_examples: 597 - name: test num_bytes: 33305 num_examples: 285 - name: validation num_bytes: 8035 num_examples: 67 download_size: 76345 dataset_size: 111849 - config_name: stance_hillary features: - name: text dtype: string - name: label dtype: class_label: names: '0': none '1': against '2': favor splits: - name: train num_bytes: 69596 num_examples: 620 - name: test num_bytes: 34487 num_examples: 295 - name: validation num_bytes: 7532 num_examples: 69 download_size: 74057 dataset_size: 111615 configs: - config_name: emoji data_files: - split: train path: emoji/train-* - split: test path: emoji/test-* - split: validation path: emoji/validation-* - config_name: emotion data_files: - split: train path: emotion/train-* - split: test path: emotion/test-* - split: validation path: emotion/validation-* - config_name: hate data_files: - split: train path: hate/train-* - split: test path: hate/test-* - split: validation path: hate/validation-* - config_name: irony data_files: - split: train path: irony/train-* - split: test path: irony/test-* - split: validation path: irony/validation-* - config_name: offensive data_files: - split: train path: offensive/train-* - split: test path: offensive/test-* - split: validation path: offensive/validation-* - config_name: sentiment data_files: - split: train path: sentiment/train-* - split: test path: sentiment/test-* - split: validation path: sentiment/validation-* - config_name: stance_abortion data_files: - split: train path: stance_abortion/train-* - split: test path: stance_abortion/test-* - split: validation path: stance_abortion/validation-* - config_name: stance_atheism data_files: - split: train path: stance_atheism/train-* - split: test path: stance_atheism/test-* - split: validation path: stance_atheism/validation-* - config_name: stance_climate data_files: - split: train path: stance_climate/train-* - split: test path: stance_climate/test-* - split: validation path: stance_climate/validation-* - config_name: stance_feminist data_files: - split: train path: stance_feminist/train-* - split: test path: stance_feminist/test-* - split: validation path: stance_feminist/validation-* - config_name: stance_hillary data_files: - split: train path: stance_hillary/train-* - split: test path: stance_hillary/test-* - split: validation path: stance_hillary/validation-* train-eval-index: - config: emotion task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted - config: hate task: text-classification task_id: binary_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 binary args: average: binary - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted - config: irony task: text-classification task_id: binary_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 binary args: average: binary - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted - config: offensive task: text-classification task_id: binary_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 binary args: average: binary - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted - config: sentiment task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for tweet_eval ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [Needs More Information] - **Repository:** [GitHub](https://github.com/cardiffnlp/tweeteval) - **Paper:** [EMNLP Paper](https://arxiv.org/pdf/2010.12421.pdf) - **Leaderboard:** [GitHub Leaderboard](https://github.com/cardiffnlp/tweeteval) - **Point of Contact:** [Needs More Information] ### Dataset Summary TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. The tasks include - irony, hate, offensive, stance, emoji, emotion, and sentiment. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits. ### Supported Tasks and Leaderboards - `text_classification`: The dataset can be trained using a SentenceClassification model from HuggingFace transformers. ### Languages The text in the dataset is in English, as spoken by Twitter users. ## Dataset Structure ### Data Instances An instance from `emoji` config: ``` {'label': 12, 'text': 'Sunday afternoon walking through Venice in the sun with @user ️ ️ ️ @ Abbot Kinney, Venice'} ``` An instance from `emotion` config: ``` {'label': 2, 'text': "“Worry is a down payment on a problem you may never have'. \xa0Joyce Meyer. #motivation #leadership #worry"} ``` An instance from `hate` config: ``` {'label': 0, 'text': '@user nice new signage. Are you not concerned by Beatlemania -style hysterical crowds crongregating on you…'} ``` An instance from `irony` config: ``` {'label': 1, 'text': 'seeing ppl walking w/ crutches makes me really excited for the next 3 weeks of my life'} ``` An instance from `offensive` config: ``` {'label': 0, 'text': '@user Bono... who cares. Soon people will understand that they gain nothing from following a phony celebrity. Become a Leader of your people instead or help and support your fellow countrymen.'} ``` An instance from `sentiment` config: ``` {'label': 2, 'text': '"QT @user In the original draft of the 7th book, Remus Lupin survived the Battle of Hogwarts. #HappyBirthdayRemusLupin"'} ``` An instance from `stance_abortion` config: ``` {'label': 1, 'text': 'we remind ourselves that love means to be willing to give until it hurts - Mother Teresa'} ``` An instance from `stance_atheism` config: ``` {'label': 1, 'text': '@user Bless Almighty God, Almighty Holy Spirit and the Messiah. #SemST'} ``` An instance from `stance_climate` config: ``` {'label': 0, 'text': 'Why Is The Pope Upset? via @user #UnzippedTruth #PopeFrancis #SemST'} ``` An instance from `stance_feminist` config: ``` {'label': 1, 'text': "@user @user is the UK's answer to @user and @user #GamerGate #SemST"} ``` An instance from `stance_hillary` config: ``` {'label': 1, 'text': "If a man demanded staff to get him an ice tea he'd be called a sexists elitist pig.. Oink oink #Hillary #SemST"} ``` ### Data Fields For `emoji` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: ❤ `1`: 😍 `2`: 😂 `3`: 💕 `4`: 🔥 `5`: 😊 `6`: 😎 `7`: ✨ `8`: 💙 `9`: 😘 `10`: 📷 `11`: 🇺🇸 `12`: ☀ `13`: 💜 `14`: 😉 `15`: 💯 `16`: 😁 `17`: 🎄 `18`: 📸 `19`: 😜 For `emotion` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: anger `1`: joy `2`: optimism `3`: sadness For `hate` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: non-hate `1`: hate For `irony` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: non_irony `1`: irony For `offensive` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: non-offensive `1`: offensive For `sentiment` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: negative `1`: neutral `2`: positive For `stance_abortion` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: none `1`: against `2`: favor For `stance_atheism` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: none `1`: against `2`: favor For `stance_climate` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: none `1`: against `2`: favor For `stance_feminist` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: none `1`: against `2`: favor For `stance_hillary` config: - `text`: a `string` feature containing the tweet. - `label`: an `int` classification label with the following mapping: `0`: none `1`: against `2`: favor ### Data Splits | name | train | validation | test | | --------------- | ----- | ---------- | ----- | | emoji | 45000 | 5000 | 50000 | | emotion | 3257 | 374 | 1421 | | hate | 9000 | 1000 | 2970 | | irony | 2862 | 955 | 784 | | offensive | 11916 | 1324 | 860 | | sentiment | 45615 | 2000 | 12284 | | stance_abortion | 587 | 66 | 280 | | stance_atheism | 461 | 52 | 220 | | stance_climate | 355 | 40 | 169 | | stance_feminist | 597 | 67 | 285 | | stance_hillary | 620 | 69 | 295 | ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators Francesco Barbieri, Jose Camacho-Collados, Luis Espiinosa-Anke and Leonardo Neves through Cardiff NLP. ### Licensing Information This is not a single dataset, therefore each subset has its own license (the collection itself does not have additional restrictions). All of the datasets require complying with Twitter [Terms Of Service](https://twitter.com/tos) and Twitter API [Terms Of Service](https://developer.twitter.com/en/developer-terms/agreement-and-policy) Additionally the license are: - emoji: Undefined - emotion(EmoInt): Undefined - hate (HateEval): Need permission [here](http://hatespeech.di.unito.it/hateval.html) - irony: Undefined - Offensive: Undefined - Sentiment: [Creative Commons Attribution 3.0 Unported License](https://groups.google.com/g/semevaltweet/c/k5DDcvVb_Vo/m/zEOdECFyBQAJ) - Stance: Undefined ### Citation Information ``` @inproceedings{barbieri2020tweeteval, title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}}, author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo}, booktitle={Proceedings of Findings of EMNLP}, year={2020} } ``` If you use any of the TweetEval datasets, please cite their original publications: #### Emotion Recognition: ``` @inproceedings{mohammad2018semeval, title={Semeval-2018 task 1: Affect in tweets}, author={Mohammad, Saif and Bravo-Marquez, Felipe and Salameh, Mohammad and Kiritchenko, Svetlana}, booktitle={Proceedings of the 12th international workshop on semantic evaluation}, pages={1--17}, year={2018} } ``` #### Emoji Prediction: ``` @inproceedings{barbieri2018semeval, title={Semeval 2018 task 2: Multilingual emoji prediction}, author={Barbieri, Francesco and Camacho-Collados, Jose and Ronzano, Francesco and Espinosa-Anke, Luis and Ballesteros, Miguel and Basile, Valerio and Patti, Viviana and Saggion, Horacio}, booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation}, pages={24--33}, year={2018} } ``` #### Irony Detection: ``` @inproceedings{van2018semeval, title={Semeval-2018 task 3: Irony detection in english tweets}, author={Van Hee, Cynthia and Lefever, Els and Hoste, V{\'e}ronique}, booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation}, pages={39--50}, year={2018} } ``` #### Hate Speech Detection: ``` @inproceedings{basile-etal-2019-semeval, title = "{S}em{E}val-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in {T}witter", author = "Basile, Valerio and Bosco, Cristina and Fersini, Elisabetta and Nozza, Debora and Patti, Viviana and Rangel Pardo, Francisco Manuel and Rosso, Paolo and Sanguinetti, Manuela", booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation", year = "2019", address = "Minneapolis, Minnesota, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/S19-2007", doi = "10.18653/v1/S19-2007", pages = "54--63" } ``` #### Offensive Language Identification: ``` @inproceedings{zampieri2019semeval, title={SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)}, author={Zampieri, Marcos and Malmasi, Shervin and Nakov, Preslav and Rosenthal, Sara and Farra, Noura and Kumar, Ritesh}, booktitle={Proceedings of the 13th International Workshop on Semantic Evaluation}, pages={75--86}, year={2019} } ``` #### Sentiment Analysis: ``` @inproceedings{rosenthal2017semeval, title={SemEval-2017 task 4: Sentiment analysis in Twitter}, author={Rosenthal, Sara and Farra, Noura and Nakov, Preslav}, booktitle={Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017)}, pages={502--518}, year={2017} } ``` #### Stance Detection: ``` @inproceedings{mohammad2016semeval, title={Semeval-2016 task 6: Detecting stance in tweets}, author={Mohammad, Saif and Kiritchenko, Svetlana and Sobhani, Parinaz and Zhu, Xiaodan and Cherry, Colin}, booktitle={Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)}, pages={31--41}, year={2016} } ``` ### Contributions Thanks to [@gchhablani](https://github.com/gchhablani) and [@abhishekkrthakur](https://github.com/abhishekkrthakur) for adding this dataset.
ptb-text-only/ptb_text_only
ptb-text-only
"2024-01-18T11:13:39Z"
13,061
15
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:10K<n<100K", "region:us" ]
[ "text-generation", "fill-mask" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - expert-generated language_creators: - found language: - en license: - other license_details: LDC User Agreement for Non-Members multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling paperswithcode_id: null pretty_name: Penn Treebank dataset_info: features: - name: sentence dtype: string config_name: penn_treebank splits: - name: train num_bytes: 5143706 num_examples: 42068 - name: test num_bytes: 453710 num_examples: 3761 - name: validation num_bytes: 403156 num_examples: 3370 download_size: 5951345 dataset_size: 6000572 --- # Dataset Card for Penn Treebank ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://catalog.ldc.upenn.edu/LDC99T42 - **Repository:** 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.train.txt', 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.valid.txt', 'https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.test.txt' - **Paper:** https://www.aclweb.org/anthology/J93-2004.pdf - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Needs More Information] ### Dataset Summary This is the Penn Treebank Project: Release 2 CDROM, featuring a million words of 1989 Wall Street Journal material. The rare words in this version are already replaced with <unk> token. The numbers are replaced with <N> token. ### Supported Tasks and Leaderboards Language Modelling ### Languages The text in the dataset is in American English ## Dataset Structure ### Data Instances [Needs More Information] ### Data Fields [Needs More Information] ### Data Splits [Needs More Information] ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information Dataset provided for research purposes only. Please check dataset license for additional information. ### Citation Information @article{marcus-etal-1993-building, title = "Building a Large Annotated Corpus of {E}nglish: The {P}enn {T}reebank", author = "Marcus, Mitchell P. and Santorini, Beatrice and Marcinkiewicz, Mary Ann", journal = "Computational Linguistics", volume = "19", number = "2", year = "1993", url = "https://www.aclweb.org/anthology/J93-2004", pages = "313--330", } ### Contributions Thanks to [@harshalmittal4](https://github.com/harshalmittal4) for adding this dataset.
Samsung/samsum
Samsung
"2024-01-18T11:15:13Z"
13,040
318
[ "task_categories:summarization", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-nd-4.0", "size_categories:10K<n<100K", "arxiv:1911.12237", "region:us", "conversations-summarization" ]
[ "summarization" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - cc-by-nc-nd-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - summarization task_ids: [] paperswithcode_id: samsum-corpus pretty_name: SAMSum Corpus tags: - conversations-summarization dataset_info: features: - name: id dtype: string - name: dialogue dtype: string - name: summary dtype: string config_name: samsum splits: - name: train num_bytes: 9479141 num_examples: 14732 - name: test num_bytes: 534492 num_examples: 819 - name: validation num_bytes: 516431 num_examples: 818 download_size: 2944100 dataset_size: 10530064 train-eval-index: - config: samsum task: summarization task_id: summarization splits: eval_split: test col_mapping: dialogue: text summary: target --- # Dataset Card for SAMSum Corpus ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://arxiv.org/abs/1911.12237v2 - **Repository:** [Needs More Information] - **Paper:** https://arxiv.org/abs/1911.12237v2 - **Leaderboard:** [Needs More Information] - **Point of Contact:** [Needs More Information] ### Dataset Summary The SAMSum dataset contains about 16k messenger-like conversations with summaries. Conversations were created and written down by linguists fluent in English. Linguists were asked to create conversations similar to those they write on a daily basis, reflecting the proportion of topics of their real-life messenger convesations. The style and register are diversified - conversations could be informal, semi-formal or formal, they may contain slang words, emoticons and typos. Then, the conversations were annotated with summaries. It was assumed that summaries should be a concise brief of what people talked about in the conversation in third person. The SAMSum dataset was prepared by Samsung R&D Institute Poland and is distributed for research purposes (non-commercial licence: CC BY-NC-ND 4.0). ### Supported Tasks and Leaderboards [Needs More Information] ### Languages English ## Dataset Structure ### Data Instances The created dataset is made of 16369 conversations distributed uniformly into 4 groups based on the number of utterances in con- versations: 3-6, 7-12, 13-18 and 19-30. Each utterance contains the name of the speaker. Most conversations consist of dialogues between two interlocutors (about 75% of all conversations), the rest is between three or more people The first instance in the training set: {'id': '13818513', 'summary': 'Amanda baked cookies and will bring Jerry some tomorrow.', 'dialogue': "Amanda: I baked cookies. Do you want some?\r\nJerry: Sure!\r\nAmanda: I'll bring you tomorrow :-)"} ### Data Fields - dialogue: text of dialogue. - summary: human written summary of the dialogue. - id: unique id of an example. ### Data Splits - train: 14732 - val: 818 - test: 819 ## Dataset Creation ### Curation Rationale In paper: > In the first approach, we reviewed datasets from the following categories: chatbot dialogues, SMS corpora, IRC/chat data, movie dialogues, tweets, comments data (conversations formed by replies to comments), transcription of meetings, written discussions, phone dialogues and daily communication data. Unfortunately, they all differed in some respect from the conversations that are typ- ically written in messenger apps, e.g. they were too technical (IRC data), too long (comments data, transcription of meetings), lacked context (movie dialogues) or they were more of a spoken type, such as a dialogue between a petrol station assis- tant and a client buying petrol. As a consequence, we decided to create a chat dialogue dataset by constructing such conversa- tions that would epitomize the style of a messenger app. ### Source Data #### Initial Data Collection and Normalization In paper: > We asked linguists to create conversations similar to those they write on a daily basis, reflecting the proportion of topics of their real-life messenger conversations. It includes chit-chats, gossiping about friends, arranging meetings, discussing politics, consulting university assignments with colleagues, etc. Therefore, this dataset does not contain any sensitive data or fragments of other corpora. #### Who are the source language producers? linguists ### Annotations #### Annotation process In paper: > Each dialogue was created by one person. After collecting all of the conversations, we asked language experts to annotate them with summaries, assuming that they should (1) be rather short, (2) extract important pieces of information, (3) include names of interlocutors, (4) be written in the third person. Each dialogue contains only one ref- erence summary. #### Who are the annotators? language experts ### Personal and Sensitive Information None, see above: Initial Data Collection and Normalization ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information non-commercial licence: CC BY-NC-ND 4.0 ### Citation Information ``` @inproceedings{gliwa-etal-2019-samsum, title = "{SAMS}um Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization", author = "Gliwa, Bogdan and Mochol, Iwona and Biesek, Maciej and Wawer, Aleksander", booktitle = "Proceedings of the 2nd Workshop on New Frontiers in Summarization", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D19-5409", doi = "10.18653/v1/D19-5409", pages = "70--79" } ``` ### Contributions Thanks to [@cccntu](https://github.com/cccntu) for adding this dataset.
HuggingFaceFW/fineweb-edu-score-2
HuggingFaceFW
"2025-01-03T11:58:38Z"
12,982
67
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:n>1T", "arxiv:2404.14219", "arxiv:2401.10020", "arxiv:2109.07445", "region:us" ]
[ "text-generation" ]
"2024-05-28T17:30:16Z"
--- license: odc-by task_categories: - text-generation language: - en pretty_name: FineWeb-Edu (score >= 2) size_categories: - n>1T configs: - config_name: default data_files: - split: train path: data/*/* - config_name: CC-MAIN-2024-51 data_files: - split: train path: data/CC-MAIN-2024-51/* - config_name: CC-MAIN-2024-46 data_files: - split: train path: data/CC-MAIN-2024-46/* - config_name: CC-MAIN-2024-42 data_files: - split: train path: data/CC-MAIN-2024-42/* - config_name: CC-MAIN-2024-38 data_files: - split: train path: data/CC-MAIN-2024-38/* - config_name: CC-MAIN-2024-33 data_files: - split: train path: data/CC-MAIN-2024-33/* - config_name: CC-MAIN-2024-30 data_files: - split: train path: data/CC-MAIN-2024-30/* - config_name: CC-MAIN-2024-26 data_files: - split: train path: data/CC-MAIN-2024-26/* - config_name: CC-MAIN-2024-22 data_files: - split: train path: data/CC-MAIN-2024-22/* - config_name: CC-MAIN-2024-18 data_files: - split: train path: data/CC-MAIN-2024-18/* - config_name: CC-MAIN-2024-10 data_files: - split: train path: data/CC-MAIN-2024-10/* - config_name: CC-MAIN-2023-50 data_files: - split: train path: data/CC-MAIN-2023-50/* - config_name: CC-MAIN-2023-40 data_files: - split: train path: data/CC-MAIN-2023-40/* - config_name: CC-MAIN-2023-23 data_files: - split: train path: data/CC-MAIN-2023-23/* - config_name: CC-MAIN-2023-14 data_files: - split: train path: data/CC-MAIN-2023-14/* - config_name: CC-MAIN-2023-06 data_files: - split: train path: data/CC-MAIN-2023-06/* - config_name: CC-MAIN-2022-49 data_files: - split: train path: data/CC-MAIN-2022-49/* - config_name: CC-MAIN-2022-40 data_files: - split: train path: data/CC-MAIN-2022-40/* - config_name: CC-MAIN-2022-33 data_files: - split: train path: data/CC-MAIN-2022-33/* - config_name: CC-MAIN-2022-27 data_files: - split: train path: data/CC-MAIN-2022-27/* - config_name: CC-MAIN-2022-21 data_files: - split: train path: data/CC-MAIN-2022-21/* - config_name: CC-MAIN-2022-05 data_files: - split: train path: data/CC-MAIN-2022-05/* - config_name: CC-MAIN-2021-49 data_files: - split: train path: data/CC-MAIN-2021-49/* - config_name: CC-MAIN-2021-43 data_files: - split: train path: data/CC-MAIN-2021-43/* - config_name: CC-MAIN-2021-39 data_files: - split: train path: data/CC-MAIN-2021-39/* - config_name: CC-MAIN-2021-31 data_files: - split: train path: data/CC-MAIN-2021-31/* - config_name: CC-MAIN-2021-25 data_files: - split: train path: data/CC-MAIN-2021-25/* - config_name: CC-MAIN-2021-21 data_files: - split: train path: data/CC-MAIN-2021-21/* - config_name: CC-MAIN-2021-17 data_files: - split: train path: data/CC-MAIN-2021-17/* - config_name: CC-MAIN-2021-10 data_files: - split: train path: data/CC-MAIN-2021-10/* - config_name: CC-MAIN-2021-04 data_files: - split: train path: data/CC-MAIN-2021-04/* - config_name: CC-MAIN-2020-50 data_files: - split: train path: data/CC-MAIN-2020-50/* - config_name: CC-MAIN-2020-45 data_files: - split: train path: data/CC-MAIN-2020-45/* - config_name: CC-MAIN-2020-40 data_files: - split: train path: data/CC-MAIN-2020-40/* - config_name: CC-MAIN-2020-34 data_files: - split: train path: data/CC-MAIN-2020-34/* - config_name: CC-MAIN-2020-29 data_files: - split: train path: data/CC-MAIN-2020-29/* - config_name: CC-MAIN-2020-24 data_files: - split: train path: data/CC-MAIN-2020-24/* - config_name: CC-MAIN-2020-16 data_files: - split: train path: data/CC-MAIN-2020-16/* - config_name: CC-MAIN-2020-10 data_files: - split: train path: data/CC-MAIN-2020-10/* - config_name: CC-MAIN-2020-05 data_files: - split: train path: data/CC-MAIN-2020-05/* - config_name: CC-MAIN-2019-51 data_files: - split: train path: data/CC-MAIN-2019-51/* - config_name: CC-MAIN-2019-47 data_files: - split: train path: data/CC-MAIN-2019-47/* - config_name: CC-MAIN-2019-43 data_files: - split: train path: data/CC-MAIN-2019-43/* - config_name: CC-MAIN-2019-39 data_files: - split: train path: data/CC-MAIN-2019-39/* - config_name: CC-MAIN-2019-35 data_files: - split: train path: data/CC-MAIN-2019-35/* - config_name: CC-MAIN-2019-30 data_files: - split: train path: data/CC-MAIN-2019-30/* - config_name: CC-MAIN-2019-26 data_files: - split: train path: data/CC-MAIN-2019-26/* - config_name: CC-MAIN-2019-22 data_files: - split: train path: data/CC-MAIN-2019-22/* - config_name: CC-MAIN-2019-18 data_files: - split: train path: data/CC-MAIN-2019-18/* - config_name: CC-MAIN-2019-13 data_files: - split: train path: data/CC-MAIN-2019-13/* - config_name: CC-MAIN-2019-09 data_files: - split: train path: data/CC-MAIN-2019-09/* - config_name: CC-MAIN-2019-04 data_files: - split: train path: data/CC-MAIN-2019-04/* - config_name: CC-MAIN-2018-51 data_files: - split: train path: data/CC-MAIN-2018-51/* - config_name: CC-MAIN-2018-47 data_files: - split: train path: data/CC-MAIN-2018-47/* - config_name: CC-MAIN-2018-43 data_files: - split: train path: data/CC-MAIN-2018-43/* - config_name: CC-MAIN-2018-39 data_files: - split: train path: data/CC-MAIN-2018-39/* - config_name: CC-MAIN-2018-34 data_files: - split: train path: data/CC-MAIN-2018-34/* - config_name: CC-MAIN-2018-30 data_files: - split: train path: data/CC-MAIN-2018-30/* - config_name: CC-MAIN-2018-26 data_files: - split: train path: data/CC-MAIN-2018-26/* - config_name: CC-MAIN-2018-22 data_files: - split: train path: data/CC-MAIN-2018-22/* - config_name: CC-MAIN-2018-17 data_files: - split: train path: data/CC-MAIN-2018-17/* - config_name: CC-MAIN-2018-13 data_files: - split: train path: data/CC-MAIN-2018-13/* - config_name: CC-MAIN-2018-09 data_files: - split: train path: data/CC-MAIN-2018-09/* - config_name: CC-MAIN-2018-05 data_files: - split: train path: data/CC-MAIN-2018-05/* - config_name: CC-MAIN-2017-51 data_files: - split: train path: data/CC-MAIN-2017-51/* - config_name: CC-MAIN-2017-47 data_files: - split: train path: data/CC-MAIN-2017-47/* - config_name: CC-MAIN-2017-43 data_files: - split: train path: data/CC-MAIN-2017-43/* - config_name: CC-MAIN-2017-39 data_files: - split: train path: data/CC-MAIN-2017-39/* - config_name: CC-MAIN-2017-34 data_files: - split: train path: data/CC-MAIN-2017-34/* - config_name: CC-MAIN-2017-30 data_files: - split: train path: data/CC-MAIN-2017-30/* - config_name: CC-MAIN-2017-26 data_files: - split: train path: data/CC-MAIN-2017-26/* - config_name: CC-MAIN-2017-22 data_files: - split: train path: data/CC-MAIN-2017-22/* - config_name: CC-MAIN-2017-17 data_files: - split: train path: data/CC-MAIN-2017-17/* - config_name: CC-MAIN-2017-13 data_files: - split: train path: data/CC-MAIN-2017-13/* - config_name: CC-MAIN-2017-09 data_files: - split: train path: data/CC-MAIN-2017-09/* - config_name: CC-MAIN-2017-04 data_files: - split: train path: data/CC-MAIN-2017-04/* - config_name: CC-MAIN-2016-50 data_files: - split: train path: data/CC-MAIN-2016-50/* - config_name: CC-MAIN-2016-44 data_files: - split: train path: data/CC-MAIN-2016-44/* - config_name: CC-MAIN-2016-40 data_files: - split: train path: data/CC-MAIN-2016-40/* - config_name: CC-MAIN-2016-36 data_files: - split: train path: data/CC-MAIN-2016-36/* - config_name: CC-MAIN-2016-30 data_files: - split: train path: data/CC-MAIN-2016-30/* - config_name: CC-MAIN-2016-26 data_files: - split: train path: data/CC-MAIN-2016-26/* - config_name: CC-MAIN-2016-22 data_files: - split: train path: data/CC-MAIN-2016-22/* - config_name: CC-MAIN-2016-18 data_files: - split: train path: data/CC-MAIN-2016-18/* - config_name: CC-MAIN-2016-07 data_files: - split: train path: data/CC-MAIN-2016-07/* - config_name: CC-MAIN-2015-48 data_files: - split: train path: data/CC-MAIN-2015-48/* - config_name: CC-MAIN-2015-40 data_files: - split: train path: data/CC-MAIN-2015-40/* - config_name: CC-MAIN-2015-35 data_files: - split: train path: data/CC-MAIN-2015-35/* - config_name: CC-MAIN-2015-32 data_files: - split: train path: data/CC-MAIN-2015-32/* - config_name: CC-MAIN-2015-27 data_files: - split: train path: data/CC-MAIN-2015-27/* - config_name: CC-MAIN-2015-22 data_files: - split: train path: data/CC-MAIN-2015-22/* - config_name: CC-MAIN-2015-18 data_files: - split: train path: data/CC-MAIN-2015-18/* - config_name: CC-MAIN-2015-14 data_files: - split: train path: data/CC-MAIN-2015-14/* - config_name: CC-MAIN-2015-11 data_files: - split: train path: data/CC-MAIN-2015-11/* - config_name: CC-MAIN-2015-06 data_files: - split: train path: data/CC-MAIN-2015-06/* - config_name: CC-MAIN-2014-52 data_files: - split: train path: data/CC-MAIN-2014-52/* - config_name: CC-MAIN-2014-49 data_files: - split: train path: data/CC-MAIN-2014-49/* - config_name: CC-MAIN-2014-42 data_files: - split: train path: data/CC-MAIN-2014-42/* - config_name: CC-MAIN-2014-41 data_files: - split: train path: data/CC-MAIN-2014-41/* - config_name: CC-MAIN-2014-35 data_files: - split: train path: data/CC-MAIN-2014-35/* - config_name: CC-MAIN-2014-23 data_files: - split: train path: data/CC-MAIN-2014-23/* - config_name: CC-MAIN-2014-15 data_files: - split: train path: data/CC-MAIN-2014-15/* - config_name: CC-MAIN-2014-10 data_files: - split: train path: data/CC-MAIN-2014-10/* - config_name: CC-MAIN-2013-48 data_files: - split: train path: data/CC-MAIN-2013-48/* - config_name: CC-MAIN-2013-20 data_files: - split: train path: data/CC-MAIN-2013-20/* --- # 📚 FineWeb-Edu-score-2 <center> <img src="https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/wwRnEQydH9qdRtFofIE-A.png" alt="FineWeb-Edu: The finest collection of educational content the web has to offer"> </center> > 1.3 trillion tokens of the finest educational data the 🌐 web has to offer ## What is it? 📚 FineWeb-Edu dataset consists of **1.3T tokens** ([FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)) and **5.4T tokens** of educational web pages filtered from 🍷 FineWeb dataset. This is the 5.4 trillion version. ### Note: this version uses a lower educational score threshold = 2, which results in more documents, but lower quality compared to the 1.3T version. For more details check the FineWeb [blog post](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1). To enhance FineWeb's quality, we developed an [educational quality classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier) using annotations generated by LLama3-70B-Instruct. We then used this classifier to retain only the most educational web pages. FineWeb-Edu outperforms FineWeb on popular benchmarks and shows the power of classifiers trained on synthetic data. The [Dataset Curation](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu#dataset-curation) section details the process for creating the dataset. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/QqXOM8h_ZjjhuCv71xmV7.png) ## What is being released? Along with the dataset, which includes all filtered CommonCrawl dumps since 2013, we also release the educational classifier used for the filtering as well as the code for training it and running inference at: https://github.com/huggingface/cosmopedia/tree/main/classification. ## Changelog _Previous versions remain available in the branch `version name`._ - **v1.2.0 (03-01-2024):** Added 9 new snapshots: `CC-MAIN-2024-18`, `CC-MAIN-2024-22`, `CC-MAIN-2024-26`, `CC-MAIN-2024-30`, `CC-MAIN-2024-33`, `CC-MAIN-2024-38`, `CC-MAIN-2024-42`, `CC-MAIN-2024-46`, `CC-MAIN-2024-51`, covering April to December 2024. - **v1.0.0 (02-06-2024):** Initial version ## How to load the dataset Similarily to FineWeb, You can load the full dataset or a specific crawl/dump. Dumps have the format `CC-MAIN-(year)-(week number)`. ### Using 🏭 [`datatrove`](https://github.com/huggingface/datatrove/) ```python from datatrove.pipeline.readers import ParquetReader # limit determines how many documents will be streamed (remove for all) data_reader = ParquetReader("hf://datasets/HuggingFaceFW/fineweb-edu-score-2", glob_pattern="data/*/*.parquet", limit=1000) data_reader = ParquetReader("hf://datasets/HuggingFaceFW/fineweb-edu-score-2/CC-MAIN-2024-10", limit=1000) for document in data_reader(): # do something with document print(document) ############################### # OR for a processing pipeline: ############################### from datatrove.executor import LocalPipelineExecutor from datatrove.pipeline.readers import ParquetReader from datatrove.pipeline.filters import LambdaFilter from datatrove.pipeline.writers import JsonlWriter pipeline_exec = LocalPipelineExecutor( pipeline=[ ParquetReader("hf://datasets/HuggingFaceFW/fineweb-edu-score-2/CC-MAIN-2024-10", limit=1000), LambdaFilter(lambda doc: "hugging" in doc.text), JsonlWriter("some-output-path") ], tasks=10 ) pipeline_exec.run() ``` ### Using `datasets` ```python from datasets import load_dataset fw = load_dataset("HuggingFaceFW/fineweb-edu-score-2", name="CC-MAIN-2024-10", split="train", streaming=True) ``` ## Dataset curation A new approach has recently emerged for filtering LLM training datasets: using synthetic data to develop classifiers for identifying educational content. This technique was used in the trainings of [LLama3](https://ai.meta.com/blog/meta-llama-3-meta-ai-responsibility/), [Claude3](https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf) and [Phi3](https://arxiv.org/abs/2404.14219), but its large-scale impact on web data filtering hasn't been fully explored or published. The highly popular Phi3 models were trained on 3.3 and 4.8 trillion tokens, with the paper stating: “Our training data consists of heavily filtered publicly available web data (according to the 'educational level') from various open internet sources, as well as synthetic LLM-generated data". Similarly, the LLama3 blog post notes: “We found that previous generations of Llama are good at identifying high-quality data, so we used Llama 2 to help build the text-quality classifiers that are powering Llama 3.” However these classifiers and filtered datasets are not publicly available. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by [LLama3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) to create FineWeb-Edu. ### Annotation We used [Llama3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) to score 500k FineWeb samples for their educational quality on a scale from 0 to 5. We explored various prompts and found that the additive scale by [Yuan et al.](https://arxiv.org/pdf/2401.10020) worked best. To avoid the LLM favoring highly technical pages like arXiv abstracts and submissions, we focused on grade-school and middle-school level knowledge. By setting a threshold of 3 (on a scale of 0 to 5) during the filtering process, we were able to also retain some high-level educational pages. The final prompt can be found in this blog post TODO. We also experimented with different LLMs: Llama3-70B-Instruct, Mixtral-8x-7B-Instruct, and Mixtral-8x22B-Instruct. Llama3 and Mixtral-8x22B produced similar scores, while Mixtral-8x7B tended to be more generous, not fully adhering to the score scale. Verga et al. suggest using multiple LLMs as juries. We tried averaging the scores from the three models, but this shifted the distribution to the right due to the higher scores from Mixtral-8x7B. Training on a dataset filtered with a classifier using jury annotations performed worse than using a classifier based on Llama3 annotations. We hypothesize that the jury-based approach retains more low-quality samples. ### Classifier training We fine-tuned a Bert-like regression model using these annotations, based on [Snowflake-arctic-embed](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). When converted to a binary classification using a score of 3 as a threshold for keeping and removing files, the model achieved an F1 score of 82%. The classification of FineWeb 15T tokens took 6k H100 GPU hours. The classifier is available at: [https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier/ ](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier/) ### Filtering and results **Note**: You can find more details about the ablations and results in the FineWeb blog post (TODO). We investigated the impact of using different thresholds for the filtering and found that threshold 3 gave the best overall results. Although using a threshold higher than 3 improves performance on knowledge and reasoning intensive benchmarks, it significantly degrades performance on HellaSwag and PIQA. We then built 📚 FineWeb-Edu by filtering out samples with scores lower than 3. This removed 92% of the dataset, leaving us with 1.3T educational tokens. Our ablation demonstrated that this refined dataset surpasses 🍷 FineWeb and all other open web datasets, with remarkable improvements on educational benchmarks such as MMLU, ARC, and OpenBookQA. The plot below compares FineWeb-Edu to other web datasets: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/hJlyTgDzZpYuxO9LUm0PF.png) To retain more tokens, we also experimented with a less strict threshold of 2 instead of 3. While being less performant than using threshold 3, it still outperformed FineWeb and it preserved 5.4T tokens. We release these two dataset as [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) and [FineWeb-Edu-score-2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu-score-2) along with the [classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier). You will find all the ablation models in [this collection](https://huggingface.co/collections/HuggingFaceFW/ablation-models-662457b0d213e8c14fe47f32). The FineWeb-Edu ablation model (trained on 350B tokens) is available at [https://huggingface.co/HuggingFaceFW/ablation-model-fineweb-edu](https://huggingface.co/HuggingFaceFW/ablation-model-fineweb-edu). ## Considerations for Using the Data This section is copied from the parent dataset: [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb). ### Social Impact of Dataset With the release of this dataset we aim to make model training more accessible to the machine learning community at large. While multiple open-weights models with strong performance have been publicly released in the past, more often than not these releases are not accompanied by the corresponding training dataset. This is unfortunate as the dataset specificities and characteristics have been demonstrated to have a very large impact and role in the performances of the models. As the creation of a high quality training dataset is a fundamental requirement to training an LLM capable of excelling at downstream tasks, with 🍷 FineWeb we (a) not only make the dataset creation process more transparent, by sharing our entire processing setup including the codebase used, we also (b) help alleviate the costs of dataset curation, both in time and in compute, for model creators by publicly releasing our dataset with the community. ### Discussion of Biases Efforts were made to minimize the amount of NSFW and toxic content present in the dataset by employing filtering on the URL level. However, there are still a significant number of documents present in the final dataset that could be considered toxic or contain harmful content. As 🍷 FineWeb was sourced from the web as a whole, any harmful biases typically present in it may be reproduced on our dataset. We deliberately avoided using machine learning filtering methods that define text quality based on the similarity to a “gold” source such as wikipedia or toxicity classifiers as these methods have been known to [disproportionately remove content in specific dialects](https://aclanthology.org/D16-1120/) and [overclassify as toxic text related to specific social identities](https://arxiv.org/pdf/2109.07445.pdf), respectively. ### Other Known Limitations As a consequence of some of the filtering steps applied, it is likely that code content is not prevalent in our dataset. If you are training a model that should also perform code tasks, we recommend you use 🍷 FineWeb with a code dataset, such as [The Stack v2](https://huggingface.co/datasets/bigcode/the-stack-v2). You should also probably consider complementing 🍷 FineWeb with specialized curated sources (such as Wikipedia, for example) as they will likely have better formatting than the wikipedia content included in 🍷 FineWeb (we did not tailor the processing to individual websites). ## Additional Information ### Licensing Information The dataset is released under the **Open Data Commons Attribution License (ODC-By) v1.0** [license](https://opendatacommons.org/licenses/by/1-0/). The use of this dataset is also subject to [CommonCrawl's Terms of Use](https://commoncrawl.org/terms-of-use). ### Future work We plan to work on better educational classifier to improve the quality of FineWeb-Edu. ### Citation Information ``` @software{lozhkov2024fineweb-edu, author = {Lozhkov, Anton and Ben Allal, Loubna and von Werra, Leandro and Wolf, Thomas}, title = {FineWeb-Edu}, month = May, year = 2024, url = {https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu} } ```
ai4bharat/indic_glue
ai4bharat
"2024-01-04T12:36:30Z"
12,959
11
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:multiple-choice", "task_ids:topic-classification", "task_ids:natural-language-inference", "task_ids:sentiment-analysis", "task_ids:semantic-similarity-scoring", "task_ids:named-entity-recognition", "task_ids:multiple-choice-qa", "annotations_creators:other", "language_creators:found", "multilinguality:multilingual", "source_datasets:extended|other", "language:as", "language:bn", "language:en", "language:gu", "language:hi", "language:kn", "language:ml", "language:mr", "language:or", "language:pa", "language:ta", "language:te", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "discourse-mode-classification", "paraphrase-identification", "cross-lingual-similarity", "headline-classification" ]
[ "text-classification", "token-classification", "multiple-choice" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - other language_creators: - found language: - as - bn - en - gu - hi - kn - ml - mr - or - pa - ta - te license: - other multilinguality: - multilingual size_categories: - 100K<n<1M source_datasets: - extended|other task_categories: - text-classification - token-classification - multiple-choice task_ids: - topic-classification - natural-language-inference - sentiment-analysis - semantic-similarity-scoring - named-entity-recognition - multiple-choice-qa pretty_name: IndicGLUE tags: - discourse-mode-classification - paraphrase-identification - cross-lingual-similarity - headline-classification dataset_info: - config_name: actsa-sc.te features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 1370907 num_examples: 4328 - name: validation num_bytes: 166089 num_examples: 541 - name: test num_bytes: 168291 num_examples: 541 download_size: 727630 dataset_size: 1705287 - config_name: bbca.hi features: - name: label dtype: string - name: text dtype: string splits: - name: train num_bytes: 22126205 num_examples: 3467 - name: test num_bytes: 5501148 num_examples: 866 download_size: 10349015 dataset_size: 27627353 - config_name: copa.en features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 46033 num_examples: 400 - name: validation num_bytes: 11679 num_examples: 100 - name: test num_bytes: 55846 num_examples: 500 download_size: 79431 dataset_size: 113558 - config_name: copa.gu features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 92097 num_examples: 362 - name: validation num_bytes: 23450 num_examples: 88 - name: test num_bytes: 109997 num_examples: 448 download_size: 107668 dataset_size: 225544 - config_name: copa.hi features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 93376 num_examples: 362 - name: validation num_bytes: 23559 num_examples: 88 - name: test num_bytes: 112830 num_examples: 449 download_size: 104233 dataset_size: 229765 - config_name: copa.mr features: - name: premise dtype: string - name: choice1 dtype: string - name: choice2 dtype: string - name: question dtype: string - name: label dtype: int32 splits: - name: train num_bytes: 93441 num_examples: 362 - name: validation num_bytes: 23874 num_examples: 88 - name: test num_bytes: 112055 num_examples: 449 download_size: 105962 dataset_size: 229370 - config_name: csqa.as features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 3800523 num_examples: 2942 download_size: 1390423 dataset_size: 3800523 - config_name: csqa.bn features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 54671018 num_examples: 38845 download_size: 19648180 dataset_size: 54671018 - config_name: csqa.gu features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 29131607 num_examples: 22861 download_size: 6027825 dataset_size: 29131607 - config_name: csqa.hi features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 40409347 num_examples: 35140 download_size: 14711258 dataset_size: 40409347 - config_name: csqa.kn features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 21199816 num_examples: 13666 download_size: 7669655 dataset_size: 21199816 - config_name: csqa.ml features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 47220836 num_examples: 26537 download_size: 17382215 dataset_size: 47220836 - config_name: csqa.mr features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 13667174 num_examples: 11370 download_size: 5072738 dataset_size: 13667174 - config_name: csqa.or features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 2562365 num_examples: 1975 download_size: 948046 dataset_size: 2562365 - config_name: csqa.pa features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 5806097 num_examples: 5667 download_size: 2194109 dataset_size: 5806097 - config_name: csqa.ta features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 61868481 num_examples: 38590 download_size: 20789467 dataset_size: 61868481 - config_name: csqa.te features: - name: question dtype: string - name: answer dtype: string - name: category dtype: string - name: title dtype: string - name: options sequence: string - name: out_of_context_options sequence: string splits: - name: test num_bytes: 58784997 num_examples: 41338 download_size: 17447618 dataset_size: 58784997 - config_name: cvit-mkb-clsr.en-bn features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1990957 num_examples: 5522 download_size: 945551 dataset_size: 1990957 - config_name: cvit-mkb-clsr.en-gu features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 2303377 num_examples: 6463 download_size: 1093313 dataset_size: 2303377 - config_name: cvit-mkb-clsr.en-hi features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1855989 num_examples: 5169 download_size: 890609 dataset_size: 1855989 - config_name: cvit-mkb-clsr.en-ml features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1990089 num_examples: 4886 download_size: 868956 dataset_size: 1990089 - config_name: cvit-mkb-clsr.en-mr features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 2130601 num_examples: 5760 download_size: 993961 dataset_size: 2130601 - config_name: cvit-mkb-clsr.en-or features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 274873 num_examples: 752 download_size: 134334 dataset_size: 274873 - config_name: cvit-mkb-clsr.en-ta features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 2565178 num_examples: 5637 download_size: 1091653 dataset_size: 2565178 - config_name: cvit-mkb-clsr.en-te features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 1771129 num_examples: 5049 download_size: 840410 dataset_size: 1771129 - config_name: cvit-mkb-clsr.en-ur features: - name: sentence1 dtype: string - name: sentence2 dtype: string splits: - name: test num_bytes: 288430 num_examples: 1006 download_size: 166129 dataset_size: 288430 - config_name: iitp-mr.hi features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 6704905 num_examples: 2480 - name: validation num_bytes: 822218 num_examples: 310 - name: test num_bytes: 702373 num_examples: 310 download_size: 3151762 dataset_size: 8229496 - config_name: iitp-pr.hi features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': neutral '2': positive splits: - name: train num_bytes: 945589 num_examples: 4182 - name: validation num_bytes: 120100 num_examples: 523 - name: test num_bytes: 121910 num_examples: 523 download_size: 509822 dataset_size: 1187599 - config_name: inltkh.gu features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 883063 num_examples: 5269 - name: validation num_bytes: 111201 num_examples: 659 - name: test num_bytes: 110757 num_examples: 659 download_size: 515094 dataset_size: 1105021 - config_name: inltkh.ml features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 1108145 num_examples: 5036 - name: validation num_bytes: 140055 num_examples: 630 - name: test num_bytes: 138847 num_examples: 630 download_size: 571019 dataset_size: 1387047 - config_name: inltkh.mr features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 1462614 num_examples: 9672 - name: validation num_bytes: 180306 num_examples: 1210 - name: test num_bytes: 180558 num_examples: 1210 download_size: 840304 dataset_size: 1823478 - config_name: inltkh.ta features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 2659569 num_examples: 5346 - name: validation num_bytes: 316083 num_examples: 669 - name: test num_bytes: 320465 num_examples: 669 download_size: 1271262 dataset_size: 3296117 - config_name: inltkh.te features: - name: text dtype: string - name: label dtype: class_label: names: '0': entertainment '1': business '2': tech '3': sports '4': state '5': spirituality '6': tamil-cinema '7': positive '8': negative '9': neutral splits: - name: train num_bytes: 1361667 num_examples: 4328 - name: validation num_bytes: 170471 num_examples: 541 - name: test num_bytes: 173149 num_examples: 541 download_size: 726293 dataset_size: 1705287 - config_name: md.hi features: - name: sentence dtype: string - name: discourse_mode dtype: string - name: story_number dtype: int32 - name: id dtype: int32 splits: - name: train num_bytes: 1672109 num_examples: 7974 - name: validation num_bytes: 211187 num_examples: 997 - name: test num_bytes: 210175 num_examples: 997 download_size: 939801 dataset_size: 2093471 - config_name: sna.bn features: - name: text dtype: string - name: label dtype: class_label: names: '0': kolkata '1': state '2': national '3': sports '4': entertainment '5': international splits: - name: train num_bytes: 46070046 num_examples: 11284 - name: validation num_bytes: 5648126 num_examples: 1411 - name: test num_bytes: 5799979 num_examples: 1411 download_size: 21415940 dataset_size: 57518151 - config_name: wiki-ner.as features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 374983 num_examples: 1021 - name: validation num_bytes: 49312 num_examples: 157 - name: test num_bytes: 50456 num_examples: 160 download_size: 72919 dataset_size: 474751 - config_name: wiki-ner.bn features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 7502824 num_examples: 20223 - name: validation num_bytes: 988683 num_examples: 2985 - name: test num_bytes: 985941 num_examples: 2690 download_size: 1278219 dataset_size: 9477448 - config_name: wiki-ner.gu features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 1571588 num_examples: 2343 - name: validation num_bytes: 192804 num_examples: 297 - name: test num_bytes: 197877 num_examples: 255 download_size: 329660 dataset_size: 1962269 - config_name: wiki-ner.hi features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 3762505 num_examples: 9463 - name: validation num_bytes: 468678 num_examples: 1114 - name: test num_bytes: 475253 num_examples: 1256 download_size: 948132 dataset_size: 4706436 - config_name: wiki-ner.kn features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 1352027 num_examples: 2679 - name: validation num_bytes: 179538 num_examples: 412 - name: test num_bytes: 180791 num_examples: 476 download_size: 421877 dataset_size: 1712356 - config_name: wiki-ner.ml features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 7678887 num_examples: 15620 - name: validation num_bytes: 969947 num_examples: 2067 - name: test num_bytes: 991102 num_examples: 2042 download_size: 2390442 dataset_size: 9639936 - config_name: wiki-ner.mr features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 5431489 num_examples: 12151 - name: validation num_bytes: 701637 num_examples: 1498 - name: test num_bytes: 655682 num_examples: 1329 download_size: 1410663 dataset_size: 6788808 - config_name: wiki-ner.or features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 493758 num_examples: 1077 - name: validation num_bytes: 58568 num_examples: 132 - name: test num_bytes: 62211 num_examples: 153 download_size: 102783 dataset_size: 614537 - config_name: wiki-ner.pa features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 520244 num_examples: 1408 - name: validation num_bytes: 61170 num_examples: 186 - name: test num_bytes: 61788 num_examples: 179 download_size: 149727 dataset_size: 643202 - config_name: wiki-ner.ta features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 10117080 num_examples: 20466 - name: validation num_bytes: 1267188 num_examples: 2586 - name: test num_bytes: 1321626 num_examples: 2611 download_size: 2819083 dataset_size: 12705894 - config_name: wiki-ner.te features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': B-LOC '1': B-ORG '2': B-PER '3': I-LOC '4': I-ORG '5': I-PER '6': O - name: additional_info sequence: sequence: string splits: - name: train num_bytes: 3881211 num_examples: 7978 - name: validation num_bytes: 458509 num_examples: 841 - name: test num_bytes: 507806 num_examples: 1110 download_size: 1006881 dataset_size: 4847526 - config_name: wnli.en features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 104569 num_examples: 635 - name: validation num_bytes: 11878 num_examples: 71 - name: test num_bytes: 37297 num_examples: 146 download_size: 57667 dataset_size: 153744 - config_name: wnli.gu features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 251554 num_examples: 635 - name: validation num_bytes: 28175 num_examples: 71 - name: test num_bytes: 94578 num_examples: 146 download_size: 98032 dataset_size: 374307 - config_name: wnli.hi features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 253334 num_examples: 635 - name: validation num_bytes: 28676 num_examples: 71 - name: test num_bytes: 90823 num_examples: 146 download_size: 99450 dataset_size: 372833 - config_name: wnli.mr features: - name: hypothesis dtype: string - name: premise dtype: string - name: label dtype: class_label: names: '0': not_entailment '1': entailment '2': None splits: - name: train num_bytes: 256649 num_examples: 635 - name: validation num_bytes: 29218 num_examples: 71 - name: test num_bytes: 97128 num_examples: 146 download_size: 103774 dataset_size: 382995 - config_name: wstp.as features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 13581336 num_examples: 5000 - name: validation num_bytes: 1698968 num_examples: 625 - name: test num_bytes: 1697650 num_examples: 626 download_size: 6959458 dataset_size: 16977954 - config_name: wstp.bn features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 143340457 num_examples: 47580 - name: validation num_bytes: 17759236 num_examples: 5947 - name: test num_bytes: 17633865 num_examples: 5948 download_size: 69145372 dataset_size: 178733558 - config_name: wstp.gu features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 39353464 num_examples: 10004 - name: validation num_bytes: 4887752 num_examples: 1251 - name: test num_bytes: 4699158 num_examples: 1251 download_size: 19763249 dataset_size: 48940374 - config_name: wstp.hi features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 158529578 num_examples: 44069 - name: validation num_bytes: 19371904 num_examples: 5509 - name: test num_bytes: 19593001 num_examples: 5509 download_size: 77868574 dataset_size: 197494483 - config_name: wstp.kn features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 139950313 num_examples: 35379 - name: validation num_bytes: 17789782 num_examples: 4422 - name: test num_bytes: 17897031 num_examples: 4423 download_size: 67719504 dataset_size: 175637126 - config_name: wstp.ml features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 88360504 num_examples: 27527 - name: validation num_bytes: 11193340 num_examples: 3441 - name: test num_bytes: 11150914 num_examples: 3441 download_size: 42336357 dataset_size: 110704758 - config_name: wstp.mr features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 28302341 num_examples: 10446 - name: validation num_bytes: 3328798 num_examples: 1306 - name: test num_bytes: 3631684 num_examples: 1306 download_size: 13886208 dataset_size: 35262823 - config_name: wstp.or features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 10900006 num_examples: 4015 - name: validation num_bytes: 1264935 num_examples: 502 - name: test num_bytes: 1344652 num_examples: 502 download_size: 5319128 dataset_size: 13509593 - config_name: wstp.pa features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 22189730 num_examples: 8772 - name: validation num_bytes: 2789186 num_examples: 1097 - name: test num_bytes: 2685767 num_examples: 1097 download_size: 11201369 dataset_size: 27664683 - config_name: wstp.ta features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 151929218 num_examples: 48940 - name: validation num_bytes: 18817167 num_examples: 6117 - name: test num_bytes: 18815071 num_examples: 6118 download_size: 68699092 dataset_size: 189561456 - config_name: wstp.te features: - name: sectionText dtype: string - name: correctTitle dtype: string - name: titleA dtype: string - name: titleB dtype: string - name: titleC dtype: string - name: titleD dtype: string - name: url dtype: string splits: - name: train num_bytes: 151696691 num_examples: 80000 - name: validation num_bytes: 19003169 num_examples: 10000 - name: test num_bytes: 18991913 num_examples: 10000 download_size: 50158580 dataset_size: 189691773 configs: - config_name: actsa-sc.te data_files: - split: train path: actsa-sc.te/train-* - split: validation path: actsa-sc.te/validation-* - split: test path: actsa-sc.te/test-* - config_name: bbca.hi data_files: - split: train path: bbca.hi/train-* - split: test path: bbca.hi/test-* - config_name: copa.en data_files: - split: train path: copa.en/train-* - split: validation path: copa.en/validation-* - split: test path: copa.en/test-* - config_name: copa.gu data_files: - split: train path: copa.gu/train-* - split: validation path: copa.gu/validation-* - split: test path: copa.gu/test-* - config_name: copa.hi data_files: - split: train path: copa.hi/train-* - split: validation path: copa.hi/validation-* - split: test path: copa.hi/test-* - config_name: copa.mr data_files: - split: train path: copa.mr/train-* - split: validation path: copa.mr/validation-* - split: test path: copa.mr/test-* - config_name: csqa.as data_files: - split: test path: csqa.as/test-* - config_name: csqa.bn data_files: - split: test path: csqa.bn/test-* - config_name: csqa.gu data_files: - split: test path: csqa.gu/test-* - config_name: csqa.hi data_files: - split: test path: csqa.hi/test-* - config_name: csqa.kn data_files: - split: test path: csqa.kn/test-* - config_name: csqa.ml data_files: - split: test path: csqa.ml/test-* - config_name: csqa.mr data_files: - split: test path: csqa.mr/test-* - config_name: csqa.or data_files: - split: test path: csqa.or/test-* - config_name: csqa.pa data_files: - split: test path: csqa.pa/test-* - config_name: csqa.ta data_files: - split: test path: csqa.ta/test-* - config_name: csqa.te data_files: - split: test path: csqa.te/test-* - config_name: cvit-mkb-clsr.en-bn data_files: - split: test path: cvit-mkb-clsr.en-bn/test-* - config_name: cvit-mkb-clsr.en-gu data_files: - split: test path: cvit-mkb-clsr.en-gu/test-* - config_name: cvit-mkb-clsr.en-hi data_files: - split: test path: cvit-mkb-clsr.en-hi/test-* - config_name: cvit-mkb-clsr.en-ml data_files: - split: test path: cvit-mkb-clsr.en-ml/test-* - config_name: cvit-mkb-clsr.en-mr data_files: - split: test path: cvit-mkb-clsr.en-mr/test-* - config_name: cvit-mkb-clsr.en-or data_files: - split: test path: cvit-mkb-clsr.en-or/test-* - config_name: cvit-mkb-clsr.en-ta data_files: - split: test path: cvit-mkb-clsr.en-ta/test-* - config_name: cvit-mkb-clsr.en-te data_files: - split: test path: cvit-mkb-clsr.en-te/test-* - config_name: cvit-mkb-clsr.en-ur data_files: - split: test path: cvit-mkb-clsr.en-ur/test-* - config_name: iitp-mr.hi data_files: - split: train path: iitp-mr.hi/train-* - split: validation path: iitp-mr.hi/validation-* - split: test path: iitp-mr.hi/test-* - config_name: iitp-pr.hi data_files: - split: train path: iitp-pr.hi/train-* - split: validation path: iitp-pr.hi/validation-* - split: test path: iitp-pr.hi/test-* - config_name: inltkh.gu data_files: - split: train path: inltkh.gu/train-* - split: validation path: inltkh.gu/validation-* - split: test path: inltkh.gu/test-* - config_name: inltkh.ml data_files: - split: train path: inltkh.ml/train-* - split: validation path: inltkh.ml/validation-* - split: test path: inltkh.ml/test-* - config_name: inltkh.mr data_files: - split: train path: inltkh.mr/train-* - split: validation path: inltkh.mr/validation-* - split: test path: inltkh.mr/test-* - config_name: inltkh.ta data_files: - split: train path: inltkh.ta/train-* - split: validation path: inltkh.ta/validation-* - split: test path: inltkh.ta/test-* - config_name: inltkh.te data_files: - split: train path: inltkh.te/train-* - split: validation path: inltkh.te/validation-* - split: test path: inltkh.te/test-* - config_name: md.hi data_files: - split: train path: md.hi/train-* - split: validation path: md.hi/validation-* - split: test path: md.hi/test-* - config_name: sna.bn data_files: - split: train path: sna.bn/train-* - split: validation path: sna.bn/validation-* - split: test path: sna.bn/test-* - config_name: wiki-ner.as data_files: - split: train path: wiki-ner.as/train-* - split: validation path: wiki-ner.as/validation-* - split: test path: wiki-ner.as/test-* - config_name: wiki-ner.bn data_files: - split: train path: wiki-ner.bn/train-* - split: validation path: wiki-ner.bn/validation-* - split: test path: wiki-ner.bn/test-* - config_name: wiki-ner.gu data_files: - split: train path: wiki-ner.gu/train-* - split: validation path: wiki-ner.gu/validation-* - split: test path: wiki-ner.gu/test-* - config_name: wiki-ner.hi data_files: - split: train path: wiki-ner.hi/train-* - split: validation path: wiki-ner.hi/validation-* - split: test path: wiki-ner.hi/test-* - config_name: wiki-ner.kn data_files: - split: train path: wiki-ner.kn/train-* - split: validation path: wiki-ner.kn/validation-* - split: test path: wiki-ner.kn/test-* - config_name: wiki-ner.ml data_files: - split: train path: wiki-ner.ml/train-* - split: validation path: wiki-ner.ml/validation-* - split: test path: wiki-ner.ml/test-* - config_name: wiki-ner.mr data_files: - split: train path: wiki-ner.mr/train-* - split: validation path: wiki-ner.mr/validation-* - split: test path: wiki-ner.mr/test-* - config_name: wiki-ner.or data_files: - split: train path: wiki-ner.or/train-* - split: validation path: wiki-ner.or/validation-* - split: test path: wiki-ner.or/test-* - config_name: wiki-ner.pa data_files: - split: train path: wiki-ner.pa/train-* - split: validation path: wiki-ner.pa/validation-* - split: test path: wiki-ner.pa/test-* - config_name: wiki-ner.ta data_files: - split: train path: wiki-ner.ta/train-* - split: validation path: wiki-ner.ta/validation-* - split: test path: wiki-ner.ta/test-* - config_name: wiki-ner.te data_files: - split: train path: wiki-ner.te/train-* - split: validation path: wiki-ner.te/validation-* - split: test path: wiki-ner.te/test-* - config_name: wnli.en data_files: - split: train path: wnli.en/train-* - split: validation path: wnli.en/validation-* - split: test path: wnli.en/test-* - config_name: wnli.gu data_files: - split: train path: wnli.gu/train-* - split: validation path: wnli.gu/validation-* - split: test path: wnli.gu/test-* - config_name: wnli.hi data_files: - split: train path: wnli.hi/train-* - split: validation path: wnli.hi/validation-* - split: test path: wnli.hi/test-* - config_name: wnli.mr data_files: - split: train path: wnli.mr/train-* - split: validation path: wnli.mr/validation-* - split: test path: wnli.mr/test-* - config_name: wstp.as data_files: - split: train path: wstp.as/train-* - split: validation path: wstp.as/validation-* - split: test path: wstp.as/test-* - config_name: wstp.bn data_files: - split: train path: wstp.bn/train-* - split: validation path: wstp.bn/validation-* - split: test path: wstp.bn/test-* - config_name: wstp.gu data_files: - split: train path: wstp.gu/train-* - split: validation path: wstp.gu/validation-* - split: test path: wstp.gu/test-* - config_name: wstp.hi data_files: - split: train path: wstp.hi/train-* - split: validation path: wstp.hi/validation-* - split: test path: wstp.hi/test-* - config_name: wstp.kn data_files: - split: train path: wstp.kn/train-* - split: validation path: wstp.kn/validation-* - split: test path: wstp.kn/test-* - config_name: wstp.ml data_files: - split: train path: wstp.ml/train-* - split: validation path: wstp.ml/validation-* - split: test path: wstp.ml/test-* - config_name: wstp.mr data_files: - split: train path: wstp.mr/train-* - split: validation path: wstp.mr/validation-* - split: test path: wstp.mr/test-* - config_name: wstp.or data_files: - split: train path: wstp.or/train-* - split: validation path: wstp.or/validation-* - split: test path: wstp.or/test-* - config_name: wstp.pa data_files: - split: train path: wstp.pa/train-* - split: validation path: wstp.pa/validation-* - split: test path: wstp.pa/test-* - config_name: wstp.ta data_files: - split: train path: wstp.ta/train-* - split: validation path: wstp.ta/validation-* - split: test path: wstp.ta/test-* - config_name: wstp.te data_files: - split: train path: wstp.te/train-* - split: validation path: wstp.te/validation-* - split: test path: wstp.te/test-* --- # Dataset Card for "indic_glue" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://ai4bharat.iitm.ac.in/indic-glue - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages](https://aclanthology.org/2020.findings-emnlp.445/) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 3.51 GB - **Size of the generated dataset:** 1.65 GB - **Total amount of disk used:** 5.16 GB ### Dataset Summary IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task in which a system must read a sentence with a pronoun and select the referent of that pronoun from a list of choices. The examples are manually constructed to foil simple statistical methods: Each one is contingent on contextual information provided by a single word or phrase in the sentence. To convert the problem into sentence pair classification, we construct sentence pairs by replacing the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of new examples derived from fiction books that was shared privately by the authors of the original corpus. While the included training set is balanced between two classes, the test set is imbalanced between them (65% not entailment). Also, due to a data quirk, the development set is adversarial: hypotheses are sometimes shared between training and development examples, so if a model memorizes the training examples, they will predict the wrong label on corresponding development set example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence between a model's score on this task and its score on the unconverted original task. We call converted dataset WNLI (Winograd NLI). This dataset is translated and publicly released for 3 Indian languages by AI4Bharat. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### actsa-sc.te - **Size of downloaded dataset files:** 0.38 MB - **Size of the generated dataset:** 1.71 MB - **Total amount of disk used:** 2.09 MB An example of 'validation' looks as follows. ``` This example was too long and was cropped: { "label": 0, "text": "\"ప్రయాణాల్లో ఉన్నవారికోసం బస్ స్టేషన్లు, రైల్వే స్టేషన్లలో పల్స్పోలియో బూతులను ఏర్పాటు చేసి చిన్నారులకు పోలియో చుక్కలు వేసేలా ఏర..." } ``` #### bbca.hi - **Size of downloaded dataset files:** 5.77 MB - **Size of the generated dataset:** 27.63 MB - **Total amount of disk used:** 33.40 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "label": "pakistan", "text": "\"नेटिजन यानि इंटरनेट पर सक्रिय नागरिक अब ट्विटर पर सरकार द्वारा लगाए प्रतिबंधों के समर्थन या विरोध में अपने विचार व्यक्त करते है..." } ``` #### copa.en - **Size of downloaded dataset files:** 0.75 MB - **Size of the generated dataset:** 0.12 MB - **Total amount of disk used:** 0.87 MB An example of 'validation' looks as follows. ``` { "choice1": "I swept the floor in the unoccupied room.", "choice2": "I shut off the light in the unoccupied room.", "label": 1, "premise": "I wanted to conserve energy.", "question": "effect" } ``` #### copa.gu - **Size of downloaded dataset files:** 0.75 MB - **Size of the generated dataset:** 0.23 MB - **Total amount of disk used:** 0.99 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "choice1": "\"સ્ત્રી જાણતી હતી કે તેનો મિત્ર મુશ્કેલ સમયમાંથી પસાર થઈ રહ્યો છે.\"...", "choice2": "\"મહિલાને લાગ્યું કે તેના મિત્રએ તેની દયાળુ લાભ લીધો છે.\"...", "label": 0, "premise": "મહિલાએ તેના મિત્રની મુશ્કેલ વર્તન સહન કરી.", "question": "cause" } ``` #### copa.hi - **Size of downloaded dataset files:** 0.75 MB - **Size of the generated dataset:** 0.23 MB - **Total amount of disk used:** 0.99 MB An example of 'validation' looks as follows. ``` { "choice1": "मैंने उसका प्रस्ताव ठुकरा दिया।", "choice2": "उन्होंने मुझे उत्पाद खरीदने के लिए राजी किया।", "label": 0, "premise": "मैंने सेल्समैन की पिच पर शक किया।", "question": "effect" } ``` ### Data Fields The data fields are the same among all splits. #### actsa-sc.te - `text`: a `string` feature. - `label`: a classification label, with possible values including `positive` (0), `negative` (1). #### bbca.hi - `label`: a `string` feature. - `text`: a `string` feature. #### copa.en - `premise`: a `string` feature. - `choice1`: a `string` feature. - `choice2`: a `string` feature. - `question`: a `string` feature. - `label`: a `int32` feature. #### copa.gu - `premise`: a `string` feature. - `choice1`: a `string` feature. - `choice2`: a `string` feature. - `question`: a `string` feature. - `label`: a `int32` feature. #### copa.hi - `premise`: a `string` feature. - `choice1`: a `string` feature. - `choice2`: a `string` feature. - `question`: a `string` feature. - `label`: a `int32` feature. ### Data Splits #### actsa-sc.te | |train|validation|test| |-----------|----:|---------:|---:| |actsa-sc.te| 4328| 541| 541| #### bbca.hi | |train|test| |-------|----:|---:| |bbca.hi| 3467| 866| #### copa.en | |train|validation|test| |-------|----:|---------:|---:| |copa.en| 400| 100| 500| #### copa.gu | |train|validation|test| |-------|----:|---------:|---:| |copa.gu| 362| 88| 448| #### copa.hi | |train|validation|test| |-------|----:|---------:|---:| |copa.hi| 362| 88| 449| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{kakwani-etal-2020-indicnlpsuite, title = "{I}ndic{NLPS}uite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for {I}ndian Languages", author = "Kakwani, Divyanshu and Kunchukuttan, Anoop and Golla, Satish and N.C., Gokul and Bhattacharyya, Avik and Khapra, Mitesh M. and Kumar, Pratyush", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.445", doi = "10.18653/v1/2020.findings-emnlp.445", pages = "4948--4961", } @inproceedings{Levesque2011TheWS, title={The Winograd Schema Challenge}, author={H. Levesque and E. Davis and L. Morgenstern}, booktitle={KR}, year={2011} } ``` ### Contributions Thanks to [@sumanthd17](https://github.com/sumanthd17) for adding this dataset.
MMMU/MMMU
MMMU
"2024-09-19T17:11:03Z"
12,926
209
[ "task_categories:question-answering", "task_categories:visual-question-answering", "task_categories:multiple-choice", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2311.16502", "region:us", "biology", "medical", "finance", "chemistry", "music", "art", "art_theory", "design", "business", "accounting", "economics", "manage", "marketing", "health", "medicine", "basic_medical_science", "clinical", "pharmacy", "public_health", "humanities", "social_science", "history", "literature", "sociology", "psychology", "science", "geography", "math", "physics", "engineering", "agriculture", "architecture", "computer_science", "electronics", "energy_and_power", "materials", "mechanical_engineering" ]
[ "question-answering", "visual-question-answering", "multiple-choice" ]
"2023-11-27T17:52:01Z"
--- language: - en license: apache-2.0 size_categories: - 10K<n<100K task_categories: - question-answering - visual-question-answering - multiple-choice pretty_name: mmmu dataset_info: - config_name: Accounting features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 262599.0 num_examples: 5 - name: validation num_bytes: 1598285.0 num_examples: 30 - name: test num_bytes: 22135625.0 num_examples: 380 download_size: 37363379 dataset_size: 23996509.0 - config_name: Agriculture features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 22082656.0 num_examples: 5 - name: validation num_bytes: 119217558.0 num_examples: 30 - name: test num_bytes: 993664077.0 num_examples: 287 download_size: 1158036990 dataset_size: 1134964291.0 - config_name: Architecture_and_Engineering features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 137750.0 num_examples: 5 - name: validation num_bytes: 721378.0 num_examples: 30 - name: test num_bytes: 16054607.0 num_examples: 551 download_size: 48763955 dataset_size: 16913735.0 - config_name: Art features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 6241184.0 num_examples: 5 - name: validation num_bytes: 29934534.0 num_examples: 30 - name: test num_bytes: 237801390.0 num_examples: 231 download_size: 585798641 dataset_size: 273977108.0 - config_name: Art_Theory features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 7435106.0 num_examples: 5 - name: validation num_bytes: 33481558.0 num_examples: 30 - name: test num_bytes: 553174647.0 num_examples: 429 download_size: 930525695 dataset_size: 594091311.0 - config_name: Basic_Medical_Science features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 814310.0 num_examples: 5 - name: validation num_bytes: 4125930.0 num_examples: 30 - name: test num_bytes: 48125891.0 num_examples: 326 download_size: 84666454 dataset_size: 53066131.0 - config_name: Biology features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 574342.0 num_examples: 5 - name: validation num_bytes: 8491863.0 num_examples: 30 - name: test num_bytes: 132966151.0 num_examples: 345 download_size: 410242502 dataset_size: 142032356.0 - config_name: Chemistry features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 262397.0 num_examples: 5 - name: validation num_bytes: 1518573.0 num_examples: 30 - name: test num_bytes: 37219529.0 num_examples: 603 download_size: 108345562 dataset_size: 39000499.0 - config_name: Clinical_Medicine features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 1467945.0 num_examples: 5 - name: validation num_bytes: 10882484.0 num_examples: 30 - name: test num_bytes: 98201863.0 num_examples: 325 download_size: 160611488 dataset_size: 110552292.0 - config_name: Computer_Science features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 440523.0 num_examples: 5 - name: validation num_bytes: 2072018.0 num_examples: 30 - name: test num_bytes: 32047381.0 num_examples: 371 download_size: 55640991 dataset_size: 34559922.0 - config_name: Design features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 2259873.0 num_examples: 5 - name: validation num_bytes: 17923120.0 num_examples: 30 - name: test num_bytes: 77676331.0 num_examples: 169 download_size: 142866617 dataset_size: 97859324.0 - config_name: Diagnostics_and_Laboratory_Medicine features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 2056117.0 num_examples: 5 - name: validation num_bytes: 37106233.0 num_examples: 30 - name: test num_bytes: 157003069.0 num_examples: 162 download_size: 603957093 dataset_size: 196165419.0 - config_name: Economics features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 171434.0 num_examples: 5 - name: validation num_bytes: 1487048.0 num_examples: 30 - name: test num_bytes: 11852300.0 num_examples: 267 download_size: 20777635 dataset_size: 13510782.0 - config_name: Electronics features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 123632.0 num_examples: 5 - name: validation num_bytes: 641377.0 num_examples: 30 - name: test num_bytes: 5717686.0 num_examples: 256 download_size: 11602832 dataset_size: 6482695.0 - config_name: Energy_and_Power features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 105006.0 num_examples: 5 - name: validation num_bytes: 1641935.0 num_examples: 30 - name: test num_bytes: 14748428.0 num_examples: 432 download_size: 35246567 dataset_size: 16495369.0 - config_name: Finance features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 296124.0 num_examples: 5 - name: validation num_bytes: 1071060.0 num_examples: 30 - name: test num_bytes: 12065803.0 num_examples: 355 download_size: 29551521 dataset_size: 13432987.0 - config_name: Geography features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 1494060.0 num_examples: 5 - name: validation num_bytes: 6671316.0 num_examples: 30 - name: test num_bytes: 137218400.0 num_examples: 565 download_size: 374766631 dataset_size: 145383776.0 - config_name: History features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 1444231.0 num_examples: 5 - name: validation num_bytes: 8819857.0 num_examples: 30 - name: test num_bytes: 115228815.0 num_examples: 278 download_size: 232549641 dataset_size: 125492903.0 - config_name: Literature features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 2451201.0 num_examples: 5 - name: validation num_bytes: 14241046.0 num_examples: 30 - name: test num_bytes: 50301541.0 num_examples: 112 download_size: 132145895 dataset_size: 66993788.0 - config_name: Manage features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 449514.0 num_examples: 5 - name: validation num_bytes: 3277436.0 num_examples: 30 - name: test num_bytes: 29963963.0 num_examples: 245 download_size: 51186888 dataset_size: 33690913.0 - config_name: Marketing features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 116960.0 num_examples: 5 - name: validation num_bytes: 1472981.0 num_examples: 30 - name: test num_bytes: 7732976.0 num_examples: 181 download_size: 13146078 dataset_size: 9322917.0 - config_name: Materials features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 239632.0 num_examples: 5 - name: validation num_bytes: 2305223.0 num_examples: 30 - name: test num_bytes: 25256854.0 num_examples: 458 download_size: 105773156 dataset_size: 27801709.0 - config_name: Math features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 175839.0 num_examples: 5 - name: validation num_bytes: 1444496.0 num_examples: 30 - name: test num_bytes: 27701845.0 num_examples: 505 download_size: 174098418 dataset_size: 29322180.0 - config_name: Mechanical_Engineering features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 152542.0 num_examples: 5 - name: validation num_bytes: 874988.0 num_examples: 30 - name: test num_bytes: 15093746.0 num_examples: 429 download_size: 30450114 dataset_size: 16121276.0 - config_name: Music features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 1417615.0 num_examples: 5 - name: validation num_bytes: 9359372.0 num_examples: 30 - name: test num_bytes: 134096770.0 num_examples: 334 download_size: 174725052 dataset_size: 144873757.0 - config_name: Pharmacy features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 207924.0 num_examples: 5 - name: validation num_bytes: 1656342.0 num_examples: 30 - name: test num_bytes: 31866248.0 num_examples: 430 download_size: 62721263 dataset_size: 33730514.0 - config_name: Physics features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 233734.0 num_examples: 5 - name: validation num_bytes: 1114130.0 num_examples: 30 - name: test num_bytes: 15905705.0 num_examples: 408 download_size: 35238571 dataset_size: 17253569.0 - config_name: Psychology features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 600864.0 num_examples: 5 - name: validation num_bytes: 4403886.0 num_examples: 30 - name: test num_bytes: 53813915.0 num_examples: 305 download_size: 102466671 dataset_size: 58818665.0 - config_name: Public_Health features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 234781.0 num_examples: 5 - name: validation num_bytes: 1508761.0 num_examples: 30 - name: test num_bytes: 32150088.0 num_examples: 509 download_size: 48231609 dataset_size: 33893630.0 - config_name: Sociology features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 3769220.0 num_examples: 5 - name: validation num_bytes: 18455336.0 num_examples: 30 - name: test num_bytes: 144301123.0 num_examples: 252 download_size: 310313826 dataset_size: 166525679.0 configs: - config_name: Accounting data_files: - split: dev path: Accounting/dev-* - split: validation path: Accounting/validation-* - split: test path: Accounting/test-* - config_name: Agriculture data_files: - split: dev path: Agriculture/dev-* - split: validation path: Agriculture/validation-* - split: test path: Agriculture/test-* - config_name: Architecture_and_Engineering data_files: - split: dev path: Architecture_and_Engineering/dev-* - split: validation path: Architecture_and_Engineering/validation-* - split: test path: Architecture_and_Engineering/test-* - config_name: Art data_files: - split: dev path: Art/dev-* - split: validation path: Art/validation-* - split: test path: Art/test-* - config_name: Art_Theory data_files: - split: dev path: Art_Theory/dev-* - split: validation path: Art_Theory/validation-* - split: test path: Art_Theory/test-* - config_name: Basic_Medical_Science data_files: - split: dev path: Basic_Medical_Science/dev-* - split: validation path: Basic_Medical_Science/validation-* - split: test path: Basic_Medical_Science/test-* - config_name: Biology data_files: - split: dev path: Biology/dev-* - split: validation path: Biology/validation-* - split: test path: Biology/test-* - config_name: Chemistry data_files: - split: dev path: Chemistry/dev-* - split: validation path: Chemistry/validation-* - split: test path: Chemistry/test-* - config_name: Clinical_Medicine data_files: - split: dev path: Clinical_Medicine/dev-* - split: validation path: Clinical_Medicine/validation-* - split: test path: Clinical_Medicine/test-* - config_name: Computer_Science data_files: - split: dev path: Computer_Science/dev-* - split: validation path: Computer_Science/validation-* - split: test path: Computer_Science/test-* - config_name: Design data_files: - split: dev path: Design/dev-* - split: validation path: Design/validation-* - split: test path: Design/test-* - config_name: Diagnostics_and_Laboratory_Medicine data_files: - split: dev path: Diagnostics_and_Laboratory_Medicine/dev-* - split: validation path: Diagnostics_and_Laboratory_Medicine/validation-* - split: test path: Diagnostics_and_Laboratory_Medicine/test-* - config_name: Economics data_files: - split: dev path: Economics/dev-* - split: validation path: Economics/validation-* - split: test path: Economics/test-* - config_name: Electronics data_files: - split: dev path: Electronics/dev-* - split: validation path: Electronics/validation-* - split: test path: Electronics/test-* - config_name: Energy_and_Power data_files: - split: dev path: Energy_and_Power/dev-* - split: validation path: Energy_and_Power/validation-* - split: test path: Energy_and_Power/test-* - config_name: Finance data_files: - split: dev path: Finance/dev-* - split: validation path: Finance/validation-* - split: test path: Finance/test-* - config_name: Geography data_files: - split: dev path: Geography/dev-* - split: validation path: Geography/validation-* - split: test path: Geography/test-* - config_name: History data_files: - split: dev path: History/dev-* - split: validation path: History/validation-* - split: test path: History/test-* - config_name: Literature data_files: - split: dev path: Literature/dev-* - split: validation path: Literature/validation-* - split: test path: Literature/test-* - config_name: Manage data_files: - split: dev path: Manage/dev-* - split: validation path: Manage/validation-* - split: test path: Manage/test-* - config_name: Marketing data_files: - split: dev path: Marketing/dev-* - split: validation path: Marketing/validation-* - split: test path: Marketing/test-* - config_name: Materials data_files: - split: dev path: Materials/dev-* - split: validation path: Materials/validation-* - split: test path: Materials/test-* - config_name: Math data_files: - split: dev path: Math/dev-* - split: validation path: Math/validation-* - split: test path: Math/test-* - config_name: Mechanical_Engineering data_files: - split: dev path: Mechanical_Engineering/dev-* - split: validation path: Mechanical_Engineering/validation-* - split: test path: Mechanical_Engineering/test-* - config_name: Music data_files: - split: dev path: Music/dev-* - split: validation path: Music/validation-* - split: test path: Music/test-* - config_name: Pharmacy data_files: - split: dev path: Pharmacy/dev-* - split: validation path: Pharmacy/validation-* - split: test path: Pharmacy/test-* - config_name: Physics data_files: - split: dev path: Physics/dev-* - split: validation path: Physics/validation-* - split: test path: Physics/test-* - config_name: Psychology data_files: - split: dev path: Psychology/dev-* - split: validation path: Psychology/validation-* - split: test path: Psychology/test-* - config_name: Public_Health data_files: - split: dev path: Public_Health/dev-* - split: validation path: Public_Health/validation-* - split: test path: Public_Health/test-* - config_name: Sociology data_files: - split: dev path: Sociology/dev-* - split: validation path: Sociology/validation-* - split: test path: Sociology/test-* tags: - biology - medical - finance - chemistry - music - art - art_theory - design - music - business - accounting - economics - finance - manage - marketing - health - medicine - basic_medical_science - clinical - pharmacy - public_health - humanities - social_science - history - literature - sociology - psychology - science - biology - chemistry - geography - math - physics - engineering - agriculture - architecture - computer_science - electronics - energy_and_power - materials - mechanical_engineering --- # MMMU (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI) [**🌐 Homepage**](https://mmmu-benchmark.github.io/) | [**🏆 Leaderboard**](https://mmmu-benchmark.github.io/#leaderboard) | [**🤗 Dataset**](https://huggingface.co/datasets/MMMU/MMMU/) | [**🤗 Paper**](https://huggingface.co/papers/2311.16502) | [**📖 arXiv**](https://arxiv.org/abs/2311.16502) | [**GitHub**](https://github.com/MMMU-Benchmark/MMMU) ## 🔔News - **🛠️[2024-05-30]: Fixed duplicate option issues in Materials dataset items (validation_Materials_25; test_Materials_17, 242) and content error in validation_Materials_25.** - **🛠️[2024-04-30]: Fixed missing "-" or "^" signs in Math dataset items (dev_Math_2, validation_Math_11, 12, 16; test_Math_8, 23, 43, 113, 164, 223, 236, 287, 329, 402, 498) and corrected option errors in validation_Math_2. If you encounter any issues with the dataset, please contact us promptly!** - **🚀[2024-01-31]: We added Human Expert performance on the [Leaderboard](https://mmmu-benchmark.github.io/#leaderboard)!🌟** - **🔥[2023-12-04]: Our evaluation server for test set is now availble on [EvalAI](https://eval.ai/web/challenges/challenge-page/2179/overview). We welcome all submissions and look forward to your participation! 😆** ## Dataset Details ### Dataset Description We introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes **11.5K meticulously collected multimodal questions** from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span **30 subjects** and **183 subfields**, comprising **30 highly heterogeneous image types**, such as charts, diagrams, maps, tables, music sheets, and chemical structures. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence (AGI). 🎯 **We have released a full set comprising 150 development samples and 900 validation samples. We have released 10,500 test questions without their answers.** The development set is used for few-shot/in-context learning, and the validation set is used for debugging models, selecting hyperparameters, or quick evaluations. The answers and explanations for the test set questions are withheld. You can submit your model's predictions for the **test set** on **[EvalAI](https://eval.ai/web/challenges/challenge-page/2179/overview)**. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6230d750d93e84e233882dbc/2Ulh9yznm1dvISV4xJ_Ok.png) ### Dataset Creation MMMU was created to challenge multimodal models with tasks that demand college-level subject knowledge and deliberate reasoning, pushing the boundaries of what these models can achieve in terms of expert-level perception and reasoning. The data for the MMMU dataset was manually collected by a team of college students from various disciplines, using online sources, textbooks, and lecture materials. - **Content:** The dataset contains 11.5K college-level problems across six broad disciplines (Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, Tech & Engineering) and 30 college subjects. - **Image Types:** The dataset includes 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures, interleaved with text. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6230d750d93e84e233882dbc/Mbf8O5lEH8I8czprch0AG.png) ## 🏆 Mini-Leaderboard We show a mini-leaderboard here and please find more information in our paper or [**homepage**](https://mmmu-benchmark.github.io/). | Model | Val (900) | Test (10.5K) | |--------------------------------|:---------:|:------------:| | Expert (Best) | 88.6 | - | | Expert (Medium) | 82.6 | - | | Expert (Worst) | 76.2 | - | | GPT-4o* | **69.1** | - | | Gemini 1.5 Pro* | 62.2 | - | | InternVL2-Pro* | 62.0 | **55.7** | | Gemini 1.0 Ultra* | 59.4 | - | | Claude 3 Opus* | 59.4 | - | | GPT-4V(ision) (Playground) | 56.8 | **55.7** | | Reka Core* | 56.3 | - | | Gemini 1.5 Flash* | 56.1 | - | | SenseChat-Vision-0423-Preview* | 54.6 | 50.3 | | Reka Flash* | 53.3 | - | | Claude 3 Sonnet* | 53.1 | - | | HPT Pro* | 52.0 | - | | VILA1.5* | 51.9 | 46.9 | | Qwen-VL-MAX* | 51.4 | 46.8 | | InternVL-Chat-V1.2* | 51.6 | 46.2 | | Skywork-VL* | 51.4 | 46.2 | | LLaVA-1.6-34B* | 51.1 | 44.7 | | Claude 3 Haiku* | 50.2 | - | | Adept Fuyu-Heavy* | 48.3 | - | | Gemini 1.0 Pro* | 47.9 | - | | Marco-VL-Plus* | 46.2 | 44.3 | | Yi-VL-34B* | 45.9 | 41.6 | | Qwen-VL-PLUS* | 45.2 | 40.8 | | HPT Air* | 44.0 | - | | Reka Edge* | 42.8 | - | | Marco-VL* | 41.2 | 40.4 | | OmniLMM-12B* | 41.1 | 40.4 | | Bunny-8B* | 43.3 | 39.0 | | Bunny-4B* | 41.4 | 38.4 | | Weitu-VL-1.0-15B* | - | 38.4 | | InternLM-XComposer2-VL* | 43.0 | 38.2 | | Yi-VL-6B* | 39.1 | 37.8 | | InfiMM-Zephyr-7B* | 39.4 | 35.5 | | InternVL-Chat-V1.1* | 39.1 | 35.3 | | Math-LLaVA-13B* | 38.3 | 34.6 | | SVIT* | 38.0 | 34.1 | | MiniCPM-V* | 37.2 | 34.1 | | MiniCPM-V-2* | 37.1 | - | | Emu2-Chat* | 36.3 | 34.1 | | BLIP-2 FLAN-T5-XXL | 35.4 | 34.0 | | InstructBLIP-T5-XXL | 35.7 | 33.8 | | LLaVA-1.5-13B | 36.4 | 33.6 | | Bunny-3B* | 38.2 | 33.0 | | Qwen-VL-7B-Chat | 35.9 | 32.9 | | SPHINX* | 32.9 | 32.9 | | mPLUG-OWL2* | 32.7 | 32.1 | | BLIP-2 FLAN-T5-XL | 34.4 | 31.0 | | InstructBLIP-T5-XL | 32.9 | 30.6 | | Gemini Nano2* | 32.6 | - | | CogVLM | 32.1 | 30.1 | | Otter | 32.2 | 29.1 | | LLaMA-Adapter2-7B | 29.8 | 27.7 | | MiniGPT4-Vicuna-13B | 26.8 | 27.6 | | Adept Fuyu-8B | 27.9 | 27.4 | | Kosmos2 | 24.4 | 26.6 | | OpenFlamingo2-9B | 28.7 | 26.3 | | Frequent Choice | 22.1 | 23.9 | | Random Choice | 26.8 | 25.8 | *: results provided by the authors. ## Limitations Despite its comprehensive nature, MMMU, like any benchmark, is not without limitations. The manual curation process, albeit thorough, may carry biases. And the focus on college-level subjects might not fully be a sufficient test for Expert AGI. However, we believe it should be necessary for an Expert AGI to achieve strong performance on MMMU to demonstrate their broad and deep subject knowledge as well as expert-level understanding and reasoning capabilities. In future work, we plan to incorporate human evaluations into MMMU. This will provide a more grounded comparison between model capabilities and expert performance, shedding light on the proximity of current AI systems to achieving Expert AGI. ## Disclaimers The guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution. Should you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to notify us. Upon verification, such samples will be promptly removed. ## Contact - Xiang Yue: [email protected] - Yu Su: [email protected] - Wenhu Chen: [email protected] ## Citation **BibTeX:** ```bibtex @inproceedings{yue2023mmmu, title={MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI}, author={Xiang Yue and Yuansheng Ni and Kai Zhang and Tianyu Zheng and Ruoqi Liu and Ge Zhang and Samuel Stevens and Dongfu Jiang and Weiming Ren and Yuxuan Sun and Cong Wei and Botao Yu and Ruibin Yuan and Renliang Sun and Ming Yin and Boyuan Zheng and Zhenzhu Yang and Yibo Liu and Wenhao Huang and Huan Sun and Yu Su and Wenhu Chen}, booktitle={Proceedings of CVPR}, year={2024}, } ```
bigcode/the-stack-v2
bigcode
"2024-04-23T15:52:32Z"
12,718
305
[ "task_categories:text-generation", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "language:code", "license:other", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2402.19173", "arxiv:2107.03374", "arxiv:2207.14157", "region:us" ]
[ "text-generation" ]
"2024-02-26T04:26:48Z"
--- annotations_creators: [] language_creators: - crowdsourced - expert-generated language: - code license: - other multilinguality: - multilingual pretty_name: The-Stack-v2 size_categories: - unknown source_datasets: [] task_categories: - text-generation task_ids: [] extra_gated_prompt: |- ## Terms of Use for The Stack v2 The Stack v2 dataset is a collection of source code in over 600 programming languages. We ask that you read and acknowledge the following points before using the dataset: 1. Downloading the dataset in bulk requires a an agreement with SoftwareHeritage and INRIA. Contact [[email protected]](mailto:[email protected]?subject=TheStackV2%20request%20for%20dataset%20access%20information) for more information. 2. If you are using the dataset to train models you must adhere to the SoftwareHeritage [principles for language model training](https://www.softwareheritage.org/2023/10/19/swh-statement-on-llm-for-code/). 3. The Stack v2 is a collection of source code from repositories with various licenses. Any use of all or part of the code gathered in The Stack v2 must abide by the terms of the original licenses, including attribution clauses when relevant. We facilitate this by providing provenance information for each data point. 4. The Stack v2 is regularly updated to enact validated data removal requests. By clicking on "Access repository", you agree to update your own version of The Stack v2 to the most recent usable version. By clicking on "Access repository" below, you accept that your contact information (email address and username) can be shared with the dataset maintainers as well. extra_gated_fields: Email: text I have read the License and agree with its terms: checkbox dataset_info: features: - name: blob_id dtype: string - name: directory_id dtype: string - name: path dtype: string - name: content_id dtype: string - name: detected_licenses sequence: string - name: license_type dtype: string - name: repo_name dtype: string - name: snapshot_id dtype: string - name: revision_id dtype: string - name: branch_name dtype: string - name: visit_date dtype: timestamp[ns] - name: revision_date dtype: timestamp[ns] - name: committer_date dtype: timestamp[ns] - name: github_id dtype: int64 - name: star_events_count dtype: int64 - name: fork_events_count dtype: int64 - name: gha_license_id dtype: string - name: gha_event_created_at dtype: timestamp[ns] - name: gha_created_at dtype: timestamp[ns] - name: gha_language dtype: string - name: src_encoding dtype: string - name: language dtype: string - name: is_vendor dtype: bool - name: is_generated dtype: bool - name: length_bytes dtype: int64 - name: extension dtype: string configs: - config_name: default default: true data_files: - split: train path: "data/*/*.parquet" - config_name: "1C_Enterprise" data_files: - split: train path: "data/1C_Enterprise/*.parquet" - config_name: "2-Dimensional_Array" data_files: - split: train path: "data/2-Dimensional_Array/*.parquet" - config_name: "4D" data_files: - split: train path: "data/4D/*.parquet" - config_name: "ABAP" data_files: - split: train path: "data/ABAP/*.parquet" - config_name: "ABAP_CDS" data_files: - split: train path: "data/ABAP_CDS/*.parquet" - config_name: "ABNF" data_files: - split: train path: "data/ABNF/*.parquet" - config_name: "AGS_Script" data_files: - split: train path: "data/AGS_Script/*.parquet" - config_name: "AIDL" data_files: - split: train path: "data/AIDL/*.parquet" - config_name: "AL" data_files: - split: train path: "data/AL/*.parquet" - config_name: "AMPL" data_files: - split: train path: "data/AMPL/*.parquet" - config_name: "ANTLR" data_files: - split: train path: "data/ANTLR/*.parquet" - config_name: "API_Blueprint" data_files: - split: train path: "data/API_Blueprint/*.parquet" - config_name: "APL" data_files: - split: train path: "data/APL/*.parquet" - config_name: "ASL" data_files: - split: train path: "data/ASL/*.parquet" - config_name: "ASN.1" data_files: - split: train path: "data/ASN.1/*.parquet" - config_name: "ASP.NET" data_files: - split: train path: "data/ASP.NET/*.parquet" - config_name: "ATS" data_files: - split: train path: "data/ATS/*.parquet" - config_name: "ActionScript" data_files: - split: train path: "data/ActionScript/*.parquet" - config_name: "Ada" data_files: - split: train path: "data/Ada/*.parquet" - config_name: "Adobe_Font_Metrics" data_files: - split: train path: "data/Adobe_Font_Metrics/*.parquet" - config_name: "Agda" data_files: - split: train path: "data/Agda/*.parquet" - config_name: "Alloy" data_files: - split: train path: "data/Alloy/*.parquet" - config_name: "Alpine_Abuild" data_files: - split: train path: "data/Alpine_Abuild/*.parquet" - config_name: "Altium_Designer" data_files: - split: train path: "data/Altium_Designer/*.parquet" - config_name: "AngelScript" data_files: - split: train path: "data/AngelScript/*.parquet" - config_name: "Ant_Build_System" data_files: - split: train path: "data/Ant_Build_System/*.parquet" - config_name: "Antlers" data_files: - split: train path: "data/Antlers/*.parquet" - config_name: "ApacheConf" data_files: - split: train path: "data/ApacheConf/*.parquet" - config_name: "Apex" data_files: - split: train path: "data/Apex/*.parquet" - config_name: "Apollo_Guidance_Computer" data_files: - split: train path: "data/Apollo_Guidance_Computer/*.parquet" - config_name: "AppleScript" data_files: - split: train path: "data/AppleScript/*.parquet" - config_name: "Arc" data_files: - split: train path: "data/Arc/*.parquet" - config_name: "AsciiDoc" data_files: - split: train path: "data/AsciiDoc/*.parquet" - config_name: "AspectJ" data_files: - split: train path: "data/AspectJ/*.parquet" - config_name: "Assembly" data_files: - split: train path: "data/Assembly/*.parquet" - config_name: "Astro" data_files: - split: train path: "data/Astro/*.parquet" - config_name: "Asymptote" data_files: - split: train path: "data/Asymptote/*.parquet" - config_name: "Augeas" data_files: - split: train path: "data/Augeas/*.parquet" - config_name: "AutoHotkey" data_files: - split: train path: "data/AutoHotkey/*.parquet" - config_name: "AutoIt" data_files: - split: train path: "data/AutoIt/*.parquet" - config_name: "Avro_IDL" data_files: - split: train path: "data/Avro_IDL/*.parquet" - config_name: "Awk" data_files: - split: train path: "data/Awk/*.parquet" - config_name: "BASIC" data_files: - split: train path: "data/BASIC/*.parquet" - config_name: "Ballerina" data_files: - split: train path: "data/Ballerina/*.parquet" - config_name: "Batchfile" data_files: - split: train path: "data/Batchfile/*.parquet" - config_name: "Beef" data_files: - split: train path: "data/Beef/*.parquet" - config_name: "Befunge" data_files: - split: train path: "data/Befunge/*.parquet" - config_name: "Berry" data_files: - split: train path: "data/Berry/*.parquet" - config_name: "BibTeX" data_files: - split: train path: "data/BibTeX/*.parquet" - config_name: "Bicep" data_files: - split: train path: "data/Bicep/*.parquet" - config_name: "Bikeshed" data_files: - split: train path: "data/Bikeshed/*.parquet" - config_name: "Bison" data_files: - split: train path: "data/Bison/*.parquet" - config_name: "BitBake" data_files: - split: train path: "data/BitBake/*.parquet" - config_name: "Blade" data_files: - split: train path: "data/Blade/*.parquet" - config_name: "BlitzBasic" data_files: - split: train path: "data/BlitzBasic/*.parquet" - config_name: "BlitzMax" data_files: - split: train path: "data/BlitzMax/*.parquet" - config_name: "Bluespec" data_files: - split: train path: "data/Bluespec/*.parquet" - config_name: "Boo" data_files: - split: train path: "data/Boo/*.parquet" - config_name: "Boogie" data_files: - split: train path: "data/Boogie/*.parquet" - config_name: "Brainfuck" data_files: - split: train path: "data/Brainfuck/*.parquet" - config_name: "BrighterScript" data_files: - split: train path: "data/BrighterScript/*.parquet" - config_name: "Brightscript" data_files: - split: train path: "data/Brightscript/*.parquet" - config_name: "Browserslist" data_files: - split: train path: "data/Browserslist/*.parquet" - config_name: "C" data_files: - split: train path: "data/C/*.parquet" - config_name: "C++" data_files: - split: train path: "data/C++/*.parquet" - config_name: "C-ObjDump" data_files: - split: train path: "data/C-ObjDump/*.parquet" - config_name: "C-Sharp" data_files: - split: train path: "data/C-Sharp/*.parquet" - config_name: "C2hs_Haskell" data_files: - split: train path: "data/C2hs_Haskell/*.parquet" - config_name: "CAP_CDS" data_files: - split: train path: "data/CAP_CDS/*.parquet" - config_name: "CIL" data_files: - split: train path: "data/CIL/*.parquet" - config_name: "CLIPS" data_files: - split: train path: "data/CLIPS/*.parquet" - config_name: "CMake" data_files: - split: train path: "data/CMake/*.parquet" - config_name: "COBOL" data_files: - split: train path: "data/COBOL/*.parquet" - config_name: "CODEOWNERS" data_files: - split: train path: "data/CODEOWNERS/*.parquet" - config_name: "COLLADA" data_files: - split: train path: "data/COLLADA/*.parquet" - config_name: "CSON" data_files: - split: train path: "data/CSON/*.parquet" - config_name: "CSS" data_files: - split: train path: "data/CSS/*.parquet" - config_name: "CSV" data_files: - split: train path: "data/CSV/*.parquet" - config_name: "CUE" data_files: - split: train path: "data/CUE/*.parquet" - config_name: "CWeb" data_files: - split: train path: "data/CWeb/*.parquet" - config_name: "Cabal_Config" data_files: - split: train path: "data/Cabal_Config/*.parquet" - config_name: "Cadence" data_files: - split: train path: "data/Cadence/*.parquet" - config_name: "Cairo" data_files: - split: train path: "data/Cairo/*.parquet" - config_name: "CameLIGO" data_files: - split: train path: "data/CameLIGO/*.parquet" - config_name: "Cap-n_Proto" data_files: - split: train path: "data/Cap-n_Proto/*.parquet" - config_name: "CartoCSS" data_files: - split: train path: "data/CartoCSS/*.parquet" - config_name: "Ceylon" data_files: - split: train path: "data/Ceylon/*.parquet" - config_name: "Chapel" data_files: - split: train path: "data/Chapel/*.parquet" - config_name: "Charity" data_files: - split: train path: "data/Charity/*.parquet" - config_name: "Checksums" data_files: - split: train path: "data/Checksums/*.parquet" - config_name: "ChucK" data_files: - split: train path: "data/ChucK/*.parquet" - config_name: "Cirru" data_files: - split: train path: "data/Cirru/*.parquet" - config_name: "Clarion" data_files: - split: train path: "data/Clarion/*.parquet" - config_name: "Clarity" data_files: - split: train path: "data/Clarity/*.parquet" - config_name: "Classic_ASP" data_files: - split: train path: "data/Classic_ASP/*.parquet" - config_name: "Clean" data_files: - split: train path: "data/Clean/*.parquet" - config_name: "Click" data_files: - split: train path: "data/Click/*.parquet" - config_name: "Clojure" data_files: - split: train path: "data/Clojure/*.parquet" - config_name: "Closure_Templates" data_files: - split: train path: "data/Closure_Templates/*.parquet" - config_name: "Cloud_Firestore_Security_Rules" data_files: - split: train path: "data/Cloud_Firestore_Security_Rules/*.parquet" - config_name: "CoNLL-U" data_files: - split: train path: "data/CoNLL-U/*.parquet" - config_name: "CodeQL" data_files: - split: train path: "data/CodeQL/*.parquet" - config_name: "CoffeeScript" data_files: - split: train path: "data/CoffeeScript/*.parquet" - config_name: "ColdFusion" data_files: - split: train path: "data/ColdFusion/*.parquet" - config_name: "ColdFusion_CFC" data_files: - split: train path: "data/ColdFusion_CFC/*.parquet" - config_name: "Common_Lisp" data_files: - split: train path: "data/Common_Lisp/*.parquet" - config_name: "Common_Workflow_Language" data_files: - split: train path: "data/Common_Workflow_Language/*.parquet" - config_name: "Component_Pascal" data_files: - split: train path: "data/Component_Pascal/*.parquet" - config_name: "Cool" data_files: - split: train path: "data/Cool/*.parquet" - config_name: "Coq" data_files: - split: train path: "data/Coq/*.parquet" - config_name: "Creole" data_files: - split: train path: "data/Creole/*.parquet" - config_name: "Crystal" data_files: - split: train path: "data/Crystal/*.parquet" - config_name: "Csound" data_files: - split: train path: "data/Csound/*.parquet" - config_name: "Csound_Document" data_files: - split: train path: "data/Csound_Document/*.parquet" - config_name: "Csound_Score" data_files: - split: train path: "data/Csound_Score/*.parquet" - config_name: "Cuda" data_files: - split: train path: "data/Cuda/*.parquet" - config_name: "Cue_Sheet" data_files: - split: train path: "data/Cue_Sheet/*.parquet" - config_name: "Curry" data_files: - split: train path: "data/Curry/*.parquet" - config_name: "Cycript" data_files: - split: train path: "data/Cycript/*.parquet" - config_name: "Cython" data_files: - split: train path: "data/Cython/*.parquet" - config_name: "D" data_files: - split: train path: "data/D/*.parquet" - config_name: "DIGITAL_Command_Language" data_files: - split: train path: "data/DIGITAL_Command_Language/*.parquet" - config_name: "DM" data_files: - split: train path: "data/DM/*.parquet" - config_name: "DNS_Zone" data_files: - split: train path: "data/DNS_Zone/*.parquet" - config_name: "DTrace" data_files: - split: train path: "data/DTrace/*.parquet" - config_name: "Dafny" data_files: - split: train path: "data/Dafny/*.parquet" - config_name: "Darcs_Patch" data_files: - split: train path: "data/Darcs_Patch/*.parquet" - config_name: "Dart" data_files: - split: train path: "data/Dart/*.parquet" - config_name: "DataWeave" data_files: - split: train path: "data/DataWeave/*.parquet" - config_name: "Debian_Package_Control_File" data_files: - split: train path: "data/Debian_Package_Control_File/*.parquet" - config_name: "DenizenScript" data_files: - split: train path: "data/DenizenScript/*.parquet" - config_name: "Dhall" data_files: - split: train path: "data/Dhall/*.parquet" - config_name: "Diff" data_files: - split: train path: "data/Diff/*.parquet" - config_name: "DirectX_3D_File" data_files: - split: train path: "data/DirectX_3D_File/*.parquet" - config_name: "Dockerfile" data_files: - split: train path: "data/Dockerfile/*.parquet" - config_name: "Dogescript" data_files: - split: train path: "data/Dogescript/*.parquet" - config_name: "Dylan" data_files: - split: train path: "data/Dylan/*.parquet" - config_name: "E" data_files: - split: train path: "data/E/*.parquet" - config_name: "E-mail" data_files: - split: train path: "data/E-mail/*.parquet" - config_name: "EBNF" data_files: - split: train path: "data/EBNF/*.parquet" - config_name: "ECL" data_files: - split: train path: "data/ECL/*.parquet" - config_name: "ECLiPSe" data_files: - split: train path: "data/ECLiPSe/*.parquet" - config_name: "EJS" data_files: - split: train path: "data/EJS/*.parquet" - config_name: "EQ" data_files: - split: train path: "data/EQ/*.parquet" - config_name: "Eagle" data_files: - split: train path: "data/Eagle/*.parquet" - config_name: "Earthly" data_files: - split: train path: "data/Earthly/*.parquet" - config_name: "Easybuild" data_files: - split: train path: "data/Easybuild/*.parquet" - config_name: "Ecere_Projects" data_files: - split: train path: "data/Ecere_Projects/*.parquet" - config_name: "EditorConfig" data_files: - split: train path: "data/EditorConfig/*.parquet" - config_name: "Edje_Data_Collection" data_files: - split: train path: "data/Edje_Data_Collection/*.parquet" - config_name: "Eiffel" data_files: - split: train path: "data/Eiffel/*.parquet" - config_name: "Elixir" data_files: - split: train path: "data/Elixir/*.parquet" - config_name: "Elm" data_files: - split: train path: "data/Elm/*.parquet" - config_name: "Elvish" data_files: - split: train path: "data/Elvish/*.parquet" - config_name: "Emacs_Lisp" data_files: - split: train path: "data/Emacs_Lisp/*.parquet" - config_name: "EmberScript" data_files: - split: train path: "data/EmberScript/*.parquet" - config_name: "Erlang" data_files: - split: train path: "data/Erlang/*.parquet" - config_name: "Euphoria" data_files: - split: train path: "data/Euphoria/*.parquet" - config_name: "F-Sharp" data_files: - split: train path: "data/F-Sharp/*.parquet" - config_name: "F-Star" data_files: - split: train path: "data/F-Star/*.parquet" - config_name: "FIGlet_Font" data_files: - split: train path: "data/FIGlet_Font/*.parquet" - config_name: "FLUX" data_files: - split: train path: "data/FLUX/*.parquet" - config_name: "Factor" data_files: - split: train path: "data/Factor/*.parquet" - config_name: "Fancy" data_files: - split: train path: "data/Fancy/*.parquet" - config_name: "Fantom" data_files: - split: train path: "data/Fantom/*.parquet" - config_name: "Faust" data_files: - split: train path: "data/Faust/*.parquet" - config_name: "Fennel" data_files: - split: train path: "data/Fennel/*.parquet" - config_name: "Filebench_WML" data_files: - split: train path: "data/Filebench_WML/*.parquet" - config_name: "Filterscript" data_files: - split: train path: "data/Filterscript/*.parquet" - config_name: "Fluent" data_files: - split: train path: "data/Fluent/*.parquet" - config_name: "Formatted" data_files: - split: train path: "data/Formatted/*.parquet" - config_name: "Forth" data_files: - split: train path: "data/Forth/*.parquet" - config_name: "Fortran" data_files: - split: train path: "data/Fortran/*.parquet" - config_name: "Fortran_Free_Form" data_files: - split: train path: "data/Fortran_Free_Form/*.parquet" - config_name: "FreeBasic" data_files: - split: train path: "data/FreeBasic/*.parquet" - config_name: "FreeMarker" data_files: - split: train path: "data/FreeMarker/*.parquet" - config_name: "Frege" data_files: - split: train path: "data/Frege/*.parquet" - config_name: "Futhark" data_files: - split: train path: "data/Futhark/*.parquet" - config_name: "G-code" data_files: - split: train path: "data/G-code/*.parquet" - config_name: "GAML" data_files: - split: train path: "data/GAML/*.parquet" - config_name: "GAMS" data_files: - split: train path: "data/GAMS/*.parquet" - config_name: "GAP" data_files: - split: train path: "data/GAP/*.parquet" - config_name: "GCC_Machine_Description" data_files: - split: train path: "data/GCC_Machine_Description/*.parquet" - config_name: "GDB" data_files: - split: train path: "data/GDB/*.parquet" - config_name: "GDScript" data_files: - split: train path: "data/GDScript/*.parquet" - config_name: "GEDCOM" data_files: - split: train path: "data/GEDCOM/*.parquet" - config_name: "GLSL" data_files: - split: train path: "data/GLSL/*.parquet" - config_name: "GN" data_files: - split: train path: "data/GN/*.parquet" - config_name: "GSC" data_files: - split: train path: "data/GSC/*.parquet" - config_name: "Game_Maker_Language" data_files: - split: train path: "data/Game_Maker_Language/*.parquet" - config_name: "Gemfile.lock" data_files: - split: train path: "data/Gemfile.lock/*.parquet" - config_name: "Gemini" data_files: - split: train path: "data/Gemini/*.parquet" - config_name: "Genero" data_files: - split: train path: "data/Genero/*.parquet" - config_name: "Genero_Forms" data_files: - split: train path: "data/Genero_Forms/*.parquet" - config_name: "Genie" data_files: - split: train path: "data/Genie/*.parquet" - config_name: "Genshi" data_files: - split: train path: "data/Genshi/*.parquet" - config_name: "Gentoo_Ebuild" data_files: - split: train path: "data/Gentoo_Ebuild/*.parquet" - config_name: "Gentoo_Eclass" data_files: - split: train path: "data/Gentoo_Eclass/*.parquet" - config_name: "Gerber_Image" data_files: - split: train path: "data/Gerber_Image/*.parquet" - config_name: "Gettext_Catalog" data_files: - split: train path: "data/Gettext_Catalog/*.parquet" - config_name: "Gherkin" data_files: - split: train path: "data/Gherkin/*.parquet" - config_name: "Git_Attributes" data_files: - split: train path: "data/Git_Attributes/*.parquet" - config_name: "Git_Config" data_files: - split: train path: "data/Git_Config/*.parquet" - config_name: "Git_Revision_List" data_files: - split: train path: "data/Git_Revision_List/*.parquet" - config_name: "Gleam" data_files: - split: train path: "data/Gleam/*.parquet" - config_name: "Glyph" data_files: - split: train path: "data/Glyph/*.parquet" - config_name: "Glyph_Bitmap_Distribution_Format" data_files: - split: train path: "data/Glyph_Bitmap_Distribution_Format/*.parquet" - config_name: "Gnuplot" data_files: - split: train path: "data/Gnuplot/*.parquet" - config_name: "Go" data_files: - split: train path: "data/Go/*.parquet" - config_name: "Go_Checksums" data_files: - split: train path: "data/Go_Checksums/*.parquet" - config_name: "Go_Module" data_files: - split: train path: "data/Go_Module/*.parquet" - config_name: "Golo" data_files: - split: train path: "data/Golo/*.parquet" - config_name: "Gosu" data_files: - split: train path: "data/Gosu/*.parquet" - config_name: "Grace" data_files: - split: train path: "data/Grace/*.parquet" - config_name: "Gradle" data_files: - split: train path: "data/Gradle/*.parquet" - config_name: "Grammatical_Framework" data_files: - split: train path: "data/Grammatical_Framework/*.parquet" - config_name: "GraphQL" data_files: - split: train path: "data/GraphQL/*.parquet" - config_name: "Graph_Modeling_Language" data_files: - split: train path: "data/Graph_Modeling_Language/*.parquet" - config_name: "Graphviz_(DOT)" data_files: - split: train path: "data/Graphviz_(DOT)/*.parquet" - config_name: "Groovy" data_files: - split: train path: "data/Groovy/*.parquet" - config_name: "Groovy_Server_Pages" data_files: - split: train path: "data/Groovy_Server_Pages/*.parquet" - config_name: "HAProxy" data_files: - split: train path: "data/HAProxy/*.parquet" - config_name: "HCL" data_files: - split: train path: "data/HCL/*.parquet" - config_name: "HLSL" data_files: - split: train path: "data/HLSL/*.parquet" - config_name: "HOCON" data_files: - split: train path: "data/HOCON/*.parquet" - config_name: "HTML" data_files: - split: train path: "data/HTML/*.parquet" - config_name: "HTML+ECR" data_files: - split: train path: "data/HTML+ECR/*.parquet" - config_name: "HTML+EEX" data_files: - split: train path: "data/HTML+EEX/*.parquet" - config_name: "HTML+ERB" data_files: - split: train path: "data/HTML+ERB/*.parquet" - config_name: "HTML+PHP" data_files: - split: train path: "data/HTML+PHP/*.parquet" - config_name: "HTML+Razor" data_files: - split: train path: "data/HTML+Razor/*.parquet" - config_name: "HTTP" data_files: - split: train path: "data/HTTP/*.parquet" - config_name: "HXML" data_files: - split: train path: "data/HXML/*.parquet" - config_name: "Hack" data_files: - split: train path: "data/Hack/*.parquet" - config_name: "Haml" data_files: - split: train path: "data/Haml/*.parquet" - config_name: "Handlebars" data_files: - split: train path: "data/Handlebars/*.parquet" - config_name: "Harbour" data_files: - split: train path: "data/Harbour/*.parquet" - config_name: "Haskell" data_files: - split: train path: "data/Haskell/*.parquet" - config_name: "Haxe" data_files: - split: train path: "data/Haxe/*.parquet" - config_name: "HiveQL" data_files: - split: train path: "data/HiveQL/*.parquet" - config_name: "HolyC" data_files: - split: train path: "data/HolyC/*.parquet" - config_name: "Hy" data_files: - split: train path: "data/Hy/*.parquet" - config_name: "HyPhy" data_files: - split: train path: "data/HyPhy/*.parquet" - config_name: "IDL" data_files: - split: train path: "data/IDL/*.parquet" - config_name: "IGOR_Pro" data_files: - split: train path: "data/IGOR_Pro/*.parquet" - config_name: "INI" data_files: - split: train path: "data/INI/*.parquet" - config_name: "IRC_log" data_files: - split: train path: "data/IRC_log/*.parquet" - config_name: "Idris" data_files: - split: train path: "data/Idris/*.parquet" - config_name: "Ignore_List" data_files: - split: train path: "data/Ignore_List/*.parquet" - config_name: "ImageJ_Macro" data_files: - split: train path: "data/ImageJ_Macro/*.parquet" - config_name: "Inform_7" data_files: - split: train path: "data/Inform_7/*.parquet" - config_name: "Inno_Setup" data_files: - split: train path: "data/Inno_Setup/*.parquet" - config_name: "Io" data_files: - split: train path: "data/Io/*.parquet" - config_name: "Ioke" data_files: - split: train path: "data/Ioke/*.parquet" - config_name: "Isabelle" data_files: - split: train path: "data/Isabelle/*.parquet" - config_name: "Isabelle_ROOT" data_files: - split: train path: "data/Isabelle_ROOT/*.parquet" - config_name: "J" data_files: - split: train path: "data/J/*.parquet" - config_name: "JAR_Manifest" data_files: - split: train path: "data/JAR_Manifest/*.parquet" - config_name: "JFlex" data_files: - split: train path: "data/JFlex/*.parquet" - config_name: "JSON" data_files: - split: train path: "data/JSON/*.parquet" - config_name: "JSON5" data_files: - split: train path: "data/JSON5/*.parquet" - config_name: "JSONLD" data_files: - split: train path: "data/JSONLD/*.parquet" - config_name: "JSON_with_Comments" data_files: - split: train path: "data/JSON_with_Comments/*.parquet" - config_name: "JSONiq" data_files: - split: train path: "data/JSONiq/*.parquet" - config_name: "Janet" data_files: - split: train path: "data/Janet/*.parquet" - config_name: "Jasmin" data_files: - split: train path: "data/Jasmin/*.parquet" - config_name: "Java" data_files: - split: train path: "data/Java/*.parquet" - config_name: "JavaScript" data_files: - split: train path: "data/JavaScript/*.parquet" - config_name: "JavaScript+ERB" data_files: - split: train path: "data/JavaScript+ERB/*.parquet" - config_name: "Java_Properties" data_files: - split: train path: "data/Java_Properties/*.parquet" - config_name: "Java_Server_Pages" data_files: - split: train path: "data/Java_Server_Pages/*.parquet" - config_name: "Jest_Snapshot" data_files: - split: train path: "data/Jest_Snapshot/*.parquet" - config_name: "JetBrains_MPS" data_files: - split: train path: "data/JetBrains_MPS/*.parquet" - config_name: "Jinja" data_files: - split: train path: "data/Jinja/*.parquet" - config_name: "Jison" data_files: - split: train path: "data/Jison/*.parquet" - config_name: "Jison_Lex" data_files: - split: train path: "data/Jison_Lex/*.parquet" - config_name: "Jolie" data_files: - split: train path: "data/Jolie/*.parquet" - config_name: "Jsonnet" data_files: - split: train path: "data/Jsonnet/*.parquet" - config_name: "Julia" data_files: - split: train path: "data/Julia/*.parquet" - config_name: "Jupyter_Notebook" data_files: - split: train path: "data/Jupyter_Notebook/*.parquet" - config_name: "KRL" data_files: - split: train path: "data/KRL/*.parquet" - config_name: "Kaitai_Struct" data_files: - split: train path: "data/Kaitai_Struct/*.parquet" - config_name: "KakouneScript" data_files: - split: train path: "data/KakouneScript/*.parquet" - config_name: "KiCad_Layout" data_files: - split: train path: "data/KiCad_Layout/*.parquet" - config_name: "KiCad_Legacy_Layout" data_files: - split: train path: "data/KiCad_Legacy_Layout/*.parquet" - config_name: "KiCad_Schematic" data_files: - split: train path: "data/KiCad_Schematic/*.parquet" - config_name: "Kit" data_files: - split: train path: "data/Kit/*.parquet" - config_name: "Kotlin" data_files: - split: train path: "data/Kotlin/*.parquet" - config_name: "Kusto" data_files: - split: train path: "data/Kusto/*.parquet" - config_name: "LFE" data_files: - split: train path: "data/LFE/*.parquet" - config_name: "LLVM" data_files: - split: train path: "data/LLVM/*.parquet" - config_name: "LOLCODE" data_files: - split: train path: "data/LOLCODE/*.parquet" - config_name: "LSL" data_files: - split: train path: "data/LSL/*.parquet" - config_name: "LTspice_Symbol" data_files: - split: train path: "data/LTspice_Symbol/*.parquet" - config_name: "LabVIEW" data_files: - split: train path: "data/LabVIEW/*.parquet" - config_name: "Lark" data_files: - split: train path: "data/Lark/*.parquet" - config_name: "Lasso" data_files: - split: train path: "data/Lasso/*.parquet" - config_name: "Latte" data_files: - split: train path: "data/Latte/*.parquet" - config_name: "Lean" data_files: - split: train path: "data/Lean/*.parquet" - config_name: "Less" data_files: - split: train path: "data/Less/*.parquet" - config_name: "Lex" data_files: - split: train path: "data/Lex/*.parquet" - config_name: "LigoLANG" data_files: - split: train path: "data/LigoLANG/*.parquet" - config_name: "LilyPond" data_files: - split: train path: "data/LilyPond/*.parquet" - config_name: "Limbo" data_files: - split: train path: "data/Limbo/*.parquet" - config_name: "Linker_Script" data_files: - split: train path: "data/Linker_Script/*.parquet" - config_name: "Linux_Kernel_Module" data_files: - split: train path: "data/Linux_Kernel_Module/*.parquet" - config_name: "Liquid" data_files: - split: train path: "data/Liquid/*.parquet" - config_name: "Literate_Agda" data_files: - split: train path: "data/Literate_Agda/*.parquet" - config_name: "Literate_CoffeeScript" data_files: - split: train path: "data/Literate_CoffeeScript/*.parquet" - config_name: "Literate_Haskell" data_files: - split: train path: "data/Literate_Haskell/*.parquet" - config_name: "LiveScript" data_files: - split: train path: "data/LiveScript/*.parquet" - config_name: "Logos" data_files: - split: train path: "data/Logos/*.parquet" - config_name: "Logtalk" data_files: - split: train path: "data/Logtalk/*.parquet" - config_name: "LookML" data_files: - split: train path: "data/LookML/*.parquet" - config_name: "LoomScript" data_files: - split: train path: "data/LoomScript/*.parquet" - config_name: "Lua" data_files: - split: train path: "data/Lua/*.parquet" - config_name: "M" data_files: - split: train path: "data/M/*.parquet" - config_name: "M4" data_files: - split: train path: "data/M4/*.parquet" - config_name: "M4Sugar" data_files: - split: train path: "data/M4Sugar/*.parquet" - config_name: "MATLAB" data_files: - split: train path: "data/MATLAB/*.parquet" - config_name: "MAXScript" data_files: - split: train path: "data/MAXScript/*.parquet" - config_name: "MLIR" data_files: - split: train path: "data/MLIR/*.parquet" - config_name: "MQL4" data_files: - split: train path: "data/MQL4/*.parquet" - config_name: "MQL5" data_files: - split: train path: "data/MQL5/*.parquet" - config_name: "MTML" data_files: - split: train path: "data/MTML/*.parquet" - config_name: "MUF" data_files: - split: train path: "data/MUF/*.parquet" - config_name: "Macaulay2" data_files: - split: train path: "data/Macaulay2/*.parquet" - config_name: "Makefile" data_files: - split: train path: "data/Makefile/*.parquet" - config_name: "Mako" data_files: - split: train path: "data/Mako/*.parquet" - config_name: "Markdown" data_files: - split: train path: "data/Markdown/*.parquet" - config_name: "Marko" data_files: - split: train path: "data/Marko/*.parquet" - config_name: "Mask" data_files: - split: train path: "data/Mask/*.parquet" - config_name: "Mathematica" data_files: - split: train path: "data/Mathematica/*.parquet" - config_name: "Maven_POM" data_files: - split: train path: "data/Maven_POM/*.parquet" - config_name: "Max" data_files: - split: train path: "data/Max/*.parquet" - config_name: "Mercury" data_files: - split: train path: "data/Mercury/*.parquet" - config_name: "Meson" data_files: - split: train path: "data/Meson/*.parquet" - config_name: "Metal" data_files: - split: train path: "data/Metal/*.parquet" - config_name: "Microsoft_Developer_Studio_Project" data_files: - split: train path: "data/Microsoft_Developer_Studio_Project/*.parquet" - config_name: "Microsoft_Visual_Studio_Solution" data_files: - split: train path: "data/Microsoft_Visual_Studio_Solution/*.parquet" - config_name: "MiniD" data_files: - split: train path: "data/MiniD/*.parquet" - config_name: "MiniYAML" data_files: - split: train path: "data/MiniYAML/*.parquet" - config_name: "Mint" data_files: - split: train path: "data/Mint/*.parquet" - config_name: "Mirah" data_files: - split: train path: "data/Mirah/*.parquet" - config_name: "Modelica" data_files: - split: train path: "data/Modelica/*.parquet" - config_name: "Modula-2" data_files: - split: train path: "data/Modula-2/*.parquet" - config_name: "Modula-3" data_files: - split: train path: "data/Modula-3/*.parquet" - config_name: "Module_Management_System" data_files: - split: train path: "data/Module_Management_System/*.parquet" - config_name: "Monkey" data_files: - split: train path: "data/Monkey/*.parquet" - config_name: "Monkey_C" data_files: - split: train path: "data/Monkey_C/*.parquet" - config_name: "Moocode" data_files: - split: train path: "data/Moocode/*.parquet" - config_name: "MoonScript" data_files: - split: train path: "data/MoonScript/*.parquet" - config_name: "Motoko" data_files: - split: train path: "data/Motoko/*.parquet" - config_name: "Motorola_68K_Assembly" data_files: - split: train path: "data/Motorola_68K_Assembly/*.parquet" - config_name: "Move" data_files: - split: train path: "data/Move/*.parquet" - config_name: "Muse" data_files: - split: train path: "data/Muse/*.parquet" - config_name: "Mustache" data_files: - split: train path: "data/Mustache/*.parquet" - config_name: "Myghty" data_files: - split: train path: "data/Myghty/*.parquet" - config_name: "NASL" data_files: - split: train path: "data/NASL/*.parquet" - config_name: "NCL" data_files: - split: train path: "data/NCL/*.parquet" - config_name: "NEON" data_files: - split: train path: "data/NEON/*.parquet" - config_name: "NL" data_files: - split: train path: "data/NL/*.parquet" - config_name: "NPM_Config" data_files: - split: train path: "data/NPM_Config/*.parquet" - config_name: "NSIS" data_files: - split: train path: "data/NSIS/*.parquet" - config_name: "NWScript" data_files: - split: train path: "data/NWScript/*.parquet" - config_name: "Nasal" data_files: - split: train path: "data/Nasal/*.parquet" - config_name: "Nearley" data_files: - split: train path: "data/Nearley/*.parquet" - config_name: "Nemerle" data_files: - split: train path: "data/Nemerle/*.parquet" - config_name: "NetLinx" data_files: - split: train path: "data/NetLinx/*.parquet" - config_name: "NetLinx+ERB" data_files: - split: train path: "data/NetLinx+ERB/*.parquet" - config_name: "NetLogo" data_files: - split: train path: "data/NetLogo/*.parquet" - config_name: "NewLisp" data_files: - split: train path: "data/NewLisp/*.parquet" - config_name: "Nextflow" data_files: - split: train path: "data/Nextflow/*.parquet" - config_name: "Nginx" data_files: - split: train path: "data/Nginx/*.parquet" - config_name: "Nim" data_files: - split: train path: "data/Nim/*.parquet" - config_name: "Ninja" data_files: - split: train path: "data/Ninja/*.parquet" - config_name: "Nit" data_files: - split: train path: "data/Nit/*.parquet" - config_name: "Nix" data_files: - split: train path: "data/Nix/*.parquet" - config_name: "Nu" data_files: - split: train path: "data/Nu/*.parquet" - config_name: "NumPy" data_files: - split: train path: "data/NumPy/*.parquet" - config_name: "Nunjucks" data_files: - split: train path: "data/Nunjucks/*.parquet" - config_name: "OCaml" data_files: - split: train path: "data/OCaml/*.parquet" - config_name: "ObjDump" data_files: - split: train path: "data/ObjDump/*.parquet" - config_name: "ObjectScript" data_files: - split: train path: "data/ObjectScript/*.parquet" - config_name: "Object_Data_Instance_Notation" data_files: - split: train path: "data/Object_Data_Instance_Notation/*.parquet" - config_name: "Objective-C" data_files: - split: train path: "data/Objective-C/*.parquet" - config_name: "Objective-C++" data_files: - split: train path: "data/Objective-C++/*.parquet" - config_name: "Objective-J" data_files: - split: train path: "data/Objective-J/*.parquet" - config_name: "Odin" data_files: - split: train path: "data/Odin/*.parquet" - config_name: "Omgrofl" data_files: - split: train path: "data/Omgrofl/*.parquet" - config_name: "Opa" data_files: - split: train path: "data/Opa/*.parquet" - config_name: "Opal" data_files: - split: train path: "data/Opal/*.parquet" - config_name: "OpenCL" data_files: - split: train path: "data/OpenCL/*.parquet" - config_name: "OpenEdge_ABL" data_files: - split: train path: "data/OpenEdge_ABL/*.parquet" - config_name: "OpenQASM" data_files: - split: train path: "data/OpenQASM/*.parquet" - config_name: "OpenRC_runscript" data_files: - split: train path: "data/OpenRC_runscript/*.parquet" - config_name: "OpenSCAD" data_files: - split: train path: "data/OpenSCAD/*.parquet" - config_name: "OpenStep_Property_List" data_files: - split: train path: "data/OpenStep_Property_List/*.parquet" - config_name: "OpenType_Feature_File" data_files: - split: train path: "data/OpenType_Feature_File/*.parquet" - config_name: "Open_Policy_Agent" data_files: - split: train path: "data/Open_Policy_Agent/*.parquet" - config_name: "Org" data_files: - split: train path: "data/Org/*.parquet" - config_name: "Ox" data_files: - split: train path: "data/Ox/*.parquet" - config_name: "Oxygene" data_files: - split: train path: "data/Oxygene/*.parquet" - config_name: "Oz" data_files: - split: train path: "data/Oz/*.parquet" - config_name: "P4" data_files: - split: train path: "data/P4/*.parquet" - config_name: "PEG.js" data_files: - split: train path: "data/PEG.js/*.parquet" - config_name: "PHP" data_files: - split: train path: "data/PHP/*.parquet" - config_name: "PLSQL" data_files: - split: train path: "data/PLSQL/*.parquet" - config_name: "PLpgSQL" data_files: - split: train path: "data/PLpgSQL/*.parquet" - config_name: "POV-Ray_SDL" data_files: - split: train path: "data/POV-Ray_SDL/*.parquet" - config_name: "Pan" data_files: - split: train path: "data/Pan/*.parquet" - config_name: "Papyrus" data_files: - split: train path: "data/Papyrus/*.parquet" - config_name: "Parrot" data_files: - split: train path: "data/Parrot/*.parquet" - config_name: "Parrot_Assembly" data_files: - split: train path: "data/Parrot_Assembly/*.parquet" - config_name: "Parrot_Internal_Representation" data_files: - split: train path: "data/Parrot_Internal_Representation/*.parquet" - config_name: "Pascal" data_files: - split: train path: "data/Pascal/*.parquet" - config_name: "Pawn" data_files: - split: train path: "data/Pawn/*.parquet" - config_name: "Pep8" data_files: - split: train path: "data/Pep8/*.parquet" - config_name: "Perl" data_files: - split: train path: "data/Perl/*.parquet" - config_name: "Pic" data_files: - split: train path: "data/Pic/*.parquet" - config_name: "Pickle" data_files: - split: train path: "data/Pickle/*.parquet" - config_name: "PicoLisp" data_files: - split: train path: "data/PicoLisp/*.parquet" - config_name: "PigLatin" data_files: - split: train path: "data/PigLatin/*.parquet" - config_name: "Pike" data_files: - split: train path: "data/Pike/*.parquet" - config_name: "PlantUML" data_files: - split: train path: "data/PlantUML/*.parquet" - config_name: "Pod" data_files: - split: train path: "data/Pod/*.parquet" - config_name: "Pod_6" data_files: - split: train path: "data/Pod_6/*.parquet" - config_name: "PogoScript" data_files: - split: train path: "data/PogoScript/*.parquet" - config_name: "Pony" data_files: - split: train path: "data/Pony/*.parquet" - config_name: "Portugol" data_files: - split: train path: "data/Portugol/*.parquet" - config_name: "PostCSS" data_files: - split: train path: "data/PostCSS/*.parquet" - config_name: "PostScript" data_files: - split: train path: "data/PostScript/*.parquet" - config_name: "PowerBuilder" data_files: - split: train path: "data/PowerBuilder/*.parquet" - config_name: "PowerShell" data_files: - split: train path: "data/PowerShell/*.parquet" - config_name: "Prisma" data_files: - split: train path: "data/Prisma/*.parquet" - config_name: "Processing" data_files: - split: train path: "data/Processing/*.parquet" - config_name: "Procfile" data_files: - split: train path: "data/Procfile/*.parquet" - config_name: "Proguard" data_files: - split: train path: "data/Proguard/*.parquet" - config_name: "Prolog" data_files: - split: train path: "data/Prolog/*.parquet" - config_name: "Promela" data_files: - split: train path: "data/Promela/*.parquet" - config_name: "Propeller_Spin" data_files: - split: train path: "data/Propeller_Spin/*.parquet" - config_name: "Protocol_Buffer" data_files: - split: train path: "data/Protocol_Buffer/*.parquet" - config_name: "Protocol_Buffer_Text_Format" data_files: - split: train path: "data/Protocol_Buffer_Text_Format/*.parquet" - config_name: "Public_Key" data_files: - split: train path: "data/Public_Key/*.parquet" - config_name: "Pug" data_files: - split: train path: "data/Pug/*.parquet" - config_name: "Puppet" data_files: - split: train path: "data/Puppet/*.parquet" - config_name: "PureBasic" data_files: - split: train path: "data/PureBasic/*.parquet" - config_name: "PureScript" data_files: - split: train path: "data/PureScript/*.parquet" - config_name: "Pure_Data" data_files: - split: train path: "data/Pure_Data/*.parquet" - config_name: "Python" data_files: - split: train path: "data/Python/*.parquet" - config_name: "Python_traceback" data_files: - split: train path: "data/Python_traceback/*.parquet" - config_name: "Q-Sharp" data_files: - split: train path: "data/Q-Sharp/*.parquet" - config_name: "QML" data_files: - split: train path: "data/QML/*.parquet" - config_name: "QMake" data_files: - split: train path: "data/QMake/*.parquet" - config_name: "Qt_Script" data_files: - split: train path: "data/Qt_Script/*.parquet" - config_name: "Quake" data_files: - split: train path: "data/Quake/*.parquet" - config_name: "R" data_files: - split: train path: "data/R/*.parquet" - config_name: "RAML" data_files: - split: train path: "data/RAML/*.parquet" - config_name: "RDoc" data_files: - split: train path: "data/RDoc/*.parquet" - config_name: "REALbasic" data_files: - split: train path: "data/REALbasic/*.parquet" - config_name: "REXX" data_files: - split: train path: "data/REXX/*.parquet" - config_name: "RMarkdown" data_files: - split: train path: "data/RMarkdown/*.parquet" - config_name: "RPC" data_files: - split: train path: "data/RPC/*.parquet" - config_name: "RPGLE" data_files: - split: train path: "data/RPGLE/*.parquet" - config_name: "RPM_Spec" data_files: - split: train path: "data/RPM_Spec/*.parquet" - config_name: "RUNOFF" data_files: - split: train path: "data/RUNOFF/*.parquet" - config_name: "Racket" data_files: - split: train path: "data/Racket/*.parquet" - config_name: "Ragel" data_files: - split: train path: "data/Ragel/*.parquet" - config_name: "Raku" data_files: - split: train path: "data/Raku/*.parquet" - config_name: "Rascal" data_files: - split: train path: "data/Rascal/*.parquet" - config_name: "Raw_token_data" data_files: - split: train path: "data/Raw_token_data/*.parquet" - config_name: "ReScript" data_files: - split: train path: "data/ReScript/*.parquet" - config_name: "Readline_Config" data_files: - split: train path: "data/Readline_Config/*.parquet" - config_name: "Reason" data_files: - split: train path: "data/Reason/*.parquet" - config_name: "ReasonLIGO" data_files: - split: train path: "data/ReasonLIGO/*.parquet" - config_name: "Rebol" data_files: - split: train path: "data/Rebol/*.parquet" - config_name: "Record_Jar" data_files: - split: train path: "data/Record_Jar/*.parquet" - config_name: "Red" data_files: - split: train path: "data/Red/*.parquet" - config_name: "Redcode" data_files: - split: train path: "data/Redcode/*.parquet" - config_name: "Redirect_Rules" data_files: - split: train path: "data/Redirect_Rules/*.parquet" - config_name: "Regular_Expression" data_files: - split: train path: "data/Regular_Expression/*.parquet" - config_name: "Ren-Py" data_files: - split: train path: "data/Ren-Py/*.parquet" - config_name: "RenderScript" data_files: - split: train path: "data/RenderScript/*.parquet" - config_name: "Rich_Text_Format" data_files: - split: train path: "data/Rich_Text_Format/*.parquet" - config_name: "Ring" data_files: - split: train path: "data/Ring/*.parquet" - config_name: "Riot" data_files: - split: train path: "data/Riot/*.parquet" - config_name: "RobotFramework" data_files: - split: train path: "data/RobotFramework/*.parquet" - config_name: "Roff" data_files: - split: train path: "data/Roff/*.parquet" - config_name: "Roff_Manpage" data_files: - split: train path: "data/Roff_Manpage/*.parquet" - config_name: "Rouge" data_files: - split: train path: "data/Rouge/*.parquet" - config_name: "RouterOS_Script" data_files: - split: train path: "data/RouterOS_Script/*.parquet" - config_name: "Ruby" data_files: - split: train path: "data/Ruby/*.parquet" - config_name: "Rust" data_files: - split: train path: "data/Rust/*.parquet" - config_name: "SAS" data_files: - split: train path: "data/SAS/*.parquet" - config_name: "SCSS" data_files: - split: train path: "data/SCSS/*.parquet" - config_name: "SELinux_Policy" data_files: - split: train path: "data/SELinux_Policy/*.parquet" - config_name: "SMT" data_files: - split: train path: "data/SMT/*.parquet" - config_name: "SPARQL" data_files: - split: train path: "data/SPARQL/*.parquet" - config_name: "SQF" data_files: - split: train path: "data/SQF/*.parquet" - config_name: "SQL" data_files: - split: train path: "data/SQL/*.parquet" - config_name: "SQLPL" data_files: - split: train path: "data/SQLPL/*.parquet" - config_name: "SRecode_Template" data_files: - split: train path: "data/SRecode_Template/*.parquet" - config_name: "SSH_Config" data_files: - split: train path: "data/SSH_Config/*.parquet" - config_name: "STAR" data_files: - split: train path: "data/STAR/*.parquet" - config_name: "STL" data_files: - split: train path: "data/STL/*.parquet" - config_name: "STON" data_files: - split: train path: "data/STON/*.parquet" - config_name: "SVG" data_files: - split: train path: "data/SVG/*.parquet" - config_name: "SWIG" data_files: - split: train path: "data/SWIG/*.parquet" - config_name: "Sage" data_files: - split: train path: "data/Sage/*.parquet" - config_name: "SaltStack" data_files: - split: train path: "data/SaltStack/*.parquet" - config_name: "Sass" data_files: - split: train path: "data/Sass/*.parquet" - config_name: "Scala" data_files: - split: train path: "data/Scala/*.parquet" - config_name: "Scaml" data_files: - split: train path: "data/Scaml/*.parquet" - config_name: "Scheme" data_files: - split: train path: "data/Scheme/*.parquet" - config_name: "Scilab" data_files: - split: train path: "data/Scilab/*.parquet" - config_name: "Self" data_files: - split: train path: "data/Self/*.parquet" - config_name: "ShaderLab" data_files: - split: train path: "data/ShaderLab/*.parquet" - config_name: "Shell" data_files: - split: train path: "data/Shell/*.parquet" - config_name: "ShellCheck_Config" data_files: - split: train path: "data/ShellCheck_Config/*.parquet" - config_name: "ShellSession" data_files: - split: train path: "data/ShellSession/*.parquet" - config_name: "Shen" data_files: - split: train path: "data/Shen/*.parquet" - config_name: "Sieve" data_files: - split: train path: "data/Sieve/*.parquet" - config_name: "Singularity" data_files: - split: train path: "data/Singularity/*.parquet" - config_name: "Slash" data_files: - split: train path: "data/Slash/*.parquet" - config_name: "Slice" data_files: - split: train path: "data/Slice/*.parquet" - config_name: "Slim" data_files: - split: train path: "data/Slim/*.parquet" - config_name: "SmPL" data_files: - split: train path: "data/SmPL/*.parquet" - config_name: "Smali" data_files: - split: train path: "data/Smali/*.parquet" - config_name: "Smalltalk" data_files: - split: train path: "data/Smalltalk/*.parquet" - config_name: "Smarty" data_files: - split: train path: "data/Smarty/*.parquet" - config_name: "Solidity" data_files: - split: train path: "data/Solidity/*.parquet" - config_name: "Soong" data_files: - split: train path: "data/Soong/*.parquet" - config_name: "SourcePawn" data_files: - split: train path: "data/SourcePawn/*.parquet" - config_name: "Spline_Font_Database" data_files: - split: train path: "data/Spline_Font_Database/*.parquet" - config_name: "Squirrel" data_files: - split: train path: "data/Squirrel/*.parquet" - config_name: "Stan" data_files: - split: train path: "data/Stan/*.parquet" - config_name: "Standard_ML" data_files: - split: train path: "data/Standard_ML/*.parquet" - config_name: "Starlark" data_files: - split: train path: "data/Starlark/*.parquet" - config_name: "Stata" data_files: - split: train path: "data/Stata/*.parquet" - config_name: "StringTemplate" data_files: - split: train path: "data/StringTemplate/*.parquet" - config_name: "Stylus" data_files: - split: train path: "data/Stylus/*.parquet" - config_name: "SubRip_Text" data_files: - split: train path: "data/SubRip_Text/*.parquet" - config_name: "SugarSS" data_files: - split: train path: "data/SugarSS/*.parquet" - config_name: "SuperCollider" data_files: - split: train path: "data/SuperCollider/*.parquet" - config_name: "Svelte" data_files: - split: train path: "data/Svelte/*.parquet" - config_name: "Swift" data_files: - split: train path: "data/Swift/*.parquet" - config_name: "SystemVerilog" data_files: - split: train path: "data/SystemVerilog/*.parquet" - config_name: "TI_Program" data_files: - split: train path: "data/TI_Program/*.parquet" - config_name: "TLA" data_files: - split: train path: "data/TLA/*.parquet" - config_name: "TOML" data_files: - split: train path: "data/TOML/*.parquet" - config_name: "TSQL" data_files: - split: train path: "data/TSQL/*.parquet" - config_name: "TSV" data_files: - split: train path: "data/TSV/*.parquet" - config_name: "TSX" data_files: - split: train path: "data/TSX/*.parquet" - config_name: "TXL" data_files: - split: train path: "data/TXL/*.parquet" - config_name: "Talon" data_files: - split: train path: "data/Talon/*.parquet" - config_name: "Tcl" data_files: - split: train path: "data/Tcl/*.parquet" - config_name: "Tcsh" data_files: - split: train path: "data/Tcsh/*.parquet" - config_name: "TeX" data_files: - split: train path: "data/TeX/*.parquet" - config_name: "Tea" data_files: - split: train path: "data/Tea/*.parquet" - config_name: "Terra" data_files: - split: train path: "data/Terra/*.parquet" - config_name: "Texinfo" data_files: - split: train path: "data/Texinfo/*.parquet" - config_name: "Text" data_files: - split: train path: "data/Text/*.parquet" - config_name: "TextMate_Properties" data_files: - split: train path: "data/TextMate_Properties/*.parquet" - config_name: "Textile" data_files: - split: train path: "data/Textile/*.parquet" - config_name: "Thrift" data_files: - split: train path: "data/Thrift/*.parquet" - config_name: "Turing" data_files: - split: train path: "data/Turing/*.parquet" - config_name: "Turtle" data_files: - split: train path: "data/Turtle/*.parquet" - config_name: "Twig" data_files: - split: train path: "data/Twig/*.parquet" - config_name: "TypeScript" data_files: - split: train path: "data/TypeScript/*.parquet" - config_name: "Type_Language" data_files: - split: train path: "data/Type_Language/*.parquet" - config_name: "Unified_Parallel_C" data_files: - split: train path: "data/Unified_Parallel_C/*.parquet" - config_name: "Unity3D_Asset" data_files: - split: train path: "data/Unity3D_Asset/*.parquet" - config_name: "Unix_Assembly" data_files: - split: train path: "data/Unix_Assembly/*.parquet" - config_name: "Uno" data_files: - split: train path: "data/Uno/*.parquet" - config_name: "UnrealScript" data_files: - split: train path: "data/UnrealScript/*.parquet" - config_name: "UrWeb" data_files: - split: train path: "data/UrWeb/*.parquet" - config_name: "V" data_files: - split: train path: "data/V/*.parquet" - config_name: "VBA" data_files: - split: train path: "data/VBA/*.parquet" - config_name: "VBScript" data_files: - split: train path: "data/VBScript/*.parquet" - config_name: "VCL" data_files: - split: train path: "data/VCL/*.parquet" - config_name: "VHDL" data_files: - split: train path: "data/VHDL/*.parquet" - config_name: "Vala" data_files: - split: train path: "data/Vala/*.parquet" - config_name: "Valve_Data_Format" data_files: - split: train path: "data/Valve_Data_Format/*.parquet" - config_name: "Velocity_Template_Language" data_files: - split: train path: "data/Velocity_Template_Language/*.parquet" - config_name: "Verilog" data_files: - split: train path: "data/Verilog/*.parquet" - config_name: "Vim_Help_File" data_files: - split: train path: "data/Vim_Help_File/*.parquet" - config_name: "Vim_Script" data_files: - split: train path: "data/Vim_Script/*.parquet" - config_name: "Vim_Snippet" data_files: - split: train path: "data/Vim_Snippet/*.parquet" - config_name: "Visual_Basic_.NET" data_files: - split: train path: "data/Visual_Basic_.NET/*.parquet" - config_name: "Volt" data_files: - split: train path: "data/Volt/*.parquet" - config_name: "Vue" data_files: - split: train path: "data/Vue/*.parquet" - config_name: "Vyper" data_files: - split: train path: "data/Vyper/*.parquet" - config_name: "Wavefront_Material" data_files: - split: train path: "data/Wavefront_Material/*.parquet" - config_name: "Wavefront_Object" data_files: - split: train path: "data/Wavefront_Object/*.parquet" - config_name: "WebAssembly" data_files: - split: train path: "data/WebAssembly/*.parquet" - config_name: "WebIDL" data_files: - split: train path: "data/WebIDL/*.parquet" - config_name: "WebVTT" data_files: - split: train path: "data/WebVTT/*.parquet" - config_name: "Web_Ontology_Language" data_files: - split: train path: "data/Web_Ontology_Language/*.parquet" - config_name: "Wget_Config" data_files: - split: train path: "data/Wget_Config/*.parquet" - config_name: "Whiley" data_files: - split: train path: "data/Whiley/*.parquet" - config_name: "Wikitext" data_files: - split: train path: "data/Wikitext/*.parquet" - config_name: "Win32_Message_File" data_files: - split: train path: "data/Win32_Message_File/*.parquet" - config_name: "Windows_Registry_Entries" data_files: - split: train path: "data/Windows_Registry_Entries/*.parquet" - config_name: "Witcher_Script" data_files: - split: train path: "data/Witcher_Script/*.parquet" - config_name: "Wollok" data_files: - split: train path: "data/Wollok/*.parquet" - config_name: "World_of_Warcraft_Addon_Data" data_files: - split: train path: "data/World_of_Warcraft_Addon_Data/*.parquet" - config_name: "Wren" data_files: - split: train path: "data/Wren/*.parquet" - config_name: "X10" data_files: - split: train path: "data/X10/*.parquet" - config_name: "XC" data_files: - split: train path: "data/XC/*.parquet" - config_name: "XCompose" data_files: - split: train path: "data/XCompose/*.parquet" - config_name: "XML" data_files: - split: train path: "data/XML/*.parquet" - config_name: "XML_Property_List" data_files: - split: train path: "data/XML_Property_List/*.parquet" - config_name: "XPages" data_files: - split: train path: "data/XPages/*.parquet" - config_name: "XProc" data_files: - split: train path: "data/XProc/*.parquet" - config_name: "XQuery" data_files: - split: train path: "data/XQuery/*.parquet" - config_name: "XS" data_files: - split: train path: "data/XS/*.parquet" - config_name: "XSLT" data_files: - split: train path: "data/XSLT/*.parquet" - config_name: "X_BitMap" data_files: - split: train path: "data/X_BitMap/*.parquet" - config_name: "X_Font_Directory_Index" data_files: - split: train path: "data/X_Font_Directory_Index/*.parquet" - config_name: "X_PixMap" data_files: - split: train path: "data/X_PixMap/*.parquet" - config_name: "Xojo" data_files: - split: train path: "data/Xojo/*.parquet" - config_name: "Xonsh" data_files: - split: train path: "data/Xonsh/*.parquet" - config_name: "Xtend" data_files: - split: train path: "data/Xtend/*.parquet" - config_name: "YAML" data_files: - split: train path: "data/YAML/*.parquet" - config_name: "YANG" data_files: - split: train path: "data/YANG/*.parquet" - config_name: "YARA" data_files: - split: train path: "data/YARA/*.parquet" - config_name: "YASnippet" data_files: - split: train path: "data/YASnippet/*.parquet" - config_name: "Yacc" data_files: - split: train path: "data/Yacc/*.parquet" - config_name: "Yul" data_files: - split: train path: "data/Yul/*.parquet" - config_name: "ZAP" data_files: - split: train path: "data/ZAP/*.parquet" - config_name: "ZIL" data_files: - split: train path: "data/ZIL/*.parquet" - config_name: "Zeek" data_files: - split: train path: "data/Zeek/*.parquet" - config_name: "ZenScript" data_files: - split: train path: "data/ZenScript/*.parquet" - config_name: "Zephir" data_files: - split: train path: "data/Zephir/*.parquet" - config_name: "Zig" data_files: - split: train path: "data/Zig/*.parquet" - config_name: "Zimpl" data_files: - split: train path: "data/Zimpl/*.parquet" - config_name: "cURL_Config" data_files: - split: train path: "data/cURL_Config/*.parquet" - config_name: "desktop" data_files: - split: train path: "data/desktop/*.parquet" - config_name: "dircolors" data_files: - split: train path: "data/dircolors/*.parquet" - config_name: "eC" data_files: - split: train path: "data/eC/*.parquet" - config_name: "edn" data_files: - split: train path: "data/edn/*.parquet" - config_name: "fish" data_files: - split: train path: "data/fish/*.parquet" - config_name: "hoon" data_files: - split: train path: "data/hoon/*.parquet" - config_name: "jq" data_files: - split: train path: "data/jq/*.parquet" - config_name: "kvlang" data_files: - split: train path: "data/kvlang/*.parquet" - config_name: "mIRC_Script" data_files: - split: train path: "data/mIRC_Script/*.parquet" - config_name: "mcfunction" data_files: - split: train path: "data/mcfunction/*.parquet" - config_name: "mupad" data_files: - split: train path: "data/mupad/*.parquet" - config_name: "nanorc" data_files: - split: train path: "data/nanorc/*.parquet" - config_name: "nesC" data_files: - split: train path: "data/nesC/*.parquet" - config_name: "ooc" data_files: - split: train path: "data/ooc/*.parquet" - config_name: "q" data_files: - split: train path: "data/q/*.parquet" - config_name: "reStructuredText" data_files: - split: train path: "data/reStructuredText/*.parquet" - config_name: "robots.txt" data_files: - split: train path: "data/robots.txt/*.parquet" - config_name: "sed" data_files: - split: train path: "data/sed/*.parquet" - config_name: "wdl" data_files: - split: train path: "data/wdl/*.parquet" - config_name: "wisp" data_files: - split: train path: "data/wisp/*.parquet" - config_name: "xBase" data_files: - split: train path: "data/xBase/*.parquet" --- # The Stack v2 <center> <img src="https://huggingface.co/datasets/bigcode/admin_private/resolve/main/thestackv2_banner.png" alt="Stackv2" width="900" height="600"> </center> ## Dataset Description - **Homepage:** https://www.bigcode-project.org/ - **Repository:** https://github.com/bigcode-project - **Paper:** [Link](https://huggingface.co/papers/2402.19173) - **Point of Contact:** [email protected] The dataset consists of 4 versions: - [`bigcode/the-stack-v2`](https://huggingface.co/datasets/bigcode/the-stack-v2): the full "The Stack v2" dataset **<-- you are here** - [`bigcode/the-stack-v2-dedup`](https://huggingface.co/datasets/bigcode/the-stack-v2-dedup): based on the `bigcode/the-stack-v2` but further near-deduplicated - [`bigcode/the-stack-v2-train-full-ids`](https://huggingface.co/datasets/bigcode/the-stack-v2-train-full-ids): based on the `bigcode/the-stack-v2-dedup` dataset but further filtered with heuristics and spanning 600+ programming languages. The data is grouped into repositories. - [`bigcode/the-stack-v2-train-smol-ids`](https://huggingface.co/datasets/bigcode/the-stack-v2-train-smol-ids): based on the `bigcode/the-stack-v2-dedup` dataset but further filtered with heuristics and spanning 17 programming languages. The data is grouped into repositories. **These datasets only contain the SWHIDs to download the code files and not the content of the files itself. See examples below to see how to download content. We are working on making the training datasets available in the coming weeks.** The Stack v2 is significantly larger than v1: ||The Stack v1|The Stack v2| |-|-|-| | full | 6.4TB | 67.5TB | | dedup | 2.9TB | 32.1TB | | train (full) | ~200B tokens | ~900B tokens | ### Changelog |Release|Description| |-|-| | v2.1.0 | Removed repositories that opted out before 2024-04-09. Removed unreachable/private repositories (according to SWH) | | v2.0.1 | Removed repositories that opted out before 2023-10-20. StarCoder2 was trained on this version | | v2.0 | Initial release of the Stack v2 | ### Dataset Summary The Stack v2 contains over 3B files in 600+ programming and markup languages. The dataset was created as part of the [BigCode Project](https://www.bigcode-project.org/), an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. This dataset is derived from the Software Heritage archive, the largest public archive of software source code and accompanying development history. Software Heritage is an open, non profit initiative to collect, preserve, and share the source code of all publicly available software, launched by Inria, in partnership with UNESCO. We acknowledge Software Heritage for providing access to this invaluable resource. For more details, visit the [Software Heritage website](https://www.softwareheritage.org). ### Languages The dataset contains 658 languages. The full list can be found in the [language stats table](https://huggingface.co/datasets/bigcode/the-stack-v2/blob/main/language_stats.csv). ### How to use it ```python from datasets import load_dataset # full dataset (file IDs only) ds = load_dataset("bigcode/the-stack-v2", split="train") # specific language (e.g. Dockerfiles) ds = load_dataset("bigcode/the-stack-v2", "Dockerfile", split="train") # dataset streaming (will only download the data as needed) ds = load_dataset("bigcode/the-stack-v2", streaming=True, split="train") for sample in iter(ds): print(sample) ``` #### Downloading the file contents The file contents are stored in the Software Heritage S3 bucket to ensure data compliance. Downloading data in bulk requires an agreement with SoftwareHeritage and INRIA as stated in the dataset agreement. Make sure to configure your environment with your [AWS credentials](https://awscli.amazonaws.com/v2/documentation/api/latest/reference/configure/index.html#examples). ```bash pip install smart_open[s3] ``` ```python import os import boto3 from smart_open import open from datasets import load_dataset session = boto3.Session( aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"], aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"]) s3 = session.client("s3") def download_contents(blob_id, src_encoding): s3_url = f"s3://softwareheritage/content/{blob_id}" with open(s3_url, "rb", compression=".gz", transport_params={"client": s3}) as fin: content = fin.read().decode(src_encoding) return {"content": content} ds = load_dataset("bigcode/the-stack-v2", split="train", streaming=True) ds = ds.map(lambda row: download_contents(row["blob_id"], row["src_encoding"])) for row in ds: print(row["content"]) break ``` ## Dataset Structure ### Data Fields * `blob_id` (`string`): Software Heritage (SWH) ID of the file on AWS S3. * `directory_id` (`string`): SWH ID of the root directory of the repository. * `path` (`string`): The file path within the repository. * `content_id` (`string`): SWH content ID. * `detected_licenses` (`string[]`): List of licenses (SPDX) detected by ScanCode. * `license_type` (`string`): Inferred license type (`permissive` or `no_license`). * `repo_name` (`string`): Repository name on GitHub. * `snapshot_id` (`string`): SWH snapshot ID. * `revision_id` (`string`): SWH revision (commit) ID. * `branch_name` (`string`): Repository branch name. * `visit_date` (`timestamp[ns]`): SWH crawl (snapshot) timestamp. * `revision_date` (`timestamp[ns]`): SWH revision (commit) timestamp. * `committer_date` (`timestamp[ns]`): SWH revision (commit) timestamp reported by the committer. * `github_id` (`int64`): GitHub identifier for the repository. * `star_events_count` (`int64`): number of stars calculated from GHArchive events. * `fork_events_count` (`int64`): number of forks calculated from GHArchive events. * `gha_license_id` (`string`): GHArchive SPDX license identifier, `None` if the repo is missing. * `gha_event_created_at` (`timestamp[ns]`): Timestamp of the latest event on GHArchive for this repository. * `gha_created_at` (`timestamp[ns]`): Timestamp of repository creation on GitHub, `None` if the repo is missing. * `gha_language` (`string`): Repository's primary programming language on GitHub, `None` if the repo is missing. * `src_encoding` (`string`): Original encoding of the file content befre converting to UTF-8. * `language` (`string`): Programming language of the file, detected by `go-enry / linguist`. * `is_vendor` (`bool`): Indicator of vendor file (external library), detected by `go-enry`. * `is_generated` (`bool`): Indicator of generated file (external library), detected by `go-enry`. * `length_bytes` (`int64`): Length of the file content in UTF-8 bytes. * `extension` (`string`): File extension. ### Data Splits The dataset has no splits and all data is loaded as train split by default. If you want to setup a custom train-test split beware that dataset contains a lot of near-duplicates which can cause leakage into the test split. ## Dataset Creation For more information on the dataset creation pipeline please refer to the [technical report](https://huggingface.co/papers/2402.19173). ### Curation Rationale One of the challenges faced by researchers working on code LLMs is the lack of openness and transparency around the development of these systems. Most prior works described the high-level data collection process but did not release the training data. It is therefore difficult for other researchers to fully reproduce these models and understand what kind of pre-training data leads to high-performing code LLMs. By releasing an open large-scale code dataset we hope to make training of code LLMs more reproducible. ### Source Data #### Data Collection 3.28B unique files belonging to 104.2M github repositories were collected by traversing the Software Heritage [2023-09-06](https://docs.softwareheritage.org/devel/swh-dataset/graph/dataset.html#graph-dataset-2023-09-06) graph dataset. Additional repository-level metadata was collected from [GitHub Archive](https://www.gharchive.org/) data up to 2023-09-14. The total uncompressed size of all files is 67.53TB. Near-deduplication was implemented in the pre-processing pipeline on top of exact deduplication. Roughly 40% of permissively licensed files were (near-)duplicates. The following are not stored: * Files that cannot contribute to training code: binary, empty, could not be decoded * Files larger than 10MB **Training Datasets**: For the training datasets the programming languages were filtered further to 17 and 600+ for the `the-stack-v2-smol-ids` and `the-stack-v2-full-ids` dataset, respecively. In addition, heuristics were applied to further increase the quality of the dataset. The code files are also grouped into repositories to allow to pretrain with full repository context. For more details see the [technical report](https://drive.google.com/file/d/17iGn3c-sYNiLyRSY-A85QOzgzGnGiVI3/view?usp=sharing). ##### License detection We extract repository-level license information from [GH Archive](https://www.gharchive.org/) for all repositories with matching names in the SWH dataset. When the repo-level license is not available, i.e., for 96.93\% of repositories, we use the [ScanCode Toolkit](https://github.com/nexB/scancode-toolkit) to detect file-level licenses as follows: * Find all filenames that could contain a license (e.g., LICENSE, MIT.txt, Apache2.0) or contain a reference to the license (e.g., README.md, GUIDELINES); * Apply ScanCode's license detection to the matching files and gather the SPDX IDs of the detected licenses; * Propagate the detected licenses to all files that have the same base path within the repository as the license file. The licenses we consider permissive are listed [here](https://huggingface.co/datasets/bigcode/the-stack-v2/blob/main/license_stats.csv). This list was compiled from the licenses approved by the [Blue Oak Council](https://blueoakcouncil.org/list), as well as licenses categorized as "Permissive" or "Public Domain" by [ScanCode](https://scancode-licensedb.aboutcode.org/). #### Who are the source language producers? The source (code) language producers are users of GitHub that created unique repository names up until 2023-09-06 (cutoff date). ### Personal and Sensitive Information The released dataset may contain sensitive information such as emails, IP addresses, and API/ssh keys that have previously been published to public repositories on GitHub. Deduplication has helped to reduce the amount of sensitive data that may exist. In the event that the dataset contains personal information, researchers should only use public, non-personal information in support of conducting and publishing their [open-access](https://en.wikipedia.org/wiki/Open_access) research. Personal information should not be used for spamming purposes, including sending unsolicited emails or selling of personal information. Complaints, removal requests, and "do not contact" requests can be sent to [email protected]. ### Opting out of The Stack v2 We are giving developers the ability to have their code removed from the dataset upon request. The process for submitting and enacting removal requests will keep evolving throughout the project as we receive feedback and build up more data governance tools. You can check if your code is in The Stack v2 with the following ["Am I In The Stack?" Space](https://huggingface.co/spaces/bigcode/in-the-stack). If you'd like to have your data removed from the dataset follow the [instructions on GitHub](https://github.com/bigcode-project/opt-out-v2). ## Considerations for Using the Data ### Social Impact of Dataset The Stack v2 is an output of the BigCode Project. BigCode aims to be responsible by design and by default. The project is conducted in the spirit of Open Science, focused on the responsible development of LLMs for code. With the release of The Stack v2, we aim to increase access, reproducibility, and transparency of code LLMs in the research community. Work to de-risk and improve on the implementation of ethical best practices of code LLMs is conducted in various BigCode working groups. The Legal, Ethics, and Governance working group has explored topics such as licensing (including copyleft and the intended use of permissively licensed code), attribution of generated code to original code, rights to restrict processing, the inclusion of Personally Identifiable Information (PII), and risks of malicious code, among other topics. This work is ongoing as of October 25th, 2022. We expect code LLMs to enable people from diverse backgrounds to write higher quality code and develop low-code applications. Mission-critical software could become easier to maintain as professional developers are guided by code-generating systems on how to write more robust and efficient code. While the social impact is intended to be positive, the increased accessibility of code LLMs comes with certain risks such as over-reliance on the generated code and long-term effects on the software development job market. A broader impact analysis relating to Code LLMs can be found in section 7 of this [paper](https://arxiv.org/abs/2107.03374). An in-depth risk assessments for Code LLMs can be found in section 4 of this [paper](https://arxiv.org/abs/2207.14157). ### Discussion of Biases The code collected from GitHub does not contain demographic information or proxy information about the demographics. However, it is not without risks, as the comments within the code may contain harmful or offensive language, which could be learned by the models. Widely adopted programming languages like C and Javascript are overrepresented compared to niche programming languages like Julia and Scala. Some programming languages such as SQL, Batchfile, TypeScript are less likely to be permissively licensed (4% vs the average 10%). This may result in a biased representation of those languages. Permissively licensed files also tend to be longer. The majority of natural language present in code from GitHub is English. ### Other Known Limitations One of the current limitations of The Stack v2 is that scraped HTML for websites may not be compliant with Web Content Accessibility Guidelines ([WCAG](https://www.w3.org/WAI/standards-guidelines/wcag/)). This could have an impact on HTML-generated code that may introduce web accessibility issues. The training dataset could contain malicious code and/or the model could be used to generate malware or ransomware. To the best of our knowledge, all files contained in the dataset are licensed with one of the permissive licenses (see list in [Licensing information](#licensing-information)) or no license. The accuracy of license attribution is limited by the accuracy of GHArchive and ScanCode Toolkit. Any mistakes should be reported to BigCode Project for review and follow-up as needed. ## Additional Information ### Dataset Curators 1. Harm de Vries, ServiceNow Research, [email protected] 2. Leandro von Werra, Hugging Face, [email protected] ### Licensing Information The Stack v2 is a collection of source code from repositories with various licenses. Any use of all or part of the code gathered in The Stack v2 must abide by the terms of the original licenses, including attribution clauses when relevant. We facilitate this by providing provenance information for each data point. The list of [SPDX license identifiers](https://spdx.org/licenses/) included in the dataset can be found [here](https://huggingface.co/datasets/bigcode/the-stack-v2/blob/main/license_stats.csv). ### Citation Information ```bash @misc{lozhkov2024starcoder, title={StarCoder 2 and The Stack v2: The Next Generation}, author={Anton Lozhkov and Raymond Li and Loubna Ben Allal and Federico Cassano and Joel Lamy-Poirier and Nouamane Tazi and Ao Tang and Dmytro Pykhtar and Jiawei Liu and Yuxiang Wei and Tianyang Liu and Max Tian and Denis Kocetkov and Arthur Zucker and Younes Belkada and Zijian Wang and Qian Liu and Dmitry Abulkhanov and Indraneil Paul and Zhuang Li and Wen-Ding Li and Megan Risdal and Jia Li and Jian Zhu and Terry Yue Zhuo and Evgenii Zheltonozhskii and Nii Osae Osae Dade and Wenhao Yu and Lucas Krauß and Naman Jain and Yixuan Su and Xuanli He and Manan Dey and Edoardo Abati and Yekun Chai and Niklas Muennighoff and Xiangru Tang and Muhtasham Oblokulov and Christopher Akiki and Marc Marone and Chenghao Mou and Mayank Mishra and Alex Gu and Binyuan Hui and Tri Dao and Armel Zebaze and Olivier Dehaene and Nicolas Patry and Canwen Xu and Julian McAuley and Han Hu and Torsten Scholak and Sebastien Paquet and Jennifer Robinson and Carolyn Jane Anderson and Nicolas Chapados and Mostofa Patwary and Nima Tajbakhsh and Yacine Jernite and Carlos Muñoz Ferrandis and Lingming Zhang and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries}, year={2024}, eprint={2402.19173}, archivePrefix={arXiv}, primaryClass={cs.SE} } ```
stanfordnlp/sst2
stanfordnlp
"2024-01-04T16:31:07Z"
12,666
103
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
"2022-06-13T14:01:47Z"
--- annotations_creators: - crowdsourced language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification paperswithcode_id: sst pretty_name: Stanford Sentiment Treebank v2 dataset_info: features: - name: idx dtype: int32 - name: sentence dtype: string - name: label dtype: class_label: names: '0': negative '1': positive splits: - name: train num_bytes: 4681603 num_examples: 67349 - name: validation num_bytes: 106252 num_examples: 872 - name: test num_bytes: 216640 num_examples: 1821 download_size: 3331058 dataset_size: 5004495 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Dataset Card for [Dataset Name] ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://nlp.stanford.edu/sentiment/ - **Repository:** - **Paper:** [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](https://www.aclweb.org/anthology/D13-1170/) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language. The corpus is based on the dataset introduced by Pang and Lee (2005) and consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford parser and includes a total of 215,154 unique phrases from those parse trees, each annotated by 3 human judges. Binary classification experiments on full sentences (negative or somewhat negative vs somewhat positive or positive with neutral sentences discarded) refer to the dataset as SST-2 or SST binary. ### Supported Tasks and Leaderboards - `sentiment-classification` ### Languages The text in the dataset is in English (`en`). ## Dataset Structure ### Data Instances ``` {'idx': 0, 'sentence': 'hide new secretions from the parental units ', 'label': 0} ``` ### Data Fields - `idx`: Monotonically increasing index ID. - `sentence`: Complete sentence expressing an opinion about a film. - `label`: Sentiment of the opinion, either "negative" (0) or positive (1). The test set labels are hidden (-1). ### Data Splits | | train | validation | test | |--------------------|---------:|-----------:|-----:| | Number of examples | 67349 | 872 | 1821 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? Rotten Tomatoes reviewers. ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information Unknown. ### Citation Information ```bibtex @inproceedings{socher-etal-2013-recursive, title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank", author = "Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher", booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing", month = oct, year = "2013", address = "Seattle, Washington, USA", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D13-1170", pages = "1631--1642", } ``` ### Contributions Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
HuggingFaceH4/ultrachat_200k
HuggingFaceH4
"2024-10-16T11:52:27Z"
12,620
490
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2305.14233", "region:us" ]
[ "text-generation" ]
"2023-10-24T08:24:57Z"
--- language: - en license: mit size_categories: - 100K<n<1M task_categories: - text-generation pretty_name: UltraChat 200k configs: - config_name: default data_files: - split: train_sft path: data/train_sft-* - split: test_sft path: data/test_sft-* - split: train_gen path: data/train_gen-* - split: test_gen path: data/test_gen-* dataset_info: features: - name: prompt dtype: string - name: prompt_id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train_sft num_bytes: 1397058554 num_examples: 207865 - name: test_sft num_bytes: 154695659 num_examples: 23110 - name: train_gen num_bytes: 1347396812 num_examples: 256032 - name: test_gen num_bytes: 148276089 num_examples: 28304 download_size: 1624049723 dataset_size: 3047427114 --- # Dataset Card for UltraChat 200k ## Dataset Description This is a heavily filtered version of the [UltraChat](https://github.com/thunlp/UltraChat) dataset and was used to train [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta), a state of the art 7b chat model. The original datasets consists of 1.4M dialogues generated by ChatGPT and spanning a wide range of topics. To create `UltraChat 200k`, we applied the following logic: - Selection of a subset of data for faster supervised fine tuning. - Truecasing of the dataset, as we observed around 5% of the data contained grammatical errors like "Hello. how are you?" instead of "Hello. How are you?" - Removal of dialogues where the assistant replies with phrases like "I do not have emotions" or "I don't have opinions", even for fact-based prompts that don't involve either. ## Dataset Structure The dataset has four splits, suitable for: * Supervised fine-tuning (`sft`). * Generation ranking (`gen`) via techniques like rejection sampling or PPO. The number of examples per split is shown as follows: | train_sft | test_sft | train_gen | test_gen | |:-------:|:-----------:|:-----:| :-----:| | 207865 | 23110 | 256032 | 28304 | The dataset is stored in parquet format with each entry using the following schema: ``` { "prompt": "Create a fully-developed protagonist who is challenged to survive within a dystopian society under the rule of a tyrant. ...", "messages":[ { "content": "Create a fully-developed protagonist who is challenged to survive within a dystopian society under the rule of a tyrant. ...", "role": "user" }, { "content": "Name: Ava\n\n Ava was just 16 years old when the world as she knew it came crashing down. The government had collapsed, leaving behind a chaotic and lawless society. ...", "role": "assistant" }, { "content": "Wow, Ava's story is so intense and inspiring! Can you provide me with more details. ...", "role": "user" }, { "content": "Certainly! ....", "role": "assistant" }, { "content": "That's really interesting! I would love to hear more...", "role": "user" } { "content": "Certainly! ....", "role": "assistant" }, ], "prompt_id": "d938b65dfe31f05f80eb8572964c6673eddbd68eff3db6bd234d7f1e3b86c2af" } ``` ## Citation If you find this dataset is useful in your work, please cite the original UltraChat dataset: ``` @misc{ding2023enhancing, title={Enhancing Chat Language Models by Scaling High-quality Instructional Conversations}, author={Ning Ding and Yulin Chen and Bokai Xu and Yujia Qin and Zhi Zheng and Shengding Hu and Zhiyuan Liu and Maosong Sun and Bowen Zhou}, year={2023}, eprint={2305.14233}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
oscar-corpus/oscar
oscar-corpus
"2024-03-21T17:07:49Z"
12,587
178
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:af", "language:als", "language:am", "language:an", "language:ar", "language:arz", "language:as", "language:ast", "language:av", "language:az", "language:azb", "language:ba", "language:bar", "language:bcl", "language:be", "language:bg", "language:bh", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bxr", "language:ca", "language:cbk", "language:ce", "language:ceb", "language:ckb", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:diq", "language:dsb", "language:dv", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:frr", "language:fy", "language:ga", "language:gd", "language:gl", "language:gn", "language:gom", "language:gu", "language:he", "language:hi", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:ie", "language:ilo", "language:io", "language:is", "language:it", "language:ja", "language:jbo", "language:jv", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:krc", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lb", "language:lez", "language:li", "language:lmo", "language:lo", "language:lrc", "language:lt", "language:lv", "language:mai", "language:mg", "language:mhr", "language:min", "language:mk", "language:ml", "language:mn", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nap", "language:nds", "language:ne", "language:new", "language:nl", "language:nn", "language:no", "language:oc", "language:or", "language:os", "language:pa", "language:pam", "language:pl", "language:pms", "language:pnb", "language:ps", "language:pt", "language:qu", "language:rm", "language:ro", "language:ru", "language:sa", "language:sah", "language:scn", "language:sd", "language:sh", "language:si", "language:sk", "language:sl", "language:so", "language:sq", "language:sr", "language:su", "language:sv", "language:sw", "language:ta", "language:te", "language:tg", "language:th", "language:tk", "language:tl", "language:tr", "language:tt", "language:tyv", "language:ug", "language:uk", "language:ur", "language:uz", "language:vec", "language:vi", "language:vo", "language:wa", "language:war", "language:wuu", "language:xal", "language:xmf", "language:yi", "language:yo", "language:yue", "language:zh", "license:cc0-1.0", "size_categories:100K<n<1M", "arxiv:2010.14571", "region:us" ]
[ "text-generation", "fill-mask" ]
"2022-03-02T23:29:22Z"
--- pretty_name: OSCAR annotations_creators: - no-annotation language_creators: - found language: - af - als - am - an - ar - arz - as - ast - av - az - azb - ba - bar - bcl - be - bg - bh - bn - bo - bpy - br - bs - bxr - ca - cbk - ce - ceb - ckb - cs - cv - cy - da - de - diq - dsb - dv - el - eml - en - eo - es - et - eu - fa - fi - fr - frr - fy - ga - gd - gl - gn - gom - gu - he - hi - hr - hsb - ht - hu - hy - ia - id - ie - ilo - io - is - it - ja - jbo - jv - ka - kk - km - kn - ko - krc - ku - kv - kw - ky - la - lb - lez - li - lmo - lo - lrc - lt - lv - mai - mg - mhr - min - mk - ml - mn - mr - mrj - ms - mt - mwl - my - myv - mzn - nah - nap - nds - ne - new - nl - nn - 'no' - oc - or - os - pa - pam - pl - pms - pnb - ps - pt - qu - rm - ro - ru - sa - sah - scn - sd - sh - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - tg - th - tk - tl - tr - tt - tyv - ug - uk - ur - uz - vec - vi - vo - wa - war - wuu - xal - xmf - yi - yo - yue - zh license: - cc0-1.0 multilinguality: - multilingual size_categories: - 100K<n<1M - 100M<n<1B - 10K<n<100K - 10M<n<100M - 1K<n<10K - 1M<n<10M - n<1K source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling paperswithcode_id: oscar dataset_info: - config_name: unshuffled_deduplicated_af features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 171320914 num_examples: 130640 download_size: 65989254 dataset_size: 171320914 - config_name: unshuffled_deduplicated_als features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2915912 num_examples: 4518 download_size: 1263294 dataset_size: 2915912 - config_name: unshuffled_deduplicated_arz features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 34893248 num_examples: 79928 download_size: 10027493 dataset_size: 34893248 - config_name: unshuffled_deduplicated_an features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 842246 num_examples: 2025 download_size: 133373 dataset_size: 842246 - config_name: unshuffled_deduplicated_ast features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2150022 num_examples: 5343 download_size: 856177 dataset_size: 2150022 - config_name: unshuffled_deduplicated_ba features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 93623739 num_examples: 27050 download_size: 25983491 dataset_size: 93623739 - config_name: unshuffled_deduplicated_am features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 215618603 num_examples: 43102 download_size: 61347279 dataset_size: 215618603 - config_name: unshuffled_deduplicated_as features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 73989818 num_examples: 9212 download_size: 15513004 dataset_size: 73989818 - config_name: unshuffled_deduplicated_azb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 20001183 num_examples: 9985 download_size: 5191704 dataset_size: 20001183 - config_name: unshuffled_deduplicated_be features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1077152244 num_examples: 307405 download_size: 306700943 dataset_size: 1077152244 - config_name: unshuffled_deduplicated_bo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 144506264 num_examples: 15762 download_size: 22365048 dataset_size: 144506264 - config_name: unshuffled_deduplicated_bxr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 11325 num_examples: 36 download_size: 3666 dataset_size: 11325 - config_name: unshuffled_deduplicated_ceb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 24439249 num_examples: 26145 download_size: 7124786 dataset_size: 24439249 - config_name: unshuffled_deduplicated_az features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1526935070 num_examples: 626796 download_size: 521744076 dataset_size: 1526935070 - config_name: unshuffled_deduplicated_bcl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 900 num_examples: 1 download_size: 594 dataset_size: 900 - config_name: unshuffled_deduplicated_cy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 140412555 num_examples: 98225 download_size: 53629697 dataset_size: 140412555 - config_name: unshuffled_deduplicated_dsb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 7589 num_examples: 37 download_size: 3640 dataset_size: 7589 - config_name: unshuffled_deduplicated_bn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 6233041155 num_examples: 1114481 download_size: 1257218381 dataset_size: 6233041155 - config_name: unshuffled_deduplicated_bs features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 125977 num_examples: 702 download_size: 38669 dataset_size: 125977 - config_name: unshuffled_deduplicated_ce features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 7021674 num_examples: 2984 download_size: 1862792 dataset_size: 7021674 - config_name: unshuffled_deduplicated_cv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 27359554 num_examples: 10130 download_size: 7461982 dataset_size: 27359554 - config_name: unshuffled_deduplicated_diq features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 161 num_examples: 1 download_size: 331 dataset_size: 161 - config_name: unshuffled_deduplicated_eml features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 24657 num_examples: 80 download_size: 10055 dataset_size: 24657 - config_name: unshuffled_deduplicated_et features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2434152666 num_examples: 1172041 download_size: 966785545 dataset_size: 2434152666 - config_name: unshuffled_deduplicated_bg features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 14420684170 num_examples: 3398679 download_size: 3848659853 dataset_size: 14420684170 - config_name: unshuffled_deduplicated_bpy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1725535 num_examples: 1770 download_size: 191472 dataset_size: 1725535 - config_name: unshuffled_deduplicated_ca features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4544123629 num_examples: 2458067 download_size: 1734548117 dataset_size: 4544123629 - config_name: unshuffled_deduplicated_ckb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 237229156 num_examples: 68210 download_size: 60319928 dataset_size: 237229156 - config_name: unshuffled_deduplicated_ar features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 33468271639 num_examples: 9006977 download_size: 9667185012 dataset_size: 33468271639 - config_name: unshuffled_deduplicated_av features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 334755 num_examples: 360 download_size: 75341 dataset_size: 334755 - config_name: unshuffled_deduplicated_bar features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 551 num_examples: 4 download_size: 354 dataset_size: 551 - config_name: unshuffled_deduplicated_bh features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 35216 num_examples: 82 download_size: 6003 dataset_size: 35216 - config_name: unshuffled_deduplicated_br features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 16712284 num_examples: 14724 download_size: 6468062 dataset_size: 16712284 - config_name: unshuffled_deduplicated_cbk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 535 num_examples: 1 download_size: 247 dataset_size: 535 - config_name: unshuffled_deduplicated_da features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 10204168604 num_examples: 4771098 download_size: 3816376656 dataset_size: 10204168604 - config_name: unshuffled_deduplicated_dv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 82122241 num_examples: 17024 download_size: 16836170 dataset_size: 82122241 - config_name: unshuffled_deduplicated_eo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 239597935 num_examples: 84752 download_size: 92858714 dataset_size: 239597935 - config_name: unshuffled_deduplicated_fa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 39986583410 num_examples: 8203495 download_size: 10459318520 dataset_size: 39986583410 - config_name: unshuffled_deduplicated_fy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 26562554 num_examples: 20661 download_size: 10270434 dataset_size: 26562554 - config_name: unshuffled_deduplicated_gn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 24545 num_examples: 68 download_size: 9566 dataset_size: 24545 - config_name: unshuffled_deduplicated_cs features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 25590158564 num_examples: 12308039 download_size: 10494256383 dataset_size: 25590158564 - config_name: unshuffled_deduplicated_hi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 9550345517 num_examples: 1909387 download_size: 2007441283 dataset_size: 9550345517 - config_name: unshuffled_deduplicated_hu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 19027456462 num_examples: 6582908 download_size: 7368098962 dataset_size: 19027456462 - config_name: unshuffled_deduplicated_ie features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1688 num_examples: 11 download_size: 649 dataset_size: 1688 - config_name: unshuffled_deduplicated_fr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 147774253219 num_examples: 59448891 download_size: 55462770729 dataset_size: 147774253219 - config_name: unshuffled_deduplicated_gd features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1339050 num_examples: 3883 download_size: 420601 dataset_size: 1339050 - config_name: unshuffled_deduplicated_gu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 758319353 num_examples: 169834 download_size: 162974870 dataset_size: 758319353 - config_name: unshuffled_deduplicated_hsb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1821734 num_examples: 3084 download_size: 728158 dataset_size: 1821734 - config_name: unshuffled_deduplicated_ia features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 373710 num_examples: 529 download_size: 52722 dataset_size: 373710 - config_name: unshuffled_deduplicated_io features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 139493 num_examples: 617 download_size: 42813 dataset_size: 139493 - config_name: unshuffled_deduplicated_jbo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 700428 num_examples: 617 download_size: 203506 dataset_size: 700428 - config_name: unshuffled_deduplicated_km features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 609886370 num_examples: 108346 download_size: 114480044 dataset_size: 609886370 - config_name: unshuffled_deduplicated_ku features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 62855449 num_examples: 29054 download_size: 23343869 dataset_size: 62855449 - config_name: unshuffled_deduplicated_la features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 8867995 num_examples: 18808 download_size: 3421499 dataset_size: 8867995 - config_name: unshuffled_deduplicated_lmo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 458386 num_examples: 1374 download_size: 106048 dataset_size: 458386 - config_name: unshuffled_deduplicated_lv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1895693807 num_examples: 843195 download_size: 710448932 dataset_size: 1895693807 - config_name: unshuffled_deduplicated_min features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 318749 num_examples: 166 download_size: 10233 dataset_size: 318749 - config_name: unshuffled_deduplicated_mr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1487944837 num_examples: 212556 download_size: 299680349 dataset_size: 1487944837 - config_name: unshuffled_deduplicated_mwl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1121 num_examples: 7 download_size: 797 dataset_size: 1121 - config_name: unshuffled_deduplicated_nah features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 11540 num_examples: 58 download_size: 2868 dataset_size: 11540 - config_name: unshuffled_deduplicated_new features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4226557 num_examples: 2126 download_size: 830767 dataset_size: 4226557 - config_name: unshuffled_deduplicated_oc features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3938772 num_examples: 6485 download_size: 1338194 dataset_size: 3938772 - config_name: unshuffled_deduplicated_pam features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 319 num_examples: 1 download_size: 366 dataset_size: 319 - config_name: unshuffled_deduplicated_ps features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 254360032 num_examples: 67921 download_size: 71823163 dataset_size: 254360032 - config_name: unshuffled_deduplicated_it features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 73843292670 num_examples: 28522082 download_size: 27931571784 dataset_size: 73843292670 - config_name: unshuffled_deduplicated_ka features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1982841952 num_examples: 372158 download_size: 377220437 dataset_size: 1982841952 - config_name: unshuffled_deduplicated_ro features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 11601264185 num_examples: 5044757 download_size: 4478423935 dataset_size: 11601264185 - config_name: unshuffled_deduplicated_scn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2990 num_examples: 17 download_size: 1620 dataset_size: 2990 - config_name: unshuffled_deduplicated_ko features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 11956006533 num_examples: 3675420 download_size: 4462788278 dataset_size: 11956006533 - config_name: unshuffled_deduplicated_kw features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 14971 num_examples: 68 download_size: 6195 dataset_size: 14971 - config_name: unshuffled_deduplicated_lez features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3075326 num_examples: 1381 download_size: 763936 dataset_size: 3075326 - config_name: unshuffled_deduplicated_lrc features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 65291 num_examples: 72 download_size: 16272 dataset_size: 65291 - config_name: unshuffled_deduplicated_mg features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 13516085 num_examples: 13343 download_size: 4303472 dataset_size: 13516085 - config_name: unshuffled_deduplicated_ml features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2685637627 num_examples: 453904 download_size: 496801596 dataset_size: 2685637627 - config_name: unshuffled_deduplicated_ms features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 45064684 num_examples: 183443 download_size: 16391407 dataset_size: 45064684 - config_name: unshuffled_deduplicated_myv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1224 num_examples: 5 download_size: 705 dataset_size: 1224 - config_name: unshuffled_deduplicated_nds features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 13360483 num_examples: 8714 download_size: 5271194 dataset_size: 13360483 - config_name: unshuffled_deduplicated_nn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 57286159 num_examples: 109118 download_size: 23583774 dataset_size: 57286159 - config_name: unshuffled_deduplicated_os features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 10962689 num_examples: 2559 download_size: 2829131 dataset_size: 10962689 - config_name: unshuffled_deduplicated_pms features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1996853 num_examples: 2859 download_size: 716837 dataset_size: 1996853 - config_name: unshuffled_deduplicated_qu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 72587 num_examples: 411 download_size: 17501 dataset_size: 72587 - config_name: unshuffled_deduplicated_sa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 38236039 num_examples: 7121 download_size: 7268337 dataset_size: 38236039 - config_name: unshuffled_deduplicated_sk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4768416160 num_examples: 2820821 download_size: 1960409934 dataset_size: 4768416160 - config_name: unshuffled_deduplicated_sh features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 6184582 num_examples: 17610 download_size: 1445894 dataset_size: 6184582 - config_name: unshuffled_deduplicated_so features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 16269 num_examples: 42 download_size: 2109 dataset_size: 16269 - config_name: unshuffled_deduplicated_sr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2358255234 num_examples: 645747 download_size: 665025000 dataset_size: 2358255234 - config_name: unshuffled_deduplicated_ta features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 5477003981 num_examples: 833101 download_size: 971118176 dataset_size: 5477003981 - config_name: unshuffled_deduplicated_tk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 7092199 num_examples: 4694 download_size: 2219582 dataset_size: 7092199 - config_name: unshuffled_deduplicated_tyv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 8319 num_examples: 24 download_size: 2976 dataset_size: 8319 - config_name: unshuffled_deduplicated_uz features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 11834927 num_examples: 15074 download_size: 4300299 dataset_size: 11834927 - config_name: unshuffled_deduplicated_wa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 214337 num_examples: 677 download_size: 79130 dataset_size: 214337 - config_name: unshuffled_deduplicated_xmf features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4617445 num_examples: 2418 download_size: 943151 dataset_size: 4617445 - config_name: unshuffled_deduplicated_sv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 26239415574 num_examples: 11014487 download_size: 10185393483 dataset_size: 26239415574 - config_name: unshuffled_deduplicated_tg features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 261233997 num_examples: 56259 download_size: 62908723 dataset_size: 261233997 - config_name: unshuffled_deduplicated_de features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 155723559907 num_examples: 62398034 download_size: 60797849113 dataset_size: 155723559907 - config_name: unshuffled_deduplicated_tr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 28375018927 num_examples: 11596446 download_size: 10390754678 dataset_size: 28375018927 - config_name: unshuffled_deduplicated_el features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 28689398676 num_examples: 6521169 download_size: 7907952068 dataset_size: 28689398676 - config_name: unshuffled_deduplicated_uk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29791312367 num_examples: 7782375 download_size: 8037737457 dataset_size: 29791312367 - config_name: unshuffled_deduplicated_vi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 33528331774 num_examples: 9897709 download_size: 10711506712 dataset_size: 33528331774 - config_name: unshuffled_deduplicated_wuu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 33253 num_examples: 64 download_size: 7273 dataset_size: 33253 - config_name: unshuffled_deduplicated_yo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 27169 num_examples: 49 download_size: 8925 dataset_size: 27169 - config_name: unshuffled_original_als features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 5297910 num_examples: 7324 download_size: 1489734 dataset_size: 5297910 - config_name: unshuffled_original_arz features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 70132423 num_examples: 158113 download_size: 15891255 dataset_size: 70132423 - config_name: unshuffled_original_az features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2964781192 num_examples: 912330 download_size: 927763846 dataset_size: 2964781192 - config_name: unshuffled_original_bcl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 901 num_examples: 1 download_size: 581 dataset_size: 901 - config_name: unshuffled_original_bn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 10771945233 num_examples: 1675515 download_size: 2139944099 dataset_size: 10771945233 - config_name: unshuffled_original_bs features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 482740 num_examples: 2143 download_size: 56419 dataset_size: 482740 - config_name: unshuffled_original_ce features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 8735740 num_examples: 4042 download_size: 2089184 dataset_size: 8735740 - config_name: unshuffled_original_cv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 41047029 num_examples: 20281 download_size: 9400068 dataset_size: 41047029 - config_name: unshuffled_original_diq features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 162 num_examples: 1 download_size: 318 dataset_size: 162 - config_name: unshuffled_original_eml features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 26099 num_examples: 84 download_size: 10071 dataset_size: 26099 - config_name: unshuffled_original_et features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 5174800705 num_examples: 2093621 download_size: 1881328631 dataset_size: 5174800705 - config_name: unshuffled_deduplicated_zh features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 267614324325 num_examples: 41708901 download_size: 99982781539 dataset_size: 267614324325 - config_name: unshuffled_original_an features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1329433 num_examples: 2449 download_size: 148184 dataset_size: 1329433 - config_name: unshuffled_original_ast features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2539238 num_examples: 6999 download_size: 920730 dataset_size: 2539238 - config_name: unshuffled_original_ba features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 133704014 num_examples: 42551 download_size: 33215002 dataset_size: 133704014 - config_name: unshuffled_original_bg features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 33753811450 num_examples: 5869686 download_size: 8336964541 dataset_size: 33753811450 - config_name: unshuffled_original_bpy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4347467 num_examples: 6046 download_size: 336974 dataset_size: 4347467 - config_name: unshuffled_original_ca features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 8623251470 num_examples: 4390754 download_size: 3101954304 dataset_size: 8623251470 - config_name: unshuffled_original_ckb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 510965919 num_examples: 103639 download_size: 111884006 dataset_size: 510965919 - config_name: unshuffled_deduplicated_es features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 160418075023 num_examples: 56326016 download_size: 60464970319 dataset_size: 160418075023 - config_name: unshuffled_original_da features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 16756455589 num_examples: 7664010 download_size: 6000579388 dataset_size: 16756455589 - config_name: unshuffled_original_dv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 131628992 num_examples: 21018 download_size: 24914404 dataset_size: 131628992 - config_name: unshuffled_original_eo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 314188336 num_examples: 121168 download_size: 117076019 dataset_size: 314188336 - config_name: unshuffled_deduplicated_fi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 13945067515 num_examples: 5326443 download_size: 5380047103 dataset_size: 13945067515 - config_name: unshuffled_deduplicated_ga features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 63370688 num_examples: 46493 download_size: 22218633 dataset_size: 63370688 - config_name: unshuffled_deduplicated_gom features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1863089 num_examples: 484 download_size: 377051 dataset_size: 1863089 - config_name: unshuffled_deduplicated_hr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 118047678 num_examples: 321484 download_size: 46731365 dataset_size: 118047678 - config_name: unshuffled_deduplicated_hy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1559114836 num_examples: 396093 download_size: 393620208 dataset_size: 1559114836 - config_name: unshuffled_deduplicated_ilo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 667896 num_examples: 1578 download_size: 230065 dataset_size: 667896 - config_name: unshuffled_original_fa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 84209448803 num_examples: 13704702 download_size: 20956409096 dataset_size: 84209448803 - config_name: unshuffled_original_fy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 36238452 num_examples: 33053 download_size: 12409774 dataset_size: 36238452 - config_name: unshuffled_original_gn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 37427 num_examples: 106 download_size: 9761 dataset_size: 37427 - config_name: unshuffled_original_hi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 17929286362 num_examples: 3264660 download_size: 3656636848 dataset_size: 17929286362 - config_name: unshuffled_original_hu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 43074893842 num_examples: 11197780 download_size: 15693847091 dataset_size: 43074893842 - config_name: unshuffled_original_ie features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 25355 num_examples: 101 download_size: 783 dataset_size: 25355 - config_name: unshuffled_deduplicated_ja features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 113315056833 num_examples: 39496439 download_size: 40801218295 dataset_size: 113315056833 - config_name: unshuffled_deduplicated_kk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1583064520 num_examples: 338073 download_size: 389111715 dataset_size: 1583064520 - config_name: unshuffled_deduplicated_krc features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2412731 num_examples: 1377 download_size: 615982 dataset_size: 2412731 - config_name: unshuffled_deduplicated_ky features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 407576051 num_examples: 86561 download_size: 106219565 dataset_size: 407576051 - config_name: unshuffled_deduplicated_li features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 28176 num_examples: 118 download_size: 11724 dataset_size: 28176 - config_name: unshuffled_deduplicated_lt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4185372402 num_examples: 1737411 download_size: 1653025558 dataset_size: 4185372402 - config_name: unshuffled_deduplicated_mhr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 6247177 num_examples: 2515 download_size: 1622076 dataset_size: 6247177 - config_name: unshuffled_deduplicated_mn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 880883961 num_examples: 197878 download_size: 219516471 dataset_size: 880883961 - config_name: unshuffled_deduplicated_mt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 17539926 num_examples: 16383 download_size: 5898934 dataset_size: 17539926 - config_name: unshuffled_deduplicated_mzn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 626534 num_examples: 917 download_size: 157541 dataset_size: 626534 - config_name: unshuffled_deduplicated_ne features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1239170286 num_examples: 219334 download_size: 240627361 dataset_size: 1239170286 - config_name: unshuffled_deduplicated_no features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 5077919278 num_examples: 3229940 download_size: 1960828800 dataset_size: 5077919278 - config_name: unshuffled_deduplicated_pa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 482461302 num_examples: 87235 download_size: 102390579 dataset_size: 482461302 - config_name: unshuffled_deduplicated_pnb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 9416915 num_examples: 3463 download_size: 2579976 dataset_size: 9416915 - config_name: unshuffled_deduplicated_rm features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 6932 num_examples: 34 download_size: 2679 dataset_size: 6932 - config_name: unshuffled_deduplicated_sah features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 27293316 num_examples: 8555 download_size: 7020207 dataset_size: 27293316 - config_name: unshuffled_deduplicated_si features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 841460012 num_examples: 120684 download_size: 175610997 dataset_size: 841460012 - config_name: unshuffled_deduplicated_sq features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1208425681 num_examples: 461598 download_size: 445358539 dataset_size: 1208425681 - config_name: unshuffled_deduplicated_sw features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 8747758 num_examples: 24803 download_size: 2946034 dataset_size: 8747758 - config_name: unshuffled_deduplicated_th features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 17082022564 num_examples: 3749826 download_size: 3536468931 dataset_size: 17082022564 - config_name: unshuffled_deduplicated_tt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 320641922 num_examples: 82738 download_size: 85893621 dataset_size: 320641922 - config_name: unshuffled_deduplicated_ur features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1819253063 num_examples: 428674 download_size: 483593818 dataset_size: 1819253063 - config_name: unshuffled_deduplicated_vo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2098461 num_examples: 3317 download_size: 301687 dataset_size: 2098461 - config_name: unshuffled_deduplicated_xal features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 114574 num_examples: 36 download_size: 31863 dataset_size: 114574 - config_name: unshuffled_deduplicated_yue features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2267 num_examples: 7 download_size: 646 dataset_size: 2267 - config_name: unshuffled_original_am features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 378060369 num_examples: 83663 download_size: 102789518 dataset_size: 378060369 - config_name: unshuffled_original_as features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 117733678 num_examples: 14985 download_size: 21437245 dataset_size: 117733678 - config_name: unshuffled_original_azb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 28469069 num_examples: 15446 download_size: 6641415 dataset_size: 28469069 - config_name: unshuffled_original_be features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1877972506 num_examples: 586031 download_size: 498295673 dataset_size: 1877972506 - config_name: unshuffled_original_bo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 195400209 num_examples: 26795 download_size: 28940995 dataset_size: 195400209 - config_name: unshuffled_original_bxr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 13376 num_examples: 42 download_size: 3688 dataset_size: 13376 - config_name: unshuffled_original_ceb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 40964537 num_examples: 56248 download_size: 11070392 dataset_size: 40964537 - config_name: unshuffled_original_cy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 224933804 num_examples: 157698 download_size: 81736037 dataset_size: 224933804 - config_name: unshuffled_original_dsb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 13761 num_examples: 65 download_size: 3753 dataset_size: 13761 - config_name: unshuffled_original_fr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 303190338653 num_examples: 96742378 download_size: 105324330228 dataset_size: 303190338653 - config_name: unshuffled_original_gd features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2022000 num_examples: 5799 download_size: 525253 dataset_size: 2022000 - config_name: unshuffled_original_gu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1094814909 num_examples: 240691 download_size: 232021129 dataset_size: 1094814909 - config_name: unshuffled_original_hsb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4482886 num_examples: 7959 download_size: 1389826 dataset_size: 4482886 - config_name: unshuffled_original_ia features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 689455 num_examples: 1040 download_size: 83325 dataset_size: 689455 - config_name: unshuffled_original_io features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 158808 num_examples: 694 download_size: 44548 dataset_size: 158808 - config_name: unshuffled_original_jbo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 763027 num_examples: 832 download_size: 212962 dataset_size: 763027 - config_name: unshuffled_original_km features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1102616385 num_examples: 159363 download_size: 193286621 dataset_size: 1102616385 - config_name: unshuffled_original_ku features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 99062676 num_examples: 46535 download_size: 33376537 dataset_size: 99062676 - config_name: unshuffled_original_la features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 27801400 num_examples: 94588 download_size: 5458131 dataset_size: 27801400 - config_name: unshuffled_original_lmo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 470001 num_examples: 1401 download_size: 109759 dataset_size: 470001 - config_name: unshuffled_original_lv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4266812625 num_examples: 1593820 download_size: 1486675302 dataset_size: 4266812625 - config_name: unshuffled_original_min features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 624991 num_examples: 220 download_size: 12379 dataset_size: 624991 - config_name: unshuffled_original_mr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2816455519 num_examples: 326804 download_size: 525303459 dataset_size: 2816455519 - config_name: unshuffled_original_mwl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1273 num_examples: 8 download_size: 789 dataset_size: 1273 - config_name: unshuffled_original_nah features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 12070 num_examples: 61 download_size: 2857 dataset_size: 12070 - config_name: unshuffled_original_new features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 5766053 num_examples: 4696 download_size: 1031042 dataset_size: 5766053 - config_name: unshuffled_original_oc features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 6127539 num_examples: 10709 download_size: 1574956 dataset_size: 6127539 - config_name: unshuffled_original_pam features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 800 num_examples: 3 download_size: 364 dataset_size: 800 - config_name: unshuffled_original_ps features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 379515973 num_examples: 98216 download_size: 103659691 dataset_size: 379515973 - config_name: unshuffled_original_ro features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 26869251055 num_examples: 9387265 download_size: 9534521905 dataset_size: 26869251055 - config_name: unshuffled_original_scn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3573 num_examples: 21 download_size: 1614 dataset_size: 3573 - config_name: unshuffled_original_sk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 9808179461 num_examples: 5492194 download_size: 3708313186 dataset_size: 9808179461 - config_name: unshuffled_original_sr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4131922671 num_examples: 1013619 download_size: 1081129678 dataset_size: 4131922671 - config_name: unshuffled_original_ta features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 9933590150 num_examples: 1263280 download_size: 1737252172 dataset_size: 9933590150 - config_name: unshuffled_original_tk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 10662991 num_examples: 6456 download_size: 2956150 dataset_size: 10662991 - config_name: unshuffled_original_tyv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 12219 num_examples: 34 download_size: 3034 dataset_size: 12219 - config_name: unshuffled_original_uz features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 21464779 num_examples: 27537 download_size: 5775644 dataset_size: 21464779 - config_name: unshuffled_original_wa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 291400 num_examples: 1001 download_size: 89942 dataset_size: 291400 - config_name: unshuffled_original_xmf features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 6120123 num_examples: 3783 download_size: 1048265 dataset_size: 6120123 - config_name: unshuffled_original_it features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 147378116499 num_examples: 46981781 download_size: 52157691650 dataset_size: 147378116499 - config_name: unshuffled_original_ka features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3768832240 num_examples: 563916 download_size: 680732710 dataset_size: 3768832240 - config_name: unshuffled_original_ko features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 25292102197 num_examples: 7345075 download_size: 8807937093 dataset_size: 25292102197 - config_name: unshuffled_original_kw features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 47016 num_examples: 203 download_size: 6715 dataset_size: 47016 - config_name: unshuffled_original_lez features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3378104 num_examples: 1485 download_size: 825648 dataset_size: 3378104 - config_name: unshuffled_original_lrc features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 78347 num_examples: 88 download_size: 16573 dataset_size: 78347 - config_name: unshuffled_original_mg features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 21789998 num_examples: 17957 download_size: 6213316 dataset_size: 21789998 - config_name: unshuffled_original_ml features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 5244279375 num_examples: 603937 download_size: 938681749 dataset_size: 5244279375 - config_name: unshuffled_original_ms features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 122326270 num_examples: 534016 download_size: 28458804 dataset_size: 122326270 - config_name: unshuffled_original_myv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1436 num_examples: 6 download_size: 691 dataset_size: 1436 - config_name: unshuffled_original_nds features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 18238189 num_examples: 18174 download_size: 6744705 dataset_size: 18238189 - config_name: unshuffled_original_nn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 90838777 num_examples: 185884 download_size: 32863375 dataset_size: 90838777 - config_name: unshuffled_original_os features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 12893477 num_examples: 5213 download_size: 3096133 dataset_size: 12893477 - config_name: unshuffled_original_pms features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2154710 num_examples: 3225 download_size: 756400 dataset_size: 2154710 - config_name: unshuffled_original_qu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 85032 num_examples: 452 download_size: 17931 dataset_size: 85032 - config_name: unshuffled_original_sa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 97055224 num_examples: 14291 download_size: 17517475 dataset_size: 97055224 - config_name: unshuffled_original_sh features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 25841505 num_examples: 36700 download_size: 3457359 dataset_size: 25841505 - config_name: unshuffled_original_so features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 63785 num_examples: 156 download_size: 2478 dataset_size: 63785 - config_name: unshuffled_original_sv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 47000933560 num_examples: 17395625 download_size: 17182697021 dataset_size: 47000933560 - config_name: unshuffled_original_tg features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 397436494 num_examples: 89002 download_size: 90972727 dataset_size: 397436494 - config_name: unshuffled_original_tr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 63581153419 num_examples: 18535253 download_size: 21961561999 dataset_size: 63581153419 - config_name: unshuffled_original_uk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 56439494556 num_examples: 12973467 download_size: 14419203733 dataset_size: 56439494556 - config_name: unshuffled_original_vi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 72226388484 num_examples: 14898250 download_size: 21503594095 dataset_size: 72226388484 - config_name: unshuffled_original_wuu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 114041 num_examples: 214 download_size: 8780 dataset_size: 114041 - config_name: unshuffled_original_yo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 58546 num_examples: 214 download_size: 9550 dataset_size: 58546 - config_name: unshuffled_original_zh features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 545607539477 num_examples: 60137667 download_size: 206003993405 dataset_size: 545607539477 - config_name: unshuffled_deduplicated_en features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1297616499791 num_examples: 304230423 download_size: 496496144465 dataset_size: 1297616499791 - config_name: unshuffled_deduplicated_eu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 360674267 num_examples: 256513 download_size: 134683484 dataset_size: 360674267 - config_name: unshuffled_deduplicated_frr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4500 num_examples: 7 download_size: 540 dataset_size: 4500 - config_name: unshuffled_deduplicated_gl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 404922022 num_examples: 284320 download_size: 155851883 dataset_size: 404922022 - config_name: unshuffled_deduplicated_he features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 10451408409 num_examples: 2375030 download_size: 3043383695 dataset_size: 10451408409 - config_name: unshuffled_deduplicated_ht features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3439 num_examples: 9 download_size: 594 dataset_size: 3439 - config_name: unshuffled_deduplicated_id features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 16964948727 num_examples: 9948521 download_size: 5995510660 dataset_size: 16964948727 - config_name: unshuffled_deduplicated_is features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 891047926 num_examples: 389515 download_size: 332871764 dataset_size: 891047926 - config_name: unshuffled_deduplicated_jv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 609713 num_examples: 1163 download_size: 208165 dataset_size: 609713 - config_name: unshuffled_deduplicated_kn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1080985653 num_examples: 251064 download_size: 215526836 dataset_size: 1080985653 - config_name: unshuffled_deduplicated_kv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1200609 num_examples: 924 download_size: 327479 dataset_size: 1200609 - config_name: unshuffled_deduplicated_lb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 21242773 num_examples: 21735 download_size: 8300328 dataset_size: 21242773 - config_name: unshuffled_deduplicated_lo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 119015146 num_examples: 32652 download_size: 23634237 dataset_size: 119015146 - config_name: unshuffled_deduplicated_mai features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 10721 num_examples: 25 download_size: 2267 dataset_size: 10721 - config_name: unshuffled_deduplicated_mk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1186605123 num_examples: 299457 download_size: 303118518 dataset_size: 1186605123 - config_name: unshuffled_deduplicated_mrj features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1096428 num_examples: 669 download_size: 289048 dataset_size: 1096428 - config_name: unshuffled_deduplicated_my features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1112006614 num_examples: 136639 download_size: 207136614 dataset_size: 1112006614 - config_name: unshuffled_deduplicated_nap features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 13782 num_examples: 55 download_size: 4965 dataset_size: 13782 - config_name: unshuffled_deduplicated_nl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 41726089054 num_examples: 20812149 download_size: 15734167112 dataset_size: 41726089054 - config_name: unshuffled_deduplicated_or features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 197401878 num_examples: 44230 download_size: 38726721 dataset_size: 197401878 - config_name: unshuffled_deduplicated_pl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 50387595763 num_examples: 20682611 download_size: 20189161328 dataset_size: 50387595763 - config_name: unshuffled_deduplicated_pt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 68162434231 num_examples: 26920397 download_size: 25997795946 dataset_size: 68162434231 - config_name: unshuffled_deduplicated_ru features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 611031071327 num_examples: 115954598 download_size: 166677136024 dataset_size: 611031071327 - config_name: unshuffled_deduplicated_sd features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 275327037 num_examples: 33925 download_size: 74169753 dataset_size: 275327037 - config_name: unshuffled_deduplicated_sl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1311219223 num_examples: 886223 download_size: 523218283 dataset_size: 1311219223 - config_name: unshuffled_deduplicated_su features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 149921 num_examples: 511 download_size: 53164 dataset_size: 149921 - config_name: unshuffled_deduplicated_te features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1694004428 num_examples: 312644 download_size: 342429224 dataset_size: 1694004428 - config_name: unshuffled_deduplicated_tl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 429427446 num_examples: 294132 download_size: 151342433 dataset_size: 429427446 - config_name: unshuffled_deduplicated_ug features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 86344782 num_examples: 15503 download_size: 20527752 dataset_size: 86344782 - config_name: unshuffled_deduplicated_vec features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 17303 num_examples: 64 download_size: 7647 dataset_size: 17303 - config_name: unshuffled_deduplicated_war features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2338532 num_examples: 9161 download_size: 546586 dataset_size: 2338532 - config_name: unshuffled_deduplicated_yi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 87935052 num_examples: 32919 download_size: 22197718 dataset_size: 87935052 - config_name: unshuffled_original_af features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 254076274 num_examples: 201117 download_size: 85795254 dataset_size: 254076274 - config_name: unshuffled_original_ar features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 87935768938 num_examples: 16365602 download_size: 22232546836 dataset_size: 87935768938 - config_name: unshuffled_original_av features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 423603 num_examples: 456 download_size: 84767 dataset_size: 423603 - config_name: unshuffled_original_bar features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 555 num_examples: 4 download_size: 341 dataset_size: 555 - config_name: unshuffled_original_bh features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 116514 num_examples: 336 download_size: 7615 dataset_size: 116514 - config_name: unshuffled_original_br features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 30203875 num_examples: 37085 download_size: 9178158 dataset_size: 30203875 - config_name: unshuffled_original_cbk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 536 num_examples: 1 download_size: 234 dataset_size: 536 - config_name: unshuffled_original_cs features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 57080142860 num_examples: 21001388 download_size: 21716697253 dataset_size: 57080142860 - config_name: unshuffled_original_de features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 331224484023 num_examples: 104913504 download_size: 119506267566 dataset_size: 331224484023 - config_name: unshuffled_original_el features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 66273231642 num_examples: 10425596 download_size: 17309601342 dataset_size: 66273231642 - config_name: unshuffled_original_es features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 298492270636 num_examples: 88199221 download_size: 106039137656 dataset_size: 298492270636 - config_name: unshuffled_original_fi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 28571419204 num_examples: 8557453 download_size: 9970837279 dataset_size: 28571419204 - config_name: unshuffled_original_ga features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 92369035 num_examples: 83223 download_size: 29262282 dataset_size: 92369035 - config_name: unshuffled_original_gom features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2257169 num_examples: 640 download_size: 442950 dataset_size: 2257169 - config_name: unshuffled_original_hr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 243829069 num_examples: 582219 download_size: 79417804 dataset_size: 243829069 - config_name: unshuffled_original_hy features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3939672772 num_examples: 659430 download_size: 897364024 dataset_size: 3939672772 - config_name: unshuffled_original_ilo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 925809 num_examples: 2638 download_size: 267451 dataset_size: 925809 - config_name: unshuffled_original_ja features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 232216718556 num_examples: 62721527 download_size: 79564645083 dataset_size: 232216718556 - config_name: unshuffled_original_kk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2833778199 num_examples: 524591 download_size: 615067761 dataset_size: 2833778199 - config_name: unshuffled_original_krc features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2688672 num_examples: 1581 download_size: 656496 dataset_size: 2688672 - config_name: unshuffled_original_ky features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 630794622 num_examples: 146993 download_size: 152636608 dataset_size: 630794622 - config_name: unshuffled_original_li features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 31312 num_examples: 137 download_size: 11793 dataset_size: 31312 - config_name: unshuffled_original_lt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 9445278312 num_examples: 2977757 download_size: 3439789726 dataset_size: 9445278312 - config_name: unshuffled_original_mhr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 7553453 num_examples: 3212 download_size: 1834912 dataset_size: 7553453 - config_name: unshuffled_original_mn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2332897881 num_examples: 395605 download_size: 472357548 dataset_size: 2332897881 - config_name: unshuffled_original_mt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 24470330 num_examples: 26598 download_size: 7533204 dataset_size: 24470330 - config_name: unshuffled_original_mzn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 720229 num_examples: 1055 download_size: 177817 dataset_size: 720229 - config_name: unshuffled_original_ne features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1866852959 num_examples: 299938 download_size: 355291639 dataset_size: 1866852959 - config_name: unshuffled_original_no features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 8652054976 num_examples: 5546211 download_size: 3106155643 dataset_size: 8652054976 - config_name: unshuffled_original_pa features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 801167879 num_examples: 127467 download_size: 164207256 dataset_size: 801167879 - config_name: unshuffled_original_pnb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 12039418 num_examples: 4599 download_size: 3215579 dataset_size: 12039418 - config_name: unshuffled_original_rm features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 8027 num_examples: 41 download_size: 2691 dataset_size: 8027 - config_name: unshuffled_original_sah features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 43817239 num_examples: 22301 download_size: 9079982 dataset_size: 43817239 - config_name: unshuffled_original_si features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1469374795 num_examples: 203082 download_size: 310935021 dataset_size: 1469374795 - config_name: unshuffled_original_sq features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2440834375 num_examples: 672077 download_size: 861831806 dataset_size: 2440834375 - config_name: unshuffled_original_sw features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 14073775 num_examples: 41986 download_size: 3712739 dataset_size: 14073775 - config_name: unshuffled_original_th features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 38289228753 num_examples: 6064129 download_size: 7377469078 dataset_size: 38289228753 - config_name: unshuffled_original_tt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 703412782 num_examples: 135923 download_size: 151056507 dataset_size: 703412782 - config_name: unshuffled_original_ur features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2802270961 num_examples: 638596 download_size: 712607161 dataset_size: 2802270961 - config_name: unshuffled_original_vo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2118909 num_examples: 3366 download_size: 307184 dataset_size: 2118909 - config_name: unshuffled_original_xal features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 116043 num_examples: 39 download_size: 32117 dataset_size: 116043 - config_name: unshuffled_original_yue features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 3899 num_examples: 11 download_size: 647 dataset_size: 3899 - config_name: unshuffled_original_en features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2525437912097 num_examples: 455994980 download_size: 903830686146 dataset_size: 2525437912097 - config_name: unshuffled_original_eu features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 894836188 num_examples: 506883 download_size: 248190119 dataset_size: 894836188 - config_name: unshuffled_original_frr features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4507 num_examples: 7 download_size: 527 dataset_size: 4507 - config_name: unshuffled_original_gl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 656477422 num_examples: 544388 download_size: 235384299 dataset_size: 656477422 - config_name: unshuffled_original_he features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 21113706929 num_examples: 3808397 download_size: 5660026441 dataset_size: 21113706929 - config_name: unshuffled_original_ht features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 4083 num_examples: 13 download_size: 590 dataset_size: 4083 - config_name: unshuffled_original_id features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 32317679452 num_examples: 16236463 download_size: 10596988488 dataset_size: 32317679452 - config_name: unshuffled_original_is features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1524936467 num_examples: 625673 download_size: 533034495 dataset_size: 1524936467 - config_name: unshuffled_original_jv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 691812 num_examples: 1445 download_size: 219246 dataset_size: 691812 - config_name: unshuffled_original_kn features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1763625096 num_examples: 350363 download_size: 342155433 dataset_size: 1763625096 - config_name: unshuffled_original_kv features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2379758 num_examples: 1549 download_size: 400725 dataset_size: 2379758 - config_name: unshuffled_original_lb features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 30595156 num_examples: 34807 download_size: 10725552 dataset_size: 30595156 - config_name: unshuffled_original_lo features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 182361509 num_examples: 52910 download_size: 33916738 dataset_size: 182361509 - config_name: unshuffled_original_mai features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 325990 num_examples: 123 download_size: 5563 dataset_size: 325990 - config_name: unshuffled_original_mk features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2202480390 num_examples: 437871 download_size: 508239918 dataset_size: 2202480390 - config_name: unshuffled_original_mrj features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1165977 num_examples: 757 download_size: 303447 dataset_size: 1165977 - config_name: unshuffled_original_my features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2021872493 num_examples: 232329 download_size: 369850157 dataset_size: 2021872493 - config_name: unshuffled_original_nap features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 17839 num_examples: 73 download_size: 5023 dataset_size: 17839 - config_name: unshuffled_original_nl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 83230965323 num_examples: 34682142 download_size: 29352811750 dataset_size: 83230965323 - config_name: unshuffled_original_or features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 260151226 num_examples: 59463 download_size: 49834443 dataset_size: 260151226 - config_name: unshuffled_original_pl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 117121370605 num_examples: 35440972 download_size: 42884898947 dataset_size: 117121370605 - config_name: unshuffled_original_pt features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 132635490139 num_examples: 42114520 download_size: 47257949300 dataset_size: 132635490139 - config_name: unshuffled_original_ru features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1241627166551 num_examples: 161836003 download_size: 319755378587 dataset_size: 1241627166551 - config_name: unshuffled_original_sd features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 364256869 num_examples: 44280 download_size: 90621520 dataset_size: 364256869 - config_name: unshuffled_original_sl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2675665926 num_examples: 1746604 download_size: 956197026 dataset_size: 2675665926 - config_name: unshuffled_original_su features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 225627 num_examples: 805 download_size: 59643 dataset_size: 225627 - config_name: unshuffled_original_te features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2611548765 num_examples: 475703 download_size: 522470115 dataset_size: 2611548765 - config_name: unshuffled_original_tl features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 606295665 num_examples: 458206 download_size: 204895159 dataset_size: 606295665 - config_name: unshuffled_original_ug features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 127419368 num_examples: 22255 download_size: 27923925 dataset_size: 127419368 - config_name: unshuffled_original_vec features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 19182 num_examples: 73 download_size: 7672 dataset_size: 19182 - config_name: unshuffled_original_war features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 2682430 num_examples: 9760 download_size: 644576 dataset_size: 2682430 - config_name: unshuffled_original_yi features: - name: id dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 147601654 num_examples: 59364 download_size: 33337157 dataset_size: 147601654 config_names: - unshuffled_deduplicated_af - unshuffled_deduplicated_als - unshuffled_deduplicated_am - unshuffled_deduplicated_an - unshuffled_deduplicated_ar - unshuffled_deduplicated_arz - unshuffled_deduplicated_as - unshuffled_deduplicated_ast - unshuffled_deduplicated_av - unshuffled_deduplicated_az - unshuffled_deduplicated_azb - unshuffled_deduplicated_ba - unshuffled_deduplicated_bar - unshuffled_deduplicated_bcl - unshuffled_deduplicated_be - unshuffled_deduplicated_bg - unshuffled_deduplicated_bh - unshuffled_deduplicated_bn - unshuffled_deduplicated_bo - unshuffled_deduplicated_bpy - unshuffled_deduplicated_br - unshuffled_deduplicated_bs - unshuffled_deduplicated_bxr - unshuffled_deduplicated_ca - unshuffled_deduplicated_cbk - unshuffled_deduplicated_ce - unshuffled_deduplicated_ceb - unshuffled_deduplicated_ckb - unshuffled_deduplicated_cs - unshuffled_deduplicated_cv - unshuffled_deduplicated_cy - unshuffled_deduplicated_da - unshuffled_deduplicated_de - unshuffled_deduplicated_diq - unshuffled_deduplicated_dsb - unshuffled_deduplicated_dv - unshuffled_deduplicated_el - unshuffled_deduplicated_eml - unshuffled_deduplicated_en - unshuffled_deduplicated_eo - unshuffled_deduplicated_es - unshuffled_deduplicated_et - unshuffled_deduplicated_eu - unshuffled_deduplicated_fa - unshuffled_deduplicated_fi - unshuffled_deduplicated_fr - unshuffled_deduplicated_frr - unshuffled_deduplicated_fy - unshuffled_deduplicated_ga - unshuffled_deduplicated_gd - unshuffled_deduplicated_gl - unshuffled_deduplicated_gn - unshuffled_deduplicated_gom - unshuffled_deduplicated_gu - unshuffled_deduplicated_he - unshuffled_deduplicated_hi - unshuffled_deduplicated_hr - unshuffled_deduplicated_hsb - unshuffled_deduplicated_ht - unshuffled_deduplicated_hu - unshuffled_deduplicated_hy - unshuffled_deduplicated_ia - unshuffled_deduplicated_id - unshuffled_deduplicated_ie - unshuffled_deduplicated_ilo - unshuffled_deduplicated_io - unshuffled_deduplicated_is - unshuffled_deduplicated_it - unshuffled_deduplicated_ja - unshuffled_deduplicated_jbo - unshuffled_deduplicated_jv - unshuffled_deduplicated_ka - unshuffled_deduplicated_kk - unshuffled_deduplicated_km - unshuffled_deduplicated_kn - unshuffled_deduplicated_ko - unshuffled_deduplicated_krc - unshuffled_deduplicated_ku - unshuffled_deduplicated_kv - unshuffled_deduplicated_kw - unshuffled_deduplicated_ky - unshuffled_deduplicated_la - unshuffled_deduplicated_lb - unshuffled_deduplicated_lez - unshuffled_deduplicated_li - unshuffled_deduplicated_lmo - unshuffled_deduplicated_lo - unshuffled_deduplicated_lrc - unshuffled_deduplicated_lt - unshuffled_deduplicated_lv - unshuffled_deduplicated_mai - unshuffled_deduplicated_mg - unshuffled_deduplicated_mhr - unshuffled_deduplicated_min - unshuffled_deduplicated_mk - unshuffled_deduplicated_ml - unshuffled_deduplicated_mn - unshuffled_deduplicated_mr - unshuffled_deduplicated_mrj - unshuffled_deduplicated_ms - unshuffled_deduplicated_mt - unshuffled_deduplicated_mwl - unshuffled_deduplicated_my - unshuffled_deduplicated_myv - unshuffled_deduplicated_mzn - unshuffled_deduplicated_nah - unshuffled_deduplicated_nap - unshuffled_deduplicated_nds - unshuffled_deduplicated_ne - unshuffled_deduplicated_new - unshuffled_deduplicated_nl - unshuffled_deduplicated_nn - unshuffled_deduplicated_no - unshuffled_deduplicated_oc - unshuffled_deduplicated_or - unshuffled_deduplicated_os - unshuffled_deduplicated_pa - unshuffled_deduplicated_pam - unshuffled_deduplicated_pl - unshuffled_deduplicated_pms - unshuffled_deduplicated_pnb - unshuffled_deduplicated_ps - unshuffled_deduplicated_pt - unshuffled_deduplicated_qu - unshuffled_deduplicated_rm - unshuffled_deduplicated_ro - unshuffled_deduplicated_ru - unshuffled_deduplicated_sa - unshuffled_deduplicated_sah - unshuffled_deduplicated_scn - unshuffled_deduplicated_sd - unshuffled_deduplicated_sh - unshuffled_deduplicated_si - unshuffled_deduplicated_sk - unshuffled_deduplicated_sl - unshuffled_deduplicated_so - unshuffled_deduplicated_sq - unshuffled_deduplicated_sr - unshuffled_deduplicated_su - unshuffled_deduplicated_sv - unshuffled_deduplicated_sw - unshuffled_deduplicated_ta - unshuffled_deduplicated_te - unshuffled_deduplicated_tg - unshuffled_deduplicated_th - unshuffled_deduplicated_tk - unshuffled_deduplicated_tl - unshuffled_deduplicated_tr - unshuffled_deduplicated_tt - unshuffled_deduplicated_tyv - unshuffled_deduplicated_ug - unshuffled_deduplicated_uk - unshuffled_deduplicated_ur - unshuffled_deduplicated_uz - unshuffled_deduplicated_vec - unshuffled_deduplicated_vi - unshuffled_deduplicated_vo - unshuffled_deduplicated_wa - unshuffled_deduplicated_war - unshuffled_deduplicated_wuu - unshuffled_deduplicated_xal - unshuffled_deduplicated_xmf - unshuffled_deduplicated_yi - unshuffled_deduplicated_yo - unshuffled_deduplicated_yue - unshuffled_deduplicated_zh - unshuffled_original_af - unshuffled_original_als - unshuffled_original_am - unshuffled_original_an - unshuffled_original_ar - unshuffled_original_arz - unshuffled_original_as - unshuffled_original_ast - unshuffled_original_av - unshuffled_original_az - unshuffled_original_azb - unshuffled_original_ba - unshuffled_original_bar - unshuffled_original_bcl - unshuffled_original_be - unshuffled_original_bg - unshuffled_original_bh - unshuffled_original_bn - unshuffled_original_bo - unshuffled_original_bpy - unshuffled_original_br - unshuffled_original_bs - unshuffled_original_bxr - unshuffled_original_ca - unshuffled_original_cbk - unshuffled_original_ce - unshuffled_original_ceb - unshuffled_original_ckb - unshuffled_original_cs - unshuffled_original_cv - unshuffled_original_cy - unshuffled_original_da - unshuffled_original_de - unshuffled_original_diq - unshuffled_original_dsb - unshuffled_original_dv - unshuffled_original_el - unshuffled_original_eml - unshuffled_original_en - unshuffled_original_eo - unshuffled_original_es - unshuffled_original_et - unshuffled_original_eu - unshuffled_original_fa - unshuffled_original_fi - unshuffled_original_fr - unshuffled_original_frr - unshuffled_original_fy - unshuffled_original_ga - unshuffled_original_gd - unshuffled_original_gl - unshuffled_original_gn - unshuffled_original_gom - unshuffled_original_gu - unshuffled_original_he - unshuffled_original_hi - unshuffled_original_hr - unshuffled_original_hsb - unshuffled_original_ht - unshuffled_original_hu - unshuffled_original_hy - unshuffled_original_ia - unshuffled_original_id - unshuffled_original_ie - unshuffled_original_ilo - unshuffled_original_io - unshuffled_original_is - unshuffled_original_it - unshuffled_original_ja - unshuffled_original_jbo - unshuffled_original_jv - unshuffled_original_ka - unshuffled_original_kk - unshuffled_original_km - unshuffled_original_kn - unshuffled_original_ko - unshuffled_original_krc - unshuffled_original_ku - unshuffled_original_kv - unshuffled_original_kw - unshuffled_original_ky - unshuffled_original_la - unshuffled_original_lb - unshuffled_original_lez - unshuffled_original_li - unshuffled_original_lmo - unshuffled_original_lo - unshuffled_original_lrc - unshuffled_original_lt - unshuffled_original_lv - unshuffled_original_mai - unshuffled_original_mg - unshuffled_original_mhr - unshuffled_original_min - unshuffled_original_mk - unshuffled_original_ml - unshuffled_original_mn - unshuffled_original_mr - unshuffled_original_mrj - unshuffled_original_ms - unshuffled_original_mt - unshuffled_original_mwl - unshuffled_original_my - unshuffled_original_myv - unshuffled_original_mzn - unshuffled_original_nah - unshuffled_original_nap - unshuffled_original_nds - unshuffled_original_ne - unshuffled_original_new - unshuffled_original_nl - unshuffled_original_nn - unshuffled_original_no - unshuffled_original_oc - unshuffled_original_or - unshuffled_original_os - unshuffled_original_pa - unshuffled_original_pam - unshuffled_original_pl - unshuffled_original_pms - unshuffled_original_pnb - unshuffled_original_ps - unshuffled_original_pt - unshuffled_original_qu - unshuffled_original_rm - unshuffled_original_ro - unshuffled_original_ru - unshuffled_original_sa - unshuffled_original_sah - unshuffled_original_scn - unshuffled_original_sd - unshuffled_original_sh - unshuffled_original_si - unshuffled_original_sk - unshuffled_original_sl - unshuffled_original_so - unshuffled_original_sq - unshuffled_original_sr - unshuffled_original_su - unshuffled_original_sv - unshuffled_original_sw - unshuffled_original_ta - unshuffled_original_te - unshuffled_original_tg - unshuffled_original_th - unshuffled_original_tk - unshuffled_original_tl - unshuffled_original_tr - unshuffled_original_tt - unshuffled_original_tyv - unshuffled_original_ug - unshuffled_original_uk - unshuffled_original_ur - unshuffled_original_uz - unshuffled_original_vec - unshuffled_original_vi - unshuffled_original_vo - unshuffled_original_wa - unshuffled_original_war - unshuffled_original_wuu - unshuffled_original_xal - unshuffled_original_xmf - unshuffled_original_yi - unshuffled_original_yo - unshuffled_original_yue - unshuffled_original_zh --- # Dataset Card for "oscar" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://oscar-corpus.com](https://oscar-corpus.com) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Dataset Summary OSCAR or **O**pen **S**uper-large **C**rawled [**A**LMAnaCH](https://team.inria.fr/almanach/) co**R**pus is a huge multilingual corpus obtained by language classification and filtering of the [Common Crawl](https://commoncrawl.org/) corpus using the [goclassy](https://github.com/pjox/goclassy) architecture. Data is distributed by language in both original and deduplicated form. The version here is the original OSCAR 2019 release: https://oscar-project.org/post/oscar-2019/ For more recent versions, visit the [oscar-corpus](https://huggingface.co/oscar-corpus) organization on the Hub: - OSCAR 22.01 (released in January 2022): [oscar-corpus/OSCAR-2201](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201) - OSCAR 21.09 (released in September 2021): [oscar-corpus/OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) ### Supported Tasks and Leaderboards OSCAR is mainly inteded to pretrain language models and word represantations. ### Languages All the data is distributed by language, both the original and the deduplicated versions of the data are available. 166 different languages are available. The table in subsection [Data Splits Sample Size](#data-splits-sample-size) provides the language code for each subcorpus as well as the number of words (space separated tokens), lines and sizes for both the original and the deduplicated versions of OSCAR. ## Dataset Structure We show detailed information for all the configurations of the dataset. ### Data Instances <details> <summary>Click to expand the Data/size information for each language (deduplicated)</summary> #### unshuffled_deduplicated_af - **Size of downloaded dataset files:** 65.99 MB - **Size of the generated dataset:** 172.30 MB - **Total amount of disk used:** 238.29 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "aanlyn markte as gevolg van ons voortgesette 'n begrip opsie handel sakeplan pdf terwyl ons steeds die gereelde ons binêre opsies handel" } ``` #### unshuffled_deduplicated_als - **Size of downloaded dataset files:** 1.26 MB - **Size of the generated dataset:** 2.96 MB - **Total amount of disk used:** 4.22 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"De Nazionalpark hät e Flächi vo 170,3 km² und isch dodemit s grösti Naturschutzgebiet vo de Schwiz. Er ligt uf em Gebiet vo de ..." } ``` #### unshuffled_deduplicated_am - **Size of downloaded dataset files:** 61.35 MB - **Size of the generated dataset:** 216.15 MB - **Total amount of disk used:** 277.50 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"አየር መንገዱ ከአዲስ አበባ ወደ ሮም ጣሊያን በማምራት ላይ በነበረበት ጊዜ ረዳት አብራሪው የጉዞውን አቅጣጫ በመቀየር ጄኔቭ አውሮፓላን ማረፊያ በማሳረፍ እጁን ለፖሊስ ሰጥቷል።\\nየኢትዮጵያ መንግስት የ..." } ``` #### unshuffled_deduplicated_an - **Size of downloaded dataset files:** 0.14 MB - **Size of the generated dataset:** 0.85 MB - **Total amount of disk used:** 0.99 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"واااااااأسفاه الأمم تفتخر ب 0 أمي ووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووو..." } ``` #### unshuffled_deduplicated_ar - **Size of downloaded dataset files:** 9.67 GB - **Size of the generated dataset:** 33.57 GB - **Total amount of disk used:** 43.23 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"مرحبا بك عزيز الزائر نتمنى لك أوقاتاً سعيدة معنا وأن نزداد شرفا بخدمتك ولا تنسى التسجيل معنا لتستفيد بكل جديد\\nأهلا وسهلا بك زا..." } ``` #### unshuffled_deduplicated_arz - **Size of downloaded dataset files:** 10.02 MB - **Size of the generated dataset:** 35.91 MB - **Total amount of disk used:** 45.94 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"بنى عجل : قبيلة من عجل بن لجيم بن صعب بن على بن بكر بن وائل انتقل اغلبهم الى البصرة فى العراق و اصفهان و خراسان فى ايران و اذرب..." } ``` #### unshuffled_deduplicated_as - **Size of downloaded dataset files:** 15.51 MB - **Size of the generated dataset:** 74.07 MB - **Total amount of disk used:** 89.58 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"আমি, এই সংগঠনৰ সদস্য সকলে একেলগ হৈ অসমকে ধৰি ভাৰতৰ উত্তৰ পূৰ্বাঞ্চলৰ অমূল্য কলা-সাংস্কৃতিক সম্পদৰাজি বৃহত্তৰ অষ্ট্ৰেলিয়াৰ সন্মু..." } ``` #### unshuffled_deduplicated_ast - **Size of downloaded dataset files:** 0.86 MB - **Size of the generated dataset:** 2.17 MB - **Total amount of disk used:** 3.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"The Killers llanzaron el so álbum debú, Hot Fuss, en xunu de 2004 nel Reinu Xuníu, al traviés de la discográfica Lizard King, y..." } ``` #### unshuffled_deduplicated_av - **Size of downloaded dataset files:** 0.07 MB - **Size of the generated dataset:** 0.34 MB - **Total amount of disk used:** 0.41 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Жинда малъараб ва божизе бегьулеб рагІудаса кьуризе бегьуларо гьев. Гьес насихІат гьабизе кколелъул бацІцІадаб диналъул рахъалъ..." } ``` #### unshuffled_deduplicated_az - **Size of downloaded dataset files:** 521.74 MB - **Size of the generated dataset:** 1.53 GB - **Total amount of disk used:** 2.05 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"AZTV-Artıq 7 ildir ki, Abşeron rayonu dotasiya almadan bütün xərclərini yerli daxilolmalar hesabına maliyyələşdirir.\\nDünən, 10..." } ``` #### unshuffled_deduplicated_azb - **Size of downloaded dataset files:** 5.19 MB - **Size of the generated dataset:** 20.08 MB - **Total amount of disk used:** 25.27 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"لعلی ١٣-جو عصرده یاشاییب یاراتمیش گؤرکملی آذربایجان شاعرلریندندیر. ١٢٢٤-جی ایلده تبریزده آنادان اولموشدور، گنج یاشلاریندا تیجار..." } ``` #### unshuffled_deduplicated_ba - **Size of downloaded dataset files:** 25.98 MB - **Size of the generated dataset:** 93.84 MB - **Total amount of disk used:** 119.82 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Күҙәтеү ҡуласаһы моделен хәҙер Мифтахетдин Аҡмулла исемендәге Башҡорт дәүләт педагогия университетында ла эшләргә мөмкин\\t\\nКүҙ..." } ``` #### unshuffled_deduplicated_bar - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": " vo" } ``` #### unshuffled_deduplicated_bcl - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"& ÿ ó / í 0 - ø û ù ö ú ð ï ú \\u0014 ù þ ô ö í ÷ ò \\u0014 ÷ í ù û ö í \\u0001 û ñ ç þ \\u0001 ð \\u0007 þ ò ñ ñ ò ô \\u0017 û ö ô ÷..." } ``` #### unshuffled_deduplicated_be - **Size of downloaded dataset files:** 306.70 MB - **Size of the generated dataset:** 1.08 GB - **Total amount of disk used:** 1.39 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Брэсцкія ўлады не дазволілі прафсаюзу РЭП правесці пікетаванне ў парку Воінаў-інтэрнацыяналістаў 30 мая 2018 года.\\nСітуацыю пр..." } ``` #### unshuffled_deduplicated_bg - **Size of downloaded dataset files:** 3.85 GB - **Size of the generated dataset:** 14.45 GB - **Total amount of disk used:** 18.30 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ЖАЛБОПОДАТЕЛЯТ директор на Дирекция „ Обжалване и данъчно-осигурителна практика“- Бургас, редовно призован, се представлява от ..." } ``` #### unshuffled_deduplicated_bh - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.04 MB - **Total amount of disk used:** 0.04 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"सुकमा जिला भारत के छत्तीसगढ़ राज्य में एगो जिला बाटे। एकर मुख्यालय सुकमा शहर बाटे। एकर कुल रकबा 5636 वर्ग कि॰मी॰ बाटे।\"..." } ``` #### unshuffled_deduplicated_bn - **Size of downloaded dataset files:** 1.26 GB - **Size of the generated dataset:** 6.24 GB - **Total amount of disk used:** 7.50 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ভড়ং সর্বস্ব বাংলা আর্ট অ্যান্ড কালচারের হিসাব গুলিয়ে দেওয়ার ম্যাজিকের নাম ব্রাত্য রাইসু November 23, 2017\\nTagged with ডায়োজিনি..." } ``` #### unshuffled_deduplicated_bo - **Size of downloaded dataset files:** 22.37 MB - **Size of the generated dataset:** 144.65 MB - **Total amount of disk used:** 167.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"བོད་མི་འདི་དག་ནི་རང་རྒྱུད་སྒོ་རུ་ཕུད་དེ་གཞན་རྒྱུད་པང་དུ་ཉར་ནས་གསོ་སྐྱོང་བྱེད་དགོས་ཟེར་བ་དང་གཅིག་མཚུངས་རེད།\\nཚན་རིག་ནི་དང་ཐོག་རང..." } ``` #### unshuffled_deduplicated_bpy - **Size of downloaded dataset files:** 0.19 MB - **Size of the generated dataset:** 1.78 MB - **Total amount of disk used:** 1.97 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"পৌরসভা এহার আয়তন (লয়াহান) ২,৭৩০,.৬৩ বর্গ কিলোমিটার। পৌরসভা এহার মাপাহানর অক্ষাংশ বারো দ্রাঘিমাংশ ইলতাই 18.63° S 48.18° W ।[১]..." } ``` #### unshuffled_deduplicated_br - **Size of downloaded dataset files:** 6.47 MB - **Size of the generated dataset:** 17.00 MB - **Total amount of disk used:** 23.47 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Ar mank Magalhães(Daveoù a vank) a zo ur spesad evned, Spheniscus magellanicus an anv skiantel anezhañ.\\nGallout a reer implijo..." } ``` #### unshuffled_deduplicated_bs - **Size of downloaded dataset files:** 0.04 MB - **Size of the generated dataset:** 0.15 MB - **Total amount of disk used:** 0.18 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ž šř é ú šř šř ě šř ž é č ě ž ů ě ď éé ýš ě ě Ž č š ý ě ď é ýš ě ď ě éé ýš ě č ž ě š ý ď ě ýš é ú č ž č š ý ď ý ž é éě ď é č ýš..." } ``` #### unshuffled_deduplicated_bxr - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"2002 оной хабар буряад хэлэ бэшэгэй һалбари Үндэһэтэнэй хүмүүнлиг ухаанай дээдэ һургуули болгогдожо өөршэлэгдөө.\\nХарин мүнөө б..." } ``` #### unshuffled_deduplicated_ca - **Size of downloaded dataset files:** 1.73 GB - **Size of the generated dataset:** 4.57 GB - **Total amount of disk used:** 6.30 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Daniel Vendrell, conegut com Vandrell, ha sigut un dels il•lustradors contemporanis més influents, representant a la nova onada..." } ``` #### unshuffled_deduplicated_cbk - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano..." } ``` #### unshuffled_deduplicated_ce - **Size of downloaded dataset files:** 1.87 MB - **Size of the generated dataset:** 7.04 MB - **Total amount of disk used:** 8.90 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Шаьш анархисташ ду бохучу жигархойн дIахьедарехь дуьйцу, оьрсийн ницкъаллийн структурийн а, федералан каналан а Iалашонаш \\\"мар..." } ``` #### unshuffled_deduplicated_ceb - **Size of downloaded dataset files:** 7.12 MB - **Size of the generated dataset:** 24.83 MB - **Total amount of disk used:** 31.95 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Si Isko walay pupamilok nga nagtan-aw sa unahan, natugaw. “Naunsa ka gud diha Isko nga layo man kaayo ang imong panan-aw?” ni I..." } ``` #### unshuffled_deduplicated_ckb - **Size of downloaded dataset files:** 60.32 MB - **Size of the generated dataset:** 237.72 MB - **Total amount of disk used:** 298.05 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"رسی رۆژ - ساڵێک دوای بومەلەرزەی کرماشان میوانی بەرنامە : کاک سیاوەش حەیاتی چالاکی مەدەنی -قەسری شیرین\\nپارچە موزیک 30 / 10 / 20..." } ``` #### unshuffled_deduplicated_cs - **Size of downloaded dataset files:** 10.49 GB - **Size of the generated dataset:** 25.71 GB - **Total amount of disk used:** 36.20 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Akce anarchistů proti připravovanému novému služební řádu a nízkým mzdám 1903 – Historie českého anarchismu (1880 – 1939)\\nRost..." } ``` #### unshuffled_deduplicated_cv - **Size of downloaded dataset files:** 7.47 MB - **Size of the generated dataset:** 27.49 MB - **Total amount of disk used:** 34.95 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Шыранӑ чухне ӑнсӑртран латин кирилл саспаллисем вырӑнне латин саспаллисене ҫырсан, сайт эсир ҫырнине юсама тӑрӑшӗ.\\nКу сайтра ч..." } ``` #### unshuffled_deduplicated_cy - **Size of downloaded dataset files:** 53.63 MB - **Size of the generated dataset:** 141.22 MB - **Total amount of disk used:** 194.86 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Mae capeli Cymreig yr Andes ym Mhatagonia wedi cyhoeddi na fydd gwasanaethau yno weddill y mis, oherwydd yr eira trwm sydd wedi..." } ``` #### unshuffled_deduplicated_da - **Size of downloaded dataset files:** 3.82 GB - **Size of the generated dataset:** 10.24 GB - **Total amount of disk used:** 14.06 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Den 2.-5. februar 2016 løb det tredje kursus i uddannelsen af 4kommunesamarbejdets Local Impact Coaches, af stablen i Gentofte ..." } ``` #### unshuffled_deduplicated_de - **Size of downloaded dataset files:** 60.80 GB - **Size of the generated dataset:** 156.30 GB - **Total amount of disk used:** 217.10 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Auf dieser Seite gibt es mind. ein YouTube Video. Cookies für diese Website wurden abgelehnt. Dadurch können keine YouTube Vide..." } ``` #### unshuffled_deduplicated_diq - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Zıwanê Slawki, zıwano merdumanê Slawano. Zıwanê Slawki yew lızgeyê Zıwananê Hind u Ewropao. Keyeyê Zıwananê Slawki beno hirê letey:" } ``` #### unshuffled_deduplicated_dsb - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Pśiklaskaju južo pśed pśedstajenim... 1500 źiśi njamóžo wěcej docakaś, měsćańska hala w Chóśebuzu - wupśedana." } ``` #### unshuffled_deduplicated_dv - **Size of downloaded dataset files:** 16.84 MB - **Size of the generated dataset:** 82.19 MB - **Total amount of disk used:** 99.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ބ. އަތޮޅުގައި ހުޅުވަން ތައްޔާރުވަމުން އަންނަ ވައްކަރު ރިސޯޓުގައި ވަޒީފާ އަދާކުރަން ޝައުގުވެރިވާ ފަރާތްތަކަށް ކުރިމަތިލުމުގެ ފުރ..." } ``` #### unshuffled_deduplicated_el - **Size of downloaded dataset files:** 7.91 GB - **Size of the generated dataset:** 28.74 GB - **Total amount of disk used:** 36.65 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Νεκρός εντοπίστηκε μέσα στο σπίτι του στην οδό Ηρώδου Αττικού στον αριθμό 7 ο επικεφαλής του προξενικού τμήματος της Ρωσικής πρ..." } ``` #### unshuffled_deduplicated_eml - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"A séguit dal prucès ad rubutiśasiòṅ di abitànt dal pòpul ad Mikenes, Angoras 'l è finî dènt'r a 'n robot cun la tèsta dna rana ..." } ``` #### unshuffled_deduplicated_en - **Size of downloaded dataset files:** 496.50 GB - **Size of the generated dataset:** 1299.75 GB - **Total amount of disk used:** 1796.24 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Mtendere Village was inspired by the vision of Chief Napoleon Dzombe, which he shared with John Blanchard during his first visi..." } ``` #### unshuffled_deduplicated_eo - **Size of downloaded dataset files:** 92.86 MB - **Size of the generated dataset:** 240.12 MB - **Total amount of disk used:** 332.99 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Ĉu ... preĝi | mediti | ricevi instigojn || kanti | muziki || informiĝi | legi | studi || prepari Diservon\\nTemas pri kolekto d..." } ``` #### unshuffled_deduplicated_es - **Size of downloaded dataset files:** 60.46 GB - **Size of the generated dataset:** 160.86 GB - **Total amount of disk used:** 221.32 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Como se librará de la celulitis en el gimnasio La piel superflua en las manos después del adelgazamiento, Los bailes fáciles pa..." } ``` #### unshuffled_deduplicated_et - **Size of downloaded dataset files:** 966.79 MB - **Size of the generated dataset:** 2.45 GB - **Total amount of disk used:** 3.41 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"MTÜ AB Video järgib oma tegevuses kodanikuühenduste eetilise tegevuse üldtunnustatud põhimõtteid, mis on lühidalt kokkuvõetud 7..." } ``` #### unshuffled_deduplicated_eu - **Size of downloaded dataset files:** 134.68 MB - **Size of the generated dataset:** 363.93 MB - **Total amount of disk used:** 498.61 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Gure jarduerek eraikuntzarekin, elkarbizitzarekin, hirigintzarekin eta ekologiarekin dute harremana, baita ideia eta konponbideak irudikatu eta garatzearekin ere, eraikuntza sektorea hobetuz, pertsonen erosotasuna eta bizi-kalitatea hobetzeko." } ``` #### unshuffled_deduplicated_fa - **Size of downloaded dataset files:** 10.46 GB - **Size of the generated dataset:** 40.06 GB - **Total amount of disk used:** 50.52 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"قـــــــــــــــــرار بود با هم کنـــــــــــــار بیایم نه اینکه از کنــــــــــــار هم رد بشیم...!!!\\nاگر روزی دلت لبریز غم بو..." } ``` #### unshuffled_deduplicated_fi - **Size of downloaded dataset files:** 5.38 GB - **Size of the generated dataset:** 13.99 GB - **Total amount of disk used:** 19.37 GB An example of 'train' looks as follows. ``` { "id": 1, "text": "Kiitos Deelle kaikesta - 1,5 viikkoa kulunut, kun Dee ei ole enää ollut omani. Reilu viikko sitten sunnuntaina vein Deen uuteen kotiinsa. Itselläni on ollut niin ristiriitaiset t..." } ``` #### unshuffled_deduplicated_fr - **Size of downloaded dataset files:** 55.46 GB - **Size of the generated dataset:** 148.28 GB - **Total amount of disk used:** 203.75 GB An example of 'train' looks as follows. ``` { "id": 0, "text": "Média de débat d'idées, de culture et de littérature. Récits, décryptages, analyses, portraits et critiques autour de la vie des idées. Magazine engagé, ouvert aux autres et au monde.. Bring up to date in french" } ``` #### unshuffled_deduplicated_frr - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Hiragana’ Practice’Sheet’1’(A -O)’ ’ Name:’________ __________________________’Section:’_______________ _’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ..." } ``` #### unshuffled_deduplicated_fy - **Size of downloaded dataset files:** 10.27 MB - **Size of the generated dataset:** 26.73 MB - **Total amount of disk used:** 37.00 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Nim in sêfte ride op Holmsjön, yn ien fan 'e lytse marren yn de omkriten, of nim se op avontueren lykas nonresidential. lâns Indalsälven wetter. Holm Sportklubb hawwe kano 's te huur, yn gearwurking mei de Baltyske Power konferinsje." } ``` #### unshuffled_deduplicated_ga - **Size of downloaded dataset files:** 22.22 MB - **Size of the generated dataset:** 63.86 MB - **Total amount of disk used:** 86.08 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Is fóram é seo chun plé a dhéanamh ar an leabhar atá roghnaithe do mhí na Samhna 2013 amháin. Ní féidir ach le baill chláraithe..." } ``` #### unshuffled_deduplicated_gd - **Size of downloaded dataset files:** 0.42 MB - **Size of the generated dataset:** 1.36 MB - **Total amount of disk used:** 1.78 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Zhou Yujun, a 'phàrtaidh Rùnaire Comataidh Sgìre Yanfeng ann Hengyang bhaile agus a Sgìre pàrtaidh agus an riaghaltas a' bhuidheann-riochdachaidh a 'tighinn a chèilidh air ar companaidh air Apr. 14, 2017." } ``` #### unshuffled_deduplicated_gl - **Size of downloaded dataset files:** 155.85 MB - **Size of the generated dataset:** 408.34 MB - **Total amount of disk used:** 564.19 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"O persoal de Inditex da provincia de Pontevedra segue a reclamar iguais condicións laborais no conxunto do país - CIG: Confeder..." } ``` #### unshuffled_deduplicated_gn - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"º ѐÆÚÓ À Ã Ð É Æ ¾ Ä ΠÀ ¼ Æ É ÄÛ = Ü Ý\\\"Þ ß†à á â ã ä å æçè ã é ê â å àë ì æê íî é á ë ï í çì àð í Ü à ñ ê é ò ä ì\"..." } ``` #### unshuffled_deduplicated_gom - **Size of downloaded dataset files:** 0.38 MB - **Size of the generated dataset:** 1.87 MB - **Total amount of disk used:** 2.24 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"दुष्ट शीळ हें कौरवांचें । रामें सविस्तर देखूनि साचें । बोलिले वचनें जें दुर्वाचे । करी तयांचें अनुस्मरण ॥२२०॥\"..." } ``` #### unshuffled_deduplicated_gu - **Size of downloaded dataset files:** 162.97 MB - **Size of the generated dataset:** 759.34 MB - **Total amount of disk used:** 922.32 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"અધિક માસ ચાલે છે. સમગ્ર ભારતમાં અને તેમાંય ખાસ કરીને પવિત્ર કે ધાર્મિક કહેવાય છે તેવા સ્થાનક પર કથાનો દોર ચાલે છે. ઉનાળાની કાળઝ..." } ``` #### unshuffled_deduplicated_he - **Size of downloaded dataset files:** 3.04 GB - **Size of the generated dataset:** 10.47 GB - **Total amount of disk used:** 13.51 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"זקוקים לרשתות נגד יתושים? מחפשים רשת מתאימה לחלון צר וקטן? רשתות נגד יתושים אקורדיון של חברת קליר-מש הן הפתרון.\\nרשתות לחלונות ..." } ``` #### unshuffled_deduplicated_hi - **Size of downloaded dataset files:** 2.01 GB - **Size of the generated dataset:** 9.57 GB - **Total amount of disk used:** 11.58 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"'आइटम गर्ल' बनकर हिट हुई थीं राखी सावंत, आज करीना-कटरीना तक फॉलो कर रही हैं ट्रेंड नक्‍सलियों का दम निकालेगा बाइक ग्रेनेड लॉन्च..." } ``` #### unshuffled_deduplicated_hr - **Size of downloaded dataset files:** 46.74 MB - **Size of the generated dataset:** 121.50 MB - **Total amount of disk used:** 168.23 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"U raspravi je sudjelovao i HSS-ov saborski zastupnik rekavši kako poljoprivrednici ne osjete mjere o kojima ministar govori jer..." } ``` #### unshuffled_deduplicated_hsb - **Size of downloaded dataset files:** 0.72 MB - **Size of the generated dataset:** 1.89 MB - **Total amount of disk used:** 2.61 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Budyšin (SN/BŠe). Elektronikarjo mějachu lětsa cyle hinaši zazběh do swojeho wukubłanja. Wokrjesne rjemjeslnistwo bě mjenujcy w..." } ``` #### unshuffled_deduplicated_ht - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan..." } ``` #### unshuffled_deduplicated_hu - **Size of downloaded dataset files:** 7.37 GB - **Size of the generated dataset:** 19.09 GB - **Total amount of disk used:** 26.46 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"monster - Amatőr, házi szex videók és kezdő csjaok pornó filmjei. - Free amateur, home made sex videos and online porn movies. ..." } ``` #### unshuffled_deduplicated_hy - **Size of downloaded dataset files:** 393.62 MB - **Size of the generated dataset:** 1.56 GB - **Total amount of disk used:** 1.96 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Արցախի Հանրապետության հռչակման 26-րդ տարեդարձի կապակցությամբ Շուշիի Արվեստի կենտրոնում կազմակերպվել է մոսկվաբնակ նկարիչներ՝ հայ..." } ``` #### unshuffled_deduplicated_ia - **Size of downloaded dataset files:** 0.05 MB - **Size of the generated dataset:** 0.38 MB - **Total amount of disk used:** 0.43 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha h..." } ``` #### unshuffled_deduplicated_id - **Size of downloaded dataset files:** 6.00 GB - **Size of the generated dataset:** 17.05 GB - **Total amount of disk used:** 23.05 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Perihal dari itu, kalau kunci hal yang demikian hilang, pemilik wajib melapor ke bengkel sah untuk dibuatkan kunci baru dengan ..." } ``` #### unshuffled_deduplicated_ie - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Plastic Yo Yo Metal Yo Yos Wooden Yo Yo Keychain Yo Yo Translucent Yo Yo Light Up Yo Yo Globe Yo Yo Stress Reliever Yo Yo Jellyfish Yo Yo Sports Ball Yo Yo Sound Yo Yo Miniature Yo Yo Promotional Yo Yo Novelty Yo Yo Video Game Yo Yo ECO Recycled Yo Yo" } ``` #### unshuffled_deduplicated_ilo - **Size of downloaded dataset files:** 0.23 MB - **Size of the generated dataset:** 0.68 MB - **Total amount of disk used:** 0.91 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Segun ken ni Ping-ay, ti yellow corn ti maysa kadagiti nadakamat a liberalized agricultural commodity iti daytoy a free trade k..." } ``` #### unshuffled_deduplicated_io - **Size of downloaded dataset files:** 0.04 MB - **Size of the generated dataset:** 0.14 MB - **Total amount of disk used:** 0.19 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Chekia esas parlamentala republiko. La chefo di stato esas la prezidanto. Til 2013 lu elektesis dal parlamento. Pos ta yaro, ol..." } ``` #### unshuffled_deduplicated_is - **Size of downloaded dataset files:** 332.87 MB - **Size of the generated dataset:** 894.28 MB - **Total amount of disk used:** 1.23 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Eyjar.net - upplýsinga- og fréttamiðill um Vestmannaeyjar - Fréttir - Nái núverandi stefna stjórnvalda fram að ganga mun það va..." } ``` #### unshuffled_deduplicated_it - **Size of downloaded dataset files:** 27.93 GB - **Size of the generated dataset:** 74.09 GB - **Total amount of disk used:** 102.03 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Jaundice - causes, treatment & pathology massaggio a osteochondrosis dellindizio di una controindicazione\\nTrattamento su un co..." } ``` #### unshuffled_deduplicated_ja - **Size of downloaded dataset files:** 40.80 GB - **Size of the generated dataset:** 113.63 GB - **Total amount of disk used:** 154.44 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"神社などへ一緒に同行して、様々な角度のショットで家族写真やお子様の写真を撮影致します!お好みに合わせて様々な写真を取ることができますので、その場でカメラマンへのリクエストも可能です!お子様の晴れ姿を、緊張していない自然な笑顔で残しませんか?\\n※七五三の..." } ``` #### unshuffled_deduplicated_jbo - **Size of downloaded dataset files:** 0.20 MB - **Size of the generated dataset:** 0.70 MB - **Total amount of disk used:** 0.91 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "ni'o 23 la cimast. cu 23moi djedi fi'o masti la cimast. noi ke'a cu cimoi masti .i 22 la cimast. cu purlamdei .ije 24 la cimast. cu bavlamdei" } ``` #### unshuffled_deduplicated_jv - **Size of downloaded dataset files:** 0.21 MB - **Size of the generated dataset:** 0.62 MB - **Total amount of disk used:** 0.82 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"José Mourinho (diwaca: [ʒuˈzɛ moˈɾiɲu]; lair ing Setubal, Portugal, 26 Januari 1963; umur 55 taun) iku salah siji pelatih bal k..." } ``` #### unshuffled_deduplicated_ka - **Size of downloaded dataset files:** 377.23 MB - **Size of the generated dataset:** 1.99 GB - **Total amount of disk used:** 2.36 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"წამიყვანე შენთან ერთად (ქართულად) / Возьми меня с собой (картулад) / (რუსული სერიალები ქართულად) (რუსების პორნო ონლაინში) (ruse..." } ``` #### unshuffled_deduplicated_kk - **Size of downloaded dataset files:** 389.12 MB - **Size of the generated dataset:** 1.59 GB - **Total amount of disk used:** 1.97 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Түлкібас ауданында «Латын негізді әліпби мен емле ережесі туралы насихат» жобасының тобы семинар өткізді\\nЕлорданың «Қазақстан»..." } ``` #### unshuffled_deduplicated_km - **Size of downloaded dataset files:** 114.48 MB - **Size of the generated dataset:** 610.61 MB - **Total amount of disk used:** 725.09 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ខ្សឹបដាក់ត្រចៀក៖ លោក សួស សុផានិត នាយផ្នែករដ្ឋបាលព្រៃឈើ ស្រុកភ្នំក្រវាញ់ ដែលទើបឡើងកាន់តំណែងថ្មី បើកដៃឲ្យឈ្នួញ ប្រព្រឹត្តបទល្មើស ..." } ``` #### unshuffled_deduplicated_kn - **Size of downloaded dataset files:** 215.52 MB - **Size of the generated dataset:** 1.08 GB - **Total amount of disk used:** 1.30 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ರಾಷ್ಟ್ರಪತಿ ಪ್ರಣಬ್ ಮುಖರ್ಜಿಯಿಂದ ಪದ್ಮ ಪ್ರಶಸ್ತಿ ಪ್ರದಾನ | President Pranab Mukherjee Confers Padma Awards | Photo Gallery on Kannada..." } ``` #### unshuffled_deduplicated_ko - **Size of downloaded dataset files:** 4.46 GB - **Size of the generated dataset:** 12.00 GB - **Total amount of disk used:** 16.47 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"CIA 프로젝트에서는 데이터베이스로 들어오는 요청을 중간에 수집(Sniffing)하고 수집한 데이터를 분석(Parsing)하여 그로 인한 결과를 판단하여 알릴 수 있는 시스템(Push Service)이 필요하다. 그리고 연구를 ..." } ``` #### unshuffled_deduplicated_krc - **Size of downloaded dataset files:** 0.62 MB - **Size of the generated dataset:** 2.41 MB - **Total amount of disk used:** 3.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Шамханланы, Бийлени къаршысына ябушуп, Батыр уланларыбызны къоллары булан «ортакъ ожакъ» къургъанбыз. Шо иш уллу зараллы иш бол..." } ``` #### unshuffled_deduplicated_ku - **Size of downloaded dataset files:** 23.34 MB - **Size of the generated dataset:** 63.09 MB - **Total amount of disk used:** 86.43 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Me di 114 bernameyên xwe yên berê da perçeyên ji berhemên zanyarî yên kurdzanên mezin bi wergera kurdî da ...\\nMe di 114 bernam..." } ``` #### unshuffled_deduplicated_kv - **Size of downloaded dataset files:** 0.33 MB - **Size of the generated dataset:** 1.21 MB - **Total amount of disk used:** 1.54 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Коми кытшыслӧн ыджытжык тор вӧр увтын куйлӧ, сійӧн и фаунасӧ татӧн аркмӧтӧны вӧрын олісь подаэз. Ассямаӧн лоӧ сія, мый кытшас с..." } ``` #### unshuffled_deduplicated_kw - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼Pray without ceasing🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏..." } ``` #### unshuffled_deduplicated_ky - **Size of downloaded dataset files:** 106.22 MB - **Size of the generated dataset:** 408.40 MB - **Total amount of disk used:** 514.61 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Turmush: Бишкек шаардык кеңешинин кезексиз отурумунда мэрге ишенбөөчүлүк көрсөтүү маселеси каралат, - депутат Т.Сагынов\\nБишкек..." } ``` #### unshuffled_deduplicated_la - **Size of downloaded dataset files:** 3.42 MB - **Size of the generated dataset:** 9.79 MB - **Total amount of disk used:** 13.22 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Hæ sunt generationes Noë: Noë vir justus atque perfectus fuit in generationibus suis; cum Deo ambulavit.\\nEcce ego adducam aqua..." } ``` #### unshuffled_deduplicated_lb - **Size of downloaded dataset files:** 8.30 MB - **Size of the generated dataset:** 21.42 MB - **Total amount of disk used:** 29.72 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Während dem Gaardefestival \\\"Ambiance Jardins\\\" vum 15. bis de 17. Mee huet den SNJ nees zesumme mam Groupe Animateur en Inform..." } ``` #### unshuffled_deduplicated_lez - **Size of downloaded dataset files:** 0.77 MB - **Size of the generated dataset:** 3.08 MB - **Total amount of disk used:** 3.84 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Ахцегь хуьр, виридалай ч1ехи лезги хуьрерикая я. Ам Урусатдин виридалай къиблепатавай хуьрерикай я. Ин хуьр...\"..." } ``` #### unshuffled_deduplicated_li - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.03 MB - **Total amount of disk used:** 0.04 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"'t Good Goedenraad aan de Ezerbaek besjteit oet 'n kesjtièl mèt gesjlote haof en 'n park van 26 hectare. Hie in sjtoon väól beu..." } ``` #### unshuffled_deduplicated_lmo - **Size of downloaded dataset files:** 0.10 MB - **Size of the generated dataset:** 0.46 MB - **Total amount of disk used:** 0.57 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Serét (en tortonés: Sregh; en piemontés: Srèj) l'è 'n cümü italià, de la regiù del Piemónt, en Pruvìncia de Alessandria. El g'h..." } ``` #### unshuffled_deduplicated_lo - **Size of downloaded dataset files:** 23.63 MB - **Size of the generated dataset:** 119.29 MB - **Total amount of disk used:** 142.92 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"ຜູ້ພິພາກສາ ປະຈຳເຂດ ສຫລ ທ່ານນຶ່ງ ຕັດສິນວ່າ ໂຄງການເກັບກຳຂໍ້ມູນ ທາງໂທລະສັບ ຂອງອົງການ ຄວາມໝັ້ນຄົງແຫ່ງຊາດ ແມ່ນຖືກຕ້ອງ ຕາມກົດໝາຍ.\\nກະ..." } ``` #### unshuffled_deduplicated_lrc - **Size of downloaded dataset files:** 0.02 MB - **Size of the generated dataset:** 0.06 MB - **Total amount of disk used:** 0.08 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"آرلینگتون یئ گئل د شأریا ڤولاتچە ڤیرجینیا و یئ گئل د شأریا ڤولات ڤولاتچە یا یأکاگئرئتە ئمریکاە. ئی شأر دویومی کألوٙن شأر د راسا..." } ``` #### unshuffled_deduplicated_lt - **Size of downloaded dataset files:** 1.65 GB - **Size of the generated dataset:** 4.20 GB - **Total amount of disk used:** 5.86 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Čir vir vir pavasaris! Čia čia čia… dalinamės labai simpatiška video pamokėle, kurią pristato ab888art galerija.\\nBe galo papra..." } ``` #### unshuffled_deduplicated_lv - **Size of downloaded dataset files:** 710.45 MB - **Size of the generated dataset:** 1.91 GB - **Total amount of disk used:** 2.62 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Dekoratīvi sliekšņi MITSUBISHI OUTLANDER 2007, izgatavoti no ovālas formas, pulētas nerūsējošā tērauda caurules...\\ndažādas tūn..." } ``` #### unshuffled_deduplicated_mai - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"१ · २ · ३ · ४ · ५ · ६ · ७ · ८ · ९ · १० · ११ · १२ · १३ · १४ · १५ · १६ · १७ · १८ · १९ · २० · २१ · २२ · २३ · २४ · २५ · २६ · २७ · २..." } ``` #### unshuffled_deduplicated_mg - **Size of downloaded dataset files:** 4.30 MB - **Size of the generated dataset:** 13.59 MB - **Total amount of disk used:** 17.89 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Nanamboatra taratasy apetaka sy soso-kevitra ho an'ny olona te-hanatevin-daharana ity fihetsiketsehana ity i Anocrena.\\nNosorat..." } ``` #### unshuffled_deduplicated_mhr - **Size of downloaded dataset files:** 1.63 MB - **Size of the generated dataset:** 6.26 MB - **Total amount of disk used:** 7.89 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Акрет жап годым Уганда кундемым Пигмей племена- влак айлен шогеныт. мемнан эран 1 курым гыч Банту племена влакат тиде кундемышк..." } ``` #### unshuffled_deduplicated_min - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.31 MB - **Total amount of disk used:** 0.33 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ..." } ``` #### unshuffled_deduplicated_mk - **Size of downloaded dataset files:** 303.12 MB - **Size of the generated dataset:** 1.19 GB - **Total amount of disk used:** 1.49 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"„Филм плус“ е насловен првиот филмски месечник во Македонија, чиј прв број ќе биде промовиран вечер во „Менада“. Новото македон..." } ``` #### unshuffled_deduplicated_ml - **Size of downloaded dataset files:** 496.80 MB - **Size of the generated dataset:** 2.69 GB - **Total amount of disk used:** 3.18 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"സ്ത്രീ പ്രവേശനം സര്‍ക്കാര്‍ പൂര്‍ണമായും അംഗീകരിക്കുന്നുവെന്നും ശബരിമലയുടെ സുരക്ഷയില്‍ ഇടപെടുമെന്നും സര്‍ക്കാര്‍ ഹൈക്കോടതിയില്‍\\..." } ``` #### unshuffled_deduplicated_mn - **Size of downloaded dataset files:** 219.52 MB - **Size of the generated dataset:** 883.46 MB - **Total amount of disk used:** 1.10 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"МУБИС-ын багш мэргэжлийн хөрвөх сургалтыг төгссөн багшид багшлах эрх олгох тухай ~ БМДИ-ийн захирлын тушаал - Багшийн мэргэжил ..." } ``` #### unshuffled_deduplicated_mr - **Size of downloaded dataset files:** 299.68 MB - **Size of the generated dataset:** 1.49 GB - **Total amount of disk used:** 1.79 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Home / motivational marathi story / उद्योजकता (Entrepreneurship) / यांना हे जमलय, तर आपल्याला का नाही जमणार ?\\nयापैकी कोणाचीही ..." } ``` #### unshuffled_deduplicated_mrj - **Size of downloaded dataset files:** 0.29 MB - **Size of the generated dataset:** 1.10 MB - **Total amount of disk used:** 1.38 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Лӹпӹвлӓ (латинлӓ Lepidoptera ; алыкмарла лыве-влак) — капшангывлӓ йыхыш пырышы сӱмӓн нӹл шылдыран капшангывлӓ. Цилӓжӹ 180000 тӹ..." } ``` #### unshuffled_deduplicated_ms - **Size of downloaded dataset files:** 16.39 MB - **Size of the generated dataset:** 49.45 MB - **Total amount of disk used:** 65.85 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Sanad pertama daripada Zuhair bin Harb daripada ‘Affan daripada Hammad daripada Thabit daripada Anas.\\nSanad kedua daripada ‘Ab..." } ``` #### unshuffled_deduplicated_mt - **Size of downloaded dataset files:** 5.90 MB - **Size of the generated dataset:** 17.68 MB - **Total amount of disk used:** 23.58 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "tibgħat il-kawża lura lill-Qorti Ġenerali għall-annullament jew għat-tnaqqis tal-penalità imposta mill-Kummissjoni bid-deċiżjoni inizjali kif emendata bid-deċiżjoni ta’ rettifika;" } ``` #### unshuffled_deduplicated_mwl - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Deciplina social i outónoma que angloba atebidades de ouserbaçon, de análeze, de çcriçon, cumparaçon, de sistematizaçon i de sp..." } ``` #### unshuffled_deduplicated_my - **Size of downloaded dataset files:** 207.14 MB - **Size of the generated dataset:** 1.11 GB - **Total amount of disk used:** 1.32 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ျမ၀တီ - ရန္ကုန္တိုင္းေဒသႀကီး ေျမာက္ဥကၠလာပႏွင္႕ ဗဟန္းၿမိဳ႔နယ္ မေကြးတိုင္း ေဒသႀကီး ပခုကၠဴၿမိဳ႔နယ္တို႔၌ ျမန္မာ႕တပ္မေတာ္အား ေထာက္ခံ..." } ``` #### unshuffled_deduplicated_myv - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"2018 иень умарьковонь 6-це чистэ сась паро куля! Россиянь культурань Министерствась макссь невтемань конёв (прокатной удостовер..." } ``` #### unshuffled_deduplicated_mzn - **Size of downloaded dataset files:** 0.16 MB - **Size of the generated dataset:** 0.63 MB - **Total amount of disk used:** 0.79 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"قرآن یا قوران اسلام ِآسمونی کتاب هسته. مسلمونون گانّّه قرآن ره خدا، وحی جه برسنی‌یه، «محمد معجزه» هسته و ثقلین حدیث دله ونه خَو..." } ``` #### unshuffled_deduplicated_nah - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "In mācuīlpōhualxihuitl VI (inic chicuacē) in mācuīlpōhualli xiuhitl cāhuitl īhuīcpa 501 xihuitl oc 600 xihuitl." } ``` #### unshuffled_deduplicated_nap - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ò AUDIT í Ç è î ÿ å å 30 ò ÿ ÿ é, õ ñ ì ÿ, ê ã- ò à ì. å â å í ç â à à é ñ è å é ó ó ë. å å å û è å î é è à. à è à AUDIT 1-7 â ..." } ``` #### unshuffled_deduplicated_nds - **Size of downloaded dataset files:** 5.27 MB - **Size of the generated dataset:** 13.48 MB - **Total amount of disk used:** 18.76 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Dor kann sik vun nu af an de hele plattdüütsche Welt – vun Niebüll bit New York, vun Helgoland bit Honolulu – drapen. Allens, w..." } ``` #### unshuffled_deduplicated_ne - **Size of downloaded dataset files:** 240.63 MB - **Size of the generated dataset:** 1.24 GB - **Total amount of disk used:** 1.48 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"बर्दिबास नगरपालिकाको तेस्रो नगर परिषदबाट पारित आ.व.२०७३।७४ को संशोधित र २०७४।७५ को प्रस्तावित नीति, कार्यक्रम तथा बजेट\\nअार्थिक..." } ``` #### unshuffled_deduplicated_new - **Size of downloaded dataset files:** 0.83 MB - **Size of the generated dataset:** 4.26 MB - **Total amount of disk used:** 5.09 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"थ्व शहरयागु अक्षांश ३४.७००१६४ उत्तर व देशान्तर ८६.३७६४६९ पश्चिम खः (34.700164° N 86.376469° W)। थ्व थासे ७२२६७३२ वर्ग मिटर (२.७..." } ``` #### unshuffled_deduplicated_nl - **Size of downloaded dataset files:** 15.73 GB - **Size of the generated dataset:** 41.91 GB - **Total amount of disk used:** 57.65 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Op vrijdag 31 augustus wordt het nieuwe studiejaar van de masteropleiding architectuur geopend met een dagexcursie naar Venlo.\\..." } ``` #### unshuffled_deduplicated_nn - **Size of downloaded dataset files:** 23.58 MB - **Size of the generated dataset:** 58.32 MB - **Total amount of disk used:** 81.90 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Planomtale krav til innhald Bakgrunn: Spørsmål frå fleire kommunar om kva ein planomtale/planbeskrivelse bør innehalde Fylkeskommunen og fylkesmannen har i ein del saker reist motsegn på formelt grunnlag" } ``` #### unshuffled_deduplicated_no - **Size of downloaded dataset files:** 1.96 GB - **Size of the generated dataset:** 5.11 GB - **Total amount of disk used:** 7.07 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Ytterligere aktører i primærhelsetjenesten og andre NHS-virksomheter ble infisert, inkludert legekontor.Læreren vår er så attra..." } ``` #### unshuffled_deduplicated_oc - **Size of downloaded dataset files:** 1.34 MB - **Size of the generated dataset:** 4.00 MB - **Total amount of disk used:** 5.34 MB An example of 'train' looks as follows. ``` { "id": 1, "text": ".рф (rf, còdi punycode: .xn--p1ai)[1] es lo nom de domeni en rus per Russia. Foguèt activat lo 12 de mai de 2010. Lo còdi latin es .ru." } ``` #### unshuffled_deduplicated_or - **Size of downloaded dataset files:** 38.72 MB - **Size of the generated dataset:** 197.63 MB - **Total amount of disk used:** 236.36 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ଭୁବନେଶ୍ୱର, ୨୭/୧– (ଓଡ଼ିଆ ପୁଅ) ସିପିଆଇ ଜାତୀୟ ପରିଷଦର ଆହ୍ୱାନକ୍ରମେ ଗତକାଲି ଜାନୁୟାରୀ ୨୬ ସାଧାରଣତନ୍ତ୍ର ଦିବସକୁ ଦେଶ ବ୍ୟାପୀ ସମ୍ବିଧାନ ସୁରକ୍ଷା ..." } ``` #### unshuffled_deduplicated_os - **Size of downloaded dataset files:** 2.83 MB - **Size of the generated dataset:** 11.00 MB - **Total amount of disk used:** 13.83 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"1. Лæппу æмæ чызг казрæдзийы зæрдæмæ куы фæцæуынц æмæ, куы сфæнд кæнынц сæ цард баиу кæнын, уæд лæппу бар ракуры чызгæй, цæмæй ..." } ``` #### unshuffled_deduplicated_pa - **Size of downloaded dataset files:** 102.39 MB - **Size of the generated dataset:** 483.04 MB - **Total amount of disk used:** 585.42 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ਰਜਿ: ਨੰ: PB/JL-138/2018-20 ਜਿਲਦ 63, ਬਾਨੀ ਸੰਪਾਦਕ (ਸਵ:) ਡਾ: ਸਾਧੂ ਸਿੰਘ ਹਮਦਰਦ ਫ਼ੋਨ : 0181-2455961-62-63, 5032400, ਫੈਕਸ : 2455960, 2..." } ``` #### unshuffled_deduplicated_pam - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Áku pu i Anak ning Aláya at ngeni ipákit kó kékayu ngan nûng makanánu lang susúlat détinang kulit a mágkas. Lauan ya ing tarátu..." } ``` #### unshuffled_deduplicated_pl - **Size of downloaded dataset files:** 20.19 GB - **Size of the generated dataset:** 50.59 GB - **Total amount of disk used:** 70.78 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"System informatyczny - Załącznik nr 1 do zarządzenia Wójta Gminy Podegrodzie Nr 530/2013 z dnia 27 maja 2013 r\\nSystem informat..." } ``` #### unshuffled_deduplicated_pms - **Size of downloaded dataset files:** 0.71 MB - **Size of the generated dataset:** 2.00 MB - **Total amount of disk used:** 2.72 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Louvigné-du-Désert a l'é na comun-a fransèisa ant la region aministrativa dla Brëtagna, ant ël dipartiment d'Ille-et-Vilaine. A..." } ``` #### unshuffled_deduplicated_pnb - **Size of downloaded dataset files:** 2.58 MB - **Size of the generated dataset:** 9.44 MB - **Total amount of disk used:** 12.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"ایہ فائل Wikimedia Commons توں اے تے دوجیاں ویونتاں تے وی ورتی جاےکدی اے۔ گل بات اس دے فائل گل بات صفہ تے تھلے دتی گئی۔\"..." } ``` #### unshuffled_deduplicated_ps - **Size of downloaded dataset files:** 71.83 MB - **Size of the generated dataset:** 254.79 MB - **Total amount of disk used:** 326.61 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Many people usually use the time period ‘business to business (B2B) advertising,’ however most of them do not know precisely wh..." } ``` #### unshuffled_deduplicated_pt - **Size of downloaded dataset files:** 26.00 GB - **Size of the generated dataset:** 68.37 GB - **Total amount of disk used:** 94.37 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Você pode estar lendo este texto no sofá, levantar pra pegar uma breja na geladeira, dar uma cagada e sentar novamente, sem int..." } ``` #### unshuffled_deduplicated_qu - **Size of downloaded dataset files:** 0.02 MB - **Size of the generated dataset:** 0.07 MB - **Total amount of disk used:** 0.09 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Warayu wichay (kastilla simipi: Ascensión de Guarayos) nisqaqa Buliwya mama llaqtapi, Santa Krus suyupi, huk llaqtam, Warayu pruwinsyap uma llaqtanmi." } ``` #### unshuffled_deduplicated_rm - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"practicists agrars / practicistas agraras AFP pon far ina furmaziun da basa scursanida per cuntanscher in attestat federal da q..." } ``` #### unshuffled_deduplicated_ro - **Size of downloaded dataset files:** 4.48 GB - **Size of the generated dataset:** 11.66 GB - **Total amount of disk used:** 16.14 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"“În viață, oportunitatea nu este totul. Cine atrage Lumina, cineva bun în umbră. Timpul ne creează.” maestru\\nLyn.Evans: Ce mar..." } ``` #### unshuffled_deduplicated_ru - **Size of downloaded dataset files:** 166.68 GB - **Size of the generated dataset:** 611.70 GB - **Total amount of disk used:** 778.38 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Доступ к данному профилю для публичного просмотра закрыт администрацией сайта - профиль находится на модерации.\\nРазработчикам ..." } ``` #### unshuffled_deduplicated_sa - **Size of downloaded dataset files:** 7.27 MB - **Size of the generated dataset:** 38.33 MB - **Total amount of disk used:** 45.60 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"अनिरुद्धनगरे क्रीडिता रामलीला सम्‍प्रति समाप्‍ता अस्ति । तस्‍य कानिचन् चित्राणि पूर्वमेव प्रकाशितानि सन्ति । द्वौ चलचित्रौ अपि ..." } ``` #### unshuffled_deduplicated_sah - **Size of downloaded dataset files:** 7.01 MB - **Size of the generated dataset:** 27.46 MB - **Total amount of disk used:** 34.49 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████..." } ``` #### unshuffled_deduplicated_scn - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "La gilusìa è nu sintimentu dulurusu ca nasci d'un disideriu di pussessu sclusivu ntê cunfrunti dâ pirsuna amata e dû timuri, dû suspettu o dâ cirtizza dâ sò nfidiltati." } ``` #### unshuffled_deduplicated_sd - **Size of downloaded dataset files:** 74.17 MB - **Size of the generated dataset:** 275.48 MB - **Total amount of disk used:** 349.66 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"هر ڪو ڄاڻي ٿو ته جڏهن توهان هڪ وڏي خريد ڪرڻ چاهيون ٿا, توهان پڄي ضروري حڪم ۾ ان جي ڪم ڪرڻ جي هٿ ۾ لاڳاپو ڪيو آهي. جي شيء آهي ته..." } ``` #### unshuffled_deduplicated_sh - **Size of downloaded dataset files:** 1.45 MB - **Size of the generated dataset:** 6.44 MB - **Total amount of disk used:** 7.87 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Opština Gornja Radgona se nalazi u sjeveroistočnoj Sloveniji i graniči s susjednom Austriji duž rijeke Mure. Sa tridesetim nase..." } ``` #### unshuffled_deduplicated_si - **Size of downloaded dataset files:** 175.62 MB - **Size of the generated dataset:** 842.57 MB - **Total amount of disk used:** 1.02 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"ලාංකීය සිතිවිලි සිංහල බ්ලොග් කියවනය කොත්තු සින්ඩිය ලංකා Blogger හත්මාළුව ලංකා බ්ලොග් කියවනය මාතලන්ගේ සින්ඩිය මොබයිල්lk\\nඅවකාශය ..." } ``` #### unshuffled_deduplicated_sk - **Size of downloaded dataset files:** 1.96 GB - **Size of the generated dataset:** 4.80 GB - **Total amount of disk used:** 6.76 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Aktivity | Agentúra podporovaného zamestnávania | vzdelávanie pre klientov, vzdelávanie pre odborníkov, kurzy\\nŠpecializované k..." } ``` #### unshuffled_deduplicated_sl - **Size of downloaded dataset files:** 523.22 MB - **Size of the generated dataset:** 1.32 GB - **Total amount of disk used:** 1.85 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Če Creatures, ki je želel, da pridejo na čas, predvsem je povedlo – razlikuje od ljubosumja začel grizenja kolen (ali zadnjica)..." } ``` #### unshuffled_deduplicated_so - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"тттттттттттттттттттттттттттттттт тттттттттттттттттттттттттттттттт тттттттттттттттттттттттттттттттт ттттттттттттттттуууууууууууу..." } ``` #### unshuffled_deduplicated_sq - **Size of downloaded dataset files:** 445.36 MB - **Size of the generated dataset:** 1.21 GB - **Total amount of disk used:** 1.66 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Çfarë do të më pëlqente tek një femër ose çfarë do të më shndërronte në një shpërthim drite? – Albert Vataj\\nTë gjithëve një zo..." } ``` #### unshuffled_deduplicated_sr - **Size of downloaded dataset files:** 665.03 MB - **Size of the generated dataset:** 2.36 GB - **Total amount of disk used:** 3.03 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Корисни савети за сваки дан. На сајту су разне категорије, као што су љепота, мода, кување и поправка властитим рукама.\\nШколск..." } ``` #### unshuffled_deduplicated_su - **Size of downloaded dataset files:** 0.05 MB - **Size of the generated dataset:** 0.16 MB - **Total amount of disk used:** 0.21 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Kartu krédit nyaéta \"duit plastik\" anu dikaluarkeun ku bank pikeun alat pambayaran di tempat-tempat nu tangtu samisal jiga di hotél, réstoran, tempat rékréasi jeung sajabana.[1]" } ``` #### unshuffled_deduplicated_sv - **Size of downloaded dataset files:** 10.19 GB - **Size of the generated dataset:** 26.33 GB - **Total amount of disk used:** 36.51 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"1783 är ett viktigt årtal i den nya tidens historia. Det året slöts en fred i Paris och därmed blev de 13 brittiska kolonierna ..." } ``` #### unshuffled_deduplicated_sw - **Size of downloaded dataset files:** 2.95 MB - **Size of the generated dataset:** 8.98 MB - **Total amount of disk used:** 11.92 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Miripuko hiyo inakuja mwanzoni mwa Wiki Takatifu kuelekea Pasaka na ikiwa ni wiki chache tu kabla ya Papa Francis kuanza ziara yake katika nchi hiyo yenye idadi kubwa kabisa ya watu katika ulimwengu wa nchi za Kiarabu." } ``` #### unshuffled_deduplicated_ta - **Size of downloaded dataset files:** 971.12 MB - **Size of the generated dataset:** 5.48 GB - **Total amount of disk used:** 6.45 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"பொழுது சாய்ந்து வெகு நேரமாகிவிட்டது. கூலி வேலைக்குப் போயிருந்த 'சித்தாள் ' பெண்கள் எல்லோரும் வீடு திரும்பி விட்டார்கள். இன்னும்..." } ``` #### unshuffled_deduplicated_te - **Size of downloaded dataset files:** 342.43 MB - **Size of the generated dataset:** 1.70 GB - **Total amount of disk used:** 2.04 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"హర్యానాలో టోల్ దగ్గర సిబ్బంది.. స్థానిక ప్రజలు కొట్టుకున్నారు. కర్నాల్ అనే గ్రామానికి సమీపంలో టోల్ గేట్ ఉంది. అయితే సాధారణంగా స..." } ``` #### unshuffled_deduplicated_tg - **Size of downloaded dataset files:** 62.90 MB - **Size of the generated dataset:** 261.68 MB - **Total amount of disk used:** 324.60 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Ҳумайро гуфтааст, мухолифи низом аст, низоме, ки дар Тоҷикистон вуҷуд дорад. Ба ин маънӣ, худро мухолифи давлату ҳукумати Тоҷик..." } ``` #### unshuffled_deduplicated_th - **Size of downloaded dataset files:** 3.54 GB - **Size of the generated dataset:** 17.11 GB - **Total amount of disk used:** 20.65 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ฟันที่แลดูขาวสะอาดไม่มีเศษอาหารติดอยู่ เหงือกสีชมพู ไม่เจ็บ หรือมีเลือดออกเวลาแปรงฟันหรือขัดฟัน ไม่มีปัญหาเรื่องกลิ่นปาก ทำให้ก..." } ``` #### unshuffled_deduplicated_tk - **Size of downloaded dataset files:** 2.22 MB - **Size of the generated dataset:** 7.12 MB - **Total amount of disk used:** 9.34 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Türkmenistanyň Prezidenti agyr atletika boýunça dünýä çempionatyna taýýarlyk işleriniň barşy bilen tanyşdy\\nHalallykdan kemal t..." } ``` #### unshuffled_deduplicated_tl - **Size of downloaded dataset files:** 151.34 MB - **Size of the generated dataset:** 431.69 MB - **Total amount of disk used:** 583.04 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"“Gusto ko manawagan sa mga Unit Head ng Chanel 2 Salve. Kasi napapansin ko iyon mga alaga ko ang taping halos once a week lang,..." } ``` #### unshuffled_deduplicated_tr - **Size of downloaded dataset files:** 10.39 GB - **Size of the generated dataset:** 28.47 GB - **Total amount of disk used:** 38.86 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Son yıllarda görülen ay tutulmalarına göre daha etkili olacağı söylenen Kanlı veya Kırmızı Ay Tutulmasına saatler kaldı. Bu akş..." } ``` #### unshuffled_deduplicated_tt - **Size of downloaded dataset files:** 85.89 MB - **Size of the generated dataset:** 321.37 MB - **Total amount of disk used:** 407.26 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"\\\"Иремнең вафатына 40 көн узгач, Алмаз да безнең өйгә кереп үлде\\\". Арчада 35 яшьлек ир өстенә кондызлар ега башлаган агач төшк..." } ``` #### unshuffled_deduplicated_tyv - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Экии, хүндүлуг аалчылар болгаш тыва дылдың деткикчилери! Тыва дылдың болгаш чогаалдың ховар бир башкызынга, Менги Ооржакка, ажы..." } ``` #### unshuffled_deduplicated_ug - **Size of downloaded dataset files:** 20.53 MB - **Size of the generated dataset:** 86.44 MB - **Total amount of disk used:** 106.97 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"زاڭ-ءتۇزىم | عىلىم-تەحنيكا | ءتىل-ادەبيەت | تۇرمىس | دەنە تاربيە | ساياحات-ورتا | سۋرەتتى حابار | سىر سۇحبات | ارناۋلى تاقىرىپ ..." } ``` #### unshuffled_deduplicated_uk - **Size of downloaded dataset files:** 8.04 GB - **Size of the generated dataset:** 29.86 GB - **Total amount of disk used:** 37.90 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Про надання роз'яснення (щодо форми письмового зобов'язання громадян про зворотне ввезення/вивезення товарів), Державна митна с..." } ``` #### unshuffled_deduplicated_ur - **Size of downloaded dataset files:** 483.59 MB - **Size of the generated dataset:** 1.82 GB - **Total amount of disk used:** 2.31 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"آئیے اہم اسلامی کتب کو یونیکوڈ میں انٹرنیٹ پر پیش کرنے کے لئے مل جل کر آن لائن ٹائپنگ کریں۔ محدث ٹائپنگ پراجیکٹ کے ذریعے آپ روز..." } ``` #### unshuffled_deduplicated_uz - **Size of downloaded dataset files:** 4.30 MB - **Size of the generated dataset:** 12.00 MB - **Total amount of disk used:** 16.29 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Qurama tog'lari tizmasining Toshkentdan 154 km uzoqlikdagi Toshkent-Ush yo'li yeqasidaxushmanzara tabiat qo'ynida joylashgan maydoni 30 ga.\nBolalarni sog'lomlashtirish oromgohi Bo'stonliq tumani Oqtosh muntaqasining soy-salqin gushasida joylashgan." } ``` #### unshuffled_deduplicated_vec - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Par ogni pónto, ła derivada ła xe ła pendensa de ła reta tangente a ła curva de ła funsion f. Ła reta de cołor róso l'è senpre ..." } ``` #### unshuffled_deduplicated_vi - **Size of downloaded dataset files:** 10.71 GB - **Size of the generated dataset:** 33.60 GB - **Total amount of disk used:** 44.31 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Canh chua cá bông lau không chỉ là món ăn giải nhiệt, thanh mát ngày hè mà còn là món siêu bổ dưỡng, rất tốt cho người gầy ốm. ..." } ``` #### unshuffled_deduplicated_vo - **Size of downloaded dataset files:** 0.30 MB - **Size of the generated dataset:** 2.10 MB - **Total amount of disk used:** 2.40 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Sarniguet binon zif in ziläk: Hautes-Pyrénées, in topäd: Midi-Pyrénées, in Fransän. Sarniguet topon videtü 43°19’ 7’’ N e lunetü 0°5’ 19’’ L." } ``` #### unshuffled_deduplicated_wa - **Size of downloaded dataset files:** 0.08 MB - **Size of the generated dataset:** 0.22 MB - **Total amount of disk used:** 0.29 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Cisse pådje ci n' est co k' on djermon, dj' ô bén k' el pådje est djusse sibåtcheye, eyet co trop tene; et s' divreut ele ecråxhî ene miete." } ``` #### unshuffled_deduplicated_war - **Size of downloaded dataset files:** 0.55 MB - **Size of the generated dataset:** 2.36 MB - **Total amount of disk used:** 2.90 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "An Honce amo in usa ka baryo ngan munisipalidad ha distrito han Rožňava ha rehiyon han Košice ha nasod han Slovakia.\nAn Rumegies amo in usa ka komyun ha departamento han Nord ngan ha rehiyon han Nord-Pas-de-Calais ha nasod han Fransya." } ``` #### unshuffled_deduplicated_wuu - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.03 MB - **Total amount of disk used:** 0.04 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"伊春元旦天气 伊春腊八天气 伊春春节天气 伊春情人节天气 伊春元宵节天气 伊春愚人节天气 伊春清明节天气 伊春劳动节天气 伊春母亲节天气 伊春端午节天气 伊春七夕节天气 伊春教师节天气 伊春中秋节天气 伊春国庆节天气 伊春重阳节天气 伊春万圣节天气 伊春..." } ``` #### unshuffled_deduplicated_xal - **Size of downloaded dataset files:** 0.03 MB - **Size of the generated dataset:** 0.12 MB - **Total amount of disk used:** 0.15 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Арнгудин Орн гисн Европд бәәдг һазр. 2007 җилин тooһaр эн орн нутгт 3,600,523 әмтн бәәдг билә. Арнгудин Орнин хотл балһсна нерн..." } ``` #### unshuffled_deduplicated_xmf - **Size of downloaded dataset files:** 0.94 MB - **Size of the generated dataset:** 4.63 MB - **Total amount of disk used:** 5.58 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"მოჩამილი ტექსტი წჷმორინელი რე Creative Commons Attribution-ShareAlike ლიცენზიათ; შილებე გეძინელი პირობეფიშ არსებუა. კილიშკილიშა..." } ``` #### unshuffled_deduplicated_yi - **Size of downloaded dataset files:** 22.20 MB - **Size of the generated dataset:** 88.29 MB - **Total amount of disk used:** 110.49 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ממשותדיק - חבֿרה, איך אַרבעט איצט אױף אַ זשורנאַל. טאָמער איר האָט עפּעס צוצוגעבן זאָלט איר שיקן מיר אַן אָנזאָג. ס'װעט הײסן \\\"..." } ``` #### unshuffled_deduplicated_yo - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.03 MB - **Total amount of disk used:** 0.04 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Copyright © 2018 BBC. BBC kò mọ̀ nípa àwọn ohun tí ó wà ní àwọn ojú òpó tí ó wà ní ìta. Ọwọ́ tí a fi mú ìbáṣepọ̀ ti ìta.\"..." } ``` #### unshuffled_deduplicated_yue - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 你還不爆 我累了 投降輸一半可以嗎\"..." } ``` #### unshuffled_deduplicated_zh - **Size of downloaded dataset files:** 99.98 GB - **Size of the generated dataset:** 267.88 GB - **Total amount of disk used:** 367.86 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"中国铝灰网 中国有色金属矿产网 中国黄莲网 中国水轮发电机网 中国抽油泵网 中国数控雕刻机网 中国不锈钢抛光网 中国磨具加工网 中国压铸铝网 中国耐水腻子网 中国手机摄像头网 中国粗粮网 中国车门锁网 中国钛粉网 中国轮圈网\\n天天中奖彩票图 天天中彩票..." } ``` </details> <details> <summary>Click to expand the Data/size information for each language (original)</summary> #### unshuffled_original_af - **Size of downloaded dataset files:** 85.79 MB - **Size of the generated dataset:** 254.08 MB - **Total amount of disk used:** 339.87 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "aanlyn markte as gevolg van ons voortgesette 'n begrip opsie handel sakeplan pdf terwyl ons steeds die gereelde ons binêre opsies handel" } ``` #### unshuffled_original_als - **Size of downloaded dataset files:** 1.49 MB - **Size of the generated dataset:** 5.30 MB - **Total amount of disk used:** 6.78 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"De Nazionalpark hät e Flächi vo 170,3 km² und isch dodemit s grösti Naturschutzgebiet vo de Schwiz. Er ligt uf em Gebiet vo de ..." } ``` #### unshuffled_original_am - **Size of downloaded dataset files:** 102.79 MB - **Size of the generated dataset:** 378.06 MB - **Total amount of disk used:** 480.85 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"አየር መንገዱ ከአዲስ አበባ ወደ ሮም ጣሊያን በማምራት ላይ በነበረበት ጊዜ ረዳት አብራሪው የጉዞውን አቅጣጫ በመቀየር ጄኔቭ አውሮፓላን ማረፊያ በማሳረፍ እጁን ለፖሊስ ሰጥቷል።\\nየኢትዮጵያ መንግስት የ..." } ``` #### unshuffled_original_an - **Size of downloaded dataset files:** 0.15 MB - **Size of the generated dataset:** 1.33 MB - **Total amount of disk used:** 1.48 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"واااااااأسفاه الأمم تفتخر ب 0 أمي ووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووووو..." } ``` #### unshuffled_original_ar - **Size of downloaded dataset files:** 22.23 GB - **Size of the generated dataset:** 87.94 GB - **Total amount of disk used:** 110.17 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"مرحبا بك عزيز الزائر نتمنى لك أوقاتاً سعيدة معنا وأن نزداد شرفا بخدمتك ولا تنسى التسجيل معنا لتستفيد بكل جديد\\nأهلا وسهلا بك زا..." } ``` #### unshuffled_original_arz - **Size of downloaded dataset files:** 15.90 MB - **Size of the generated dataset:** 70.13 MB - **Total amount of disk used:** 86.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"بنى عجل : قبيلة من عجل بن لجيم بن صعب بن على بن بكر بن وائل انتقل اغلبهم الى البصرة فى العراق و اصفهان و خراسان فى ايران و اذرب..." } ``` #### unshuffled_original_as - **Size of downloaded dataset files:** 21.43 MB - **Size of the generated dataset:** 117.73 MB - **Total amount of disk used:** 139.17 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"আমি, এই সংগঠনৰ সদস্য সকলে একেলগ হৈ অসমকে ধৰি ভাৰতৰ উত্তৰ পূৰ্বাঞ্চলৰ অমূল্য কলা-সাংস্কৃতিক সম্পদৰাজি বৃহত্তৰ অষ্ট্ৰেলিয়াৰ সন্মু..." } ``` #### unshuffled_original_ast - **Size of downloaded dataset files:** 0.92 MB - **Size of the generated dataset:** 2.54 MB - **Total amount of disk used:** 3.46 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"The Killers llanzaron el so álbum debú, Hot Fuss, en xunu de 2004 nel Reinu Xuníu, al traviés de la discográfica Lizard King, y..." } ``` #### unshuffled_original_av - **Size of downloaded dataset files:** 0.08 MB - **Size of the generated dataset:** 0.42 MB - **Total amount of disk used:** 0.50 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Жинда малъараб ва божизе бегьулеб рагІудаса кьуризе бегьуларо гьев. Гьес насихІат гьабизе кколелъул бацІцІадаб диналъул рахъалъ..." } ``` #### unshuffled_original_az - **Size of downloaded dataset files:** 927.76 MB - **Size of the generated dataset:** 2.96 GB - **Total amount of disk used:** 3.89 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"AZTV-Artıq 7 ildir ki, Abşeron rayonu dotasiya almadan bütün xərclərini yerli daxilolmalar hesabına maliyyələşdirir.\\nDünən, 10..." } ``` #### unshuffled_original_azb - **Size of downloaded dataset files:** 6.64 MB - **Size of the generated dataset:** 28.47 MB - **Total amount of disk used:** 35.11 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"لعلی ١٣-جو عصرده یاشاییب یاراتمیش گؤرکملی آذربایجان شاعرلریندندیر. ١٢٢٤-جی ایلده تبریزده آنادان اولموشدور، گنج یاشلاریندا تیجار..." } ``` #### unshuffled_original_ba - **Size of downloaded dataset files:** 33.22 MB - **Size of the generated dataset:** 133.70 MB - **Total amount of disk used:** 166.92 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Күҙәтеү ҡуласаһы моделен хәҙер Мифтахетдин Аҡмулла исемендәге Башҡорт дәүләт педагогия университетында ла эшләргә мөмкин\\t\\nКүҙ..." } ``` #### unshuffled_original_bar - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": " vo" } ``` #### unshuffled_original_bcl - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"& ÿ ó / í 0 - ø û ù ö ú ð ï ú \\u0014 ù þ ô ö í ÷ ò \\u0014 ÷ í ù û ö í \\u0001 û ñ ç þ \\u0001 ð \\u0007 þ ò ñ ñ ò ô \\u0017 û ö ô ÷..." } ``` #### unshuffled_original_be - **Size of downloaded dataset files:** 498.29 MB - **Size of the generated dataset:** 1.88 GB - **Total amount of disk used:** 2.38 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Брэсцкія ўлады не дазволілі прафсаюзу РЭП правесці пікетаванне ў парку Воінаў-інтэрнацыяналістаў 30 мая 2018 года.\\nСітуацыю пр..." } ``` #### unshuffled_original_bg - **Size of downloaded dataset files:** 8.34 GB - **Size of the generated dataset:** 33.75 GB - **Total amount of disk used:** 42.09 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ЖАЛБОПОДАТЕЛЯТ директор на Дирекция „ Обжалване и данъчно-осигурителна практика“- Бургас, редовно призован, се представлява от ..." } ``` #### unshuffled_original_bh - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.12 MB - **Total amount of disk used:** 0.13 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"सुकमा जिला भारत के छत्तीसगढ़ राज्य में एगो जिला बाटे। एकर मुख्यालय सुकमा शहर बाटे। एकर कुल रकबा 5636 वर्ग कि॰मी॰ बाटे।\"..." } ``` #### unshuffled_original_bn - **Size of downloaded dataset files:** 2.14 GB - **Size of the generated dataset:** 10.77 GB - **Total amount of disk used:** 12.91 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ভড়ং সর্বস্ব বাংলা আর্ট অ্যান্ড কালচারের হিসাব গুলিয়ে দেওয়ার ম্যাজিকের নাম ব্রাত্য রাইসু November 23, 2017\\nভড়ং সর্বস্ব বাংলা আর..." } ``` #### unshuffled_original_bo - **Size of downloaded dataset files:** 28.94 MB - **Size of the generated dataset:** 195.40 MB - **Total amount of disk used:** 224.34 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"བོད་མི་འདི་དག་ནི་རང་རྒྱུད་སྒོ་རུ་ཕུད་དེ་གཞན་རྒྱུད་པང་དུ་ཉར་ནས་གསོ་སྐྱོང་བྱེད་དགོས་ཟེར་བ་དང་གཅིག་མཚུངས་རེད།\\nཚན་རིག་ནི་དང་ཐོག་རང..." } ``` #### unshuffled_original_bpy - **Size of downloaded dataset files:** 0.34 MB - **Size of the generated dataset:** 4.35 MB - **Total amount of disk used:** 4.69 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"পৌরসভা এহার আয়তন (লয়াহান) ২,৭৩০,.৬৩ বর্গ কিলোমিটার। পৌরসভা এহার মাপাহানর অক্ষাংশ বারো দ্রাঘিমাংশ ইলতাই 18.63° S 48.18° W ।[১]..." } ``` #### unshuffled_original_br - **Size of downloaded dataset files:** 9.18 MB - **Size of the generated dataset:** 30.20 MB - **Total amount of disk used:** 39.38 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Ar mank Magalhães(Daveoù a vank) a zo ur spesad evned, Spheniscus magellanicus an anv skiantel anezhañ.\\nGallout a reer implijo..." } ``` #### unshuffled_original_bs - **Size of downloaded dataset files:** 0.05 MB - **Size of the generated dataset:** 0.48 MB - **Total amount of disk used:** 0.53 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ž šř é ú šř šř ě šř ž é č ě ž ů ě ď éé ýš ě ě Ž č š ý ě ď é ýš ě ď ě éé ýš ě č ž ě š ý ď ě ýš é ú č ž č š ý ď ý ž é éě ď é č ýš..." } ``` #### unshuffled_original_bxr - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"2002 оной хабар буряад хэлэ бэшэгэй һалбари Үндэһэтэнэй хүмүүнлиг ухаанай дээдэ һургуули болгогдожо өөршэлэгдөө.\\nХарин мүнөө б..." } ``` #### unshuffled_original_ca - **Size of downloaded dataset files:** 3.10 GB - **Size of the generated dataset:** 8.62 GB - **Total amount of disk used:** 11.73 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Daniel Vendrell, conegut com Vandrell, ha sigut un dels il•lustradors contemporanis més influents, representant a la nova onada..." } ``` #### unshuffled_original_cbk - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano yo gano..." } ``` #### unshuffled_original_ce - **Size of downloaded dataset files:** 2.09 MB - **Size of the generated dataset:** 8.73 MB - **Total amount of disk used:** 10.82 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Шаьш анархисташ ду бохучу жигархойн дIахьедарехь дуьйцу, оьрсийн ницкъаллийн структурийн а, федералан каналан а Iалашонаш \\\"мар..." } ``` #### unshuffled_original_ceb - **Size of downloaded dataset files:** 11.07 MB - **Size of the generated dataset:** 40.97 MB - **Total amount of disk used:** 52.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Si Isko walay pupamilok nga nagtan-aw sa unahan, natugaw. “Naunsa ka gud diha Isko nga layo man kaayo ang imong panan-aw?” ni I..." } ``` #### unshuffled_original_ckb - **Size of downloaded dataset files:** 111.88 MB - **Size of the generated dataset:** 510.97 MB - **Total amount of disk used:** 622.85 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"رسی رۆژ - ساڵێک دوای بومەلەرزەی کرماشان میوانی بەرنامە : کاک سیاوەش حەیاتی چالاکی مەدەنی -قەسری شیرین\\nپارچە موزیک 30 / 10 / 20..." } ``` #### unshuffled_original_cs - **Size of downloaded dataset files:** 21.72 GB - **Size of the generated dataset:** 57.08 GB - **Total amount of disk used:** 78.80 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Akce anarchistů proti připravovanému novému služební řádu a nízkým mzdám 1903 – Historie českého anarchismu (1880 – 1939)\\nRost..." } ``` #### unshuffled_original_cv - **Size of downloaded dataset files:** 9.40 MB - **Size of the generated dataset:** 41.05 MB - **Total amount of disk used:** 50.45 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Шыранӑ чухне ӑнсӑртран латин кирилл саспаллисем вырӑнне латин саспаллисене ҫырсан, сайт эсир ҫырнине юсама тӑрӑшӗ.\\nКу сайтра ч..." } ``` #### unshuffled_original_cy - **Size of downloaded dataset files:** 81.74 MB - **Size of the generated dataset:** 224.93 MB - **Total amount of disk used:** 306.67 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Mae capeli Cymreig yr Andes ym Mhatagonia wedi cyhoeddi na fydd gwasanaethau yno weddill y mis, oherwydd yr eira trwm sydd wedi..." } ``` #### unshuffled_original_da - **Size of downloaded dataset files:** 6.00 GB - **Size of the generated dataset:** 16.76 GB - **Total amount of disk used:** 22.76 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Den 2.-5. februar 2016 løb det tredje kursus i uddannelsen af 4kommunesamarbejdets Local Impact Coaches, af stablen i Gentofte ..." } ``` #### unshuffled_original_de - **Size of downloaded dataset files:** 119.51 GB - **Size of the generated dataset:** 331.22 GB - **Total amount of disk used:** 450.73 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Auf dieser Seite gibt es mind. ein YouTube Video. Cookies für diese Website wurden abgelehnt. Dadurch können keine YouTube Vide..." } ``` #### unshuffled_original_diq - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Zıwanê Slawki, zıwano merdumanê Slawano. Zıwanê Slawki yew lızgeyê Zıwananê Hind u Ewropao. Keyeyê Zıwananê Slawki beno hirê letey:" } ``` #### unshuffled_original_dsb - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Pśiklaskaju južo pśed pśedstajenim... 1500 źiśi njamóžo wěcej docakaś, měsćańska hala w Chóśebuzu - wupśedana." } ``` #### unshuffled_original_dv - **Size of downloaded dataset files:** 24.91 MB - **Size of the generated dataset:** 131.63 MB - **Total amount of disk used:** 156.54 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ބ. އަތޮޅުގައި ހުޅުވަން ތައްޔާރުވަމުން އަންނަ ވައްކަރު ރިސޯޓުގައި ވަޒީފާ އަދާކުރަން ޝައުގުވެރިވާ ފަރާތްތަކަށް ކުރިމަތިލުމުގެ ފުރ..." } ``` #### unshuffled_original_el - **Size of downloaded dataset files:** 17.31 GB - **Size of the generated dataset:** 66.27 GB - **Total amount of disk used:** 83.58 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Νεκρός εντοπίστηκε μέσα στο σπίτι του στην οδό Ηρώδου Αττικού στον αριθμό 7 ο επικεφαλής του προξενικού τμήματος της Ρωσικής πρ..." } ``` #### unshuffled_original_eml - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"A séguit dal prucès ad rubutiśasiòṅ di abitànt dal pòpul ad Mikenes, Angoras 'l è finî dènt'r a 'n robot cun la tèsta dna rana ..." } ``` #### unshuffled_original_en - **Size of downloaded dataset files:** 903.83 GB - **Size of the generated dataset:** 2525.44 GB - **Total amount of disk used:** 3429.27 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Mtendere Village was inspired by the vision of Chief Napoleon Dzombe, which he shared with John Blanchard during his first visi..." } ``` #### unshuffled_original_eo - **Size of downloaded dataset files:** 117.07 MB - **Size of the generated dataset:** 314.18 MB - **Total amount of disk used:** 431.27 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Ĉu ... preĝi | mediti | ricevi instigojn || kanti | muziki || informiĝi | legi | studi || prepari Diservon\\nTemas pri kolekto d..." } ``` #### unshuffled_original_es - **Size of downloaded dataset files:** 106.04 GB - **Size of the generated dataset:** 298.49 GB - **Total amount of disk used:** 404.53 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Como se librará de la celulitis en el gimnasio La piel superflua en las manos después del adelgazamiento, Los bailes fáciles pa..." } ``` #### unshuffled_original_et - **Size of downloaded dataset files:** 1.88 GB - **Size of the generated dataset:** 5.17 GB - **Total amount of disk used:** 7.06 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"MTÜ AB Video järgib oma tegevuses kodanikuühenduste eetilise tegevuse üldtunnustatud põhimõtteid, mis on lühidalt kokkuvõetud 7..." } ``` #### unshuffled_original_eu - **Size of downloaded dataset files:** 248.19 MB - **Size of the generated dataset:** 894.83 MB - **Total amount of disk used:** 1.14 GB An example of 'train' looks as follows. ``` { "id": 0, "text": "Gure jarduerek eraikuntzarekin, elkarbizitzarekin, hirigintzarekin eta ekologiarekin dute harremana, baita ideia eta konponbideak irudikatu eta garatzearekin ere, eraikuntza sektorea hobetuz, pertsonen erosotasuna eta bizi-kalitatea hobetzeko." } ``` #### unshuffled_original_fa - **Size of downloaded dataset files:** 20.96 GB - **Size of the generated dataset:** 84.21 GB - **Total amount of disk used:** 105.17 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"قـــــــــــــــــرار بود با هم کنـــــــــــــار بیایم نه اینکه از کنــــــــــــار هم رد بشیم...!!!\\nاگر روزی دلت لبریز غم بو..." } ``` #### unshuffled_original_fi - **Size of downloaded dataset files:** 9.97 GB - **Size of the generated dataset:** 28.57 GB - **Total amount of disk used:** 38.54 GB An example of 'train' looks as follows. ``` { "id": 1, "text": "Kiitos Deelle kaikesta - 1,5 viikkoa kulunut, kun Dee ei ole enää ollut omani. Reilu viikko sitten sunnuntaina vein Deen uuteen kotiinsa. Itselläni on ollut niin ristiriitaiset t..." } ``` #### unshuffled_original_fr - **Size of downloaded dataset files:** 105.32 GB - **Size of the generated dataset:** 303.19 GB - **Total amount of disk used:** 408.51 GB An example of 'train' looks as follows. ``` { "id": 0, "text": "Média de débat d'idées, de culture et de littérature. Récits, décryptages, analyses, portraits et critiques autour de la vie des idées. Magazine engagé, ouvert aux autres et au monde.. Bring up to date in french" } ``` #### unshuffled_original_frr - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Hiragana’ Practice’Sheet’1’(A -O)’ ’ Name:’________ __________________________’Section:’_______________ _’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ..." } ``` #### unshuffled_original_fy - **Size of downloaded dataset files:** 12.40 MB - **Size of the generated dataset:** 36.24 MB - **Total amount of disk used:** 48.64 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Nim in sêfte ride op Holmsjön, yn ien fan 'e lytse marren yn de omkriten, of nim se op avontueren lykas nonresidential. lâns Indalsälven wetter. Holm Sportklubb hawwe kano 's te huur, yn gearwurking mei de Baltyske Power konferinsje." } ``` #### unshuffled_original_ga - **Size of downloaded dataset files:** 29.27 MB - **Size of the generated dataset:** 92.37 MB - **Total amount of disk used:** 121.63 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Is fóram é seo chun plé a dhéanamh ar an leabhar atá roghnaithe do mhí na Samhna 2013 amháin. Ní féidir ach le baill chláraithe..." } ``` #### unshuffled_original_gd - **Size of downloaded dataset files:** 0.52 MB - **Size of the generated dataset:** 2.02 MB - **Total amount of disk used:** 2.55 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Zhou Yujun, a 'phàrtaidh Rùnaire Comataidh Sgìre Yanfeng ann Hengyang bhaile agus a Sgìre pàrtaidh agus an riaghaltas a' bhuidheann-riochdachaidh a 'tighinn a chèilidh air ar companaidh air Apr. 14, 2017." } ``` #### unshuffled_original_gl - **Size of downloaded dataset files:** 235.38 MB - **Size of the generated dataset:** 656.48 MB - **Total amount of disk used:** 891.87 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"O persoal de Inditex da provincia de Pontevedra segue a reclamar iguais condicións laborais no conxunto do país - CIG: Confeder..." } ``` #### unshuffled_original_gn - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.04 MB - **Total amount of disk used:** 0.05 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"º ѐÆÚÓ À Ã Ð É Æ ¾ Ä ΠÀ ¼ Æ É ÄÛ = Ü Ý\\\"Þ ß†à á â ã ä å æçè ã é ê â å àë ì æê íî é á ë ï í çì àð í Ü à ñ ê é ò ä ì\"..." } ``` #### unshuffled_original_gom - **Size of downloaded dataset files:** 0.44 MB - **Size of the generated dataset:** 2.25 MB - **Total amount of disk used:** 2.71 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"दुष्ट शीळ हें कौरवांचें । रामें सविस्तर देखूनि साचें । बोलिले वचनें जें दुर्वाचे । करी तयांचें अनुस्मरण ॥२२०॥\"..." } ``` #### unshuffled_original_gu - **Size of downloaded dataset files:** 232.02 MB - **Size of the generated dataset:** 1.09 GB - **Total amount of disk used:** 1.33 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"અધિક માસ ચાલે છે. સમગ્ર ભારતમાં અને તેમાંય ખાસ કરીને પવિત્ર કે ધાર્મિક કહેવાય છે તેવા સ્થાનક પર કથાનો દોર ચાલે છે. ઉનાળાની કાળઝ..." } ``` #### unshuffled_original_he - **Size of downloaded dataset files:** 5.66 GB - **Size of the generated dataset:** 21.11 GB - **Total amount of disk used:** 26.77 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"זקוקים לרשתות נגד יתושים? מחפשים רשת מתאימה לחלון צר וקטן? רשתות נגד יתושים אקורדיון של חברת קליר-מש הן הפתרון.\\nרשתות לחלונות ..." } ``` #### unshuffled_original_hi - **Size of downloaded dataset files:** 3.66 GB - **Size of the generated dataset:** 17.93 GB - **Total amount of disk used:** 21.59 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"'आइटम गर्ल' बनकर हिट हुई थीं राखी सावंत, आज करीना-कटरीना तक फॉलो कर रही हैं ट्रेंड नक्‍सलियों का दम निकालेगा बाइक ग्रेनेड लॉन्च..." } ``` #### unshuffled_original_hr - **Size of downloaded dataset files:** 79.42 MB - **Size of the generated dataset:** 243.83 MB - **Total amount of disk used:** 323.24 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"U raspravi je sudjelovao i HSS-ov saborski zastupnik rekavši kako poljoprivrednici ne osjete mjere o kojima ministar govori jer..." } ``` #### unshuffled_original_hsb - **Size of downloaded dataset files:** 1.39 MB - **Size of the generated dataset:** 4.49 MB - **Total amount of disk used:** 5.87 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Budyšin (SN/BŠe). Elektronikarjo mějachu lětsa cyle hinaši zazběh do swojeho wukubłanja. Wokrjesne rjemjeslnistwo bě mjenujcy w..." } ``` #### unshuffled_original_ht - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan..." } ``` #### unshuffled_original_hu - **Size of downloaded dataset files:** 15.69 GB - **Size of the generated dataset:** 43.07 GB - **Total amount of disk used:** 58.77 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"monster - Amatőr, házi szex videók és kezdő csjaok pornó filmjei. - Free amateur, home made sex videos and online porn movies. ..." } ``` #### unshuffled_original_hy - **Size of downloaded dataset files:** 897.36 MB - **Size of the generated dataset:** 3.94 GB - **Total amount of disk used:** 4.84 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Արցախի Հանրապետության հռչակման 26-րդ տարեդարձի կապակցությամբ Շուշիի Արվեստի կենտրոնում կազմակերպվել է մոսկվաբնակ նկարիչներ՝ հայ..." } ``` #### unshuffled_original_ia - **Size of downloaded dataset files:** 0.08 MB - **Size of the generated dataset:** 0.69 MB - **Total amount of disk used:** 0.78 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha h..." } ``` #### unshuffled_original_id - **Size of downloaded dataset files:** 10.60 GB - **Size of the generated dataset:** 32.32 GB - **Total amount of disk used:** 42.91 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Perihal dari itu, kalau kunci hal yang demikian hilang, pemilik wajib melapor ke bengkel sah untuk dibuatkan kunci baru dengan ..." } ``` #### unshuffled_original_ie - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Plastic Yo Yo Metal Yo Yos Wooden Yo Yo Keychain Yo Yo Translucent Yo Yo Light Up Yo Yo Globe Yo Yo Stress Reliever Yo Yo Jellyfish Yo Yo Sports Ball Yo Yo Sound Yo Yo Miniature Yo Yo Promotional Yo Yo Novelty Yo Yo Video Game Yo Yo ECO Recycled Yo Yo" } ``` #### unshuffled_original_ilo - **Size of downloaded dataset files:** 0.27 MB - **Size of the generated dataset:** 0.92 MB - **Total amount of disk used:** 1.20 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Segun ken ni Ping-ay, ti yellow corn ti maysa kadagiti nadakamat a liberalized agricultural commodity iti daytoy a free trade k..." } ``` #### unshuffled_original_io - **Size of downloaded dataset files:** 0.04 MB - **Size of the generated dataset:** 0.16 MB - **Total amount of disk used:** 0.20 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Chekia esas parlamentala republiko. La chefo di stato esas la prezidanto. Til 2013 lu elektesis dal parlamento. Pos ta yaro, ol..." } ``` #### unshuffled_original_is - **Size of downloaded dataset files:** 533.03 MB - **Size of the generated dataset:** 1.52 GB - **Total amount of disk used:** 2.06 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Eyjar.net - upplýsinga- og fréttamiðill um Vestmannaeyjar - Fréttir - Nái núverandi stefna stjórnvalda fram að ganga mun það va..." } ``` #### unshuffled_original_it - **Size of downloaded dataset files:** 52.16 GB - **Size of the generated dataset:** 147.38 GB - **Total amount of disk used:** 199.54 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Jaundice - causes, treatment & pathology massaggio a osteochondrosis dellindizio di una controindicazione\\nTrattamento su un co..." } ``` #### unshuffled_original_ja - **Size of downloaded dataset files:** 79.56 GB - **Size of the generated dataset:** 232.22 GB - **Total amount of disk used:** 311.78 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"神社などへ一緒に同行して、様々な角度のショットで家族写真やお子様の写真を撮影致します!お好みに合わせて様々な写真を取ることができますので、その場でカメラマンへのリクエストも可能です!お子様の晴れ姿を、緊張していない自然な笑顔で残しませんか?\\n※七五三の..." } ``` #### unshuffled_original_jbo - **Size of downloaded dataset files:** 0.21 MB - **Size of the generated dataset:** 0.77 MB - **Total amount of disk used:** 0.98 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "ni'o 23 la cimast. cu 23moi djedi fi'o masti la cimast. noi ke'a cu cimoi masti .i 22 la cimast. cu purlamdei .ije 24 la cimast. cu bavlamdei" } ``` #### unshuffled_original_jv - **Size of downloaded dataset files:** 0.22 MB - **Size of the generated dataset:** 0.69 MB - **Total amount of disk used:** 0.91 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"José Mourinho (diwaca: [ʒuˈzɛ moˈɾiɲu]; lair ing Setubal, Portugal, 26 Januari 1963; umur 55 taun) iku salah siji pelatih bal k..." } ``` #### unshuffled_original_ka - **Size of downloaded dataset files:** 680.74 MB - **Size of the generated dataset:** 3.77 GB - **Total amount of disk used:** 4.45 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"წამიყვანე შენთან ერთად (ქართულად) / Возьми меня с собой (картулад) / (რუსული სერიალები ქართულად) (რუსების პორნო ონლაინში) (ruse..." } ``` #### unshuffled_original_kk - **Size of downloaded dataset files:** 615.06 MB - **Size of the generated dataset:** 2.83 GB - **Total amount of disk used:** 3.45 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Түлкібас ауданында «Латын негізді әліпби мен емле ережесі туралы насихат» жобасының тобы семинар өткізді\\nЕлорданың «Қазақстан»..." } ``` #### unshuffled_original_km - **Size of downloaded dataset files:** 193.28 MB - **Size of the generated dataset:** 1.10 GB - **Total amount of disk used:** 1.30 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ខ្សឹបដាក់ត្រចៀក៖ លោក សួស សុផានិត នាយផ្នែករដ្ឋបាលព្រៃឈើ ស្រុកភ្នំក្រវាញ់ ដែលទើបឡើងកាន់តំណែងថ្មី បើកដៃឲ្យឈ្នួញ ប្រព្រឹត្តបទល្មើស ..." } ``` #### unshuffled_original_kn - **Size of downloaded dataset files:** 342.15 MB - **Size of the generated dataset:** 1.76 GB - **Total amount of disk used:** 2.11 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ರಾಷ್ಟ್ರಪತಿ ಪ್ರಣಬ್ ಮುಖರ್ಜಿಯಿಂದ ಪದ್ಮ ಪ್ರಶಸ್ತಿ ಪ್ರದಾನ | President Pranab Mukherjee Confers Padma Awards | Photo Gallery on Kannada..." } ``` #### unshuffled_original_ko - **Size of downloaded dataset files:** 8.81 GB - **Size of the generated dataset:** 25.29 GB - **Total amount of disk used:** 34.10 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"CIA 프로젝트에서는 데이터베이스로 들어오는 요청을 중간에 수집(Sniffing)하고 수집한 데이터를 분석(Parsing)하여 그로 인한 결과를 판단하여 알릴 수 있는 시스템(Push Service)이 필요하다. 그리고 연구를 ..." } ``` #### unshuffled_original_krc - **Size of downloaded dataset files:** 0.66 MB - **Size of the generated dataset:** 2.68 MB - **Total amount of disk used:** 3.34 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Шамханланы, Бийлени къаршысына ябушуп, Батыр уланларыбызны къоллары булан «ортакъ ожакъ» къургъанбыз. Шо иш уллу зараллы иш бол..." } ``` #### unshuffled_original_ku - **Size of downloaded dataset files:** 33.38 MB - **Size of the generated dataset:** 99.06 MB - **Total amount of disk used:** 132.44 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Me di 114 bernameyên xwe yên berê da perçeyên ji berhemên zanyarî yên kurdzanên mezin bi wergera kurdî da ...\\nMe di 114 bernam..." } ``` #### unshuffled_original_kv - **Size of downloaded dataset files:** 0.40 MB - **Size of the generated dataset:** 2.38 MB - **Total amount of disk used:** 2.78 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Коми кытшыслӧн ыджытжык тор вӧр увтын куйлӧ, сійӧн и фаунасӧ татӧн аркмӧтӧны вӧрын олісь подаэз. Ассямаӧн лоӧ сія, мый кытшас с..." } ``` #### unshuffled_original_kw - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.04 MB - **Total amount of disk used:** 0.05 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼Pray without ceasing🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏🏼🙏..." } ``` #### unshuffled_original_ky - **Size of downloaded dataset files:** 152.64 MB - **Size of the generated dataset:** 630.79 MB - **Total amount of disk used:** 783.43 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Turmush: Бишкек шаардык кеңешинин кезексиз отурумунда мэрге ишенбөөчүлүк көрсөтүү маселеси каралат, - депутат Т.Сагынов\\nБишкек..." } ``` #### unshuffled_original_la - **Size of downloaded dataset files:** 5.46 MB - **Size of the generated dataset:** 27.80 MB - **Total amount of disk used:** 33.26 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Hæ sunt generationes Noë: Noë vir justus atque perfectus fuit in generationibus suis; cum Deo ambulavit.\\nEcce ego adducam aqua..." } ``` #### unshuffled_original_lb - **Size of downloaded dataset files:** 10.73 MB - **Size of the generated dataset:** 30.60 MB - **Total amount of disk used:** 41.32 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Während dem Gaardefestival \\\"Ambiance Jardins\\\" vum 15. bis de 17. Mee huet den SNJ nees zesumme mam Groupe Animateur en Inform..." } ``` #### unshuffled_original_lez - **Size of downloaded dataset files:** 0.83 MB - **Size of the generated dataset:** 3.38 MB - **Total amount of disk used:** 4.20 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Ахцегь хуьр, виридалай ч1ехи лезги хуьрерикая я. Ам Урусатдин виридалай къиблепатавай хуьрерикай я. Ин хуьр...\"..." } ``` #### unshuffled_original_li - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.03 MB - **Total amount of disk used:** 0.04 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"'t Good Goedenraad aan de Ezerbaek besjteit oet 'n kesjtièl mèt gesjlote haof en 'n park van 26 hectare. Hie in sjtoon väól beu..." } ``` #### unshuffled_original_lmo - **Size of downloaded dataset files:** 0.10 MB - **Size of the generated dataset:** 0.47 MB - **Total amount of disk used:** 0.58 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Serét (en tortonés: Sregh; en piemontés: Srèj) l'è 'n cümü italià, de la regiù del Piemónt, en Pruvìncia de Alessandria. El g'h..." } ``` #### unshuffled_original_lo - **Size of downloaded dataset files:** 33.92 MB - **Size of the generated dataset:** 182.36 MB - **Total amount of disk used:** 216.28 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"ຜູ້ພິພາກສາ ປະຈຳເຂດ ສຫລ ທ່ານນຶ່ງ ຕັດສິນວ່າ ໂຄງການເກັບກຳຂໍ້ມູນ ທາງໂທລະສັບ ຂອງອົງການ ຄວາມໝັ້ນຄົງແຫ່ງຊາດ ແມ່ນຖືກຕ້ອງ ຕາມກົດໝາຍ.\\nກະ..." } ``` #### unshuffled_original_lrc - **Size of downloaded dataset files:** 0.02 MB - **Size of the generated dataset:** 0.07 MB - **Total amount of disk used:** 0.09 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"آرلینگتون یئ گئل د شأریا ڤولاتچە ڤیرجینیا و یئ گئل د شأریا ڤولات ڤولاتچە یا یأکاگئرئتە ئمریکاە. ئی شأر دویومی کألوٙن شأر د راسا..." } ``` #### unshuffled_original_lt - **Size of downloaded dataset files:** 3.44 GB - **Size of the generated dataset:** 9.45 GB - **Total amount of disk used:** 12.89 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Čir vir vir pavasaris! Čia čia čia… dalinamės labai simpatiška video pamokėle, kurią pristato ab888art galerija.\\nBe galo papra..." } ``` #### unshuffled_original_lv - **Size of downloaded dataset files:** 1.49 GB - **Size of the generated dataset:** 4.27 GB - **Total amount of disk used:** 5.75 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Dekoratīvi sliekšņi MITSUBISHI OUTLANDER 2007, izgatavoti no ovālas formas, pulētas nerūsējošā tērauda caurules...\\ndažādas tūn..." } ``` #### unshuffled_original_mai - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.33 MB - **Total amount of disk used:** 0.34 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"१ · २ · ३ · ४ · ५ · ६ · ७ · ८ · ९ · १० · ११ · १२ · १३ · १४ · १५ · १६ · १७ · १८ · १९ · २० · २१ · २२ · २३ · २४ · २५ · २६ · २७ · २..." } ``` #### unshuffled_original_mg - **Size of downloaded dataset files:** 6.22 MB - **Size of the generated dataset:** 21.79 MB - **Total amount of disk used:** 28.01 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Nanamboatra taratasy apetaka sy soso-kevitra ho an'ny olona te-hanatevin-daharana ity fihetsiketsehana ity i Anocrena.\\nNosorat..." } ``` #### unshuffled_original_mhr - **Size of downloaded dataset files:** 1.84 MB - **Size of the generated dataset:** 7.55 MB - **Total amount of disk used:** 9.38 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Акрет жап годым Уганда кундемым Пигмей племена- влак айлен шогеныт. мемнан эран 1 курым гыч Банту племена влакат тиде кундемышк..." } ``` #### unshuffled_original_min - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.63 MB - **Total amount of disk used:** 0.64 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ‏‏‎ ..." } ``` #### unshuffled_original_mk - **Size of downloaded dataset files:** 508.24 MB - **Size of the generated dataset:** 2.20 GB - **Total amount of disk used:** 2.71 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"„Филм плус“ е насловен првиот филмски месечник во Македонија, чиј прв број ќе биде промовиран вечер во „Менада“. Новото македон..." } ``` #### unshuffled_original_ml - **Size of downloaded dataset files:** 938.69 MB - **Size of the generated dataset:** 5.24 GB - **Total amount of disk used:** 6.18 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"സ്ത്രീ പ്രവേശനം സര്‍ക്കാര്‍ പൂര്‍ണമായും അംഗീകരിക്കുന്നുവെന്നും ശബരിമലയുടെ സുരക്ഷയില്‍ ഇടപെടുമെന്നും സര്‍ക്കാര്‍ ഹൈക്കോടതിയില്‍\\..." } ``` #### unshuffled_original_mn - **Size of downloaded dataset files:** 472.36 MB - **Size of the generated dataset:** 2.33 GB - **Total amount of disk used:** 2.81 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Монгол улс, Улаанбаатар хот - 14191 Энхтайваны өргөн чөлөө - 10, Багш хөгжлийн ордон, Багшийн мэргэжил дээшлүүлэх институт\\nБаг..." } ``` #### unshuffled_original_mr - **Size of downloaded dataset files:** 525.31 MB - **Size of the generated dataset:** 2.82 GB - **Total amount of disk used:** 3.34 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Home / motivational marathi story / उद्योजकता (Entrepreneurship) / यांना हे जमलय, तर आपल्याला का नाही जमणार ?\\nयापैकी कोणाचीही ..." } ``` #### unshuffled_original_mrj - **Size of downloaded dataset files:** 0.30 MB - **Size of the generated dataset:** 1.16 MB - **Total amount of disk used:** 1.47 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Лӹпӹвлӓ (латинлӓ Lepidoptera ; алыкмарла лыве-влак) — капшангывлӓ йыхыш пырышы сӱмӓн нӹл шылдыран капшангывлӓ. Цилӓжӹ 180000 тӹ..." } ``` #### unshuffled_original_ms - **Size of downloaded dataset files:** 28.46 MB - **Size of the generated dataset:** 122.33 MB - **Total amount of disk used:** 150.79 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Sanad pertama daripada Zuhair bin Harb daripada ‘Affan daripada Hammad daripada Thabit daripada Anas.\\nSanad kedua daripada ‘Ab..." } ``` #### unshuffled_original_mt - **Size of downloaded dataset files:** 7.53 MB - **Size of the generated dataset:** 24.47 MB - **Total amount of disk used:** 32.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "tibgħat il-kawża lura lill-Qorti Ġenerali għall-annullament jew għat-tnaqqis tal-penalità imposta mill-Kummissjoni bid-deċiżjoni inizjali kif emendata bid-deċiżjoni ta’ rettifika;" } ``` #### unshuffled_original_mwl - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Deciplina social i outónoma que angloba atebidades de ouserbaçon, de análeze, de çcriçon, cumparaçon, de sistematizaçon i de sp..." } ``` #### unshuffled_original_my - **Size of downloaded dataset files:** 369.85 MB - **Size of the generated dataset:** 2.02 GB - **Total amount of disk used:** 2.39 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ျမ၀တီ - ရန္ကုန္တိုင္းေဒသႀကီး ေျမာက္ဥကၠလာပႏွင္႕ ဗဟန္းၿမိဳ႔နယ္ မေကြးတိုင္း ေဒသႀကီး ပခုကၠဴၿမိဳ႔နယ္တို႔၌ ျမန္မာ႕တပ္မေတာ္အား ေထာက္ခံ..." } ``` #### unshuffled_original_myv - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"2018 иень умарьковонь 6-це чистэ сась паро куля! Россиянь культурань Министерствась макссь невтемань конёв (прокатной удостовер..." } ``` #### unshuffled_original_mzn - **Size of downloaded dataset files:** 0.18 MB - **Size of the generated dataset:** 0.72 MB - **Total amount of disk used:** 0.90 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"قرآن یا قوران اسلام ِآسمونی کتاب هسته. مسلمونون گانّّه قرآن ره خدا، وحی جه برسنی‌یه، «محمد معجزه» هسته و ثقلین حدیث دله ونه خَو..." } ``` #### unshuffled_original_nah - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "In mācuīlpōhualxihuitl VI (inic chicuacē) in mācuīlpōhualli xiuhitl cāhuitl īhuīcpa 501 xihuitl oc 600 xihuitl." } ``` #### unshuffled_original_nap - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.02 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ò AUDIT í Ç è î ÿ å å 30 ò ÿ ÿ é, õ ñ ì ÿ, ê ã- ò à ì. å â å í ç â à à é ñ è å é ó ó ë. å å å û è å î é è à. à è à AUDIT 1-7 â ..." } ``` #### unshuffled_original_nds - **Size of downloaded dataset files:** 6.74 MB - **Size of the generated dataset:** 18.23 MB - **Total amount of disk used:** 24.99 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Dor kann sik vun nu af an de hele plattdüütsche Welt – vun Niebüll bit New York, vun Helgoland bit Honolulu – drapen. Allens, w..." } ``` #### unshuffled_original_ne - **Size of downloaded dataset files:** 355.29 MB - **Size of the generated dataset:** 1.87 GB - **Total amount of disk used:** 2.22 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"बर्दिबास नगरपालिकाको तेस्रो नगर परिषदबाट पारित आ.व.२०७३।७४ को संशोधित र २०७४।७५ को प्रस्तावित नीति, कार्यक्रम तथा बजेट\\nअार्थिक..." } ``` #### unshuffled_original_new - **Size of downloaded dataset files:** 1.03 MB - **Size of the generated dataset:** 5.77 MB - **Total amount of disk used:** 6.79 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"थ्व शहरयागु अक्षांश ३४.७००१६४ उत्तर व देशान्तर ८६.३७६४६९ पश्चिम खः (34.700164° N 86.376469° W)। थ्व थासे ७२२६७३२ वर्ग मिटर (२.७..." } ``` #### unshuffled_original_nl - **Size of downloaded dataset files:** 29.35 GB - **Size of the generated dataset:** 83.23 GB - **Total amount of disk used:** 112.58 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Op vrijdag 31 augustus wordt het nieuwe studiejaar van de masteropleiding architectuur geopend met een dagexcursie naar Venlo.\\..." } ``` #### unshuffled_original_nn - **Size of downloaded dataset files:** 32.86 MB - **Size of the generated dataset:** 90.84 MB - **Total amount of disk used:** 123.70 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "Planomtale krav til innhald Bakgrunn: Spørsmål frå fleire kommunar om kva ein planomtale/planbeskrivelse bør innehalde Fylkeskommunen og fylkesmannen har i ein del saker reist motsegn på formelt grunnlag" } ``` #### unshuffled_original_no - **Size of downloaded dataset files:** 3.11 GB - **Size of the generated dataset:** 8.65 GB - **Total amount of disk used:** 11.76 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Ytterligere aktører i primærhelsetjenesten og andre NHS-virksomheter ble infisert, inkludert legekontor.Læreren vår er så attra..." } ``` #### unshuffled_original_oc - **Size of downloaded dataset files:** 1.57 MB - **Size of the generated dataset:** 6.12 MB - **Total amount of disk used:** 7.71 MB An example of 'train' looks as follows. ``` { "id": 1, "text": ".рф (rf, còdi punycode: .xn--p1ai)[1] es lo nom de domeni en rus per Russia. Foguèt activat lo 12 de mai de 2010. Lo còdi latin es .ru." } ``` #### unshuffled_original_or - **Size of downloaded dataset files:** 49.84 MB - **Size of the generated dataset:** 260.15 MB - **Total amount of disk used:** 309.99 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ଭୁବନେଶ୍ୱର, ୨୭/୧– (ଓଡ଼ିଆ ପୁଅ) ସିପିଆଇ ଜାତୀୟ ପରିଷଦର ଆହ୍ୱାନକ୍ରମେ ଗତକାଲି ଜାନୁୟାରୀ ୨୬ ସାଧାରଣତନ୍ତ୍ର ଦିବସକୁ ଦେଶ ବ୍ୟାପୀ ସମ୍ବିଧାନ ସୁରକ୍ଷା ..." } ``` #### unshuffled_original_os - **Size of downloaded dataset files:** 3.09 MB - **Size of the generated dataset:** 12.90 MB - **Total amount of disk used:** 15.99 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"1. Лæппу æмæ чызг казрæдзийы зæрдæмæ куы фæцæуынц æмæ, куы сфæнд кæнынц сæ цард баиу кæнын, уæд лæппу бар ракуры чызгæй, цæмæй ..." } ``` #### unshuffled_original_pa - **Size of downloaded dataset files:** 164.21 MB - **Size of the generated dataset:** 801.16 MB - **Total amount of disk used:** 965.37 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ਰਜਿ: ਨੰ: PB/JL-138/2018-20 ਜਿਲਦ 63, ਬਾਨੀ ਸੰਪਾਦਕ (ਸਵ:) ਡਾ: ਸਾਧੂ ਸਿੰਘ ਹਮਦਰਦ ਫ਼ੋਨ : 0181-2455961-62-63, 5032400, ਫੈਕਸ : 2455960, 2..." } ``` #### unshuffled_original_pam - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Áku pu i Anak ning Aláya at ngeni ipákit kó kékayu ngan nûng makanánu lang susúlat détinang kulit a mágkas. Lauan ya ing tarátu..." } ``` #### unshuffled_original_pl - **Size of downloaded dataset files:** 42.88 GB - **Size of the generated dataset:** 117.12 GB - **Total amount of disk used:** 160.01 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"System informatyczny - Załącznik nr 1 do zarządzenia Wójta Gminy Podegrodzie Nr 530/2013 z dnia 27 maja 2013 r\\nSystem informat..." } ``` #### unshuffled_original_pms - **Size of downloaded dataset files:** 0.75 MB - **Size of the generated dataset:** 2.15 MB - **Total amount of disk used:** 2.92 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Louvigné-du-Désert a l'é na comun-a fransèisa ant la region aministrativa dla Brëtagna, ant ël dipartiment d'Ille-et-Vilaine. A..." } ``` #### unshuffled_original_pnb - **Size of downloaded dataset files:** 3.22 MB - **Size of the generated dataset:** 12.04 MB - **Total amount of disk used:** 15.26 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"ایہ فائل Wikimedia Commons توں اے تے دوجیاں ویونتاں تے وی ورتی جاےکدی اے۔ گل بات اس دے فائل گل بات صفہ تے تھلے دتی گئی۔\"..." } ``` #### unshuffled_original_ps - **Size of downloaded dataset files:** 103.66 MB - **Size of the generated dataset:** 379.51 MB - **Total amount of disk used:** 483.17 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Many people usually use the time period ‘business to business (B2B) advertising,’ however most of them do not know precisely wh..." } ``` #### unshuffled_original_pt - **Size of downloaded dataset files:** 47.26 GB - **Size of the generated dataset:** 132.64 GB - **Total amount of disk used:** 179.89 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Você pode estar lendo este texto no sofá, levantar pra pegar uma breja na geladeira, dar uma cagada e sentar novamente, sem int..." } ``` #### unshuffled_original_qu - **Size of downloaded dataset files:** 0.02 MB - **Size of the generated dataset:** 0.08 MB - **Total amount of disk used:** 0.10 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Warayu wichay (kastilla simipi: Ascensión de Guarayos) nisqaqa Buliwya mama llaqtapi, Santa Krus suyupi, huk llaqtam, Warayu pruwinsyap uma llaqtanmi." } ``` #### unshuffled_original_rm - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"practicists agrars / practicistas agraras AFP pon far ina furmaziun da basa scursanida per cuntanscher in attestat federal da q..." } ``` #### unshuffled_original_ro - **Size of downloaded dataset files:** 9.53 GB - **Size of the generated dataset:** 26.87 GB - **Total amount of disk used:** 36.40 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"“În viață, oportunitatea nu este totul. Cine atrage Lumina, cineva bun în umbră. Timpul ne creează.” maestru\\nLyn.Evans: Ce mar..." } ``` #### unshuffled_original_ru - **Size of downloaded dataset files:** 319.76 GB - **Size of the generated dataset:** 1241.63 GB - **Total amount of disk used:** 1561.38 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Доступ к данному профилю для публичного просмотра закрыт администрацией сайта - профиль находится на модерации.\\nРазработчикам ..." } ``` #### unshuffled_original_sa - **Size of downloaded dataset files:** 17.52 MB - **Size of the generated dataset:** 97.06 MB - **Total amount of disk used:** 114.58 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"अनिरुद्धनगरे क्रीडिता रामलीला सम्‍प्रति समाप्‍ता अस्ति । तस्‍य कानिचन् चित्राणि पूर्वमेव प्रकाशितानि सन्ति । द्वौ चलचित्रौ अपि ..." } ``` #### unshuffled_original_sah - **Size of downloaded dataset files:** 9.08 MB - **Size of the generated dataset:** 43.82 MB - **Total amount of disk used:** 52.90 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████..." } ``` #### unshuffled_original_scn - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` { "id": 0, "text": "La gilusìa è nu sintimentu dulurusu ca nasci d'un disideriu di pussessu sclusivu ntê cunfrunti dâ pirsuna amata e dû timuri, dû suspettu o dâ cirtizza dâ sò nfidiltati." } ``` #### unshuffled_original_sd - **Size of downloaded dataset files:** 90.62 MB - **Size of the generated dataset:** 364.25 MB - **Total amount of disk used:** 454.88 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"هر ڪو ڄاڻي ٿو ته جڏهن توهان هڪ وڏي خريد ڪرڻ چاهيون ٿا, توهان پڄي ضروري حڪم ۾ ان جي ڪم ڪرڻ جي هٿ ۾ لاڳاپو ڪيو آهي. جي شيء آهي ته..." } ``` #### unshuffled_original_sh - **Size of downloaded dataset files:** 3.46 MB - **Size of the generated dataset:** 25.84 MB - **Total amount of disk used:** 29.30 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Opština Gornja Radgona se nalazi u sjeveroistočnoj Sloveniji i graniči s susjednom Austriji duž rijeke Mure. Sa tridesetim nase..." } ``` #### unshuffled_original_si - **Size of downloaded dataset files:** 310.93 MB - **Size of the generated dataset:** 1.47 GB - **Total amount of disk used:** 1.78 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"ලාංකීය සිතිවිලි සිංහල බ්ලොග් කියවනය කොත්තු සින්ඩිය ලංකා Blogger හත්මාළුව ලංකා බ්ලොග් කියවනය මාතලන්ගේ සින්ඩිය මොබයිල්lk\\nඅවකාශය ..." } ``` #### unshuffled_original_sk - **Size of downloaded dataset files:** 3.71 GB - **Size of the generated dataset:** 9.81 GB - **Total amount of disk used:** 13.52 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Aktivity | Agentúra podporovaného zamestnávania | vzdelávanie pre klientov, vzdelávanie pre odborníkov, kurzy\\nŠpecializované k..." } ``` #### unshuffled_original_sl - **Size of downloaded dataset files:** 956.20 MB - **Size of the generated dataset:** 2.68 GB - **Total amount of disk used:** 3.63 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Če Creatures, ki je želel, da pridejo na čas, predvsem je povedlo – razlikuje od ljubosumja začel grizenja kolen (ali zadnjica)..." } ``` #### unshuffled_original_so - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.06 MB - **Total amount of disk used:** 0.06 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"тттттттттттттттттттттттттттттттт тттттттттттттттттттттттттттттттт тттттттттттттттттттттттттттттттт ттттттттттттттттуууууууууууу..." } ``` #### unshuffled_original_sq - **Size of downloaded dataset files:** 861.84 MB - **Size of the generated dataset:** 2.44 GB - **Total amount of disk used:** 3.30 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Çfarë do të më pëlqente tek një femër ose çfarë do të më shndërronte në një shpërthim drite? – Albert Vataj\\nTë gjithëve një zo..." } ``` #### unshuffled_original_sr - **Size of downloaded dataset files:** 1.08 GB - **Size of the generated dataset:** 4.13 GB - **Total amount of disk used:** 5.21 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Корисни савети за сваки дан. На сајту су разне категорије, као што су љепота, мода, кување и поправка властитим рукама.\\nШколск..." } ``` #### unshuffled_original_su - **Size of downloaded dataset files:** 0.06 MB - **Size of the generated dataset:** 0.23 MB - **Total amount of disk used:** 0.28 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Kartu krédit nyaéta \"duit plastik\" anu dikaluarkeun ku bank pikeun alat pambayaran di tempat-tempat nu tangtu samisal jiga di hotél, réstoran, tempat rékréasi jeung sajabana.[1]" } ``` #### unshuffled_original_sv - **Size of downloaded dataset files:** 17.18 GB - **Size of the generated dataset:** 47.00 GB - **Total amount of disk used:** 64.18 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"1783 är ett viktigt årtal i den nya tidens historia. Det året slöts en fred i Paris och därmed blev de 13 brittiska kolonierna ..." } ``` #### unshuffled_original_sw - **Size of downloaded dataset files:** 3.71 MB - **Size of the generated dataset:** 14.07 MB - **Total amount of disk used:** 17.78 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Miripuko hiyo inakuja mwanzoni mwa Wiki Takatifu kuelekea Pasaka na ikiwa ni wiki chache tu kabla ya Papa Francis kuanza ziara yake katika nchi hiyo yenye idadi kubwa kabisa ya watu katika ulimwengu wa nchi za Kiarabu." } ``` #### unshuffled_original_ta - **Size of downloaded dataset files:** 1.74 GB - **Size of the generated dataset:** 9.93 GB - **Total amount of disk used:** 11.67 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"பொழுது சாய்ந்து வெகு நேரமாகிவிட்டது. கூலி வேலைக்குப் போயிருந்த 'சித்தாள் ' பெண்கள் எல்லோரும் வீடு திரும்பி விட்டார்கள். இன்னும்..." } ``` #### unshuffled_original_te - **Size of downloaded dataset files:** 522.47 MB - **Size of the generated dataset:** 2.61 GB - **Total amount of disk used:** 3.13 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"హర్యానాలో టోల్ దగ్గర సిబ్బంది.. స్థానిక ప్రజలు కొట్టుకున్నారు. కర్నాల్ అనే గ్రామానికి సమీపంలో టోల్ గేట్ ఉంది. అయితే సాధారణంగా స..." } ``` #### unshuffled_original_tg - **Size of downloaded dataset files:** 90.97 MB - **Size of the generated dataset:** 397.43 MB - **Total amount of disk used:** 488.41 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Ҳумайро гуфтааст, мухолифи низом аст, низоме, ки дар Тоҷикистон вуҷуд дорад. Ба ин маънӣ, худро мухолифи давлату ҳукумати Тоҷик..." } ``` #### unshuffled_original_th - **Size of downloaded dataset files:** 7.38 GB - **Size of the generated dataset:** 38.29 GB - **Total amount of disk used:** 45.67 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ฟันที่แลดูขาวสะอาดไม่มีเศษอาหารติดอยู่ เหงือกสีชมพู ไม่เจ็บ หรือมีเลือดออกเวลาแปรงฟันหรือขัดฟัน ไม่มีปัญหาเรื่องกลิ่นปาก ทำให้ก..." } ``` #### unshuffled_original_tk - **Size of downloaded dataset files:** 2.96 MB - **Size of the generated dataset:** 10.66 MB - **Total amount of disk used:** 13.62 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"Türkmenistanyň Prezidenti agyr atletika boýunça dünýä çempionatyna taýýarlyk işleriniň barşy bilen tanyşdy\\nHalallykdan kemal t..." } ``` #### unshuffled_original_tl - **Size of downloaded dataset files:** 204.89 MB - **Size of the generated dataset:** 606.30 MB - **Total amount of disk used:** 811.19 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"“Gusto ko manawagan sa mga Unit Head ng Chanel 2 Salve. Kasi napapansin ko iyon mga alaga ko ang taping halos once a week lang,..." } ``` #### unshuffled_original_tr - **Size of downloaded dataset files:** 21.96 GB - **Size of the generated dataset:** 63.58 GB - **Total amount of disk used:** 85.54 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Son yıllarda görülen ay tutulmalarına göre daha etkili olacağı söylenen Kanlı veya Kırmızı Ay Tutulmasına saatler kaldı. Bu akş..." } ``` #### unshuffled_original_tt - **Size of downloaded dataset files:** 151.06 MB - **Size of the generated dataset:** 703.42 MB - **Total amount of disk used:** 854.47 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"\\\"Иремнең вафатына 40 көн узгач, Алмаз да безнең өйгә кереп үлде\\\". Арчада 35 яшьлек ир өстенә кондызлар ега башлаган агач төшк..." } ``` #### unshuffled_original_tyv - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.01 MB - **Total amount of disk used:** 0.01 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Экии, хүндүлуг аалчылар болгаш тыва дылдың деткикчилери! Тыва дылдың болгаш чогаалдың ховар бир башкызынга, Менги Ооржакка, ажы..." } ``` #### unshuffled_original_ug - **Size of downloaded dataset files:** 27.92 MB - **Size of the generated dataset:** 127.42 MB - **Total amount of disk used:** 155.35 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"زاڭ-ءتۇزىم | عىلىم-تەحنيكا | ءتىل-ادەبيەت | تۇرمىس | دەنە تاربيە | ساياحات-ورتا | سۋرەتتى حابار | سىر سۇحبات | ارناۋلى تاقىرىپ ..." } ``` #### unshuffled_original_uk - **Size of downloaded dataset files:** 14.42 GB - **Size of the generated dataset:** 56.44 GB - **Total amount of disk used:** 70.86 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Про надання роз'яснення (щодо форми письмового зобов'язання громадян про зворотне ввезення/вивезення товарів), Державна митна с..." } ``` #### unshuffled_original_ur - **Size of downloaded dataset files:** 712.61 MB - **Size of the generated dataset:** 2.80 GB - **Total amount of disk used:** 3.51 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"آئیے اہم اسلامی کتب کو یونیکوڈ میں انٹرنیٹ پر پیش کرنے کے لئے مل جل کر آن لائن ٹائپنگ کریں۔ محدث ٹائپنگ پراجیکٹ کے ذریعے آپ روز..." } ``` #### unshuffled_original_uz - **Size of downloaded dataset files:** 5.78 MB - **Size of the generated dataset:** 21.46 MB - **Total amount of disk used:** 27.24 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Qurama tog'lari tizmasining Toshkentdan 154 km uzoqlikdagi Toshkent-Ush yo'li yeqasidaxushmanzara tabiat qo'ynida joylashgan maydoni 30 ga.\nBolalarni sog'lomlashtirish oromgohi Bo'stonliq tumani Oqtosh muntaqasining soy-salqin gushasida joylashgan." } ``` #### unshuffled_original_vec - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.02 MB - **Total amount of disk used:** 0.03 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Par ogni pónto, ła derivada ła xe ła pendensa de ła reta tangente a ła curva de ła funsion f. Ła reta de cołor róso l'è senpre ..." } ``` #### unshuffled_original_vi - **Size of downloaded dataset files:** 21.50 GB - **Size of the generated dataset:** 72.23 GB - **Total amount of disk used:** 93.73 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Canh chua cá bông lau không chỉ là món ăn giải nhiệt, thanh mát ngày hè mà còn là món siêu bổ dưỡng, rất tốt cho người gầy ốm. ..." } ``` #### unshuffled_original_vo - **Size of downloaded dataset files:** 0.30 MB - **Size of the generated dataset:** 2.12 MB - **Total amount of disk used:** 2.42 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Sarniguet binon zif in ziläk: Hautes-Pyrénées, in topäd: Midi-Pyrénées, in Fransän. Sarniguet topon videtü 43°19’ 7’’ N e lunetü 0°5’ 19’’ L." } ``` #### unshuffled_original_wa - **Size of downloaded dataset files:** 0.09 MB - **Size of the generated dataset:** 0.29 MB - **Total amount of disk used:** 0.38 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "Cisse pådje ci n' est co k' on djermon, dj' ô bén k' el pådje est djusse sibåtcheye, eyet co trop tene; et s' divreut ele ecråxhî ene miete." } ``` #### unshuffled_original_war - **Size of downloaded dataset files:** 0.64 MB - **Size of the generated dataset:** 2.68 MB - **Total amount of disk used:** 3.32 MB An example of 'train' looks as follows. ``` { "id": 1, "text": "An Honce amo in usa ka baryo ngan munisipalidad ha distrito han Rožňava ha rehiyon han Košice ha nasod han Slovakia.\nAn Rumegies amo in usa ka komyun ha departamento han Nord ngan ha rehiyon han Nord-Pas-de-Calais ha nasod han Fransya." } ``` #### unshuffled_original_wuu - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.12 MB - **Total amount of disk used:** 0.13 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"伊春元旦天气 伊春腊八天气 伊春春节天气 伊春情人节天气 伊春元宵节天气 伊春愚人节天气 伊春清明节天气 伊春劳动节天气 伊春母亲节天气 伊春端午节天气 伊春七夕节天气 伊春教师节天气 伊春中秋节天气 伊春国庆节天气 伊春重阳节天气 伊春万圣节天气 伊春..." } ``` #### unshuffled_original_xal - **Size of downloaded dataset files:** 0.03 MB - **Size of the generated dataset:** 0.12 MB - **Total amount of disk used:** 0.15 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Арнгудин Орн гисн Европд бәәдг һазр. 2007 җилин тooһaр эн орн нутгт 3,600,523 әмтн бәәдг билә. Арнгудин Орнин хотл балһсна нерн..." } ``` #### unshuffled_original_xmf - **Size of downloaded dataset files:** 1.05 MB - **Size of the generated dataset:** 6.12 MB - **Total amount of disk used:** 7.17 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"მოჩამილი ტექსტი წჷმორინელი რე Creative Commons Attribution-ShareAlike ლიცენზიათ; შილებე გეძინელი პირობეფიშ არსებუა. კილიშკილიშა..." } ``` #### unshuffled_original_yi - **Size of downloaded dataset files:** 33.33 MB - **Size of the generated dataset:** 147.60 MB - **Total amount of disk used:** 180.94 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"ממשותדיק - חבֿרה, איך אַרבעט איצט אױף אַ זשורנאַל. טאָמער איר האָט עפּעס צוצוגעבן זאָלט איר שיקן מיר אַן אָנזאָג. ס'װעט הײסן \\\"..." } ``` #### unshuffled_original_yo - **Size of downloaded dataset files:** 0.01 MB - **Size of the generated dataset:** 0.06 MB - **Total amount of disk used:** 0.06 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 0, "text": "\"Copyright © 2018 BBC. BBC kò mọ̀ nípa àwọn ohun tí ó wà ní àwọn ojú òpó tí ó wà ní ìta. Ọwọ́ tí a fi mú ìbáṣepọ̀ ti ìta.\"..." } ``` #### unshuffled_original_yue - **Size of downloaded dataset files:** 0.00 MB - **Size of the generated dataset:** 0.00 MB - **Total amount of disk used:** 0.00 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 我 灌 我 灌 我 灌 灌 灌 你還不爆 我累了 投降輸一半可以嗎\"..." } ``` #### unshuffled_original_zh - **Size of downloaded dataset files:** 206.00 GB - **Size of the generated dataset:** 545.61 GB - **Total amount of disk used:** 751.61 GB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "id": 1, "text": "\"中国铝灰网 中国有色金属矿产网 中国黄莲网 中国水轮发电机网 中国抽油泵网 中国数控雕刻机网 中国不锈钢抛光网 中国磨具加工网 中国压铸铝网 中国耐水腻子网 中国手机摄像头网 中国粗粮网 中国车门锁网 中国钛粉网 中国轮圈网\\n天天中奖彩票图 天天中彩票..." } ``` </details> ### Data Fields The data fields are the same among all configs. - `id`: a `int64` feature. - `text`: a `string` feature. ### Data Splits <details> <summary>Click to expand the number of samples per configuration</summary> | Language | Language code | Name original | Train original | Words original | Size original | Name deduplicated | Train deduplicated | Words deduplicated | Size deduplicated | | ----------------- | ------------- | ----------------------- | -------------- | --------------- | ------------- | --------------------------- | ------------------ | ------------------ | ----------------- | | Afrikaans | af | unshuffled_original_af | 201117 | 43,482,801 | 241M | unshuffled_deduplicated_af | 130640 | 29,533,437 | 163M | | Albanian | sq | unshuffled_original_sq | 672077 | 374,196,110 | 2.3G | unshuffled_deduplicated_sq | 461598 | 186,856,699 | 1.2G | | Alemannic | als | unshuffled_original_als | 7324 | 841,750 | 5.0M | unshuffled_deduplicated_als | 4518 | 459,001 | 2.8M | | Amharic | am | unshuffled_original_am | 83663 | 28,301,601 | 360M | unshuffled_deduplicated_am | 43102 | 16,086,628 | 206M | | Arabic | ar | unshuffled_original_ar | 16365602 | 8,117,162,828 | 82G | unshuffled_deduplicated_ar | 9006977 | 3,171,221,354 | 32G | | Aragonese | an | unshuffled_original_an | 2449 | 52,896 | 1.3M | unshuffled_deduplicated_an | 2025 | 45,669 | 801K | | Armenian | hy | unshuffled_original_hy | 659430 | 273,919,388 | 3.7G | unshuffled_deduplicated_hy | 396093 | 110,196,043 | 1.5G | | Assamese | as | unshuffled_original_as | 14985 | 6,956,663 | 113M | unshuffled_deduplicated_as | 9212 | 4,366,570 | 71M | | Asturian | ast | unshuffled_original_ast | 6999 | 381,005 | 2.4M | unshuffled_deduplicated_ast | 5343 | 325,237 | 2.0M | | Avaric | av | unshuffled_original_av | 456 | 24,720 | 409K | unshuffled_deduplicated_av | 360 | 19,478 | 324K | | Azerbaijani | az | unshuffled_original_az | 912330 | 322,641,710 | 2.8G | unshuffled_deduplicated_az | 626796 | 167,742,296 | 1.5G | | Bashkir | ba | unshuffled_original_ba | 42551 | 9,796,764 | 128M | unshuffled_deduplicated_ba | 27050 | 6,922,589 | 90M | | Basque | eu | unshuffled_original_eu | 506883 | 120,456,652 | 848M | unshuffled_deduplicated_eu | 256513 | 45,359,710 | 342M | | Bavarian | bar | unshuffled_original_bar | 4 | 399 | 503 | unshuffled_deduplicated_bar | 4 | 399 | 503 | | Belarusian | be | unshuffled_original_be | 586031 | 144,579,630 | 1.8G | unshuffled_deduplicated_be | 307405 | 83,499,037 | 1.1G | | Bengali | bn | unshuffled_original_bn | 1675515 | 623,575,733 | 11G | unshuffled_deduplicated_bn | 1114481 | 363,766,143 | 5.8G | | Bihari | bh | unshuffled_original_bh | 336 | 8,848 | 110K | unshuffled_deduplicated_bh | 82 | 2,875 | 34K | | Bishnupriya | bpy | unshuffled_original_bpy | 6046 | 198,286 | 4.1M | unshuffled_deduplicated_bpy | 1770 | 96,940 | 1.7M | | Bosnian | bs | unshuffled_original_bs | 2143 | 106,448 | 447K | unshuffled_deduplicated_bs | 702 | 20,485 | 116K | | Breton | br | unshuffled_original_br | 37085 | 5,013,241 | 29M | unshuffled_deduplicated_br | 14724 | 2,890,384 | 16M | | Bulgarian | bg | unshuffled_original_bg | 5869686 | 2,947,648,106 | 32G | unshuffled_deduplicated_bg | 3398679 | 1,268,114,977 | 14G | | Burmese | my | unshuffled_original_my | 232329 | 56,111,184 | 1.9G | unshuffled_deduplicated_my | 136639 | 30,102,173 | 1.1G | | Catalan | ca | unshuffled_original_ca | 4390754 | 1,360,212,450 | 8.0G | unshuffled_deduplicated_ca | 2458067 | 729,333,440 | 4.3G | | Cebuano | ceb | unshuffled_original_ceb | 56248 | 6,603,567 | 39M | unshuffled_deduplicated_ceb | 26145 | 3,675,024 | 24M | | Central Bikol | bcl | unshuffled_original_bcl | 1 | 312 | 885 | unshuffled_deduplicated_bcl | 1 | 312 | 885 | | Central Khmer | km | unshuffled_original_km | 159363 | 20,690,610 | 1.1G | unshuffled_deduplicated_km | 108346 | 10,082,245 | 581M | | Central Kurdish | ckb | unshuffled_original_ckb | 103639 | 48,478,334 | 487M | unshuffled_deduplicated_ckb | 68210 | 18,726,721 | 226M | | Chavacano | cbk | unshuffled_original_cbk | 1 | 130 | 520 | unshuffled_deduplicated_cbk | 1 | 130 | 520 | | Chechen | ce | unshuffled_original_ce | 4042 | 711,051 | 8.3M | unshuffled_deduplicated_ce | 2984 | 568,146 | 6.7M | | Chinese | zh | unshuffled_original_zh | 60137667 | 14,986,424,850 | 508G | unshuffled_deduplicated_zh | 41708901 | 6,350,215,113 | 249G | | Chuvash | cv | unshuffled_original_cv | 20281 | 3,041,614 | 39M | unshuffled_deduplicated_cv | 10130 | 2,054,810 | 26M | | Cornish | kw | unshuffled_original_kw | 203 | 8,329 | 44K | unshuffled_deduplicated_kw | 68 | 2,704 | 14K | | Croatian | hr | unshuffled_original_hr | 582219 | 34,232,765 | 226M | unshuffled_deduplicated_hr | 321484 | 16,727,640 | 110M | | Czech | cs | unshuffled_original_cs | 21001388 | 7,715,977,441 | 53G | unshuffled_deduplicated_cs | 12308039 | 3,540,997,509 | 24G | | Danish | da | unshuffled_original_da | 7664010 | 2,637,463,889 | 16G | unshuffled_deduplicated_da | 4771098 | 1,620,091,317 | 9.5G | | Dhivehi | dv | unshuffled_original_dv | 21018 | 7,559,472 | 126M | unshuffled_deduplicated_dv | 17024 | 4,726,660 | 79M | | Dimli | diq | unshuffled_original_diq | 1 | 19 | 146 | unshuffled_deduplicated_diq | 1 | 19 | 146 | | Dutch | nl | unshuffled_original_nl | 34682142 | 13,020,136,373 | 78G | unshuffled_deduplicated_nl | 20812149 | 6,598,786,137 | 39G | | Eastern Mari | mhr | unshuffled_original_mhr | 3212 | 565,992 | 7.2M | unshuffled_deduplicated_mhr | 2515 | 469,297 | 6.0M | | Egyptian Arabic | arz | unshuffled_original_arz | 158113 | 7,305,151 | 66M | unshuffled_deduplicated_arz | 79928 | 3,659,419 | 33M | | Emilian-Romagnol | eml | unshuffled_original_eml | 84 | 6,376 | 25K | unshuffled_deduplicated_eml | 80 | 6,121 | 24K | | English | en | unshuffled_original_en | 455994980 | 418,187,793,408 | 2.3T | unshuffled_deduplicated_en | 304230423 | 215,841,256,971 | 1.2T | | Erzya | myv | unshuffled_original_myv | 6 | 90 | 1.4K | unshuffled_deduplicated_myv | 5 | 78 | 1.2K | | Esperanto | eo | unshuffled_original_eo | 121171 | 48,486,161 | 299M | unshuffled_deduplicated_eo | 84752 | 37,324,446 | 228M | | Estonian | et | unshuffled_original_et | 2093621 | 643,163,730 | 4.8G | unshuffled_deduplicated_et | 1172041 | 309,931,463 | 2.3G | | Finnish | fi | unshuffled_original_fi | 8557453 | 3,196,666,419 | 27G | unshuffled_deduplicated_fi | 5326443 | 1,597,855,468 | 13G | | French | fr | unshuffled_original_fr | 96742378 | 46,896,036,417 | 282G | unshuffled_deduplicated_fr | 59448891 | 23,206,776,649 | 138G | | Galician | gl | unshuffled_original_gl | 544388 | 102,011,291 | 620M | unshuffled_deduplicated_gl | 284320 | 63,600,602 | 384M | | Georgian | ka | unshuffled_original_ka | 563916 | 171,950,621 | 3.6G | unshuffled_deduplicated_ka | 372158 | 91,569,739 | 1.9G | | German | de | unshuffled_original_de | 104913504 | 44,878,908,446 | 308G | unshuffled_deduplicated_de | 62398034 | 21,529,164,172 | 145G | | Goan Konkani | gom | unshuffled_original_gom | 640 | 124,277 | 2.2M | unshuffled_deduplicated_gom | 484 | 102,306 | 1.8M | | Guarani | gn | unshuffled_original_gn | 106 | 7,382 | 36K | unshuffled_deduplicated_gn | 68 | 4,680 | 24K | | Gujarati | gu | unshuffled_original_gu | 240691 | 72,045,701 | 1.1G | unshuffled_deduplicated_gu | 169834 | 50,023,432 | 722M | | Haitian | ht | unshuffled_original_ht | 13 | 1,014 | 3.9K | unshuffled_deduplicated_ht | 9 | 832 | 3.3K | | Hebrew | he | unshuffled_original_he | 3808397 | 2,067,753,528 | 20G | unshuffled_deduplicated_he | 2375030 | 1,032,018,056 | 9.8G | | Hindi | hi | unshuffled_original_hi | 3264660 | 1,372,234,782 | 17G | unshuffled_deduplicated_hi | 1909387 | 745,774,934 | 8.9G | | Hungarian | hu | unshuffled_original_hu | 11197780 | 5,163,936,345 | 40G | unshuffled_deduplicated_hu | 6582908 | 2,339,127,555 | 18G | | Icelandic | is | unshuffled_original_is | 625673 | 219,900,094 | 1.5G | unshuffled_deduplicated_is | 389515 | 129,818,331 | 846M | | Ido | io | unshuffled_original_io | 694 | 25,702 | 147K | unshuffled_deduplicated_io | 617 | 22,773 | 130K | | Iloko | ilo | unshuffled_original_ilo | 2638 | 142,942 | 874K | unshuffled_deduplicated_ilo | 1578 | 105,564 | 636K | | Indonesian | id | unshuffled_original_id | 16236463 | 4,574,692,265 | 30G | unshuffled_deduplicated_id | 9948521 | 2,394,957,629 | 16G | | Interlingua | ia | unshuffled_original_ia | 1040 | 180,231 | 662K | unshuffled_deduplicated_ia | 529 | 100,019 | 360K | | Interlingue | ie | unshuffled_original_ie | 101 | 5,352 | 24K | unshuffled_deduplicated_ie | 11 | 602 | 1.6K | | Irish | ga | unshuffled_original_ga | 83223 | 14,483,593 | 88M | unshuffled_deduplicated_ga | 46493 | 10,017,303 | 60M | | Italian | it | unshuffled_original_it | 46981781 | 22,248,707,341 | 137G | unshuffled_deduplicated_it | 28522082 | 11,250,012,896 | 69G | | Japanese | ja | unshuffled_original_ja | 62721527 | 4,962,979,182 | 216G | unshuffled_deduplicated_ja | 39496439 | 1,123,067,063 | 106G | | Javanese | jv | unshuffled_original_jv | 1445 | 104,896 | 659K | unshuffled_deduplicated_jv | 1163 | 86,654 | 583K | | Kalmyk | xal | unshuffled_original_xal | 39 | 10,277 | 113K | unshuffled_deduplicated_xal | 36 | 10,155 | 112K | | Kannada | kn | unshuffled_original_kn | 350363 | 81,186,863 | 1.7G | unshuffled_deduplicated_kn | 251064 | 49,343,462 | 1.1G | | Karachay-Balkar | krc | unshuffled_original_krc | 1581 | 185,436 | 2.6M | unshuffled_deduplicated_krc | 1377 | 166,496 | 2.3M | | Kazakh | kk | unshuffled_original_kk | 524591 | 191,126,469 | 2.7G | unshuffled_deduplicated_kk | 338073 | 108,388,743 | 1.5G | | Kirghiz | ky | unshuffled_original_ky | 146993 | 44,194,823 | 600M | unshuffled_deduplicated_ky | 86561 | 28,982,620 | 388M | | Komi | kv | unshuffled_original_kv | 1549 | 201,404 | 2.3M | unshuffled_deduplicated_kv | 924 | 95,243 | 1.2M | | Korean | ko | unshuffled_original_ko | 7345075 | 2,368,765,142 | 24G | unshuffled_deduplicated_ko | 3675420 | 1,120,375,149 | 12G | | Kurdish | ku | unshuffled_original_ku | 46535 | 15,561,003 | 94M | unshuffled_deduplicated_ku | 29054 | 9,946,440 | 60M | | Lao | lo | unshuffled_original_lo | 52910 | 4,133,311 | 174M | unshuffled_deduplicated_lo | 32652 | 2,583,342 | 114M | | Latin | la | unshuffled_original_la | 94588 | 4,122,201 | 26M | unshuffled_deduplicated_la | 18808 | 1,328,038 | 8.3M | | Latvian | lv | unshuffled_original_lv | 1593820 | 520,761,977 | 4.0G | unshuffled_deduplicated_lv | 843195 | 236,428,905 | 1.8G | | Lezghian | lez | unshuffled_original_lez | 1485 | 247,646 | 3.3M | unshuffled_deduplicated_lez | 1381 | 224,871 | 3.0M | | Limburgan | li | unshuffled_original_li | 137 | 4,730 | 29K | unshuffled_deduplicated_li | 118 | 4,283 | 27K | | Lithuanian | lt | unshuffled_original_lt | 2977757 | 1,159,661,742 | 8.8G | unshuffled_deduplicated_lt | 1737411 | 516,183,525 | 3.9G | | Lojban | jbo | unshuffled_original_jbo | 832 | 154,330 | 736K | unshuffled_deduplicated_jbo | 617 | 141,973 | 678K | | Lombard | lmo | unshuffled_original_lmo | 1401 | 75,229 | 443K | unshuffled_deduplicated_lmo | 1374 | 73,665 | 433K | | Low German | nds | unshuffled_original_nds | 18174 | 2,906,347 | 18M | unshuffled_deduplicated_nds | 8714 | 2,146,417 | 13M | | Lower Sorbian | dsb | unshuffled_original_dsb | 65 | 1,787 | 13K | unshuffled_deduplicated_dsb | 37 | 966 | 7.1K | | Luxembourgish | lb | unshuffled_original_lb | 34807 | 4,403,577 | 29M | unshuffled_deduplicated_lb | 21735 | 3,087,650 | 21M | | Macedonian | mk | unshuffled_original_mk | 437871 | 189,289,873 | 2.1G | unshuffled_deduplicated_mk | 299457 | 102,849,595 | 1.2G | | Maithili | mai | unshuffled_original_mai | 123 | 69,161 | 317K | unshuffled_deduplicated_mai | 25 | 874 | 11K | | Malagasy | mg | unshuffled_original_mg | 17957 | 3,068,360 | 21M | unshuffled_deduplicated_mg | 13343 | 1,872,044 | 13M | | Malay | ms | unshuffled_original_ms | 534016 | 16,696,882 | 111M | unshuffled_deduplicated_ms | 183443 | 6,045,753 | 42M | | Malayalam | ml | unshuffled_original_ml | 603937 | 189,534,472 | 4.9G | unshuffled_deduplicated_ml | 453904 | 95,892,551 | 2.5G | | Maltese | mt | unshuffled_original_mt | 26598 | 2,995,654 | 24M | unshuffled_deduplicated_mt | 16383 | 2,163,358 | 17M | | Marathi | mr | unshuffled_original_mr | 326804 | 162,609,404 | 2.7G | unshuffled_deduplicated_mr | 212556 | 82,130,803 | 1.4G | | Mazanderani | mzn | unshuffled_original_mzn | 1055 | 73,870 | 691K | unshuffled_deduplicated_mzn | 917 | 64,481 | 602K | | Minangkabau | min | unshuffled_original_min | 220 | 5,682 | 608K | unshuffled_deduplicated_min | 166 | 4,825 | 310K | | Mingrelian | xmf | unshuffled_original_xmf | 3783 | 299,098 | 5.8M | unshuffled_deduplicated_xmf | 2418 | 228,629 | 4.4M | | Mirandese | mwl | unshuffled_original_mwl | 8 | 171 | 1.2K | unshuffled_deduplicated_mwl | 7 | 152 | 1.1K | | Modern Greek | el | unshuffled_original_el | 10425596 | 5,479,180,137 | 62G | unshuffled_deduplicated_el | 6521169 | 2,412,419,435 | 27G | | Mongolian | mn | unshuffled_original_mn | 395605 | 181,307,167 | 2.2G | unshuffled_deduplicated_mn | 197878 | 68,362,013 | 838M | | Nahuatl languages | nah | unshuffled_original_nah | 61 | 1,234 | 12K | unshuffled_deduplicated_nah | 58 | 1,193 | 11K | | Neapolitan | nap | unshuffled_original_nap | 73 | 5,282 | 17K | unshuffled_deduplicated_nap | 55 | 4,147 | 13K | | Nepali | ne | unshuffled_original_ne | 299938 | 107,448,208 | 1.8G | unshuffled_deduplicated_ne | 219334 | 71,628,317 | 1.2G | | Newari | new | unshuffled_original_new | 4696 | 564,697 | 5.5M | unshuffled_deduplicated_new | 2126 | 288,995 | 4.1M | | Northern Frisian | frr | unshuffled_original_frr | 7 | 1,516 | 4.4K | unshuffled_deduplicated_frr | 7 | 1,516 | 4.4K | | Northern Luri | lrc | unshuffled_original_lrc | 88 | 8,022 | 76K | unshuffled_deduplicated_lrc | 72 | 6,740 | 63K | | Norwegian | no | unshuffled_original_no | 5546211 | 1,344,326,388 | 8.0G | unshuffled_deduplicated_no | 3229940 | 804,894,377 | 4.7G | | Norwegian Nynorsk | nn | unshuffled_original_nn | 185884 | 14,764,980 | 85M | unshuffled_deduplicated_nn | 109118 | 9,435,139 | 54M | | Occitan | oc | unshuffled_original_oc | 10709 | 750,301 | 5.8M | unshuffled_deduplicated_oc | 6485 | 512,678 | 3.7M | | Oriya | or | unshuffled_original_or | 59463 | 14,938,567 | 248M | unshuffled_deduplicated_or | 44230 | 11,321,740 | 188M | | Ossetian | os | unshuffled_original_os | 5213 | 1,031,268 | 13M | unshuffled_deduplicated_os | 2559 | 878,765 | 11M | | Pampanga | pam | unshuffled_original_pam | 3 | 130 | 760 | unshuffled_deduplicated_pam | 1 | 52 | 304 | | Panjabi | pa | unshuffled_original_pa | 127467 | 61,847,806 | 763M | unshuffled_deduplicated_pa | 87235 | 37,555,835 | 460M | | Persian | fa | unshuffled_original_fa | 13704702 | 9,096,554,121 | 79G | unshuffled_deduplicated_fa | 8203495 | 4,363,505,319 | 38G | | Piemontese | pms | unshuffled_original_pms | 3225 | 362,013 | 2.1M | unshuffled_deduplicated_pms | 2859 | 337,246 | 1.9M | | Polish | pl | unshuffled_original_pl | 35440972 | 15,277,255,137 | 109G | unshuffled_deduplicated_pl | 20682611 | 6,708,709,674 | 47G | | Portuguese | pt | unshuffled_original_pt | 42114520 | 20,641,903,898 | 124G | unshuffled_deduplicated_pt | 26920397 | 10,751,156,918 | 64G | | Pushto | ps | unshuffled_original_ps | 98216 | 46,559,441 | 361M | unshuffled_deduplicated_ps | 67921 | 31,347,348 | 242M | | Quechua | qu | unshuffled_original_qu | 452 | 10,186 | 78K | unshuffled_deduplicated_qu | 411 | 8,691 | 67K | | Romanian | ro | unshuffled_original_ro | 9387265 | 3,984,317,058 | 25G | unshuffled_deduplicated_ro | 5044757 | 1,741,794,069 | 11G | | Romansh | rm | unshuffled_original_rm | 41 | 1,093 | 7.4K | unshuffled_deduplicated_rm | 34 | 960 | 6.5K | | Russia Buriat | bxr | unshuffled_original_bxr | 42 | 963 | 13K | unshuffled_deduplicated_bxr | 36 | 809 | 11K | | Russian | ru | unshuffled_original_ru | 161836003 | 92,522,407,837 | 1.2T | unshuffled_deduplicated_ru | 115954598 | 46,692,691,520 | 568G | | Sanskrit | sa | unshuffled_original_sa | 14291 | 4,331,569 | 93M | unshuffled_deduplicated_sa | 7121 | 1,713,930 | 37M | | Scottish Gaelic | gd | unshuffled_original_gd | 5799 | 310,689 | 1.9M | unshuffled_deduplicated_gd | 3883 | 207,110 | 1.3M | | Serbian | sr | unshuffled_original_sr | 1013619 | 364,395,411 | 3.9G | unshuffled_deduplicated_sr | 645747 | 207,561,168 | 2.2G | | Serbo-Croatian | sh | unshuffled_original_sh | 36700 | 5,292,184 | 25M | unshuffled_deduplicated_sh | 17610 | 1,040,573 | 5.8M | | Sicilian | scn | unshuffled_original_scn | 21 | 554 | 3.3K | unshuffled_deduplicated_scn | 17 | 468 | 2.8K | | Sindhi | sd | unshuffled_original_sd | 44280 | 43,530,158 | 347M | unshuffled_deduplicated_sd | 33925 | 33,028,015 | 263M | | Sinhala | si | unshuffled_original_si | 203082 | 93,053,465 | 1.4G | unshuffled_deduplicated_si | 120684 | 50,864,857 | 802M | | Slovak | sk | unshuffled_original_sk | 5492194 | 1,322,247,763 | 9.1G | unshuffled_deduplicated_sk | 2820821 | 656,346,179 | 4.5G | | Slovenian | sl | unshuffled_original_sl | 1746604 | 387,399,700 | 2.5G | unshuffled_deduplicated_sl | 886223 | 193,926,684 | 1.3G | | Somali | so | unshuffled_original_so | 156 | 1,202 | 61K | unshuffled_deduplicated_so | 42 | 472 | 16K | | South Azerbaijani | azb | unshuffled_original_azb | 15446 | 2,175,054 | 27M | unshuffled_deduplicated_azb | 9985 | 1,528,709 | 19M | | Spanish | es | unshuffled_original_es | 88199221 | 47,545,122,279 | 278G | unshuffled_deduplicated_es | 56326016 | 25,928,290,729 | 149G | | Sundanese | su | unshuffled_original_su | 805 | 30,321 | 211K | unshuffled_deduplicated_su | 511 | 20,278 | 141K | | Swahili | sw | unshuffled_original_sw | 41986 | 2,211,927 | 13M | unshuffled_deduplicated_sw | 24803 | 1,376,963 | 8.1M | | Swedish | sv | unshuffled_original_sv | 17395625 | 7,155,994,312 | 44G | unshuffled_deduplicated_sv | 11014487 | 4,106,120,608 | 25G | | Tagalog | tl | unshuffled_original_tl | 458206 | 98,949,299 | 573M | unshuffled_deduplicated_tl | 294132 | 70,121,601 | 407M | | Tajik | tg | unshuffled_original_tg | 89002 | 31,758,142 | 379M | unshuffled_deduplicated_tg | 56259 | 21,029,893 | 249M | | Tamil | ta | unshuffled_original_ta | 1263280 | 420,537,132 | 9.3G | unshuffled_deduplicated_ta | 833101 | 226,013,330 | 5.1G | | Tatar | tt | unshuffled_original_tt | 135923 | 51,034,893 | 670M | unshuffled_deduplicated_tt | 82738 | 23,825,695 | 305M | | Telugu | te | unshuffled_original_te | 475703 | 123,711,517 | 2.5G | unshuffled_deduplicated_te | 312644 | 79,094,167 | 1.6G | | Thai | th | unshuffled_original_th | 6064129 | 951,743,087 | 36G | unshuffled_deduplicated_th | 3749826 | 368,965,202 | 16G | | Tibetan | bo | unshuffled_original_bo | 26795 | 1,483,589 | 187M | unshuffled_deduplicated_bo | 15762 | 936,556 | 138M | | Turkish | tr | unshuffled_original_tr | 18535253 | 7,577,388,700 | 60G | unshuffled_deduplicated_tr | 11596446 | 3,365,734,289 | 27G | | Turkmen | tk | unshuffled_original_tk | 6456 | 1,113,869 | 11M | unshuffled_deduplicated_tk | 4694 | 752,326 | 6.8M | | Tuvinian | tyv | unshuffled_original_tyv | 34 | 759 | 12K | unshuffled_deduplicated_tyv | 24 | 540 | 7.9K | | Uighur | ug | unshuffled_original_ug | 22255 | 8,657,141 | 122M | unshuffled_deduplicated_ug | 15503 | 5,852,225 | 83M | | Ukrainian | uk | unshuffled_original_uk | 12973467 | 4,204,381,276 | 53G | unshuffled_deduplicated_uk | 7782375 | 2,252,380,351 | 28G | | Upper Sorbian | hsb | unshuffled_original_hsb | 7959 | 545,351 | 4.2M | unshuffled_deduplicated_hsb | 3084 | 236,867 | 1.8M | | Urdu | ur | unshuffled_original_ur | 638596 | 331,817,982 | 2.7G | unshuffled_deduplicated_ur | 428674 | 218,030,228 | 1.7G | | Uzbek | uz | unshuffled_original_uz | 27537 | 2,450,256 | 21M | unshuffled_deduplicated_uz | 15074 | 1,381,644 | 12M | | Venetian | vec | unshuffled_original_vec | 73 | 3,492 | 18K | unshuffled_deduplicated_vec | 64 | 3,199 | 17K | | Vietnamese | vi | unshuffled_original_vi | 14898250 | 12,036,845,359 | 68G | unshuffled_deduplicated_vi | 9897709 | 5,577,159,843 | 32G | | Volapük | vo | unshuffled_original_vo | 3366 | 321,121 | 2.0M | unshuffled_deduplicated_vo | 3317 | 318,568 | 2.0M | | Walloon | wa | unshuffled_original_wa | 1001 | 50,720 | 273K | unshuffled_deduplicated_wa | 677 | 37,543 | 203K | | Waray | war | unshuffled_original_war | 9760 | 397,315 | 2.5M | unshuffled_deduplicated_war | 9161 | 336,311 | 2.2M | | Welsh | cy | unshuffled_original_cy | 157698 | 37,422,441 | 213M | unshuffled_deduplicated_cy | 98225 | 23,574,673 | 133M | | Western Frisian | fy | unshuffled_original_fy | 33053 | 5,691,077 | 35M | unshuffled_deduplicated_fy | 20661 | 4,223,816 | 26M | | Western Mari | mrj | unshuffled_original_mrj | 757 | 93,338 | 1.2M | unshuffled_deduplicated_mrj | 669 | 87,780 | 1.1M | | Western Panjabi | pnb | unshuffled_original_pnb | 4599 | 1,426,986 | 12M | unshuffled_deduplicated_pnb | 3463 | 1,111,112 | 9.0M | | Wu Chinese | wuu | unshuffled_original_wuu | 214 | 11,189 | 109K | unshuffled_deduplicated_wuu | 64 | 4,333 | 32K | | Yakut | sah | unshuffled_original_sah | 22301 | 2,547,623 | 42M | unshuffled_deduplicated_sah | 8555 | 1,789,174 | 26M | | Yiddish | yi | unshuffled_original_yi | 59364 | 13,834,320 | 141M | unshuffled_deduplicated_yi | 32919 | 8,212,970 | 84M | | Yoruba | yo | unshuffled_original_yo | 214 | 8,906 | 55K | unshuffled_deduplicated_yo | 49 | 3,518 | 27K | | Yue Chinese | yue | unshuffled_original_yue | 11 | 186 | 3.7K | unshuffled_deduplicated_yue | 7 | 128 | 2.2K | </details> ## Dataset Creation ### Curation Rationale OSCAR was constructed new pipeline derived from the [fastText's one](https://github.com/facebookresearch/fastText), called [_goclassy_](https://github.com/pjox/goclassy). Goclassy reuses the [fastText linear classifier](https://fasttext.cc) and the pre-trained fastText model for language recognition, but it completely rewrites and parallelises their pipeline in an asynchronous manner. The order of operations is more or less the same as in the fastText pre-processing pipeline but instead of clustering multiple operations into a single blocking process, a worker is launched for each operation but bounding the number of possible parallel operations at a given time by the number of available threads instead of the number of CPUs. Goclassy is implemented in the [Go programming language](https://golang.org/) so it lets the [Go runtime](https://golang.org/src/runtime/mprof.go) handle the scheduling of the processes. Thus the goclassy's pipeline one does not have to wait for a whole WET file to download, decompress and classify in order to start downloading and processing the next one, a new file will start downloading and processing as soon as the scheduler is able to allocate a new process. Filtering and cleaning processes at line level are done before feeding each line to the classifier. Lines shorter than 100 UTF-8 characters and lines containing invalid UTF-8 characters are discarted and are not classified. After all files are proccesed the deduplicated versions are constructed and everything is then splitted in shards and compressed. ### Source Data #### Initial Data Collection and Normalization [Common Crawl](https://commoncrawl.org/) is a non-profit foundation which produces and maintains an open repository of web crawled data that is both accessible and analysable. Common Crawl's complete web archive consists of petabytes of data collected over 8 years of web crawling. The repository contains raw web page HTML data (WARC files), metdata extracts (WAT files) and plain text extracts (WET files). The organisation's crawlers has always respected [nofollow](http://microformats.org/wiki/rel-nofollow) and [robots.txt](https://www.robotstxt.org/) policies. Each monthly Common Crawl snapshot is in itself a massive multilingual corpus, where every single file contains data coming from multiple web pages written in a large variety of languages and covering all possible types of topics. To construct OSCAR the WET files of Common Crawl were used. These contain the extracted plain texts from the websites mostly converted to UTF-8, as well as headers containing the metatada of each crawled document. Each WET file comes compressed in gzip format and is stored on Amazon Web Services. In the case of OSCAR, the **November 2018** snapshot was used. It surpasses 20TB of uncompressed data and contains more than 50 thousand plain text files where each file consists of the plain text from multiple websites along its metadata header. #### Who are the source language producers? The data comes from multiple web pages in a large variety of languages. ### Annotations The dataset does not contain any additional annotations. #### Annotation process N/A #### Who are the annotators? N/A ### Personal and Sensitive Information Being constructed from Common Crawl, Personal and sensitive information might be present. This **must** be considered before training deep learning models with OSCAR, specially in the case of text-generation models. ## Considerations for Using the Data ### Social Impact of Dataset OSCAR is intended to bring more data to a wide variety of lanuages, the aim of the corpus is to make large amounts of data available to lower resource languages in order to facilitate the pre-training of state-of-the-art language modeling architectures. ### Discussion of Biases OSCAR is not properly filtered yet and this can be reflected on the models trained with it. Care is advised specially concerning biases of the resulting models. ### Other Known Limitations The [fastText linear classifier](https://fasttext.cc) is limed both in performance and the variety of languages it can recognize, so the quality of some OSCAR sub-corpora might be lower than expected, specially for the lowest-resource langiuages. Some audits have already been done by [third parties](https://arxiv.org/abs/2010.14571). ## Additional Information ### Dataset Curators The corpus was put together by [Pedro J. Ortiz](https://pjortiz.eu/), [Benoît Sagot](http://pauillac.inria.fr/~sagot/), and [Laurent Romary](https://cv.archives-ouvertes.fr/laurentromary), during work done at [Inria](https://www.inria.fr/en), particularly at the [ALMAnaCH team](https://team.inria.fr/almanach/). ### Licensing Information These data are released under this licensing scheme We do not own any of the text from which these data has been extracted. We license the actual packaging of these data under the Creative Commons CC0 license ("no rights reserved") http://creativecommons.org/publicdomain/zero/1.0/ To the extent possible under law, Inria has waived all copyright and related or neighboring rights to OSCAR This work is published from: France. Should you consider that our data contains material that is owned by you and should therefore not be reproduced here, please: * Clearly identify yourself, with detailed contact data such as an address, telephone number or email address at which you can be contacted. * Clearly identify the copyrighted work claimed to be infringed. * Clearly identify the material that is claimed to be infringing and information reasonably sufficient to allow us to locate the material. We will comply to legitimate requests by removing the affected sources from the next release of the corpus. ### Citation Information ``` @inproceedings{ortiz-suarez-etal-2020-monolingual, title = "A Monolingual Approach to Contextualized Word Embeddings for Mid-Resource Languages", author = "Ortiz Su{'a}rez, Pedro Javier and Romary, Laurent and Sagot, Benoit", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.acl-main.156", pages = "1703--1714", abstract = "We use the multilingual OSCAR corpus, extracted from Common Crawl via language classification, filtering and cleaning, to train monolingual contextualized word embeddings (ELMo) for five mid-resource languages. We then compare the performance of OSCAR-based and Wikipedia-based ELMo embeddings for these languages on the part-of-speech tagging and parsing tasks. We show that, despite the noise in the Common-Crawl-based OSCAR data, embeddings trained on OSCAR perform much better than monolingual embeddings trained on Wikipedia. They actually equal or improve the current state of the art in tagging and parsing for all five languages. In particular, they also improve over multilingual Wikipedia-based contextual embeddings (multilingual BERT), which almost always constitutes the previous state of the art, thereby showing that the benefit of a larger, more diverse corpus surpasses the cross-lingual benefit of multilingual embedding architectures.", } @inproceedings{OrtizSuarezSagotRomary2019, author = {Pedro Javier {Ortiz Su{'a}rez} and Benoit Sagot and Laurent Romary}, title = {Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures}, series = {Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-7) 2019. Cardiff, 22nd July 2019}, editor = {Piotr Bański and Adrien Barbaresi and Hanno Biber and Evelyn Breiteneder and Simon Clematide and Marc Kupietz and Harald L{"u}ngen and Caroline Iliadi}, publisher = {Leibniz-Institut f{"u}r Deutsche Sprache}, address = {Mannheim}, doi = {10.14618/ids-pub-9021}, url = {http://nbn-resolving.de/urn:nbn:de:bsz:mh39-90215}, pages = {9 -- 16}, year = {2019}, abstract = {Common Crawl is a considerably large, heterogeneous multilingual corpus comprised of crawled documents from the internet, surpassing 20TB of data and distributed as a set of more than 50 thousand plain text files where each contains many documents written in a wide variety of languages. Even though each document has a metadata block associated to it, this data lacks any information about the language in which each document is written, making it extremely difficult to use Common Crawl for monolingual applications. We propose a general, highly parallel, multithreaded pipeline to clean and classify Common Crawl by language; we specifically design it so that it runs efficiently on medium to low resource infrastructures where I/O speeds are the main constraint. We develop the pipeline so that it can be easily reapplied to any kind of heterogeneous corpus and so that it can be parameterised to a wide range of infrastructures. We also distribute a 6.3TB version of Common Crawl, filtered, classified by language, shuffled at line level in order to avoid copyright issues, and ready to be used for NLP applications.}, language = {en} } ``` ### Contributions Thanks to [@pjox](https://github.com/pjox) and [@lhoestq](https://github.com/lhoestq) for adding this dataset.
BramVanroy/wikipedia_culturax_dutch
BramVanroy
"2024-12-23T20:20:49Z"
12,510
3
[ "task_categories:text-generation", "task_categories:text2text-generation", "language:nl", "size_categories:1B<n<10B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2412.15450", "region:us" ]
[ "text-generation", "text2text-generation" ]
"2024-03-25T22:11:29Z"
--- language: - nl size_categories: - 10B<n<100B task_categories: - text-generation - text2text-generation pretty_name: Filtered CulturaX + Wikipedia for Dutch dataset_info: - config_name: 100M features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 738455828.5851797 num_examples: 1018200 - name: test num_bytes: 7458534.414820259 num_examples: 10284 download_size: 411183119 dataset_size: 745914363.0 - config_name: 100k features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 745955.3074739829 num_examples: 1047 - name: test num_bytes: 7124.692526017029 num_examples: 10 download_size: 366788 dataset_size: 753080.0 - config_name: 10B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 66539945646.34457 num_examples: 40176566 - name: test num_bytes: 105996030.65543362 num_examples: 64000 download_size: 42132184504 dataset_size: 66645941677.0 - config_name: 10M features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 76734151.72157606 num_examples: 139851 - name: test num_bytes: 774743.2784239326 num_examples: 1412 download_size: 37995388 dataset_size: 77508895.0 - config_name: 10k features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 72048.30379746835 num_examples: 78 - name: test num_bytes: 5896 num_examples: 1 download_size: 47197 dataset_size: 77944.30379746835 - config_name: 15B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 99730049355.25276 num_examples: 59584123 - name: test num_bytes: 107121206.74724333 num_examples: 64000 download_size: 63139415312 dataset_size: 99837170562.0 - config_name: 1B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 6797502496.392602 num_examples: 5102360 - name: test num_bytes: 68660322.60739774 num_examples: 51538 download_size: 4260450464 dataset_size: 6866162819.0 - config_name: 1M features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 7442665.619329753 num_examples: 10694 - name: test num_bytes: 75164.38067024625 num_examples: 108 download_size: 3845466 dataset_size: 7517830.0 - config_name: 20B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 132920704365.75093 num_examples: 78991679 - name: test num_bytes: 107693939.24907027 num_examples: 64000 download_size: 84141456153 dataset_size: 133028398305.0 - config_name: 25B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 166111586295.01904 num_examples: 98399236 - name: test num_bytes: 108040894.98094498 num_examples: 64000 download_size: 105147418131 dataset_size: 166219627190.0 - config_name: 30B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 199302582477.5805 num_examples: 117806793 - name: test num_bytes: 108273597.41950662 num_examples: 64000 download_size: 126152714564 dataset_size: 199410856075.0 - config_name: 35B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 232493644456.181 num_examples: 137214350 - name: test num_bytes: 108440503.81899258 num_examples: 64000 download_size: 147149925109 dataset_size: 232602084960.0 - config_name: 40B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 265684747781.7734 num_examples: 156621907 - name: test num_bytes: 108566063.22660531 num_examples: 64000 download_size: 168152290262 dataset_size: 265793313845.0 - config_name: 45B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 298875877641.391 num_examples: 176029463 - name: test num_bytes: 108663946.60903454 num_examples: 64000 download_size: 189159571162 dataset_size: 298984541588.0 - config_name: 50B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 332067028077.12775 num_examples: 195437020 - name: test num_bytes: 108742395.87226707 num_examples: 64000 download_size: 210160621183 dataset_size: 332175770473.0 - config_name: 55B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 365258192681.75964 num_examples: 214844577 - name: test num_bytes: 108806676.24034382 num_examples: 64000 download_size: 231164757019 dataset_size: 365366999358.0 - config_name: 5B features: - name: text dtype: string - name: url dtype: string - name: source dtype: string splits: - name: train num_bytes: 33351938314.309906 num_examples: 20769009 - name: test num_bytes: 102774477.69009268 num_examples: 64000 download_size: 21119808690 dataset_size: 33454712792.0 configs: - config_name: 100M data_files: - split: train path: 100M/train-* - split: test path: 100M/test-* - config_name: 100k data_files: - split: train path: 100k/train-* - split: test path: 100k/test-* - config_name: 10B data_files: - split: train path: 10B/train-* - split: test path: 10B/test-* - config_name: 10M data_files: - split: train path: 10M/train-* - split: test path: 10M/test-* - config_name: 10k data_files: - split: train path: 10k/train-* - split: test path: 10k/test-* - config_name: 15B data_files: - split: train path: 15B/train-* - split: test path: 15B/test-* - config_name: 1B data_files: - split: train path: 1B/train-* - split: test path: 1B/test-* - config_name: 1M data_files: - split: train path: 1M/train-* - split: test path: 1M/test-* - config_name: 20B data_files: - split: train path: 20B/train-* - split: test path: 20B/test-* - config_name: 25B data_files: - split: train path: 25B/train-* - split: test path: 25B/test-* - config_name: 30B data_files: - split: train path: 30B/train-* - split: test path: 30B/test-* - config_name: 35B data_files: - split: train path: 35B/train-* - split: test path: 35B/test-* - config_name: 40B data_files: - split: train path: 40B/train-* - split: test path: 40B/test-* - config_name: 45B data_files: - split: train path: 45B/train-* - split: test path: 45B/test-* - config_name: 50B data_files: - split: train path: 50B/train-* - split: test path: 50B/test-* - config_name: 55B data_files: - split: train path: 55B/train-* - split: test path: 55B/test-* - config_name: 5B data_files: - split: train path: 5B/train-* - split: test path: 5B/test-* --- # Filtered CulturaX + Wikipedia for Dutch This is a combined and filtered version of [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) and [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia), only including Dutch. It is intended for the training of LLMs. Different configs are available based on the number of tokens (see a section below with an overview). This can be useful if you want to know exactly how many tokens you have. Great for using as a streaming dataset, too. Tokens are counted as white-space tokens, so depending on your tokenizer, you'll likely end up with more tokens than indicated here. Every config also has a test set (for validation) of 1% the total size of the dataset, minimally 1 max. 64k samples (~16M tokens). Wikipedia and CulturaX were shuffled before merging and the test set creation was also shuffled. Priority is given to Wikipedia to prioritize knowledge and cultural content, so the smaller configs will consist exclusively of Wikipedia and for the larger configs we augment with CulturaX. Every config builds further on the previous, so this means that every config contains the same data as the smaller ones and more HOWEVER their train/test splits are not the same, so test set of one config may overlap with samples for another training set. This is usually not a problem but just be aware that you do not train on one config's training set and test with another config's test set. ## Citation If you use [Fietje](https://huggingface.co/BramVanroy/fietje-2) or the [CulturaX + Wikipedia filtered subset](https://huggingface.co/datasets/BramVanroy/wikipedia_culturax_dutch) in your work, please cite to the following paper: ```bibtex @misc{vanroy2024fietjeopenefficientllm, title={Fietje: An open, efficient LLM for Dutch}, author={Bram Vanroy}, year={2024}, eprint={2412.15450}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.15450}, } ``` ## Configs ### `10k` -- 79 samples -- 10,087 tokens - ratio_wikipedia: 100.00% - total_num_tokens: 10,087 - train_num_tokens: 9,205 - test_num_tokens: 882 - total_num_samples: 79 - train_num_samples: 78 - test_num_samples: 1 ### `100k` -- 1,057 samples -- 100,075 tokens - ratio_wikipedia: 100.00% - total_num_tokens: 100,075 - train_num_tokens: 98,044 - test_num_tokens: 2,031 - total_num_samples: 1,057 - train_num_samples: 1,047 - test_num_samples: 10 ### `1M` -- 10,802 samples -- 1,000,239 tokens - ratio_wikipedia: 100.00% - total_num_tokens: 1,000,239 - train_num_tokens: 991,119 - test_num_tokens: 9,120 - total_num_samples: 10,802 - train_num_samples: 10,694 - test_num_samples: 108 ### `10M` -- 141,263 samples -- 10,000,022 tokens - ratio_wikipedia: 100.00% - total_num_tokens: 10,000,022 - train_num_tokens: 9,874,772 - test_num_tokens: 125,250 - total_num_samples: 141,263 - train_num_samples: 139,851 - test_num_samples: 1,412 ### `100M` -- 1,028,484 samples -- 100,000,047 tokens - ratio_wikipedia: 100.00% - total_num_tokens: 100,000,047 - train_num_tokens: 99,013,372 - test_num_tokens: 986,675 - total_num_samples: 1,028,484 - train_num_samples: 1,018,200 - test_num_samples: 10,284 ### `1B` -- 5,153,898 samples -- 1,000,000,187 tokens - ratio_wikipedia: 61.21% - total_num_tokens: 1,000,000,187 - train_num_tokens: 989,990,190 - test_num_tokens: 10,009,997 - total_num_samples: 5,153,898 - train_num_samples: 5,102,360 - test_num_samples: 51,538 ### `5B` -- 20,833,009 samples -- 5,000,000,076 tokens - ratio_wikipedia: 25.35% - total_num_tokens: 5,000,000,076 - train_num_tokens: 4,984,493,654 - test_num_tokens: 15,506,422 - total_num_samples: 20,833,009 - train_num_samples: 20,769,009 - test_num_samples: 64,000 ### `10B` -- 40,240,566 samples -- 10,000,000,115 tokens - ratio_wikipedia: 18.41% - total_num_tokens: 10,000,000,115 - train_num_tokens: 9,984,156,828 - test_num_tokens: 15,843,287 - total_num_samples: 40,240,566 - train_num_samples: 40,176,566 - test_num_samples: 64,000 ### `15B` -- 59,648,123 samples -- 15,000,000,154 tokens - ratio_wikipedia: 15.98% - total_num_tokens: 15,000,000,154 - train_num_tokens: 14,983,970,518 - test_num_tokens: 16,029,636 - total_num_samples: 59,648,123 - train_num_samples: 59,584,123 - test_num_samples: 64,000 ### `20B` -- 79,055,679 samples -- 20,000,000,009 tokens - ratio_wikipedia: 14.75% - total_num_tokens: 20,000,000,009 - train_num_tokens: 19,983,799,357 - test_num_tokens: 16,200,652 - total_num_samples: 79,055,679 - train_num_samples: 78,991,679 - test_num_samples: 64,000 ### `25B` -- 98,463,236 samples -- 25,000,000,048 tokens - ratio_wikipedia: 14.00% - total_num_tokens: 25,000,000,048 - train_num_tokens: 24,983,765,326 - test_num_tokens: 16,234,722 - total_num_samples: 98,463,236 - train_num_samples: 98,399,236 - test_num_samples: 64,000 ### `30B` -- 117,870,793 samples -- 30,000,000,087 tokens - ratio_wikipedia: 13.50% - total_num_tokens: 30,000,000,087 - train_num_tokens: 29,983,707,932 - test_num_tokens: 16,292,155 - total_num_samples: 117,870,793 - train_num_samples: 117,806,793 - test_num_samples: 64,000 ### `35B` -- 137,278,350 samples -- 35,000,000,126 tokens - ratio_wikipedia: 13.14% - total_num_tokens: 35,000,000,126 - train_num_tokens: 34,983,914,739 - test_num_tokens: 16,085,387 - total_num_samples: 137,278,350 - train_num_samples: 137,214,350 - test_num_samples: 64,000 ### `40B` -- 156,685,907 samples -- 40,000,000,165 tokens - ratio_wikipedia: 12.87% - total_num_tokens: 40,000,000,165 - train_num_tokens: 39,983,508,625 - test_num_tokens: 16,491,540 - total_num_samples: 156,685,907 - train_num_samples: 156,621,907 - test_num_samples: 64,000 ### `45B` -- 176,093,463 samples -- 45,000,000,020 tokens - ratio_wikipedia: 12.66% - total_num_tokens: 45,000,000,020 - train_num_tokens: 44,983,608,118 - test_num_tokens: 16,391,902 - total_num_samples: 176,093,463 - train_num_samples: 176,029,463 - test_num_samples: 64,000 ### `50B` -- 195,501,020 samples -- 50,000,000,059 tokens - ratio_wikipedia: 12.49% - total_num_tokens: 50,000,000,059 - train_num_tokens: 49,983,567,461 - test_num_tokens: 16,432,598 - total_num_samples: 195,501,020 - train_num_samples: 195,437,020 - test_num_samples: 64,000 ### `55B` -- 214,908,577 samples -- 55,000,000,098 tokens - ratio_wikipedia: 12.35% - total_num_tokens: 55,000,000,098 - train_num_tokens: 54,983,723,278 - test_num_tokens: 16,276,820 - total_num_samples: 214,908,577 - train_num_samples: 214,844,577 - test_num_samples: 64,000 ## Filtering While CultruaX already has done a lot of filtering, some more filtering can be done to improve the quality of the corpus. These filters are described below. The baseline ratios (punctuation, uppercase, digits) were calculated on the SONAR-500 corpus (excluding WRPEA WRPED WRUEA WRUED WRUEB). **CulturaX**: - removed documents that contain the text "rechten voorbehouden" or "rights reserved" - remove documents whose URL contained "wikipedia.org" (because we include a cleaned version of Wikipedia ourselves) - removed documents that contain a "bad word" (see the section below) - removed documents that contain any non-latin characters. The idea is that "knowledge"-based information (e.g. original writing of a name) are allowed when the data comes from Wikipedia, but not from any other webcrawl, to avoid unsollicited noise. **CulturaX + Wikipedia**: - removed documents where ratio of punctuation marks vs. non-whitespace characters is higher than 0.2 - removed documents where ratio of uppercase vs. non-whitespace characters is higher than 0.22 - removed documents where ratio of digits vs. non-whitespace characters is higher than 0.16 - removed documents where the average token length is < 2 or > 20 ## Bad words ```python BAD_PHRASES_DOC_LEVEL = { # https://en.wikipedia.org/wiki/Dutch_profanity "achterlijk", "debiel", "downie", "idioot", "kankerlijer", "klere", "kolere", "minkukel", "pestkop", "pleuris", "pleuritis", "teringlijer", "tyfuslijer", "gadver", "getver", "godver", "godskolere", "godverork", "graftak", "kopvod", "verdomme", "anaalgeneraal", "bitch", "dikzak", "flikker", "fok", "fuck", "hoer", "klootzak", "klote", "kreng", "kringspiermusketier", "kut", "lamzak", "lul", "manwijf", "matennaai", "neuken", "neuker", "ouwehoer", "reet", "reetkever", "reetridder", "rotzak", "schijt", "shit", "slet", "slijmbal", "slons", "sodemieter", "stoephoer", "swaffel", "teef", "trut", "tut", "zak", "uilskuiken", "zeik", "bamivreter", "bosneger", "neger", "fransoos", "geitenneuker", "kaaskop", "kakker", "koelie", "lijp", "medelander", "mocro", "mof", "nikker", "poepchinees", "roetmop", "spaghettivreter", "loempiavouwer", "spanjool", "spleetoog", "tatta", "tokkie", "zandneger", "zwartzak", "halvezool", "kenau", "klootviool", "knuppel", "koekert", "koekwaus", "oelewapper", "smeerlap", "sukkel", "sul", "wappie", "wijf", "zooi", # xxx (a.o. https://gitlab.com/yhavinga/c4nlpreproc/-/blob/master/clean/badwords_ennl.py?ref_type=heads) "xxx", "anal", "blowjob", "buttplug", "cock", "cunt", "geil", "sex", # Standaardnederlands = seks, maybe we catch some porn or socialmedia sites with this misspelling "porn", # extra "nigger", "nigga", "hoerig", "klojo", } ``` ## Config details ## License information For CulturaX: https://huggingface.co/datasets/uonlp/CulturaX#license-information For Wikipedia: https://huggingface.co/datasets/wikimedia/wikipedia#licensing-information
lukaemon/bbh
lukaemon
"2023-02-02T01:14:46Z"
12,472
53
[ "size_categories:1K<n<10K", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2023-02-01T07:46:51Z"
--- dataset_info: - config_name: boolean_expressions features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 11790 num_examples: 250 download_size: 17172 dataset_size: 11790 - config_name: causal_judgement features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 198021 num_examples: 187 download_size: 202943 dataset_size: 198021 - config_name: date_understanding features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 54666 num_examples: 250 download_size: 61760 dataset_size: 54666 - config_name: disambiguation_qa features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 78620 num_examples: 250 download_size: 85255 dataset_size: 78620 - config_name: dyck_languages features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 38432 num_examples: 250 download_size: 43814 dataset_size: 38432 - config_name: formal_fallacies features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 138224 num_examples: 250 download_size: 145562 dataset_size: 138224 - config_name: geometric_shapes features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 68560 num_examples: 250 download_size: 77242 dataset_size: 68560 - config_name: hyperbaton features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 38574 num_examples: 250 download_size: 44706 dataset_size: 38574 - config_name: logical_deduction_five_objects features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 148595 num_examples: 250 download_size: 155477 dataset_size: 148595 - config_name: logical_deduction_seven_objects features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 191022 num_examples: 250 download_size: 198404 dataset_size: 191022 - config_name: logical_deduction_three_objects features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 105831 num_examples: 250 download_size: 112213 dataset_size: 105831 - config_name: movie_recommendation features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 50985 num_examples: 250 download_size: 57684 dataset_size: 50985 - config_name: multistep_arithmetic_two features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 12943 num_examples: 250 download_size: 18325 dataset_size: 12943 - config_name: navigate features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 49031 num_examples: 250 download_size: 55163 dataset_size: 49031 - config_name: object_counting features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 30508 num_examples: 250 download_size: 35890 dataset_size: 30508 - config_name: penguins_in_a_table features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 70062 num_examples: 146 download_size: 74516 dataset_size: 70062 - config_name: reasoning_about_colored_objects features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 89579 num_examples: 250 download_size: 98694 dataset_size: 89579 - config_name: ruin_names features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 46537 num_examples: 250 download_size: 53178 dataset_size: 46537 - config_name: salient_translation_error_detection features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 277110 num_examples: 250 download_size: 286443 dataset_size: 277110 - config_name: snarks features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 38223 num_examples: 178 download_size: 42646 dataset_size: 38223 - config_name: sports_understanding features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 22723 num_examples: 250 download_size: 28617 dataset_size: 22723 - config_name: temporal_sequences features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 139546 num_examples: 250 download_size: 148176 dataset_size: 139546 - config_name: tracking_shuffled_objects_five_objects features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 162590 num_examples: 250 download_size: 169722 dataset_size: 162590 - config_name: tracking_shuffled_objects_seven_objects features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 207274 num_examples: 250 download_size: 214906 dataset_size: 207274 - config_name: tracking_shuffled_objects_three_objects features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 122104 num_examples: 250 download_size: 128736 dataset_size: 122104 - config_name: web_of_lies features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 47582 num_examples: 250 download_size: 52964 dataset_size: 47582 - config_name: word_sorting features: - name: input dtype: string - name: target dtype: string splits: - name: test num_bytes: 60918 num_examples: 250 download_size: 66300 dataset_size: 60918 --- # BIG-bench Hard dataset homepage: https://github.com/suzgunmirac/BIG-Bench-Hard ``` @article{suzgun2022challenging, title={Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them}, author={Suzgun, Mirac and Scales, Nathan and Sch{\"a}rli, Nathanael and Gehrmann, Sebastian and Tay, Yi and Chung, Hyung Won and Chowdhery, Aakanksha and Le, Quoc V and Chi, Ed H and Zhou, Denny and and Wei, Jason}, journal={arXiv preprint arXiv:2210.09261}, year={2022} } ```
common-canvas/commoncatalog-cc-by-nc-nd
common-canvas
"2024-05-16T19:46:41Z"
12,464
2
[ "task_categories:text-to-image", "language:en", "license:cc-by-nc-nd-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2310.16825", "region:us" ]
[ "text-to-image" ]
"2023-10-19T02:10:48Z"
--- license: cc-by-nc-nd-4.0 dataset_info: features: - name: jpg dtype: image - name: blip2_caption dtype: string - name: caption dtype: string - name: licensename dtype: string - name: licenseurl dtype: string - name: width dtype: int32 - name: height dtype: int32 - name: original_width dtype: int32 - name: original_height dtype: int32 - name: photoid dtype: int64 - name: uid dtype: string - name: unickname dtype: string - name: datetaken dtype: timestamp[us] - name: dateuploaded dtype: int64 - name: capturedevice dtype: string - name: title dtype: string - name: usertags dtype: string - name: machinetags dtype: string - name: longitude dtype: float64 - name: latitude dtype: float64 - name: accuracy dtype: int64 - name: pageurl dtype: string - name: downloadurl dtype: string - name: serverid dtype: int64 - name: farmid dtype: int64 - name: secret dtype: string - name: secretoriginal dtype: string - name: ext dtype: string - name: url dtype: string - name: key dtype: string - name: status dtype: string - name: error_message dtype: string - name: exif dtype: string - name: sha256 dtype: string - name: description dtype: string task_categories: - text-to-image language: - en --- # Dataset Card for CommonCatalog CC-BY-NC-ND This dataset is a large collection of high-resolution Creative Common images (composed of different licenses, see paper Table 1 in the Appendix) collected in 2014 from users of Yahoo Flickr. The dataset contains images of up to 4k resolution, making this one of the highest resolution captioned image datasets. ## Dataset Details ### Dataset Description We provide captions synthetic captions to approximately 100 million high resolution images collected from Yahoo Flickr Creative Commons (YFCC). - **Curated by:** Aaron Gokaslan - **Language(s) (NLP):** en - **License:** See relevant yaml tag / dataset name. ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Repository:** https://github.com/mosaicml/diffusion - **Paper:** https://arxiv.org/abs/2310.16825 - **Demo:** See CommonCanvas Gradios ## Uses We use CommonCatalog to train a family latent diffusion models called CommonCanvas. The goal is to produce a model that is competitive with Stable Diffusion 2, but to do so using an easily accessible dataset of known provenance. Doing so makes replicating the model significantly easier, and provides a clearer mechanism for applying training-data attribution techniques. ### Direct Use Training text-to-image models Training image-to-text models ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> * Commercial use * Crafting content that is offensive or injurious towards individuals, including negative portrayals of their living conditions, cultural backgrounds, religious beliefs, etc. * Deliberately creating or spreading content that is discriminatory or reinforces harmful stereotypes. * Falsely representing individuals without their permission. * Generating sexual content that may be seen by individuals without their consent. * Producing or disseminating false or misleading information. * Creating content that depicts extreme violence or bloodshed. * Distributing content that modifies copyrighted or licensed material in a way that breaches its usage terms. ## Dataset Structure The dataset is divided into 10 subsets each containing parquets about 4GB each. Each subfolder within contains a resolution range of the images and their respective aspect ratios. The dataset is also divided along images licensed for commercial use (C) and those that are not (NC). ## Dataset Creation ### Curation Rationale Creating a standardized, accessible dataset with synthetic caption and releasing it so other people can train on a common dataset for open source image generation. ### Source Data Yahoo Flickr Creative Commons 100M Dataset and Synthetically Generated Caption Data. #### Data Collection and Processing All synthetic captions were generated with BLIP2. See paper for more details. #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> Users of Flickr ## Bias, Risks, and Limitations See Yahoo Flickr Creative Commons 100M dataset for more information. The information was collected circa 2014 and known to have a bias towards internet connected Western countries. Some areas such as the global south lack representation. ## Citation **BibTeX:** ``` @article{gokaslan2023commoncanvas, title={CommonCanvas: An Open Diffusion Model Trained with Creative-Commons Images}, author={Gokaslan, Aaron and Cooper, A Feder and Collins, Jasmine and Seguin, Landan and Jacobson, Austin and Patel, Mihir and Frankle, Jonathan and Stephenson, Cory and Kuleshov, Volodymyr}, journal={arXiv preprint arXiv:2310.16825}, year={2023} } ``` ## Dataset Card Authors [Aaron Gokaslan](https://huggingface.co/Skylion007) ## Dataset Card Contact [Aaron Gokaslan](https://huggingface.co/Skylion007)
allenai/sciq
allenai
"2024-01-04T16:23:51Z"
12,287
97
[ "task_categories:question-answering", "task_ids:closed-domain-qa", "annotations_creators:no-annotation", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-3.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - no-annotation language_creators: - crowdsourced language: - en license: - cc-by-nc-3.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - question-answering task_ids: - closed-domain-qa paperswithcode_id: sciq pretty_name: SciQ dataset_info: features: - name: question dtype: string - name: distractor3 dtype: string - name: distractor1 dtype: string - name: distractor2 dtype: string - name: correct_answer dtype: string - name: support dtype: string splits: - name: train num_bytes: 6546183 num_examples: 11679 - name: validation num_bytes: 554120 num_examples: 1000 - name: test num_bytes: 563927 num_examples: 1000 download_size: 4674410 dataset_size: 7664230 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Dataset Card for "sciq" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://allenai.org/data/sciq](https://allenai.org/data/sciq) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 2.82 MB - **Size of the generated dataset:** 7.68 MB - **Total amount of disk used:** 10.50 MB ### Dataset Summary The SciQ dataset contains 13,679 crowdsourced science exam questions about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with 4 answer options each. For the majority of the questions, an additional paragraph with supporting evidence for the correct answer is provided. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 2.82 MB - **Size of the generated dataset:** 7.68 MB - **Total amount of disk used:** 10.50 MB An example of 'train' looks as follows. ``` This example was too long and was cropped: { "correct_answer": "coriolis effect", "distractor1": "muon effect", "distractor2": "centrifugal effect", "distractor3": "tropical effect", "question": "What phenomenon makes global winds blow northeast to southwest or the reverse in the northern hemisphere and northwest to southeast or the reverse in the southern hemisphere?", "support": "\"Without Coriolis Effect the global winds would blow north to south or south to north. But Coriolis makes them blow northeast to..." } ``` ### Data Fields The data fields are the same among all splits. #### default - `question`: a `string` feature. - `distractor3`: a `string` feature. - `distractor1`: a `string` feature. - `distractor2`: a `string` feature. - `correct_answer`: a `string` feature. - `support`: a `string` feature. ### Data Splits | name |train|validation|test| |-------|----:|---------:|---:| |default|11679| 1000|1000| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The dataset is licensed under the [Creative Commons Attribution-NonCommercial 3.0 Unported License](http://creativecommons.org/licenses/by-nc/3.0/). ### Citation Information ``` @inproceedings{SciQ, title={Crowdsourcing Multiple Choice Science Questions}, author={Johannes Welbl, Nelson F. Liu, Matt Gardner}, year={2017}, journal={arXiv:1707.06209v1} } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
codeShare/text-to-image-prompts
codeShare
"2024-11-09T13:15:10Z"
12,270
5
[ "task_categories:text-to-image", "task_categories:image-classification", "language:en", "license:mit", "size_categories:100K<n<1M", "region:us" ]
[ "text-to-image", "image-classification" ]
"2024-09-13T22:27:04Z"
--- license: mit task_categories: - text-to-image - image-classification language: - en pretty_name: fusionn-t2i size_categories: - 100K<n<1M --- If you have questions about this dataset , feel free to ask them on the fusion-discord : [https://discord.gg/8TVHPf6Edn](https://discord.gg/8TVHPf6Edn) This collection contains sets from the fusion-t2i-ai-generator on perchance. This datset is used in this notebook: https://huggingface.co/datasets/codeShare/text-to-image-prompts/tree/main/Google%20Colab%20Notebooks To see the full sets, please use the url "https://perchance.org/" + url , where the urls are listed below: ``` _generator gen_e621 fusion-t2i-e621-tags-1 fusion-t2i-e621-tags-2 fusion-t2i-e621-tags-3 fusion-t2i-e621-tags-4 fusion-t2i-e621-tags-5 fusion-t2i-e621-tags-6 fusion-t2i-e621-tags-7 fusion-t2i-e621-tags-8 fusion-t2i-e621-tags-9 fusion-t2i-e621-tags-10 fusion-t2i-e621-tags-11 fusion-t2i-e621-tags-12 fusion-t2i-e621-tags-13 fusion-t2i-e621-tags-14 fusion-t2i-e621-tags-15 fusion-t2i-e621-tags-16 fusion-t2i-e621-tags-17 fusion-t2i-e621-tags-18 fusion-t2i-e621-tags-19 fusion-t2i-e621-tags-20 fusion-t2i-e621-tags-21 fusion-t2i-e621-tags-22 fusion-t2i-e621-tags-23 //--NEW STUFF clipartist //fusion-t2i-clip-artists-1 //fusion-t2i-clip-artists-2 //fusion-t2i-clip-artists-3 //fusion-t2i-clip-artists-4 //fusion-t2i-clip-artists-5 //fusion-t2i-clip-artists-6 fusion-t2i-clip-artists-7 //<--Only this set of SDXL artists for now (test to see if better) clipflavour fusion-t2i-clip-flavours-1 fusion-t2i-clip-flavours-2 fusion-t2i-clip-flavours-3 fusion-t2i-clip-flavours-3 //4 no exist? fusion-t2i-clip-flavours-5 fusion-t2i-clip-flavours-6 fusion-t2i-clip-flavours-7 fusion-t2i-clip-flavours-8 fusion-t2i-clip-flavours-9 fusion-t2i-clip-flavours-10 fusion-t2i-clip-flavours-10 //10 too fusion-t2i-clip-flavours-12 fusion-t2i-clip-flavours-13 fusion-t2i-clip-flavours-14 fusion-t2i-clip-flavours-15 fusion-t2i-clip-flavours-16 fusion-t2i-clip-flavours-16 //17? fusion-t2i-clip-flavours-18 fusion-t2i-clip-flavours-19 fusion-t2i-clip-flavours-20 fusion-t2i-clip-flavours-21 fusion-t2i-clip-flavours-22 fusion-t2i-clip-flavours-23 fusion-t2i-clip-flavours-24 fusion-t2i-clip-flavours-24 //25 fusion-t2i-clip-flavours-26 fusion-t2i-clip-flavours-27 fusion-t2i-clip-flavours-28 fusion-t2i-clip-flavours-29 fusion-t2i-clip-flavours-30 //-----// ypf fusion-t2i-civitai-21-30-chars-mix-1 fusion-t2i-civitai-21-30-chars-mix-2 fusion-t2i-civitai-21-30-chars-mix-3 fusion-t2i-civitai-21-30-chars-mix-4 fusion-t2i-civitai-21-30-chars-mix-5 fusion-t2i-civitai-21-30-chars-mix-6 fusion-t2i-civitai-21-30-chars-mix-7 fusion-t2i-civitai-21-30-chars-mix-8 bpf fusion-t2i-civitai-0-20-chars-mix-1 fusion-t2i-civitai-0-20-chars-mix-2 fusion-t2i-civitai-0-20-chars-mix-3 fusion-t2i-civitai-0-20-chars-mix-4 fusion-t2i-civitai-0-20-chars-mix-5 fusion-t2i-civitai-0-20-chars-mix-6 fusion-t2i-civitai-0-20-chars-mix-7 fusion-t2i-civitai-0-20-chars-mix-8 fusion-t2i-civitai-0-20-chars-mix-9 fusion-t2i-civitai-0-20-chars-mix-10 fusion-t2i-civitai-0-20-chars-mix-11 fusion-t2i-civitai-0-20-chars-mix-12 fusion-t2i-civitai-0-20-chars-mix-13 fusion-t2i-civitai-0-20-chars-mix-14 fusion-t2i-civitai-0-20-chars-mix-15 fusion-t2i-civitai-0-20-chars-mix-16 fusion-t2i-civitai-0-20-chars-mix-17 fusion-t2i-civitai-0-20-chars-mix-18 fusion-t2i-civitai-0-20-chars-mix-19 fusion-t2i-civitai-0-20-chars-mix-20 fusion-t2i-civitai-0-20-chars-mix-21 fusion-t2i-civitai-0-20-chars-mix-22 fusion-t2i-civitai-0-20-chars-mix-23 fusion-t2i-civitai-0-20-chars-mix-24 fusion-t2i-civitai-0-20-chars-mix-25 fusion-t2i-civitai-0-20-chars-mix-26 fusion-t2i-civitai-0-20-chars-mix-27 fusion-t2i-civitai-0-20-chars-mix-28 fusion-t2i-civitai-0-20-chars-mix-29 fusion-t2i-civitai-0-20-chars-mix-30 fusion-t2i-civitai-0-20-chars-mix-31 fusion-t2i-civitai-0-20-chars-mix-32 fusion-t2i-civitai-0-20-chars-mix-33 fusion-t2i-civitai-0-20-chars-mix-34 fusion-t2i-civitai-0-20-chars-mix-35 fusion-t2i-civitai-0-20-chars-mix-36 fusion-t2i-civitai-0-20-chars-mix-37 fusion-t2i-civitai-0-20-chars-mix-38 fusion-t2i-civitai-0-20-chars-mix-39 fusion-t2i-civitai-0-20-chars-mix-40 fusion-t2i-civitai-0-20-chars-mix-41 fusion-t2i-civitai-0-20-chars-mix-42 fusion-t2i-civitai-0-20-chars-mix-43 fusion-t2i-civitai-0-20-chars-mix-44 fusion-t2i-civitai-0-20-chars-mix-45 fusion-t2i-civitai-0-20-chars-mix-46 fmc fusion-t2i-female-movie-characters-2 fusion-t2i-female-movie-characters-3 fusion-t2i-female-movie-characters-4 fusion-t2i-female-movie-characters-5 fusion-t2i-female-movie-characters-6 nationalities fusion-t2i-nationality-1 fusion-t2i-nationality-1 artby fusion-t2i-art-by-prompts-1 fusion-t2i-art-by-prompts-1 emojis fusion-t2i-emojis-2 fusion-t2i-emojis-2 moviegenres fusion-t2i-moviegenre-1 fusion-t2i-moviegenre-1 movietitles fusion-t2i-movietitle-4 fusion-t2i-movietitle-5 fusion-t2i-movietitle-6 fusion-t2i-movietitle-7 fusion-t2i-movietitle-8 fusion-t2i-movietitle-9 fusion-t2i-movietitle-10 fusion-t2i-movietitle-11 fusion-t2i-movietitle-12 fusion-t2i-movietitle-13 fusion-t2i-movietitle-14 fusion-t2i-movietitle-15 fusion-t2i-movietitle-16 fusion-t2i-movietitle-17 fusion-t2i-movietitle-18 fusion-t2i-movietitle-19 fusion-t2i-movietitle-20 videogametitles fusion-t2i-videogame-title-1 fusion-t2i-videogame-title-2 fusion-t2i-videogame-title-3 tvseries fusion-t2i-tv-series-2 fusion-t2i-tv-series-3 moviestudios fusion-t2i-moviestudios-1 fusion-t2i-moviestudios-1 lingerie //fusion-t2i-lingerie-1 fusion-t2i-lingerie-1 fusion-t2i-lingerie-2 //With brands apadj //apparel adjective fusion-t2i-apparel-adjective-1 fusion-t2i-apparel-adjective-1 movies fusion-t2i-movies-1 fusion-t2i-movies-2 fusion-t2i-movies-3 fantasycreatures fusion-t2i-fantasy-creature-1 fusion-t2i-fantasy-creature-1 fantasyclasses fusion-t2i-fantasy-class-1 fusion-t2i-fantasy-class-1 unicodes fusion-t2i-unicode-2 fusion-t2i-unicode-2 unicode_prefix fusion-t2i-unicode-prefix-1 fusion-t2i-unicode-prefix-1 unicode_suffix fusion-t2i-unicode-suffix-1 fusion-t2i-unicode-suffix-1 gen_r34tags fusion-t2i-rule34-tags-1 fusion-t2i-rule34-tags-2 fusion-t2i-rule34-tags-3 fusion-t2i-rule34-tags-4 fusion-t2i-rule34-tags-5 r34artists fusion-t2i-rule34-artists-1 fusion-t2i-rule34-artists-1 nsfwpromptfeatures fusion-t2i-nsfw-prompt-features-1 fusion-t2i-nsfw-prompt-features-2 youngcelebs fusion-t2i-young-celebrities-1 fusion-t2i-young-celebrities-1 //New set gfn fusion-t2i-girl-firstname-1 fusion-t2i-girl-firstname-2 fusion-t2i-girl-firstname-3 fusion-t2i-girl-firstname-4 fusion-t2i-girl-firstname-5 fusion-t2i-girl-firstname-6 fusion-t2i-girl-firstname-7 fusion-t2i-girl-firstname-8 fusion-t2i-girl-firstname-9 fusion-t2i-girl-firstname-10 fusion-t2i-girl-firstname-11 fusion-t2i-girl-firstname-12 fusion-t2i-girl-firstname-13 fusion-t2i-girl-firstname-14 fusion-t2i-girl-firstname-15 fusion-t2i-girl-firstname-16 fusion-t2i-girl-firstname-17 fusion-t2i-girl-firstname-18 fusion-t2i-girl-firstname-19 fusion-t2i-girl-firstname-20 fusion-t2i-girl-firstname-21 fusion-t2i-girl-firstname-22 fusion-t2i-girl-firstname-23 fusion-t2i-girl-firstname-24 fusion-t2i-girl-firstname-25 fusion-t2i-girl-firstname-26 fusion-t2i-girl-firstname-27 fusion-t2i-girl-firstname-28 fusion-t2i-girl-firstname-29 fusion-t2i-girl-firstname-30 animals fusion-t2i-animals-1 fusion-t2i-animals-1 //Old set lastNames fusion-t2i-lastnames-19 fusion-t2i-lastnames-1 fusion-t2i-lastnames-2 fusion-t2i-lastnames-3 fusion-t2i-lastnames-4 fusion-t2i-lastnames-5 fusion-t2i-lastnames-6 fusion-t2i-lastnames-7 fusion-t2i-lastnames-8 fusion-t2i-lastnames-9 fusion-t2i-lastnames-10 fusion-t2i-lastnames-11 fusion-t2i-lastnames-12 fusion-t2i-lastnames-13 fusion-t2i-lastnames-14 fusion-t2i-lastnames-15 fusion-t2i-lastnames-16 fusion-t2i-lastnames-17 fusion-t2i-lastnames-18 fusion-t2i-lastnames-20 media fusion-t2i-media-outlets-1 fusion-t2i-media-outlets-1 unused yada gen_danbooru fusion-t2i-danbooru-tags-1 fusion-t2i-danbooru-tags-2 fusion-t2i-danbooru-tags-3 fusion-t2i-danbooru-tags-4 fusion-t2i-danbooru-tags-5 fusion-t2i-danbooru-tags-6 fusion-t2i-danbooru-tags-7 fusion-t2i-danbooru-tags-8 fusion-t2i-danbooru-tags-9 fusion-t2i-danbooru-tags-10 fusion-t2i-danbooru-tags-11 fusion-t2i-danbooru-tags-12 fusion-t2i-danbooru-tags-13 fusion-t2i-danbooru-tags-14 fusion-t2i-danbooru-tags-15 fusion-t2i-danbooru-tags-16 fusion-t2i-danbooru-tags-17 fusion-t2i-danbooru-tags-18 fusion-t2i-danbooru-tags-19 fusion-t2i-danbooru-tags-20 fusion-t2i-danbooru-tags-21 fusion-t2i-danbooru-tags-22 fusion-t2i-danbooru-tags-23 fusion-t2i-danbooru-tags-24 fusion-t2i-danbooru-tags-25 fusion-t2i-danbooru-tags-26 fusion-t2i-danbooru-tags-27 fusion-t2i-danbooru-tags-28 fusion-t2i-danbooru-tags-29 fusion-t2i-danbooru-tags-30 fusion-t2i-danbooru-tags-31 fusion-t2i-danbooru-tags-32 fusion-t2i-danbooru-tags-33 gen_lyrics fusion-t2i-lyrics-letterwords-1 fusion-t2i-lyrics-letterwords-2 fusion-t2i-lyrics-letterwords-3 fusion-t2i-lyrics-letterwords-4 fusion-t2i-lyrics-letterwords-5 fusion-t2i-lyrics-letterwords-6 fusion-t2i-lyrics-letterwords-7 fusion-t2i-lyrics-letterwords-8 fusion-t2i-lyrics-letterwords-9 fusion-t2i-lyrics-letterwords-10 //new edits gen_nsfw fusion-t2i-nsfw-terms-1 fusion-t2i-nsfw-terms-2 //fusion-t2i-nsfw-terms-3 gen_nsfwtags fusion-t2i-nsfw-terms-1 fusion-t2i-nsfw-terms-2 nsfwtagscommon fusion-t2i-nsfw-tags-common-1 fusion-t2i-nsfw-tags-common-1 /// //unused old_nsfw fusion-t2i-nsfw-terms-3 fusion-t2i-nsfw-terms-4 fusion-t2i-nsfw-terms-5 fusion-t2i-nsfw-terms-6 fusion-t2i-nsfw-terms-7 fusion-t2i-nsfw-terms-8 fusion-t2i-nsfw-terms-9 fusion-t2i-nsfw-terms-10 fusion-t2i-nsfw-terms-11 fusion-t2i-nsfw-terms-12 fusion-t2i-nsfw-terms-13 fusion-t2i-nsfw-terms-14 fusion-t2i-nsfw-terms-15 fusion-t2i-nsfw-terms-16 fusion-t2i-nsfw-terms-17 fusion-t2i-nsfw-terms-18 fusion-t2i-nsfw-tags-2 fusion-t2i-nsfw-tags-3 fusion-t2i-nsfw-tags-4 fusion-t2i-nsfw-tags-5 fusion-t2i-nsfw-tags-6 fusion-t2i-nsfw-tags-7 fusion-t2i-nsfw-tags-8 fusion-t2i-nsfw-tags- flagnames fusion-t2i-names-from-flag-1 fusion-t2i-names-from-flag-1 common_prefix fusion-t2i-sd15-clip-tokens-common-prefix-1 fusion-t2i-sd15-clip-tokens-common-prefix-2 fusion-t2i-sd15-clip-tokens-common-prefix-3 average_prefix fusion-t2i-sd15-clip-tokens-average-prefix-1 fusion-t2i-sd15-clip-tokens-average-prefix-2 fusion-t2i-sd15-clip-tokens-average-prefix-3 rare_prefix fusion-t2i-sd15-clip-tokens-rare-prefix-1 fusion-t2i-sd15-clip-tokens-rare-prefix-2 fusion-t2i-sd15-clip-tokens-rare-prefix-3 weird_prefix fusion-t2i-sd15-clip-tokens-weird-prefix-1 fusion-t2i-sd15-clip-tokens-weird-prefix-2 fusion-t2i-sd15-clip-tokens-weird-prefix-3 exotic_prefix fusion-t2i-sd15-clip-tokens-exotic-prefix-1 fusion-t2i-sd15-clip-tokens-exotic-prefix-2 fusion-t2i-sd15-clip-tokens-exotic-prefix-3 common_suffix fusion-t2i-sd15-clip-tokens-common-suffix-1 fusion-t2i-sd15-clip-tokens-common-suffix-2 fusion-t2i-sd15-clip-tokens-common-suffix-3 fusion-t2i-sd15-clip-tokens-common-suffix-4 fusion-t2i-sd15-clip-tokens-common-suffix-5 fusion-t2i-sd15-clip-tokens-common-suffix-6 fusion-t2i-sd15-clip-tokens-common-suffix-7 average_suffix fusion-t2i-sd15-clip-tokens-average-suffix-1 fusion-t2i-sd15-clip-tokens-average-suffix-2 fusion-t2i-sd15-clip-tokens-average-suffix-3 fusion-t2i-sd15-clip-tokens-average-suffix-4 fusion-t2i-sd15-clip-tokens-average-suffix-5 fusion-t2i-sd15-clip-tokens-average-suffix-6 fusion-t2i-sd15-clip-tokens-average-suffix-7 rare_suffix fusion-t2i-sd15-clip-tokens-rare-suffix-1 fusion-t2i-sd15-clip-tokens-rare-suffix-2 fusion-t2i-sd15-clip-tokens-rare-suffix-3 fusion-t2i-sd15-clip-tokens-rare-suffix-4 fusion-t2i-sd15-clip-tokens-rare-suffix-5 fusion-t2i-sd15-clip-tokens-rare-suffix-6 fusion-t2i-sd15-clip-tokens-rare-suffix-7 weird_suffix fusion-t2i-sd15-clip-tokens-weird-suffix-1 fusion-t2i-sd15-clip-tokens-weird-suffix-2 fusion-t2i-sd15-clip-tokens-weird-suffix-3 fusion-t2i-sd15-clip-tokens-weird-suffix-4 fusion-t2i-sd15-clip-tokens-weird-suffix-5 fusion-t2i-sd15-clip-tokens-weird-suffix-6 fusion-t2i-sd15-clip-tokens-weird-suffix-7 exotic_suffix fusion-t2i-sd15-clip-tokens-exotic-suffix-1b fusion-t2i-sd15-clip-tokens-exotic-suffix-2 fusion-t2i-sd15-clip-tokens-exotic-suffix-3 fusion-t2i-sd15-clip-tokens-exotic-suffix-4 fusion-t2i-sd15-clip-tokens-exotic-suffix-5 fusion-t2i-sd15-clip-tokens-exotic-suffix-6 fusion-t2i-sd15-clip-tokens-exotic-suffix-7 celebs fusion-t2i-v2-celeb-1 fusion-t2i-v2-celeb-2 fusion-t2i-v2-celeb-3 //fusion-t2i-celebs-1 Old version promptfeatures fusion-t2i-prompt-features-1 fusion-t2i-prompt-features-2 fusion-t2i-prompt-features-3 fusion-t2i-prompt-features-4 fusion-t2i-prompt-features-5 fusion-t2i-prompt-features-6 fusion-t2i-prompt-features-7 fusion-t2i-prompt-features-8 fusion-t2i-prompt-features-9 fusion-t2i-prompt-features-10 fusion-t2i-prompt-features-11 fusion-t2i-prompt-features-12 fusion-t2i-prompt-features-13 fusion-t2i-prompt-features-14 fusion-t2i-prompt-features-15 fusion-t2i-prompt-features-16 fusion-t2i-prompt-features-17 fusion-t2i-prompt-features-18 fusion-t2i-prompt-features-19 fusion-t2i-prompt-features-20 fusion-t2i-prompt-features-21 fusion-t2i-prompt-features-22 fusion-t2i-prompt-features-23 fusion-t2i-prompt-features-24 fusion-t2i-prompt-features-25 fusion-t2i-prompt-features-26 fusion-t2i-prompt-features-27 fusion-t2i-prompt-features-28 fusion-t2i-prompt-features-29 fusion-t2i-prompt-features-30 fusion-t2i-prompt-features-31 fusion-t2i-prompt-features-32 fusion-t2i-prompt-features-33 fusion-t2i-prompt-features-34 nsfwtexts fusion-t2i-nsfw-texting-1 fusion-t2i-nsfw-texting-1 studios fusion-t2i-nsfw-studios-1 fusion-t2i-nsfw-studios-2 fusion-t2i-nsfw-studios-3 fusion-t2i-nsfw-studios-4 fusion-t2i-nsfw-studios-5 fusion-t2i-nsfw-studios-6 fusion-t2i-nsfw-studios-7 fusion-t2i-nsfw-studios-8 fusion-t2i-nsfw-studios-9 fusion-t2i-nsfw-studios-10 fusion-t2i-nsfw-studios-11 fusion-t2i-nsfw-studios-12 fusion-t2i-nsfw-studios-13 fusion-t2i-nsfw-studios-14 fusion-t2i-nsfw-studios-15 fusion-t2i-nsfw-studios-16 perspectives fusion-t2i-perspectives-1 fusion-t2i-perspectives-1 artstyles fusion-t2i-original-artstyles-1 fusion-t2i-original-artstyles-1 e621artists fusion-t2i-e621-artists-1 fusion-t2i-e621-artists-1 gen_bodyfeatures fusion-t2i-bodyfeatures-1 fusion-t2i-bodyfeatures-1 mangart fusion-t2i-manga-artist-1 fusion-t2i-manga-artist-2 //fusion-t2i-manga-artist-3 //fusion-t2i-manga-artist-4 nsfwpromptfeatures fusion-t2i-nsfw-prompt-features-1 fusion-t2i-nsfw-prompt-features-2 fusion-t2i-nsfw-prompt-features-3 fusion-t2i-nsfw-prompt-features-4 fusion-t2i-nsfw-prompt-features-5 fusion-t2i-nsfw-prompt-features-6 fusion-t2i-nsfw-prompt-features-7 fusion-t2i-nsfw-prompt-features-8 fusion-t2i-nsfw-prompt-features-9 fusion-t2i-nsfw-prompt-features-10 fusion-t2i-nsfw-prompt-features-11 fusion-t2i-nsfw-prompt-features-12 fusion-t2i-nsfw-prompt-features-13 fusion-t2i-nsfw-prompt-features-14 fusion-t2i-nsfw-prompt-features-15 gen_names fusion-t2i-nsfw-names-1 fusion-t2i-nsfw-names-2 fusion-t2i-nsfw-names-3 fusion-t2i-nsfw-names-4 fusion-t2i-nsfw-names-5 fusion-t2i-nsfw-names-6 fusion-t2i-nsfw-names-7 fusion-t2i-nsfw-names-8 fusion-t2i-nsfw-names-9 nsfwnews fusion-t2i-fake-nsfw-headlines-1 fusion-t2i-fake-nsfw-headlines-1 tsundere fusion-t2i-tsundere-quotes-1 fusion-t2i-tsundere-quotes-1 ```
laion/strategic_game_chess
laion
"2023-10-20T04:14:20Z"
12,171
29
[ "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "game" ]
null
"2023-06-06T02:09:13Z"
--- tags: - game pretty_name: The Chess Dataset license: cc-by-4.0 --- # Chess > Recent advancements in artificial intelligence (AI) underscore the progress of reasoning and planning shown by recent generalist machine learning (ML) models. The progress can be boosted by datasets that can further boost these generic capabilities when used for training foundation models of various kind. This research initiative has generated extensive synthetic datasets from complex games — chess, Rubik's Cube, and mazes — to study facilitation and the advancement of these critical generic skills in AI models. This dataset contains 3.2 billion games, equating to approximately 608 billion individual moves. it is generated through self-play by Stockfish engine using Fugaku and we add initial moves to expand its diversity. Each game has three columns: 'Moves', 'Termination' and 'Result', - 'Move': recorded chess moves of the whole game. - 'Termination': include CHECKMATE, INSUFFICIENT_MATERIAL, ... etc. - Please check this for detail information https://python-chess.readthedocs.io/en/latest/core.html#chess.Outcome.termination - 'Result': result of this game, 1-0, 1/2-1/2, 0-1. ### Call for Collaboration We invite interested researchers and ML practitioners to explore these datasets' potential. Whether training GPT models from scratch or fine-tuning pre-existing models, we encourage the exploration of various pre-training and fine-tuning strategies using these game-based datasets standalone or as enhancement of other already composed large-scale data. Our team is prepared to assist in securing necessary GPU resources for these explorations. We are particularly interested in collaborators eager to pre-train models of small to medium scale on our game data, subsequently transition to standard text-based training, and then perform comparative analyses against models of similar architecture trained exclusively on text data. Conclusively, this initiative marks a significant stride toward intricate problem-solving and strategic planning in AI, extending an open invitation to the research community for collaborative advancement in this domain.
orionweller/reddit_mds_incremental
orionweller
"2024-07-23T17:17:42Z"
12,133
0
[ "region:us" ]
null
"2024-06-24T14:44:04Z"
--- dataset_info: features: [] splits: - name: creation num_bytes: 0 num_examples: 0 download_size: 324 dataset_size: 0 configs: - config_name: default data_files: - split: creation path: data/creation-* ---
ylacombe/cml-tts
ylacombe
"2023-11-24T14:48:29Z"
12,125
14
[ "task_categories:text-to-speech", "task_categories:text-to-audio", "language:nl", "language:fr", "language:de", "language:it", "language:pl", "language:pt", "language:es", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.10097", "region:us" ]
[ "text-to-speech", "text-to-audio" ]
"2023-11-23T12:01:49Z"
--- language: - nl - fr - de - it - pl - pt - es license: cc-by-4.0 size_categories: - 1M<n<10M task_categories: - text-to-speech - text-to-audio pretty_name: CML-TTS dataset_info: - config_name: dutch features: - name: audio dtype: audio - name: wav_filesize dtype: int64 - name: text dtype: string - name: transcript_wav2vec dtype: string - name: levenshtein dtype: float64 - name: duration dtype: float64 - name: num_words dtype: int64 - name: speaker_id dtype: int64 splits: - name: train num_bytes: 186374683541.98 num_examples: 309785 - name: dev num_bytes: 2912063172.928 num_examples: 4834 - name: test num_bytes: 2757891736.78 num_examples: 4570 download_size: 132987704971 dataset_size: 192044638451.68802 - config_name: french features: - name: audio dtype: audio - name: wav_filesize dtype: int64 - name: text dtype: string - name: transcript_wav2vec dtype: string - name: levenshtein dtype: float64 - name: duration dtype: float64 - name: num_words dtype: int64 - name: speaker_id dtype: int64 splits: - name: train num_bytes: 64984002840.768 num_examples: 107598 - name: dev num_bytes: 2257393207.796 num_examples: 3739 - name: test num_bytes: 2281630546.306 num_examples: 3763 download_size: 48345998335 dataset_size: 69523026594.87 - config_name: german features: - name: audio dtype: audio - name: wav_filesize dtype: int64 - name: text dtype: string - name: transcript_wav2vec dtype: string - name: levenshtein dtype: float64 - name: duration dtype: float64 - name: num_words dtype: int64 - name: speaker_id dtype: int64 splits: - name: train num_bytes: 369052038020.872 num_examples: 608296 - name: dev num_bytes: 3197115278.604 num_examples: 5314 - name: test num_bytes: 3288183839.092 num_examples: 5466 download_size: 280438261836 dataset_size: 375537337138.568 - config_name: italian features: - name: audio dtype: audio - name: wav_filesize dtype: int64 - name: text dtype: string - name: transcript_wav2vec dtype: string - name: levenshtein dtype: float64 - name: duration dtype: float64 - name: num_words dtype: int64 - name: speaker_id dtype: int64 splits: - name: train num_bytes: 30242801015.92 num_examples: 50345 - name: dev num_bytes: 938644924.81 num_examples: 1765 - name: test num_bytes: 979116355.51 num_examples: 1835 download_size: 21996805791 dataset_size: 32160562296.239998 - config_name: polish features: - name: audio dtype: audio - name: wav_filesize dtype: int64 - name: text dtype: string - name: transcript_wav2vec dtype: string - name: levenshtein dtype: float64 - name: duration dtype: float64 - name: num_words dtype: int64 - name: speaker_id dtype: int64 splits: - name: train num_bytes: 11127461686.356 num_examples: 18719 - name: dev num_bytes: 356048249 num_examples: 853 - name: test num_bytes: 367796887 num_examples: 814 download_size: 8114633186 dataset_size: 11851306822.356 - config_name: portuguese features: - name: audio dtype: audio - name: wav_filesize dtype: int64 - name: text dtype: string - name: transcript_wav2vec dtype: string - name: levenshtein dtype: float64 - name: duration dtype: float64 - name: num_words dtype: int64 - name: speaker_id dtype: int64 splits: - name: train num_bytes: 20722423371.0 num_examples: 34265 - name: dev num_bytes: 622824524.224 num_examples: 1134 - name: test num_bytes: 673141068.9 num_examples: 1297 download_size: 14421097659 dataset_size: 22018388964.124 - config_name: spanish features: - name: audio dtype: audio - name: wav_filesize dtype: int64 - name: text dtype: string - name: transcript_wav2vec dtype: string - name: levenshtein dtype: float64 - name: duration dtype: float64 - name: num_words dtype: int64 - name: speaker_id dtype: int64 splits: - name: train num_bytes: 101377452063.176 num_examples: 168524 - name: dev num_bytes: 1882729515.184 num_examples: 3148 - name: test num_bytes: 1851592818.0 num_examples: 3080 download_size: 73687756096 dataset_size: 105111774396.36 configs: - config_name: dutch data_files: - split: train path: dutch/train-* - split: dev path: dutch/dev-* - split: test path: dutch/test-* - config_name: french data_files: - split: train path: french/train-* - split: dev path: french/dev-* - split: test path: french/test-* - config_name: german data_files: - split: train path: german/train-* - split: dev path: german/dev-* - split: test path: german/test-* - config_name: italian data_files: - split: train path: italian/train-* - split: dev path: italian/dev-* - split: test path: italian/test-* - config_name: polish data_files: - split: train path: polish/train-* - split: dev path: polish/dev-* - split: test path: polish/test-* - config_name: portuguese data_files: - split: train path: portuguese/train-* - split: dev path: portuguese/dev-* - split: test path: portuguese/test-* - config_name: spanish data_files: - split: train path: spanish/train-* - split: dev path: spanish/dev-* - split: test path: spanish/test-* --- # Dataset Card for CML-TTS ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks) - [Languages](#languages) - [How to use](#how-to-use) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Data Statistics](#data-statistics) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [MultiLingual LibriSpeech ASR corpus](https://www.openslr.org/146/) - **Repository:** [CML-TTS-Dataset](https://github.com/freds0/CML-TTS-Dataset) - **Paper:** [CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages](https://arxiv.org/abs/2306.10097) ### Dataset Summary CML-TTS is a recursive acronym for CML-Multi-Lingual-TTS, a Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG). CML-TTS is a dataset comprising audiobooks sourced from the public domain books of Project Gutenberg, read by volunteers from the LibriVox project. The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz. The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/146) to make it easier to stream. ### Supported Tasks - `text-to-speech`, `text-to-audio`: The dataset can also be used to train a model for Text-To-Speech (TTS). ### Languages The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz. ### How to use The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function. For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German): ```python from datasets import load_dataset mls = load_dataset("ylacombe/cml-tts", "german", split="train") ``` Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk. ```python from datasets import load_dataset mls = load_dataset("ylacombe/cml-tts", "german", split="train", streaming=True) print(next(iter(mls))) ``` #### *Bonus* You can create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed). **Local:** ```python from datasets import load_dataset from torch.utils.data.sampler import BatchSampler, RandomSampler mls = load_dataset("ylacombe/cml-tts", "german", split="train") batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False) dataloader = DataLoader(mls, batch_sampler=batch_sampler) ``` **Streaming:** ```python from datasets import load_dataset from torch.utils.data import DataLoader mls = load_dataset("ylacombe/cml-tts", "german", split="train", streaming=True) dataloader = DataLoader(mls, batch_size=32) ``` To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets). ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided. ``` {'audio': {'path': '6892_8912_000729.wav', 'array': array([-1.52587891e-...7344e-05]), 'sampling_rate': 24000}, 'wav_filesize': 601964, 'text': 'Proszę pana, tu pano... zdziwiony', 'transcript_wav2vec': 'proszę pana tu panow... zdziwiony', 'levenshtein': 0.96045197740113, 'duration': 13.648979591836737, 'num_words': 29, 'speaker_id': 6892} ``` ### Data Fields - audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - text: the transcription of the audio file. - speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples. - transcript_wav2vec: the transcription of the audio file using the wav2vec model. Has been used to curate the dataset. - wav_filesize: The size of the audio waveform file. Has been used to curate the dataset. - levenshtein: The [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) between the wav2vec transcription and the original transcription. Has been used to curate the dataset. - duration: The duration of the audio in seconds. - num_words: The number of words of the transcription. ### Data Splits | # Samples | Train | Dev | Test | |------------|--------|------|------| | german | 608296 | 5314 | 5466 | | dutch | 309785 | 4834 | 4570 | | french | 107598 | 3739 | 3763 | | spanish | 168524 | 3148 | 3080 | | italian | 50345 | 1765 | 1835 | | portuguese | 34265 | 1134 | 1297 | | polish | 18719 | 853 | 814 | ### Data Statistics | Language | Duration (Train) | Duration (Test) | Duration (Dev) | Speakers (Train) | Speakers (Test) | Speakers (Dev) | |------------|-------------------|------------------|----------------|------------------|-----------------|----------------| | | M | F | M | F | M | F | M | F | M | F | M | F | | Dutch | 482.82 | 162.17 | 2.46 | 1.29 | 2.24 | 1.67 | 8 | 27 | 3 | 3 | 2 | 4 | | French | 260.08 | 24.04 | 2.48 | 3.55 | 3.31 | 2.72 | 25 | 20 | 8 | 9 | 10 | 8 | | German | 1128.96 | 436.64 | 3.75 | 5.27 | 4.31 | 5.03 | 78 | 90 | 13 | 17 | 13 | 15 | | Italian | 73.78 | 57.51 | 1.47 | 0.85 | 0.40 | 1.52 | 23 | 38 | 5 | 5 | 4 | 6 | | Polish | 30.61 | 8.32 | 0.70 | 0.90 | 0.56 | 0.80 | 4 | 4 | 2 | 2 | 2 | 2 | | Portuguese | 23.14 | 44.81 | 0.28 | 0.24 | 0.68 | 0.20 | 20 | 10 | 5 | 4 | 6 | 3 | | Spanish | 279.15 | 164.08 | 2.77 | 2.06 | 3.40 | 2.34 | 35 | 42 | 10 | 8 | 11 | 9 | | Total | 3,176.13| | 28.11 | | 29.19 | | 424 | | 94 | | 95 | | ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset. ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode)) ### Citation Information ``` @misc{oliveira2023cmltts, title={CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages}, author={Frederico S. Oliveira and Edresson Casanova and Arnaldo Cândido Júnior and Anderson S. Soares and Arlindo R. Galvão Filho}, year={2023}, eprint={2306.10097}, archivePrefix={arXiv}, primaryClass={eess.AS} } ``` ### Contributions Thanks to [@ylacombe](https://github.com/ylacombe) for adding this dataset.
DL3DV/DL3DV-ALL-2K
DL3DV
"2024-09-03T11:38:35Z"
12,005
0
[ "size_categories:n>1T", "region:us", "3D Vision", "NeRF", "3D Gaussian", "Dataset", "Novel View Synthesis", "Text to 3D", "Image to 3D" ]
null
"2024-03-05T06:03:15Z"
--- tags: - 3D Vision - NeRF - 3D Gaussian - Dataset - Novel View Synthesis - Text to 3D - Image to 3D pretty_name: Dl3DV-Dataset size_categories: - n>1T --- # DL3DV-Dataset This repo has all the 2K frames with camera poses of DL3DV-10K Dataset. We are working hard to review all the dataset to avoid sensitive information. Thank you for your patience. # Download If you have enough space, you can use git to download a dataset from huggingface. See this [link](https://huggingface.co/docs/hub/en/datasets-downloading). [480P](https://huggingface.co/datasets/DL3DV/DL3DV-ALL-480P)/[960P](https://huggingface.co/datasets/DL3DV/DL3DV-ALL-960P) versions should satisfies most needs. If you do not have enough space, we further provide a [download script](https://github.com/DL3DV-10K/Dataset/blob/main/scripts/download.py) here to download a subset. The usage: ```Bash usage: download.py [-h] --odir ODIR --subset {1K,2K,3K,4K,5K,6K,7K,8K,9K,10K} --resolution {4K,2K,960P,480P} --file_type {images+poses,video,colmap_cache} [--hash HASH] [--clean_cache] optional arguments: -h, --help show this help message and exit --odir ODIR output directory --subset {1K,2K,3K,4K,5K,6K,7K,8K,9K,10K} The subset of the benchmark to download --resolution {4K,2K,960P,480P} The resolution to donwnload --file_type {images+poses,video,colmap_cache} The file type to download --hash HASH If set subset=hash, this is the hash code of the scene to download --clean_cache If set, will clean the huggingface cache to save space ``` Here are some examples: ```Bash # Make sure you have applied for the access. # Use this to download the download.py script wget https://raw.githubusercontent.com/DL3DV-10K/Dataset/main/scripts/download.py # Download 2K resolution images and poses, 0~1K subset, output to DL3DV-10K directory python download.py --odir DL3DV-10K --subset 1K --resolution 2K --file_type images+poses --clean_cache # Download 2K resolution images and poses, 1K~2K subset, output to DL3DV-10K directory python download.py --odir DL3DV-10K --subset 2K --resolution 2K --file_type images+poses --clean_cache ``` You can also download a specific scene with its hash. The scene-hash pair visualization can be found [here](https://htmlpreview.github.io/?https://github.com/DL3DV-10K/Dataset/blob/main/visualize/index.html). ```Bash python download.py --odir DL3DV-10K --subset 2K --resolution 2K --file_type images+poses --hash e2cedefea8a0ed2d0ffbd5bdc08acbe7e1f85c96f72f7b790e9dfe1c98963047 --clean_cache ``` # News - [x] DL3DV-1K, 2K, 3K, 4K - [ ] DL3DV-5K ~ 10K
cornell-movie-review-data/rotten_tomatoes
cornell-movie-review-data
"2024-03-18T14:28:45Z"
11,957
62
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - unknown multilinguality: - monolingual size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification paperswithcode_id: mr pretty_name: RottenTomatoes - MR Movie Review Data dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': neg '1': pos splits: - name: train num_bytes: 1074810 num_examples: 8530 - name: validation num_bytes: 134679 num_examples: 1066 - name: test num_bytes: 135972 num_examples: 1066 download_size: 487770 dataset_size: 1345461 train-eval-index: - config: default task: text-classification task_id: binary_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 args: average: binary - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for "rotten_tomatoes" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [http://www.cs.cornell.edu/people/pabo/movie-review-data/](http://www.cs.cornell.edu/people/pabo/movie-review-data/) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [https://arxiv.org/abs/cs/0506075](https://arxiv.org/abs/cs/0506075) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 0.49 MB - **Size of the generated dataset:** 1.34 MB - **Total amount of disk used:** 1.84 MB ### Dataset Summary Movie Review Dataset. This is a dataset of containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. This data was first used in Bo Pang and Lillian Lee, ``Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales.'', Proceedings of the ACL, 2005. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 0.49 MB - **Size of the generated dataset:** 1.34 MB - **Total amount of disk used:** 1.84 MB An example of 'validation' looks as follows. ``` { "label": 1, "text": "Sometimes the days and nights just drag on -- it 's the morning that make me feel alive . And I have one thing to thank for that : pancakes . " } ``` ### Data Fields The data fields are the same among all splits. #### default - `text`: a `string` feature. - `label`: a classification label, with possible values including `neg` (0), `pos` (1). ### Data Splits Reads Rotten Tomatoes sentences and splits into 80% train, 10% validation, and 10% test, as is the practice set out in Jinfeng Li, ``TEXTBUGGER: Generating Adversarial Text Against Real-world Applications.'' | name |train|validation|test| |-------|----:|---------:|---:| |default| 8530| 1066|1066| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @InProceedings{Pang+Lee:05a, author = {Bo Pang and Lillian Lee}, title = {Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales}, booktitle = {Proceedings of the ACL}, year = 2005 } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@jxmorris12](https://github.com/jxmorris12) for adding this dataset.
allenai/olmo-mix-1124
allenai
"2024-12-02T15:57:43Z"
11,894
24
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10M<n<100M", "modality:text", "region:us" ]
[ "text-generation" ]
"2024-11-24T04:37:18Z"
--- license: odc-by task_categories: - text-generation language: - en pretty_name: OLMo 2 Mix (November 2024) size_categories: - 1B<n<10B configs: - config_name: default data_files: - split: train path: data/*/* - config_name: algebraic-stack data_files: - split: train path: data/algebraic-stack/* - config_name: arxiv data_files: - split: train path: data/arxiv/* - config_name: dclm data_files: - split: train path: data/dclm/* - config_name: open-web-math data_files: - split: train path: data/open-web-math/* - config_name: pes2o data_files: - split: train path: data/pes2o/* - config_name: starcoder data_files: - split: train path: data/starcoder/* - config_name: wiki data_files: - split: train path: data/wiki/* dataset_info: features: - name: id dtype: string - name: text dtype: string - name: added dtype: string - name: created dtype: string --- # OLMo 2 (November 2024) Pretraining set Collection of data used to train OLMo-2-1124 models. The majority of this dataset comes from DCLM-Baseline with no additional filtering, but we provide the explicit breakdowns below. | Name | Tokens | Bytes (uncompressed) | Documents | License | |-----------------|--------|----------------------|-----------|-----------| | DCLM-Baseline | 3.70T | 21.3TB | 2.95B | CC-BY-4.0 | | Arxiv | 20.8B | 77.2GB | 3.95M | ODC-BY | | pes2o | 58.6B | 412GB | 38M | ODC-BY | | starcoder | 83.0B | 458GB | 78.7M | ODC-BY | | Algebraic-stack | 11.8B | 44.0GB | 2.83M | ODC-BY | | OpenWebMath | 12.2B | 47.23GB | 2.89M | ODC-BY | | Wiki | 3.66B | 18.1GB | 6.17M | ODC-BY | | Total | 3.90T | 22.4TB | 3.08M | ODC-BY | Please refer to the OLMo2 Tech Report for further details. ## Licensing Information This **collection** is released under the **Open Data Commons Attribution License (ODC-By) v1.0** [license](https://opendatacommons.org/licenses/by/1-0/). The use of this dataset is also subject to [CommonCrawl's Terms of Use](https://commoncrawl.org/terms-of-use). ## Citation A technical manuscript is forthcoming!
uonlp/CulturaX
uonlp
"2024-12-16T17:24:53Z"
11,824
489
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:af", "language:als", "language:am", "language:an", "language:ar", "language:arz", "language:as", "language:ast", "language:av", "language:az", "language:azb", "language:ba", "language:bar", "language:bcl", "language:be", "language:bg", "language:bh", "language:bn", "language:bo", "language:bpy", "language:br", "language:bs", "language:bxr", "language:ca", "language:cbk", "language:ce", "language:ceb", "language:ckb", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:dsb", "language:dv", "language:el", "language:eml", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:frr", "language:fy", "language:ga", "language:gd", "language:gl", "language:gn", "language:gom", "language:gu", "language:he", "language:hi", "language:hr", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:ie", "language:ilo", "language:io", "language:is", "language:it", "language:ja", "language:jbo", "language:jv", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:krc", "language:ku", "language:kv", "language:kw", "language:ky", "language:la", "language:lb", "language:lez", "language:li", "language:lmo", "language:lo", "language:lrc", "language:lt", "language:lv", "language:mai", "language:mg", "language:mhr", "language:min", "language:mk", "language:ml", "language:mn", "language:mr", "language:mrj", "language:ms", "language:mt", "language:mwl", "language:my", "language:myv", "language:mzn", "language:nah", "language:nap", "language:nds", "language:ne", "language:new", "language:nl", "language:nn", "language:no", "language:oc", "language:or", "language:os", "language:pa", "language:pam", "language:pl", "language:pms", "language:pnb", "language:ps", "language:pt", "language:qu", "language:rm", "language:ro", "language:ru", "language:rue", "language:sa", "language:sah", "language:scn", "language:sd", "language:sh", "language:si", "language:sk", "language:sl", "language:so", "language:sq", "language:sr", "language:su", "language:sv", "language:sw", "language:ta", "language:te", "language:tg", "language:th", "language:tk", "language:tl", "language:tr", "language:tt", "language:tyv", "language:ug", "language:uk", "language:ur", "language:uz", "language:vec", "language:vi", "language:vls", "language:vo", "language:wa", "language:war", "language:wuu", "language:xal", "language:xmf", "language:yi", "language:yo", "language:yue", "language:zh", "size_categories:1B<n<10B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2309.09400", "region:us" ]
[ "text-generation", "fill-mask" ]
"2023-09-04T08:20:39Z"
--- configs: - config_name: af data_files: "af/*.parquet" - config_name: als data_files: "als/*.parquet" - config_name: am data_files: "am/*.parquet" - config_name: an data_files: "an/*.parquet" - config_name: ar data_files: "ar/*.parquet" - config_name: arz data_files: "arz/*.parquet" - config_name: as data_files: "as/*.parquet" - config_name: ast data_files: "ast/*.parquet" - config_name: av data_files: "av/*.parquet" - config_name: az data_files: "az/*.parquet" - config_name: azb data_files: "azb/*.parquet" - config_name: ba data_files: "ba/*.parquet" - config_name: bar data_files: "bar/*.parquet" - config_name: bcl data_files: "bcl/*.parquet" - config_name: be data_files: "be/*.parquet" - config_name: bg data_files: "bg/*.parquet" - config_name: bh data_files: "bh/*.parquet" - config_name: bn data_files: "bn/*.parquet" - config_name: bo data_files: "bo/*.parquet" - config_name: bpy data_files: "bpy/*.parquet" - config_name: br data_files: "br/*.parquet" - config_name: bs data_files: "bs/*.parquet" - config_name: bxr data_files: "bxr/*.parquet" - config_name: ca data_files: "ca/*.parquet" - config_name: cbk data_files: "cbk/*.parquet" - config_name: ce data_files: "ce/*.parquet" - config_name: ceb data_files: "ceb/*.parquet" - config_name: ckb data_files: "ckb/*.parquet" - config_name: cs data_files: "cs/*.parquet" - config_name: cv data_files: "cv/*.parquet" - config_name: cy data_files: "cy/*.parquet" - config_name: da data_files: "da/*.parquet" - config_name: de data_files: "de/*.parquet" - config_name: dsb data_files: "dsb/*.parquet" - config_name: dv data_files: "dv/*.parquet" - config_name: el data_files: "el/*.parquet" - config_name: eml data_files: "eml/*.parquet" - config_name: en data_files: "en/*.parquet" - config_name: eo data_files: "eo/*.parquet" - config_name: es data_files: "es/*.parquet" - config_name: et data_files: "et/*.parquet" - config_name: eu data_files: "eu/*.parquet" - config_name: fa data_files: "fa/*.parquet" - config_name: fi data_files: "fi/*.parquet" - config_name: fr data_files: "fr/*.parquet" - config_name: frr data_files: "frr/*.parquet" - config_name: fy data_files: "fy/*.parquet" - config_name: ga data_files: "ga/*.parquet" - config_name: gd data_files: "gd/*.parquet" - config_name: gl data_files: "gl/*.parquet" - config_name: gn data_files: "gn/*.parquet" - config_name: gom data_files: "gom/*.parquet" - config_name: gu data_files: "gu/*.parquet" - config_name: he data_files: "he/*.parquet" - config_name: hi data_files: "hi/*.parquet" - config_name: hr data_files: "hr/*.parquet" - config_name: hsb data_files: "hsb/*.parquet" - config_name: ht data_files: "ht/*.parquet" - config_name: hu data_files: "hu/*.parquet" - config_name: hy data_files: "hy/*.parquet" - config_name: ia data_files: "ia/*.parquet" - config_name: id data_files: "id/*.parquet" - config_name: ie data_files: "ie/*.parquet" - config_name: ilo data_files: "ilo/*.parquet" - config_name: io data_files: "io/*.parquet" - config_name: is data_files: "is/*.parquet" - config_name: it data_files: "it/*.parquet" - config_name: ja data_files: "ja/*.parquet" - config_name: jbo data_files: "jbo/*.parquet" - config_name: jv data_files: "jv/*.parquet" - config_name: ka data_files: "ka/*.parquet" - config_name: kk data_files: "kk/*.parquet" - config_name: km data_files: "km/*.parquet" - config_name: kn data_files: "kn/*.parquet" - config_name: ko data_files: "ko/*.parquet" - config_name: krc data_files: "krc/*.parquet" - config_name: ku data_files: "ku/*.parquet" - config_name: kv data_files: "kv/*.parquet" - config_name: kw data_files: "kw/*.parquet" - config_name: ky data_files: "ky/*.parquet" - config_name: la data_files: "la/*.parquet" - config_name: lb data_files: "lb/*.parquet" - config_name: lez data_files: "lez/*.parquet" - config_name: li data_files: "li/*.parquet" - config_name: lmo data_files: "lmo/*.parquet" - config_name: lo data_files: "lo/*.parquet" - config_name: lrc data_files: "lrc/*.parquet" - config_name: lt data_files: "lt/*.parquet" - config_name: lv data_files: "lv/*.parquet" - config_name: mai data_files: "mai/*.parquet" - config_name: mg data_files: "mg/*.parquet" - config_name: mhr data_files: "mhr/*.parquet" - config_name: min data_files: "min/*.parquet" - config_name: mk data_files: "mk/*.parquet" - config_name: ml data_files: "ml/*.parquet" - config_name: mn data_files: "mn/*.parquet" - config_name: mr data_files: "mr/*.parquet" - config_name: mrj data_files: "mrj/*.parquet" - config_name: ms data_files: "ms/*.parquet" - config_name: mt data_files: "mt/*.parquet" - config_name: mwl data_files: "mwl/*.parquet" - config_name: my data_files: "my/*.parquet" - config_name: myv data_files: "myv/*.parquet" - config_name: mzn data_files: "mzn/*.parquet" - config_name: nah data_files: "nah/*.parquet" - config_name: nap data_files: "nap/*.parquet" - config_name: nds data_files: "nds/*.parquet" - config_name: ne data_files: "ne/*.parquet" - config_name: new data_files: "new/*.parquet" - config_name: nl data_files: "nl/*.parquet" - config_name: nn data_files: "nn/*.parquet" - config_name: "no" data_files: "no/*.parquet" - config_name: oc data_files: "oc/*.parquet" - config_name: or data_files: "or/*.parquet" - config_name: os data_files: "os/*.parquet" - config_name: pa data_files: "pa/*.parquet" - config_name: pam data_files: "pam/*.parquet" - config_name: pl data_files: "pl/*.parquet" - config_name: pms data_files: "pms/*.parquet" - config_name: pnb data_files: "pnb/*.parquet" - config_name: ps data_files: "ps/*.parquet" - config_name: pt data_files: "pt/*.parquet" - config_name: qu data_files: "qu/*.parquet" - config_name: rm data_files: "rm/*.parquet" - config_name: ro data_files: "ro/*.parquet" - config_name: ru data_files: "ru/*.parquet" - config_name: rue data_files: "rue/*.parquet" - config_name: sa data_files: "sa/*.parquet" - config_name: sah data_files: "sah/*.parquet" - config_name: scn data_files: "scn/*.parquet" - config_name: sd data_files: "sd/*.parquet" - config_name: sh data_files: "sh/*.parquet" - config_name: si data_files: "si/*.parquet" - config_name: sk data_files: "sk/*.parquet" - config_name: sl data_files: "sl/*.parquet" - config_name: so data_files: "so/*.parquet" - config_name: sq data_files: "sq/*.parquet" - config_name: sr data_files: "sr/*.parquet" - config_name: su data_files: "su/*.parquet" - config_name: sv data_files: "sv/*.parquet" - config_name: sw data_files: "sw/*.parquet" - config_name: ta data_files: "ta/*.parquet" - config_name: te data_files: "te/*.parquet" - config_name: tg data_files: "tg/*.parquet" - config_name: th data_files: "th/*.parquet" - config_name: tk data_files: "tk/*.parquet" - config_name: tl data_files: "tl/*.parquet" - config_name: tr data_files: "tr/*.parquet" - config_name: tt data_files: "tt/*.parquet" - config_name: tyv data_files: "tyv/*.parquet" - config_name: ug data_files: "ug/*.parquet" - config_name: uk data_files: "uk/*.parquet" - config_name: ur data_files: "ur/*.parquet" - config_name: uz data_files: "uz/*.parquet" - config_name: vec data_files: "vec/*.parquet" - config_name: vi data_files: "vi/*.parquet" - config_name: vls data_files: "vls/*.parquet" - config_name: vo data_files: "vo/*.parquet" - config_name: wa data_files: "wa/*.parquet" - config_name: war data_files: "war/*.parquet" - config_name: wuu data_files: "wuu/*.parquet" - config_name: xal data_files: "xal/*.parquet" - config_name: xmf data_files: "xmf/*.parquet" - config_name: yi data_files: "yi/*.parquet" - config_name: yo data_files: "yo/*.parquet" - config_name: yue data_files: "yue/*.parquet" - config_name: zh data_files: "zh/*.parquet" pretty_name: CulturaX annotations_creators: - no-annotation language_creators: - found language: - af - als - am - an - ar - arz - as - ast - av - az - azb - ba - bar - bcl - be - bg - bh - bn - bo - bpy - br - bs - bxr - ca - cbk - ce - ceb - ckb - cs - cv - cy - da - de - dsb - dv - el - eml - en - eo - es - et - eu - fa - fi - fr - frr - fy - ga - gd - gl - gn - gom - gu - he - hi - hr - hsb - ht - hu - hy - ia - id - ie - ilo - io - is - it - ja - jbo - jv - ka - kk - km - kn - ko - krc - ku - kv - kw - ky - la - lb - lez - li - lmo - lo - lrc - lt - lv - mai - mg - mhr - min - mk - ml - mn - mr - mrj - ms - mt - mwl - my - myv - mzn - nah - nap - nds - ne - new - nl - nn - "no" - oc - or - os - pa - pam - pl - pms - pnb - ps - pt - qu - rm - ro - ru - rue - sa - sah - scn - sd - sh - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - tg - th - tk - tl - tr - tt - tyv - ug - uk - ur - uz - vec - vi - vls - vo - wa - war - wuu - xal - xmf - yi - yo - yue - zh multilinguality: - multilingual size_categories: - n<1K - 1K<n<10K - 10K<n<100K - 100K<n<1M - 1M<n<10M - 10M<n<100M - 100M<n<1B - 1B<n<10B source_datasets: - original task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling extra_gated_prompt: "By completing the form below, you acknowledge that the provided data is offered as is. Although we anticipate no problems, you accept full responsibility for any repercussions resulting from the use of this data. Furthermore, you agree that the data must not be utilized for malicious or harmful purposes towards humanity." extra_gated_fields: Name: text Email: text Affiliation: text Country: text Usecase: text I have explicitly check with my jurisdiction and I confirm that downloading CulturaX is legal in the country/region where I am located right now, and for the use case that I have described above: checkbox You agree to not attempt to determine the identity of individuals in this dataset: checkbox --- <div align="center"> <h1> CulturaX </h1> <h3> Cleaned, Enormous, and Public: The Multilingual Fuel to Democratize Large Language Models for 167 Languages </h3> </div> ## Dataset Description - **Repository:** [https://github.com/nlp-uoregon/CulturaX](https://github.com/nlp-uoregon/CulturaX) - **Papers:** [CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages](https://arxiv.org/abs/2309.09400) ## Dataset Summary We present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for large language model (LLM) development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. We employ MinHash at document level to achieve fuzzy deduplication for the datasets in different languages. Our data cleaning framework includes diverse criteria and threshold selections, guided by extensive data samples, ensuring comprehensive noise filtering in various aspects. CulturaX is fully released to the public in HuggingFace to facilitate research and advancements in multilingual LLMs. Our dataset combines the most recent iteration of mC4 (version 3.1.0) [1] with all accessible OSCAR corpora up to the present year, including 20.19, 21.09, 22.01, and 23.01 [2]. After deep cleaning and deduplication, CulturaX involves 16TB data in the parquet format (expanding to 27TB when unpacked). More than a half of our dataset is dedicated to non-English languages to significantly boost the data size and enhance the feasibility of training models in multilingual scenarios. To obtain perplexity scores for data cleaning, we train a SentencePiece tokenizer and 5-gram Kneser-Ney language models as provided in the KenLM library [3] using the 20230501 dumps of Wikipedia. Our KenLM models are also released in HuggingFace: https://huggingface.co/uonlp/kenlm. Details for the dataset can be found in our technical paper: [https://arxiv.org/abs/2309.09400](https://arxiv.org/abs/2309.09400) You can download the dataset using Hugging Face datasets: *You may need to follow these instructions to setup authentication before downloading the dataset: [https://huggingface.co/docs/huggingface_hub/quick-start#login](https://huggingface.co/docs/huggingface_hub/quick-start#login)* ```python from datasets import load_dataset ds = load_dataset("uonlp/CulturaX", "en", use_auth_token=True) ``` ### Languages The supported languages and statistics for our dataset can be found below: *(Note that the language code `als` and `eml` refer to `gsw` and `x-eml` in the OSCAR-2301 dataset.)* | | Code | Language | # Documents | # Tokens | # Tokens (%) | |----:|:-------|:-------------------------|:----------------|:--------------------|:------| | 0 | en | English | 3,241,065,682 | 2,846,970,578,793 | 45.13 | | 1 | ru | Russian | 799,310,908 | 737,201,800,363 | 11.69 | | 2 | es | Spanish | 450,937,645 | 373,845,662,394 | 5.93 | | 3 | de | German | 420,017,484 | 357,030,348,021 | 5.66 | | 4 | fr | French | 363,754,348 | 319,332,674,695 | 5.06 | | 5 | zh | Chinese | 218,624,604 | 227,055,380,882 | 3.60 | | 6 | it | Italian | 211,309,922 | 165,446,410,843 | 2.62 | | 7 | pt | Portuguese | 190,289,658 | 136,941,763,923 | 2.17 | | 8 | pl | Polish | 142,167,217 | 117,269,087,143 | 1.86 | | 9 | ja | Japanese | 111,188,475 | 107,873,841,351 | 1.71 | | 10 | nl | Dutch | 117,392,666 | 80,032,209,900 | 1.27 | | 11 | ar | Arabic | 74,027,952 | 69,354,335,076 | 1.10 | | 12 | tr | Turkish | 94,207,460 | 64,292,787,164 | 1.02 | | 13 | cs | Czech | 65,350,564 | 56,910,486,745 | 0.90 | | 14 | vi | Vietnamese | 57,606,341 | 55,380,123,774 | 0.88 | | 15 | fa | Persian | 59,531,144 | 45,947,657,495 | 0.73 | | 16 | hu | Hungarian | 44,132,152 | 43,417,981,714 | 0.69 | | 17 | el | Greek | 51,430,226 | 43,147,590,757 | 0.68 | | 18 | ro | Romanian | 40,325,424 | 39,647,954,768 | 0.63 | | 19 | sv | Swedish | 49,709,189 | 38,486,181,494 | 0.61 | | 20 | uk | Ukrainian | 44,740,545 | 38,226,128,686 | 0.61 | | 21 | fi | Finnish | 30,467,667 | 28,925,009,180 | 0.46 | | 22 | ko | Korean | 20,557,310 | 24,765,448,392 | 0.39 | | 23 | da | Danish | 25,429,808 | 22,921,651,314 | 0.36 | | 24 | bg | Bulgarian | 24,131,819 | 22,917,954,776 | 0.36 | | 25 | no | Norwegian | 18,907,310 | 18,426,628,868 | 0.29 | | 26 | hi | Hindi | 19,665,355 | 16,791,362,871 | 0.27 | | 27 | sk | Slovak | 18,582,517 | 16,442,669,076 | 0.26 | | 28 | th | Thai | 20,960,550 | 15,717,374,014 | 0.25 | | 29 | lt | Lithuanian | 13,339,785 | 14,247,110,836 | 0.23 | | 30 | ca | Catalan | 15,531,777 | 12,530,288,006 | 0.20 | | 31 | id | Indonesian | 23,251,368 | 12,062,966,061 | 0.19 | | 32 | bn | Bangla | 12,436,596 | 9,572,929,804 | 0.15 | | 33 | et | Estonian | 8,004,753 | 8,805,656,165 | 0.14 | | 34 | sl | Slovenian | 7,335,378 | 8,007,587,522 | 0.13 | | 35 | lv | Latvian | 7,136,587 | 7,845,180,319 | 0.12 | | 36 | he | Hebrew | 4,653,979 | 4,937,152,096 | 0.08 | | 37 | sr | Serbian | 4,053,166 | 4,619,482,725 | 0.07 | | 38 | ta | Tamil | 4,728,460 | 4,378,078,610 | 0.07 | | 39 | sq | Albanian | 5,205,579 | 3,648,893,215 | 0.06 | | 40 | az | Azerbaijani | 5,084,505 | 3,513,351,967 | 0.06 | | 41 | kk | Kazakh | 2,733,982 | 2,802,485,195 | 0.04 | | 42 | ur | Urdu | 2,757,279 | 2,703,052,627 | 0.04 | | 43 | ka | Georgian | 3,120,321 | 2,617,625,564 | 0.04 | | 44 | hy | Armenian | 2,964,488 | 2,395,179,284 | 0.04 | | 45 | is | Icelandic | 2,373,560 | 2,350,592,857 | 0.04 | | 46 | ml | Malayalam | 2,693,052 | 2,100,556,809 | 0.03 | | 47 | ne | Nepali | 3,124,040 | 2,061,601,961 | 0.03 | | 48 | mk | Macedonian | 2,762,807 | 2,003,302,006 | 0.03 | | 49 | mr | Marathi | 2,266,588 | 1,955,227,796 | 0.03 | | 50 | mn | Mongolian | 1,928,828 | 1,850,667,656 | 0.03 | | 51 | be | Belarusian | 1,643,486 | 1,791,473,041 | 0.03 | | 52 | te | Telugu | 1,822,865 | 1,566,972,146 | 0.02 | | 53 | gl | Galician | 1,785,963 | 1,382,539,693 | 0.02 | | 54 | eu | Basque | 1,598,822 | 1,262,066,759 | 0.02 | | 55 | kn | Kannada | 1,352,142 | 1,242,285,201 | 0.02 | | 56 | gu | Gujarati | 1,162,878 | 1,131,730,537 | 0.02 | | 57 | af | Afrikaans | 826,519 | 1,119,009,767 | 0.02 | | 58 | my | Burmese | 865,575 | 882,606,546 | 0.01 | | 59 | si | Sinhala | 753,655 | 880,289,097 | 0.01 | | 60 | eo | Esperanto | 460,088 | 803,948,528 | 0.01 | | 61 | km | Khmer | 1,013,181 | 746,664,132 | 0.01 | | 62 | pa | Punjabi | 646,987 | 727,546,145 | 0.01 | | 63 | cy | Welsh | 549,955 | 576,743,162 | 0.01 | | 64 | ky | Kyrgyz | 570,922 | 501,442,620 | 0.01 | | 65 | ga | Irish | 304,251 | 376,947,935 | 0.01 | | 66 | ps | Pashto | 376,914 | 363,007,770 | 0.01 | | 67 | am | Amharic | 243,349 | 358,206,762 | 0.01 | | 68 | ku | Kurdish | 295,314 | 302,990,910 | 0.00 | | 69 | tl | Filipino | 348,453 | 242,086,456 | 0.00 | | 70 | yi | Yiddish | 141,156 | 217,584,643 | 0.00 | | 71 | lo | Lao | 217,842 | 168,256,876 | 0.00 | | 72 | fy | Western Frisian | 223,268 | 167,193,111 | 0.00 | | 73 | sd | Sindhi | 109,162 | 147,487,058 | 0.00 | | 74 | mg | Malagasy | 115,910 | 142,685,412 | 0.00 | | 75 | or | Odia | 153,461 | 100,323,213 | 0.00 | | 76 | as | Assamese | 52,627 | 83,787,896 | 0.00 | | 77 | ug | Uyghur | 47,035 | 77,677,306 | 0.00 | | 78 | uz | Uzbek | 87,219 | 75,250,787 | 0.00 | | 79 | la | Latin | 48,968 | 44,176,580 | 0.00 | | 80 | hr | Croatian | 460,690 | 40,796,811 | 0.00 | | 81 | sw | Swahili | 66,506 | 30,708,309 | 0.00 | | 82 | ms | Malay | 238,151 | 19,375,976 | 0.00 | | 83 | br | Breton | 43,765 | 13,987,037 | 0.00 | | 84 | sa | Sanskrit | 16,290 | 13,561,367 | 0.00 | | 85 | gd | Scottish Gaelic | 8,408 | 4,796,485 | 0.00 | | 86 | su | Sundanese | 1,554 | 1,308,460 | 0.00 | | 87 | jv | Javanese | 2,058 | 625,429 | 0.00 | | 88 | tg | Tajik | 483,835 | - | - | | 89 | ceb | Cebuano | 263,890 | - | - | | 90 | tt | Tatar | 218,102 | - | - | | 91 | ckb | Central Kurdish | 172,035 | - | - | | 92 | lb | Luxembourgish | 165,891 | - | - | | 93 | mt | Maltese | 151,320 | - | - | | 94 | nn | Norwegian Nynorsk | 126,083 | - | - | | 95 | qu | Quechua | 1,202 | 72,101 | 0.00 | | 96 | ba | Bashkir | 71,957 | - | - | | 97 | arz | Egyptian Arabic | 71,625 | - | - | | 98 | dv | Divehi | 66,702 | - | - | | 99 | bo | Tibetan | 54,185 | - | - | | 100 | sh | Serbian (Latin) | 45,619 | - | - | | 101 | yo | Yoruba | 192 | 42,943 | 0.00 | | 102 | bs | Bosnian | 1,237 | 39,768 | 0.00 | | 103 | azb | South Azerbaijani | 29,833 | - | - | | 104 | ht | Haitian Creole | 12 | 26,183 | 0.00 | | 105 | war | Waray | 23,687 | - | - | | 106 | cv | Chuvash | 22,570 | - | - | | 107 | sah | Sakha | 22,141 | - | - | | 108 | li | Limburgish | 206 | 18,532 | 0.00 | | 109 | ce | Chechen | 17,322 | - | - | | 110 | pnb | Western Panjabi | 15,625 | - | - | | 111 | nds | Low German | 15,139 | - | - | | 112 | tk | Turkmen | 14,393 | - | - | | 113 | gn | Guarani | 103 | 12,708 | 0.00 | | 114 | oc | Occitan | 10,556 | - | - | | 115 | xmf | Mingrelian | 9,706 | - | - | | 116 | ast | Asturian | 9,002 | - | - | | 117 | os | Ossetic | 8,596 | - | - | | 118 | mhr | Eastern Mari | 7,883 | - | - | | 119 | pms | Piedmontese | 7,566 | - | - | | 120 | als[*] | Swiss German | 6,936 | - | - | | 121 | vo | Volapük | 6,621 | - | - | | 122 | so | Somali | 39 | 6,053 | 0.00 | | 123 | bpy | Bishnupriya | 5,087 | - | - | | 124 | new | Newari | 4,344 | - | - | | 125 | hsb | Upper Sorbian | 4,244 | - | - | | 126 | lmo | Lombard | 3,530 | - | - | | 127 | an | Aragonese | 2,746 | - | - | | 128 | ilo | Iloko | 2,328 | - | - | | 129 | mzn | Mazanderani | 1,914 | - | - | | 130 | lez | Lezghian | 1,806 | - | - | | 131 | rm | Romansh | 30 | 1,769 | 0.00 | | 132 | krc | Karachay-Balkar | 1,745 | - | - | | 133 | min | Minangkabau | 1,429 | - | - | | 134 | kv | Komi | 1,396 | - | - | | 135 | wa | Walloon | 1,383 | - | - | | 136 | jbo | Lojban | 1,349 | - | - | | 137 | io | Ido | 1,144 | - | - | | 138 | mrj | Western Mari | 1,056 | - | - | | 139 | gom | Goan Konkani | 721 | - | - | | 140 | ia | Interlingua | 613 | - | - | | 141 | av | Avaric | 438 | - | - | | 142 | bh | Bihari languages | 265 | - | - | | 143 | wuu | Wu Chinese | 222 | - | - | | 144 | nah | Nahuatl languages | 131 | - | - | | 145 | vec | Venetian | 113 | - | - | | 146 | bxr | Russia Buriat | 100 | - | - | | 147 | kw | Cornish | 94 | - | - | | 148 | mai | Maithili | 93 | - | - | | 149 | eml[*] | Emiliano-Romagnol | 91 | - | - | | 150 | dsb | Lower Sorbian | 59 | - | - | | 151 | xal | Kalmyk | 51 | - | - | | 152 | lrc | Northern Luri | 43 | - | - | | 153 | nap | Neapolitan | 31 | - | - | | 154 | tyv | Tuvinian | 23 | - | - | | 155 | scn | Sicilian | 21 | - | - | | 156 | frr | Northern Frisian | 11 | - | - | | 157 | mwl | Mirandese | 9 | - | - | | 158 | myv | Erzya | 4 | - | - | | 159 | ie | Interlingue | 4 | - | - | | 160 | pam | Pampanga | 4 | - | - | | 161 | bar | Bavarian | 3 | - | - | | 162 | yue | Yue Chinese | 3 | - | - | | 163 | cbk | Chavacano | 2 | - | - | | 164 | bcl | Central Bikol | 1 | - | - | | 165 | vls | West Flemish | 1 | - | - | | 166 | rue | Rusyn | 1 | - | - | ### Dataset Structure ```json { "text": ..., "timestamp": ..., "url": ..., "source": "mc4" | "OSCAR-xxxx", } ``` ## Considerations for Using the Data As CulturaX is the cleaned version of the mC4 and OSCAR datasets, which were both extracted from CommonCrawl, personal and sensitive information might still contain personal and sensitive information. This must be considered prior to using this dataset for any purpose, such as training deep learning models, etc. ## License Information The licence terms for CulturaX strictly follows those of `mC4` and `OSCAR`. Please refer to both below licenses when using this dataset. - [mC4 license](https://huggingface.co/datasets/allenai/c4#license) - [OSCAR license](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information) ## Acknowledgements We would like to extend our sincere thanks to Google Cloud for providing the TPU resources that made this project possible. Their support has been invaluable in enabling our team to run evaluations on our dataset efficiently. ## Citation To cite CulturaX, please use: ``` @inproceedings{nguyen-etal-2024-culturax, title = "{C}ultura{X}: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages", author = "Nguyen, Thuat and Nguyen, Chien Van and Lai, Viet Dac and Man, Hieu and Ngo, Nghia Trung and Dernoncourt, Franck and Rossi, Ryan A. and Nguyen, Thien Huu", editor = "Calzolari, Nicoletta and Kan, Min-Yen and Hoste, Veronique and Lenci, Alessandro and Sakti, Sakriani and Xue, Nianwen", booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)", month = may, year = "2024", address = "Torino, Italia", publisher = "ELRA and ICCL", url = "https://aclanthology.org/2024.lrec-main.377", pages = "4226--4237", abstract = "Extensive training datasets represent one of the important factors for the impressive learning capabilities of large language models (LLMs). However, these training datasets for current LLMs, especially the recent state-of-the-art models, are often not fully disclosed. Creating training data for high-performing LLMs involves extensive cleaning and deduplication to ensure the necessary level of quality. The lack of transparency for training data has thus hampered research on attributing and addressing hallucination and bias issues in LLMs, hindering replication efforts and further advancements in the community. These challenges become even more pronounced in multilingual learning scenarios, where the available multilingual text datasets are often inadequately collected and cleaned. Consequently, there is a lack of open-source and readily usable dataset to effectively train LLMs in multiple languages. To overcome this issue, we present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for LLM development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. CulturaX is released in Hugging Face facilitate research and advancements in multilingual LLMs: https://huggingface.co/datasets/uonlp/CulturaX.", } ``` ## Reference [1] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In NAACL 2021. https://huggingface.co/datasets/mc4 [2] Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent Romary. 2019. Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures. In Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC- 7) 2019. https://oscar-project.org/ [3] KenLM: Faster and smaller language model queries. In Proceedings of the Sixth Workshop on Statistical Machine Translation, 2011.
openclimatefix/dwd-icon-eu
openclimatefix
"2025-01-03T08:22:21Z"
11,812
10
[ "license:mit", "size_categories:1K<n<10K", "doi:10.57967/hf/0879", "region:us", "climate" ]
null
"2023-03-18T09:42:30Z"
--- license: mit tags: - climate pretty_name: DWD ICON-EU Forecasts size_categories: - 1K<n<10K --- # Dataset Card for DWD ICON-EU Forecast This dataset is comprised of forecasts from the German Weather Service's (DWD) ICON-EU model. From 2020-March 2023 the forecasts contain variables that are relevant to solar and wind forecasting. From March 2023 to the present, all variables are included. Each forecast runs up to 5 days into the future, and the model is ran 4 times per day. This data is an archive of the publicly available data at https://opendata.dwd.de/weather/nwp/, converted to Zarr format with Xarray. No other processing of the data is performed. ## Dataset Details - **Curated by:** Jacob Bieker, Sol Cotton, Open Climate Fix - **License:** German Government Open Data License ### Dataset Sources [optional] - **Raw files:** https://opendata.dwd.de/weather/nwp/ Note: The raw files are deleted after 24 hours, and there is no long-term archive available publicly. ## Uses This data is intended for use in renewable energy forecasting, weather forecasting, and anything that can use high-quality weather forecasts over Europe. ## Dataset Structure The dataset is comprised of one Zarr file per forecast initialization time, and each forecast goes out between 48-120 hours. The files are located at data/year/month/day/YYYYMMDDHH.zarr.zip. ## Dataset Creation ### Curation Rationale The DWD ICON-EU model provides high-quality, high-resolution forecasts for European weather that is also publicly available and free of charge. The model should generally outperform NOAA's GFS forecast model, and has a higher temporal and spatial resolution. The main downside of this model is that the files are only available for a short period publicly, so this dataset was setup to provide a public archive of the forecasts for use by researchers in many fields, but especially renewable energy forecasting and weather forecasting. ### Source Data The source data is the grib2 files from the DWD Open Data Server. #### Data Collection and Processing The data is collected every day, around 6-8 hours after forecast initialization time to ensure the forecast is finished running before the data is pulled. The grib2 files are opened with Xarray and collated into a single Xarray Dataset, with one data variable per ICON variable. Surface variables have "_s" appended to their names to differentiate them from multi-level variables. The Dataset is then written to Zarr using "ocf_blosc2" to encode and compress the variables. No scaling or changing of the variables values is performed. #### Who are the source data producers? German Weather Service (DWD) ### Recommendations These files can be opened directly from HuggingFace, and streamed in with Xarray. HuggingFace is fairly slow though, so the recommended way would be to download the files you want and open them locally. In either case, to access the data you can do the following ```python import ocf_blosc2 import xarray as xr data = xr.open_zarr("path/to/zarr/file") print(data) ``` Alternatively, for using the data in forecasting, there is the `ocf_datapipes` package for loading and training renewable energy forecasting models with multi-modal inputs, including ICON, but also satellite data, PV readings, etc. ## Dataset Card Contact OCF Data Team: [email protected]
trl-internal-testing/zen
trl-internal-testing
"2024-11-26T10:29:22Z"
11,778
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-09-13T21:03:47Z"
--- dataset_info: - config_name: conversational_implicit_prompt_preference features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 2755 num_examples: 17 - name: test num_bytes: 386 num_examples: 2 download_size: 6623 dataset_size: 3141 - config_name: conversational_language_modeling features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1399 num_examples: 17 - name: test num_bytes: 210 num_examples: 2 download_size: 3723 dataset_size: 1609 - config_name: conversational_preference features: - name: prompt list: - name: content dtype: string - name: role dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 2070 num_examples: 17 - name: test num_bytes: 295 num_examples: 2 download_size: 8123 dataset_size: 2365 - config_name: conversational_prompt_completion features: - name: prompt list: - name: content dtype: string - name: role dtype: string - name: completion list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1467 num_examples: 17 - name: test num_bytes: 218 num_examples: 2 download_size: 5796 dataset_size: 1685 - config_name: conversational_prompt_only features: - name: prompt list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 821 num_examples: 17 - name: test num_bytes: 107 num_examples: 2 download_size: 3326 dataset_size: 928 - config_name: conversational_unpaired_preference features: - name: prompt list: - name: content dtype: string - name: role dtype: string - name: completion list: - name: content dtype: string - name: role dtype: string - name: label dtype: bool splits: - name: train num_bytes: 1441 num_examples: 17 - name: test num_bytes: 219 num_examples: 2 download_size: 6421 dataset_size: 1660 - config_name: standard_implicit_prompt_preference features: - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 1537 num_examples: 17 - name: test num_bytes: 258 num_examples: 2 download_size: 4330 dataset_size: 1795 - config_name: standard_language_modeling features: - name: text dtype: string splits: - name: train num_bytes: 744 num_examples: 17 - name: test num_bytes: 136 num_examples: 2 download_size: 2457 dataset_size: 880 - config_name: standard_preference features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 1213 num_examples: 17 - name: test num_bytes: 205 num_examples: 2 download_size: 4466 dataset_size: 1418 - config_name: standard_prompt_completion features: - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 812 num_examples: 17 - name: test num_bytes: 144 num_examples: 2 download_size: 3231 dataset_size: 956 - config_name: standard_prompt_only features: - name: prompt dtype: string splits: - name: train num_bytes: 460 num_examples: 17 - name: test num_bytes: 69 num_examples: 2 download_size: 2044 dataset_size: 529 - config_name: standard_stepwise features: - name: prompt dtype: string - name: completions sequence: string - name: label sequence: bool splits: - name: train num_bytes: 1402.9473684210527 num_examples: 17 - name: test num_bytes: 165.05263157894737 num_examples: 2 download_size: 5033 dataset_size: 1568.0 - config_name: standard_stepwise_supervision features: - name: prompt dtype: string - name: completions sequence: string - name: labels sequence: bool splits: - name: train num_bytes: 1382 num_examples: 17 - name: test num_bytes: 187 num_examples: 2 download_size: 5039 dataset_size: 1569 - config_name: standard_unpaired_preference features: - name: prompt dtype: string - name: completion dtype: string - name: label dtype: bool splits: - name: train num_bytes: 840 num_examples: 17 - name: test num_bytes: 131 num_examples: 2 download_size: 3861 dataset_size: 971 configs: - config_name: conversational_implicit_prompt_preference data_files: - split: train path: conversational_implicit_prompt_preference/train-* - split: test path: conversational_implicit_prompt_preference/test-* - config_name: conversational_language_modeling data_files: - split: train path: conversational_language_modeling/train-* - split: test path: conversational_language_modeling/test-* - config_name: conversational_preference data_files: - split: train path: conversational_preference/train-* - split: test path: conversational_preference/test-* - config_name: conversational_prompt_completion data_files: - split: train path: conversational_prompt_completion/train-* - split: test path: conversational_prompt_completion/test-* - config_name: conversational_prompt_only data_files: - split: train path: conversational_prompt_only/train-* - split: test path: conversational_prompt_only/test-* - config_name: conversational_unpaired_preference data_files: - split: train path: conversational_unpaired_preference/train-* - split: test path: conversational_unpaired_preference/test-* - config_name: standard_implicit_prompt_preference data_files: - split: train path: standard_implicit_prompt_preference/train-* - split: test path: standard_implicit_prompt_preference/test-* - config_name: standard_language_modeling data_files: - split: train path: standard_language_modeling/train-* - split: test path: standard_language_modeling/test-* - config_name: standard_preference data_files: - split: train path: standard_preference/train-* - split: test path: standard_preference/test-* - config_name: standard_prompt_completion data_files: - split: train path: standard_prompt_completion/train-* - split: test path: standard_prompt_completion/test-* - config_name: standard_prompt_only data_files: - split: train path: standard_prompt_only/train-* - split: test path: standard_prompt_only/test-* - config_name: standard_stepwise data_files: - split: train path: standard_stepwise/train-* - split: test path: standard_stepwise/test-* - config_name: standard_stepwise_supervision data_files: - split: train path: standard_stepwise_supervision/train-* - split: test path: standard_stepwise_supervision/test-* - config_name: standard_unpaired_preference data_files: - split: train path: standard_unpaired_preference/train-* - split: test path: standard_unpaired_preference/test-* ---
mshah1/speech_robust_bench
mshah1
"2024-11-23T05:03:22Z"
11,776
3
[ "size_categories:1M<n<10M", "modality:audio", "modality:text", "region:us" ]
null
"2024-01-21T01:39:08Z"
--- dataset_info: - config_name: accented_cv features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: age dtype: string - name: gender dtype: string - name: accents dtype: string - name: locale dtype: string - name: id dtype: int64 splits: - name: test num_bytes: 55407854.085 num_examples: 1355 - name: test.clean num_bytes: 25593824.0 num_examples: 640 download_size: 78598662 dataset_size: 81001678.08500001 - config_name: accented_cv_es features: - name: audio dtype: audio - name: accent dtype: string - name: text dtype: string - name: gender dtype: string - name: age dtype: string - name: locale dtype: string - name: id dtype: int64 splits: - name: test num_bytes: 65868440.963 num_examples: 1483 download_size: 60557913 dataset_size: 65868440.963 - config_name: accented_cv_fr features: - name: file_name dtype: string - name: accent dtype: string - name: text dtype: string - name: gender dtype: string - name: age dtype: string - name: locale dtype: string - name: id dtype: int64 splits: - name: test num_bytes: 337528 num_examples: 2171 download_size: 148493 dataset_size: 337528 - config_name: chime features: - name: audio dtype: audio - name: end_time dtype: string - name: start_time dtype: string - name: speaker dtype: string - name: ref dtype: string - name: location dtype: string - name: session_id dtype: string - name: text dtype: string splits: - name: farfield num_bytes: 521160936.31 num_examples: 6535 - name: nearfield num_bytes: 1072274621.0799999 num_examples: 6535 download_size: 1532887016 dataset_size: 1593435557.3899999 - config_name: in-the-wild features: - name: audio dtype: audio - name: end_time dtype: string - name: start_time dtype: string - name: speaker dtype: string - name: ref dtype: string - name: location dtype: string - name: session_id dtype: string - name: id dtype: string - name: text dtype: string splits: - name: farfield num_bytes: 521363521.31 num_examples: 6535 - name: nearfield num_bytes: 1072477206.0799999 num_examples: 6535 download_size: 1533124839 dataset_size: 1593840727.3899999 - config_name: in-the-wild-AMI features: - name: meeting_id dtype: string - name: id dtype: string - name: text dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: begin_time dtype: float32 - name: end_time dtype: float32 - name: microphone_id dtype: string - name: speaker_id dtype: string splits: - name: nearfield num_bytes: 1382749390.9785259 num_examples: 6584 - name: farfield num_bytes: 1040706691.1008185 num_examples: 6584 download_size: 2164898498 dataset_size: 2423456082.0793443 - config_name: in-the-wild-ami features: - name: meeting_id dtype: string - name: audio_id dtype: string - name: text dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: begin_time dtype: float32 - name: end_time dtype: float32 - name: microphone_id dtype: string - name: speaker_id dtype: string splits: - name: nearfield num_bytes: 1382749390.9785259 num_examples: 6584 - name: farfield num_bytes: 1040706691.1008185 num_examples: 6584 download_size: 2164900274 dataset_size: 2423456082.0793443 - config_name: librispeech_asr-test.clean features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string splits: - name: speedup.1 num_bytes: 498896619.34 num_examples: 2620 - name: speedup.2 num_bytes: 415901075.34 num_examples: 2620 - name: speedup.3 num_bytes: 356617835.34 num_examples: 2620 - name: speedup.4 num_bytes: 312152811.34 num_examples: 2620 - name: slowdown.1 num_bytes: 712320343.34 num_examples: 2620 - name: slowdown.2 num_bytes: 830887339.34 num_examples: 2620 - name: slowdown.3 num_bytes: 996880127.34 num_examples: 2620 - name: slowdown.4 num_bytes: 1245871847.34 num_examples: 2620 - name: pitch_up.3 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_up.4 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.1 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.2 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.3 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_down.4 num_bytes: 623392467.34 num_examples: 2620 - name: pitch_up.1 num_bytes: 623392458.5 num_examples: 2620 - name: pitch_up.2 num_bytes: 623392458.5 num_examples: 2620 - name: resample.1 num_bytes: 623392535.34 num_examples: 2620 - name: resample.2 num_bytes: 623392535.34 num_examples: 2620 - name: resample.3 num_bytes: 623392579.34 num_examples: 2620 - name: resample.4 num_bytes: 623392623.34 num_examples: 2620 - name: voice_conversion.4 num_bytes: 799852214.5 num_examples: 2620 - name: voice_conversion.3 num_bytes: 580185782.5 num_examples: 2620 - name: voice_conversion.1 num_bytes: 589259446.5 num_examples: 2620 - name: voice_conversion.2 num_bytes: 571175606.5 num_examples: 2620 - name: gain.1 num_bytes: 623392467.34 num_examples: 2620 - name: gain.2 num_bytes: 623392467.34 num_examples: 2620 - name: gain.3 num_bytes: 623392467.34 num_examples: 2620 - name: echo.1 num_bytes: 633872467.34 num_examples: 2620 - name: echo.2 num_bytes: 644352467.34 num_examples: 2620 - name: echo.3 num_bytes: 665312467.34 num_examples: 2620 - name: echo.4 num_bytes: 707232467.34 num_examples: 2620 - name: phaser.1 num_bytes: 623392467.34 num_examples: 2620 - name: phaser.2 num_bytes: 623392467.34 num_examples: 2620 - name: phaser.3 num_bytes: 623392467.34 num_examples: 2620 - name: tempo_up.1 num_bytes: 498896595.34 num_examples: 2620 - name: tempo_up.2 num_bytes: 415899351.34 num_examples: 2620 - name: tempo_up.3 num_bytes: 356615595.34 num_examples: 2620 - name: tempo_up.4 num_bytes: 312152811.34 num_examples: 2620 - name: tempo_down.1 num_bytes: 712318083.34 num_examples: 2620 - name: tempo_down.2 num_bytes: 830885583.34 num_examples: 2620 - name: tempo_down.3 num_bytes: 996880103.34 num_examples: 2620 - name: tempo_down.4 num_bytes: 1245871847.34 num_examples: 2620 - name: gain.4 num_bytes: 623392467.34 num_examples: 2620 - name: phaser.4 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.1 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.2 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.3 num_bytes: 623392467.34 num_examples: 2620 - name: lowpass.4 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.1 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.2 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.3 num_bytes: 623392467.34 num_examples: 2620 - name: highpass.4 num_bytes: 623392467.34 num_examples: 2620 - name: voice_conversion_vctk.1 num_bytes: 495165825.88 num_examples: 2620 - name: universal_adv.1 num_bytes: 623392467.34 num_examples: 2620 - name: rir.1 num_bytes: 705636818.5 num_examples: 2620 - name: rir.2 num_bytes: 744484818.5 num_examples: 2620 - name: rir.3 num_bytes: 758740818.5 num_examples: 2620 - name: rir.4 num_bytes: 776116818.5 num_examples: 2620 - name: gnoise.1 num_bytes: 623392455.88 num_examples: 2620 - name: gnoise.2 num_bytes: 623392455.88 num_examples: 2620 - name: gnoise.3 num_bytes: 623392455.88 num_examples: 2620 - name: gnoise.4 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_esc50.4 num_bytes: 623392455.88 num_examples: 2620 - name: music.1 num_bytes: 623392455.88 num_examples: 2620 - name: music.2 num_bytes: 623392455.88 num_examples: 2620 - name: music.3 num_bytes: 623392455.88 num_examples: 2620 - name: music.4 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.1 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.2 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.3 num_bytes: 623392455.88 num_examples: 2620 - name: crosstalk.4 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_musan.4 num_bytes: 623392455.88 num_examples: 2620 - name: real_rir.1 num_bytes: 638169615.88 num_examples: 2620 - name: real_rir.2 num_bytes: 694281819.88 num_examples: 2620 - name: real_rir.3 num_bytes: 713200537.88 num_examples: 2620 - name: real_rir.4 num_bytes: 1515177725.88 num_examples: 2620 - name: env_noise.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise.4 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.1 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.2 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.3 num_bytes: 623392455.88 num_examples: 2620 - name: env_noise_wham.4 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.1 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.2 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.3 num_bytes: 623392455.88 num_examples: 2620 - name: tremolo.4 num_bytes: 623392455.88 num_examples: 2620 - name: treble.1 num_bytes: 623392455.88 num_examples: 2620 - name: treble.2 num_bytes: 623392455.88 num_examples: 2620 - name: treble.3 num_bytes: 623392455.88 num_examples: 2620 - name: treble.4 num_bytes: 623392455.88 num_examples: 2620 - name: bass.1 num_bytes: 623392455.88 num_examples: 2620 - name: bass.2 num_bytes: 623392455.88 num_examples: 2620 - name: bass.3 num_bytes: 623392455.88 num_examples: 2620 - name: bass.4 num_bytes: 623392455.88 num_examples: 2620 - name: chorus.1 num_bytes: 626913735.88 num_examples: 2620 - name: chorus.2 num_bytes: 628590535.88 num_examples: 2620 - name: chorus.3 num_bytes: 630267335.88 num_examples: 2620 - name: chorus.4 num_bytes: 631944135.88 num_examples: 2620 - name: None.0 num_bytes: 367982506.42 num_examples: 2620 download_size: 67547733720 dataset_size: 68871044112.51988 - config_name: librispeech_asr-test.clean_pertEval_500_30 features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string - name: pert_idx dtype: int64 splits: - name: gnoise.1 num_bytes: 3592401090.0 num_examples: 15000 - name: env_noise_esc50.1 num_bytes: 3592401090.0 num_examples: 15000 download_size: 7170899040 dataset_size: 7184802180.0 - config_name: multilingual_librispeech-french_test features: - name: audio dtype: audio: sampling_rate: 16000 - name: original_path dtype: string - name: begin_time dtype: float64 - name: end_time dtype: float64 - name: audio_duration dtype: float64 - name: speaker_id dtype: string - name: chapter_id dtype: string - name: file dtype: string - name: id dtype: string - name: text dtype: string splits: - name: gnoise.1 num_bytes: 1160858614.324 num_examples: 2426 - name: gnoise.2 num_bytes: 1160858614.324 num_examples: 2426 - name: gnoise.3 num_bytes: 1160858614.324 num_examples: 2426 - name: speedup.1 num_bytes: 928910526.324 num_examples: 2426 - name: speedup.3 num_bytes: 663829084.324 num_examples: 2426 - name: pitch_up.1 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_up.2 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_up.3 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.1 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise.1 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise.3 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.1 num_bytes: 1160858614.324 num_examples: 2426 - name: slowdown.2 num_bytes: 1547440398.324 num_examples: 2426 - name: real_rir.3 num_bytes: 1241772582.324 num_examples: 2426 - name: env_noise.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.2 num_bytes: 1160858614.324 num_examples: 2426 - name: speedup.2 num_bytes: 774280064.324 num_examples: 2426 - name: slowdown.1 num_bytes: 1326537936.324 num_examples: 2426 - name: slowdown.3 num_bytes: 1856702974.324 num_examples: 2426 - name: env_noise_esc50.1 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_esc50.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_esc50.3 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.1 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.2 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.3 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.3 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.3 num_bytes: 1160858614.324 num_examples: 2426 - name: rir.1 num_bytes: 1235965442.324 num_examples: 2426 - name: rir.2 num_bytes: 1273085442.324 num_examples: 2426 - name: rir.3 num_bytes: 1284653442.324 num_examples: 2426 - name: real_rir.1 num_bytes: 1174422106.324 num_examples: 2426 - name: real_rir.2 num_bytes: 1226129514.324 num_examples: 2426 - name: resample.1 num_bytes: 1160858656.324 num_examples: 2426 - name: resample.2 num_bytes: 1160858642.324 num_examples: 2426 - name: resample.3 num_bytes: 1160858694.324 num_examples: 2426 - name: gain.1 num_bytes: 1160858614.324 num_examples: 2426 - name: gain.2 num_bytes: 1160858614.324 num_examples: 2426 - name: gain.3 num_bytes: 1160858614.324 num_examples: 2426 - name: echo.1 num_bytes: 1170562614.324 num_examples: 2426 - name: echo.2 num_bytes: 1180266614.324 num_examples: 2426 - name: echo.3 num_bytes: 1199674614.324 num_examples: 2426 - name: phaser.1 num_bytes: 1160858614.324 num_examples: 2426 - name: phaser.2 num_bytes: 1160858614.324 num_examples: 2426 - name: phaser.3 num_bytes: 1160858614.324 num_examples: 2426 - name: tempo_up.1 num_bytes: 928910510.324 num_examples: 2426 - name: tempo_up.2 num_bytes: 774278396.324 num_examples: 2426 - name: tempo_up.3 num_bytes: 663826914.324 num_examples: 2426 - name: tempo_down.1 num_bytes: 1326535834.324 num_examples: 2426 - name: tempo_down.2 num_bytes: 1547438832.324 num_examples: 2426 - name: tempo_down.3 num_bytes: 1856702944.324 num_examples: 2426 - name: lowpass.1 num_bytes: 1160858614.324 num_examples: 2426 - name: lowpass.2 num_bytes: 1160858614.324 num_examples: 2426 - name: lowpass.3 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.1 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.2 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.3 num_bytes: 1160858614.324 num_examples: 2426 - name: music.1 num_bytes: 1160858614.324 num_examples: 2426 - name: music.2 num_bytes: 1160858614.324 num_examples: 2426 - name: music.3 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.1 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.2 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.3 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.1 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.2 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.3 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.1 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.2 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.3 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.1 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.2 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.3 num_bytes: 1160858614.324 num_examples: 2426 - name: chorus.1 num_bytes: 1164119158.324 num_examples: 2426 - name: chorus.2 num_bytes: 1165671798.324 num_examples: 2426 - name: chorus.3 num_bytes: 1167224438.324 num_examples: 2426 - name: gnoise.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_esc50.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_musan.4 num_bytes: 1160858614.324 num_examples: 2426 - name: env_noise_wham.4 num_bytes: 1160858614.324 num_examples: 2426 - name: speedup.4 num_bytes: 580988352.324 num_examples: 2426 - name: slowdown.4 num_bytes: 2320599166.324 num_examples: 2426 - name: pitch_up.4 num_bytes: 1160858614.324 num_examples: 2426 - name: pitch_down.4 num_bytes: 1160858614.324 num_examples: 2426 - name: rir.4 num_bytes: 1302669442.324 num_examples: 2426 - name: real_rir.4 num_bytes: 2020765820.324 num_examples: 2426 - name: resample.4 num_bytes: 1160858814.324 num_examples: 2426 - name: gain.4 num_bytes: 1160858614.324 num_examples: 2426 - name: echo.4 num_bytes: 1238490614.324 num_examples: 2426 - name: phaser.4 num_bytes: 1160858614.324 num_examples: 2426 - name: tempo_up.4 num_bytes: 580988352.324 num_examples: 2426 - name: tempo_down.4 num_bytes: 2320599166.324 num_examples: 2426 - name: lowpass.4 num_bytes: 1160858614.324 num_examples: 2426 - name: highpass.4 num_bytes: 1160858614.324 num_examples: 2426 - name: music.4 num_bytes: 1160858614.324 num_examples: 2426 - name: crosstalk.4 num_bytes: 1160858614.324 num_examples: 2426 - name: tremolo.4 num_bytes: 1160858614.324 num_examples: 2426 - name: treble.4 num_bytes: 1160858614.324 num_examples: 2426 - name: bass.4 num_bytes: 1160858614.324 num_examples: 2426 - name: chorus.4 num_bytes: 1168777078.324 num_examples: 2426 download_size: 121459263523 dataset_size: 119151206300.40016 - config_name: multilingual_librispeech-german_test features: - name: audio dtype: audio: sampling_rate: 16000 - name: original_path dtype: string - name: begin_time dtype: float64 - name: end_time dtype: float64 - name: audio_duration dtype: float64 - name: speaker_id dtype: string - name: chapter_id dtype: string - name: file dtype: string - name: id dtype: string - name: text dtype: string splits: - name: gnoise.1 num_bytes: 1648113341.356 num_examples: 3394 - name: gnoise.2 num_bytes: 1648113341.356 num_examples: 3394 - name: gnoise.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.3 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.1 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.2 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.3 num_bytes: 1648113341.356 num_examples: 3394 - name: speedup.1 num_bytes: 1318802109.356 num_examples: 3394 - name: speedup.2 num_bytes: 1099263673.356 num_examples: 3394 - name: speedup.3 num_bytes: 942449495.356 num_examples: 3394 - name: slowdown.1 num_bytes: 1883338719.356 num_examples: 3394 - name: slowdown.2 num_bytes: 2196967643.356 num_examples: 3394 - name: slowdown.3 num_bytes: 2636047081.356 num_examples: 3394 - name: pitch_up.1 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_up.2 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_up.3 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.1 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.2 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.3 num_bytes: 1648113341.356 num_examples: 3394 - name: rir.1 num_bytes: 1755612473.356 num_examples: 3394 - name: rir.2 num_bytes: 1806508473.356 num_examples: 3394 - name: rir.3 num_bytes: 1821740473.356 num_examples: 3394 - name: real_rir.1 num_bytes: 1666887689.356 num_examples: 3394 - name: real_rir.2 num_bytes: 1738836201.356 num_examples: 3394 - name: real_rir.3 num_bytes: 1764380853.356 num_examples: 3394 - name: resample.1 num_bytes: 1648113369.356 num_examples: 3394 - name: resample.2 num_bytes: 1648113363.356 num_examples: 3394 - name: resample.3 num_bytes: 1648113411.356 num_examples: 3394 - name: gain.1 num_bytes: 1648113341.356 num_examples: 3394 - name: gain.2 num_bytes: 1648113341.356 num_examples: 3394 - name: gain.3 num_bytes: 1648113341.356 num_examples: 3394 - name: echo.1 num_bytes: 1661689341.356 num_examples: 3394 - name: echo.2 num_bytes: 1675265341.356 num_examples: 3394 - name: echo.3 num_bytes: 1702417341.356 num_examples: 3394 - name: phaser.1 num_bytes: 1648113341.356 num_examples: 3394 - name: phaser.2 num_bytes: 1648113341.356 num_examples: 3394 - name: phaser.3 num_bytes: 1648113341.356 num_examples: 3394 - name: tempo_up.1 num_bytes: 1318802103.356 num_examples: 3394 - name: tempo_up.2 num_bytes: 1099261101.356 num_examples: 3394 - name: tempo_up.3 num_bytes: 942446355.356 num_examples: 3394 - name: tempo_down.1 num_bytes: 1883335523.356 num_examples: 3394 - name: tempo_down.2 num_bytes: 2196965581.356 num_examples: 3394 - name: tempo_down.3 num_bytes: 2636047065.356 num_examples: 3394 - name: lowpass.1 num_bytes: 1648113341.356 num_examples: 3394 - name: lowpass.2 num_bytes: 1648113341.356 num_examples: 3394 - name: lowpass.3 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.1 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.2 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.3 num_bytes: 1648113341.356 num_examples: 3394 - name: music.1 num_bytes: 1648113341.356 num_examples: 3394 - name: music.2 num_bytes: 1648113341.356 num_examples: 3394 - name: music.3 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.1 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.2 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.3 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.1 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.2 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.3 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.1 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.2 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.3 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.1 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.2 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.3 num_bytes: 1648113341.356 num_examples: 3394 - name: chorus.1 num_bytes: 1652674877.356 num_examples: 3394 - name: chorus.2 num_bytes: 1654847037.356 num_examples: 3394 - name: chorus.3 num_bytes: 1657019197.356 num_examples: 3394 - name: gnoise.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_esc50.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_musan.4 num_bytes: 1648113341.356 num_examples: 3394 - name: env_noise_wham.4 num_bytes: 1648113341.356 num_examples: 3394 - name: speedup.4 num_bytes: 824835247.356 num_examples: 3394 - name: slowdown.4 num_bytes: 3294669551.356 num_examples: 3394 - name: pitch_up.4 num_bytes: 1648113341.356 num_examples: 3394 - name: pitch_down.4 num_bytes: 1648113341.356 num_examples: 3394 - name: rir.4 num_bytes: 1846956473.356 num_examples: 3394 - name: real_rir.4 num_bytes: 2846504095.356 num_examples: 3394 - name: resample.4 num_bytes: 1648113451.356 num_examples: 3394 - name: gain.4 num_bytes: 1648113341.356 num_examples: 3394 - name: echo.4 num_bytes: 1756721341.356 num_examples: 3394 - name: phaser.4 num_bytes: 1648113341.356 num_examples: 3394 - name: tempo_up.4 num_bytes: 824835247.356 num_examples: 3394 - name: tempo_down.4 num_bytes: 3294669551.356 num_examples: 3394 - name: lowpass.4 num_bytes: 1648113341.356 num_examples: 3394 - name: highpass.4 num_bytes: 1648113341.356 num_examples: 3394 - name: music.4 num_bytes: 1648113341.356 num_examples: 3394 - name: crosstalk.4 num_bytes: 1648113341.356 num_examples: 3394 - name: tremolo.4 num_bytes: 1648113341.356 num_examples: 3394 - name: treble.4 num_bytes: 1648113341.356 num_examples: 3394 - name: bass.4 num_bytes: 1648113341.356 num_examples: 3394 - name: chorus.4 num_bytes: 1659191357.356 num_examples: 3394 download_size: 163104340817 dataset_size: 169131696059.59995 - config_name: multilingual_librispeech-spanish_test features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string splits: - name: None.0 num_bytes: 596762288.01 num_examples: 2385 - name: env_noise.1 num_bytes: 1153485830.17 num_examples: 2385 - name: env_noise.2 num_bytes: 1153485830.17 num_examples: 2385 - name: env_noise.3 num_bytes: 1153485830.17 num_examples: 2385 - name: env_noise.4 num_bytes: 1153485830.17 num_examples: 2385 - name: rir.1 num_bytes: 1268493860.17 num_examples: 2385 - name: rir.2 num_bytes: 1252109860.17 num_examples: 2385 - name: rir.3 num_bytes: 1249517860.17 num_examples: 2385 - name: rir.4 num_bytes: 1222893860.17 num_examples: 2385 - name: speedup.1 num_bytes: 923001764.17 num_examples: 2385 - name: speedup.2 num_bytes: 769347364.17 num_examples: 2385 - name: speedup.3 num_bytes: 659593516.17 num_examples: 2385 - name: speedup.4 num_bytes: 577275652.17 num_examples: 2385 - name: slowdown.1 num_bytes: 1318119422.17 num_examples: 2385 - name: slowdown.2 num_bytes: 1537627530.17 num_examples: 2385 - name: slowdown.3 num_bytes: 1844938056.17 num_examples: 2385 - name: slowdown.4 num_bytes: 2305906194.17 num_examples: 2385 - name: pitch_up.3 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_up.4 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.1 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.2 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.3 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_down.4 num_bytes: 1153485830.17 num_examples: 2385 - name: pitch_up.1 num_bytes: 1153485821.72 num_examples: 2385 - name: pitch_up.2 num_bytes: 1153485821.72 num_examples: 2385 - name: resample.2 num_bytes: 1153485842.17 num_examples: 2385 - name: gain.1 num_bytes: 1153485830.17 num_examples: 2385 - name: gain.2 num_bytes: 1153485830.17 num_examples: 2385 - name: gain.3 num_bytes: 1153485830.17 num_examples: 2385 - name: gain.4 num_bytes: 1153485830.17 num_examples: 2385 - name: echo.1 num_bytes: 1163025830.17 num_examples: 2385 - name: echo.2 num_bytes: 1172565830.17 num_examples: 2385 - name: echo.3 num_bytes: 1191645830.17 num_examples: 2385 - name: echo.4 num_bytes: 1229805830.17 num_examples: 2385 - name: tempo_up.1 num_bytes: 923001758.17 num_examples: 2385 - name: tempo_up.2 num_bytes: 769345632.17 num_examples: 2385 - name: tempo_up.3 num_bytes: 659591372.17 num_examples: 2385 - name: tempo_up.4 num_bytes: 577275652.17 num_examples: 2385 - name: tempo_down.1 num_bytes: 1318117252.17 num_examples: 2385 - name: tempo_down.2 num_bytes: 1537626028.17 num_examples: 2385 - name: tempo_down.3 num_bytes: 1844938048.17 num_examples: 2385 - name: tempo_down.4 num_bytes: 2305906194.17 num_examples: 2385 - name: phaser.1 num_bytes: 1153485830.17 num_examples: 2385 - name: phaser.2 num_bytes: 1153485830.17 num_examples: 2385 - name: phaser.3 num_bytes: 1153485830.17 num_examples: 2385 - name: phaser.4 num_bytes: 1153485830.17 num_examples: 2385 - name: resample.1 num_bytes: 1153485840.17 num_examples: 2385 - name: resample.3 num_bytes: 1153485850.17 num_examples: 2385 - name: resample.4 num_bytes: 1153485882.17 num_examples: 2385 - name: lowpass.1 num_bytes: 1153485830.17 num_examples: 2385 - name: lowpass.2 num_bytes: 1153485830.17 num_examples: 2385 - name: lowpass.3 num_bytes: 1153485830.17 num_examples: 2385 - name: lowpass.4 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.1 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.2 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.3 num_bytes: 1153485830.17 num_examples: 2385 - name: highpass.4 num_bytes: 1153485830.17 num_examples: 2385 - name: gnoise.1 num_bytes: 1153485822.49 num_examples: 2385 - name: gnoise.2 num_bytes: 1153485822.49 num_examples: 2385 - name: gnoise.3 num_bytes: 1153485822.49 num_examples: 2385 - name: gnoise.4 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.1 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.2 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.3 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_esc50.4 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.1 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.2 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.3 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_musan.4 num_bytes: 1153485822.49 num_examples: 2385 - name: music.1 num_bytes: 1153485822.49 num_examples: 2385 - name: music.2 num_bytes: 1153485822.49 num_examples: 2385 - name: music.3 num_bytes: 1153485822.49 num_examples: 2385 - name: music.4 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.1 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.2 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.3 num_bytes: 1153485822.49 num_examples: 2385 - name: crosstalk.4 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.1 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.2 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.3 num_bytes: 1153485822.49 num_examples: 2385 - name: env_noise_wham.4 num_bytes: 1153485822.49 num_examples: 2385 - name: tremolo.1 num_bytes: 1153485822.49 num_examples: 2385 - name: tremolo.2 num_bytes: 1153485822.49 num_examples: 2385 - name: tremolo.4 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.1 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.2 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.3 num_bytes: 1153485822.49 num_examples: 2385 - name: treble.4 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.1 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.2 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.3 num_bytes: 1153485822.49 num_examples: 2385 - name: bass.4 num_bytes: 1153485822.49 num_examples: 2385 - name: chorus.1 num_bytes: 1156691262.49 num_examples: 2385 - name: chorus.2 num_bytes: 1158217662.49 num_examples: 2385 - name: chorus.3 num_bytes: 1159744062.49 num_examples: 2385 - name: chorus.4 num_bytes: 1161270462.49 num_examples: 2385 - name: tremolo.3 num_bytes: 1153485822.49 num_examples: 2385 - name: voice_conversion_bark.1 num_bytes: 1457427139.875 num_examples: 2385 download_size: 119056891470 dataset_size: 114748819328.10516 - config_name: multilingual_librispeech-spanish_test_pertEval_500_30 features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string - name: pert_idx dtype: int64 splits: - name: gnoise.1 num_bytes: 7341021960.0 num_examples: 15000 - name: env_noise_esc50.1 num_bytes: 7341021960.0 num_examples: 15000 download_size: 14645523867 dataset_size: 14682043920.0 - config_name: tedlium-release3_test features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: string - name: gender dtype: class_label: names: '0': unknown '1': female '2': male - name: file dtype: string - name: id dtype: string splits: - name: None.0 num_bytes: 277376247.9680054 num_examples: 1155 - name: speedup.1 num_bytes: 221990159.49965963 num_examples: 1155 - name: speedup.2 num_bytes: 185066240.47311097 num_examples: 1155 - name: speedup.3 num_bytes: 158691929.4792376 num_examples: 1155 - name: slowdown.1 num_bytes: 316938966.95371 num_examples: 1155 - name: slowdown.2 num_bytes: 369687787.0762423 num_examples: 1155 - name: slowdown.3 num_bytes: 443535996.23893803 num_examples: 1155 - name: pitch_up.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_up.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_up.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: rir.1 num_bytes: 313788218.1586113 num_examples: 1155 - name: rir.2 num_bytes: 330268000.32334924 num_examples: 1155 - name: rir.3 num_bytes: 336608313.46153843 num_examples: 1155 - name: voice_conversion_vctk.1 num_bytes: 216990920.87134105 num_examples: 1155 - name: resample.1 num_bytes: 277376301.4329476 num_examples: 1155 - name: resample.2 num_bytes: 277376301.4329476 num_examples: 1155 - name: resample.3 num_bytes: 277376354.89788973 num_examples: 1155 - name: gain.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: gain.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: gain.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: echo.1 num_bytes: 281996247.9680054 num_examples: 1155 - name: echo.2 num_bytes: 286616247.9680054 num_examples: 1155 - name: echo.3 num_bytes: 295856247.9680054 num_examples: 1155 - name: phaser.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: phaser.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: phaser.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: tempo_up.1 num_bytes: 221989786.81756297 num_examples: 1155 - name: tempo_up.2 num_bytes: 185065496.68141592 num_examples: 1155 - name: tempo_up.3 num_bytes: 158690987.55275697 num_examples: 1155 - name: tempo_down.1 num_bytes: 316938020.3097345 num_examples: 1155 - name: tempo_down.2 num_bytes: 369686999.254595 num_examples: 1155 - name: tempo_down.3 num_bytes: 443535631.41933286 num_examples: 1155 - name: lowpass.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: lowpass.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: lowpass.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: speedup.4 num_bytes: 138910125.75561607 num_examples: 1155 - name: slowdown.4 num_bytes: 554308545.8577263 num_examples: 1155 - name: pitch_up.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: pitch_down.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: rir.4 num_bytes: 345514943.8223281 num_examples: 1155 - name: resample.4 num_bytes: 277376474.4077604 num_examples: 1155 - name: gain.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: echo.4 num_bytes: 314336247.9680054 num_examples: 1155 - name: phaser.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: tempo_up.4 num_bytes: 138910125.75561607 num_examples: 1155 - name: tempo_down.4 num_bytes: 554308545.8577263 num_examples: 1155 - name: lowpass.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: highpass.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: music.1 num_bytes: 301958728.16 num_examples: 1155 - name: music.2 num_bytes: 301958728.16 num_examples: 1155 - name: music.3 num_bytes: 301958728.16 num_examples: 1155 - name: music.4 num_bytes: 301958728.16 num_examples: 1155 - name: crosstalk.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_esc50.1 num_bytes: 277376247.9680054 num_examples: 1155 - name: env_noise_esc50.2 num_bytes: 277376247.9680054 num_examples: 1155 - name: env_noise_esc50.3 num_bytes: 277376247.9680054 num_examples: 1155 - name: gnoise.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: crosstalk.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_esc50.4 num_bytes: 277376247.9680054 num_examples: 1155 - name: crosstalk.3 num_bytes: 301958728.16 num_examples: 1155 - name: crosstalk.4 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.3 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_musan.4 num_bytes: 301958728.16 num_examples: 1155 - name: real_rir.1 num_bytes: 308750878.16 num_examples: 1155 - name: real_rir.2 num_bytes: 333286988.16 num_examples: 1155 - name: real_rir.3 num_bytes: 341205738.16 num_examples: 1155 - name: real_rir.4 num_bytes: 715155314.16 num_examples: 1155 - name: env_noise.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise.3 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise.4 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.1 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.2 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.3 num_bytes: 301958728.16 num_examples: 1155 - name: env_noise_wham.4 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.1 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.2 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.3 num_bytes: 301958728.16 num_examples: 1155 - name: tremolo.4 num_bytes: 301958728.16 num_examples: 1155 - name: treble.1 num_bytes: 301958728.16 num_examples: 1155 - name: treble.2 num_bytes: 301958728.16 num_examples: 1155 - name: treble.3 num_bytes: 301958728.16 num_examples: 1155 - name: treble.4 num_bytes: 301958728.16 num_examples: 1155 - name: bass.1 num_bytes: 301958728.16 num_examples: 1155 - name: bass.2 num_bytes: 301958728.16 num_examples: 1155 - name: bass.3 num_bytes: 301958728.16 num_examples: 1155 - name: bass.4 num_bytes: 301958728.16 num_examples: 1155 - name: chorus.1 num_bytes: 303511048.16 num_examples: 1155 - name: chorus.2 num_bytes: 304250248.16 num_examples: 1155 - name: chorus.4 num_bytes: 305728648.16 num_examples: 1155 - name: chorus.3 num_bytes: 304989448.16 num_examples: 1155 download_size: 58723208514 dataset_size: 30342709961.007984 configs: - config_name: accented_cv data_files: - split: test path: accented_cv/test-* - split: test.clean path: accented_cv/test.clean-* - config_name: accented_cv_es data_files: - split: test path: accented_cv_es/test-* - config_name: accented_cv_fr data_files: - split: test path: accented_cv_fr/test-* - config_name: chime data_files: - split: farfield path: chime/farfield-* - split: nearfield path: chime/nearfield-* - config_name: in-the-wild data_files: - split: farfield path: in-the-wild/farfield-* - split: nearfield path: in-the-wild/nearfield-* - config_name: in-the-wild-AMI data_files: - split: nearfield path: in-the-wild-AMI/nearfield-* - split: farfield path: in-the-wild-AMI/farfield-* - config_name: in-the-wild-ami data_files: - split: nearfield path: in-the-wild-ami/nearfield-* - split: farfield path: in-the-wild-ami/farfield-* - config_name: librispeech_asr-test.clean data_files: - split: None.0 path: librispeech_asr-test.clean/None.0-* - split: gnoise.1 path: librispeech_asr-test.clean/gnoise.1-* - split: gnoise.2 path: librispeech_asr-test.clean/gnoise.2-* - split: gnoise.3 path: librispeech_asr-test.clean/gnoise.3-* - split: gnoise.4 path: librispeech_asr-test.clean/gnoise.4-* - split: env_noise.1 path: librispeech_asr-test.clean/env_noise.1-* - split: env_noise.2 path: librispeech_asr-test.clean/env_noise.2-* - split: env_noise.3 path: librispeech_asr-test.clean/env_noise.3-* - split: env_noise.4 path: librispeech_asr-test.clean/env_noise.4-* - split: rir.1 path: librispeech_asr-test.clean/rir.1-* - split: rir.2 path: librispeech_asr-test.clean/rir.2-* - split: rir.3 path: librispeech_asr-test.clean/rir.3-* - split: rir.4 path: librispeech_asr-test.clean/rir.4-* - split: speedup.1 path: librispeech_asr-test.clean/speedup.1-* - split: speedup.2 path: librispeech_asr-test.clean/speedup.2-* - split: speedup.3 path: librispeech_asr-test.clean/speedup.3-* - split: speedup.4 path: librispeech_asr-test.clean/speedup.4-* - split: slowdown.1 path: librispeech_asr-test.clean/slowdown.1-* - split: slowdown.2 path: librispeech_asr-test.clean/slowdown.2-* - split: slowdown.3 path: librispeech_asr-test.clean/slowdown.3-* - split: slowdown.4 path: librispeech_asr-test.clean/slowdown.4-* - split: pitch_up.3 path: librispeech_asr-test.clean/pitch_up.3-* - split: pitch_up.4 path: librispeech_asr-test.clean/pitch_up.4-* - split: pitch_down.1 path: librispeech_asr-test.clean/pitch_down.1-* - split: pitch_down.2 path: librispeech_asr-test.clean/pitch_down.2-* - split: pitch_down.3 path: librispeech_asr-test.clean/pitch_down.3-* - split: pitch_down.4 path: librispeech_asr-test.clean/pitch_down.4-* - split: pitch_up.1 path: librispeech_asr-test.clean/pitch_up.1-* - split: pitch_up.2 path: librispeech_asr-test.clean/pitch_up.2-* - split: resample.1 path: librispeech_asr-test.clean/resample.1-* - split: resample.2 path: librispeech_asr-test.clean/resample.2-* - split: resample.3 path: librispeech_asr-test.clean/resample.3-* - split: resample.4 path: librispeech_asr-test.clean/resample.4-* - split: env_noise_esc50.1 path: librispeech_asr-test.clean/env_noise_esc50.1-* - split: env_noise_esc50.2 path: librispeech_asr-test.clean/env_noise_esc50.2-* - split: env_noise_esc50.3 path: librispeech_asr-test.clean/env_noise_esc50.3-* - split: env_noise_esc50.4 path: librispeech_asr-test.clean/env_noise_esc50.4-* - split: voice_conversion.4 path: librispeech_asr-test.clean/voice_conversion.4-* - split: voice_conversion.3 path: librispeech_asr-test.clean/voice_conversion.3-* - split: voice_conversion.1 path: librispeech_asr-test.clean/voice_conversion.1-* - split: voice_conversion.2 path: librispeech_asr-test.clean/voice_conversion.2-* - split: gain.1 path: librispeech_asr-test.clean/gain.1-* - split: gain.2 path: librispeech_asr-test.clean/gain.2-* - split: gain.3 path: librispeech_asr-test.clean/gain.3-* - split: echo.1 path: librispeech_asr-test.clean/echo.1-* - split: echo.2 path: librispeech_asr-test.clean/echo.2-* - split: echo.3 path: librispeech_asr-test.clean/echo.3-* - split: echo.4 path: librispeech_asr-test.clean/echo.4-* - split: phaser.1 path: librispeech_asr-test.clean/phaser.1-* - split: phaser.2 path: librispeech_asr-test.clean/phaser.2-* - split: phaser.3 path: librispeech_asr-test.clean/phaser.3-* - split: tempo_up.1 path: librispeech_asr-test.clean/tempo_up.1-* - split: tempo_up.2 path: librispeech_asr-test.clean/tempo_up.2-* - split: tempo_up.3 path: librispeech_asr-test.clean/tempo_up.3-* - split: tempo_up.4 path: librispeech_asr-test.clean/tempo_up.4-* - split: tempo_down.1 path: librispeech_asr-test.clean/tempo_down.1-* - split: tempo_down.2 path: librispeech_asr-test.clean/tempo_down.2-* - split: tempo_down.3 path: librispeech_asr-test.clean/tempo_down.3-* - split: tempo_down.4 path: librispeech_asr-test.clean/tempo_down.4-* - split: gain.4 path: librispeech_asr-test.clean/gain.4-* - split: lowpass.1 path: librispeech_asr-test.clean/lowpass.1-* - split: lowpass.2 path: librispeech_asr-test.clean/lowpass.2-* - split: lowpass.3 path: librispeech_asr-test.clean/lowpass.3-* - split: lowpass.4 path: librispeech_asr-test.clean/lowpass.4-* - split: highpass.1 path: librispeech_asr-test.clean/highpass.1-* - split: highpass.2 path: librispeech_asr-test.clean/highpass.2-* - split: highpass.3 path: librispeech_asr-test.clean/highpass.3-* - split: highpass.4 path: librispeech_asr-test.clean/highpass.4-* - split: phaser.4 path: librispeech_asr-test.clean/phaser.4-* - split: voice_conversion_vctk.1 path: librispeech_asr-test.clean/voice_conversion_vctk.1-* - split: universal_adv.1 path: librispeech_asr-test.clean/universal_adv.1-* - split: music.1 path: librispeech_asr-test.clean/music.1-* - split: music.2 path: librispeech_asr-test.clean/music.2-* - split: music.3 path: librispeech_asr-test.clean/music.3-* - split: music.4 path: librispeech_asr-test.clean/music.4-* - split: crosstalk.1 path: librispeech_asr-test.clean/crosstalk.1-* - split: crosstalk.2 path: librispeech_asr-test.clean/crosstalk.2-* - split: crosstalk.3 path: librispeech_asr-test.clean/crosstalk.3-* - split: crosstalk.4 path: librispeech_asr-test.clean/crosstalk.4-* - split: env_noise_musan.1 path: librispeech_asr-test.clean/env_noise_musan.1-* - split: env_noise_musan.2 path: librispeech_asr-test.clean/env_noise_musan.2-* - split: env_noise_musan.3 path: librispeech_asr-test.clean/env_noise_musan.3-* - split: env_noise_musan.4 path: librispeech_asr-test.clean/env_noise_musan.4-* - split: real_rir.1 path: librispeech_asr-test.clean/real_rir.1-* - split: real_rir.2 path: librispeech_asr-test.clean/real_rir.2-* - split: real_rir.3 path: librispeech_asr-test.clean/real_rir.3-* - split: real_rir.4 path: librispeech_asr-test.clean/real_rir.4-* - split: env_noise_wham.1 path: librispeech_asr-test.clean/env_noise_wham.1-* - split: env_noise_wham.2 path: librispeech_asr-test.clean/env_noise_wham.2-* - split: env_noise_wham.3 path: librispeech_asr-test.clean/env_noise_wham.3-* - split: env_noise_wham.4 path: librispeech_asr-test.clean/env_noise_wham.4-* - split: tremolo.1 path: librispeech_asr-test.clean/tremolo.1-* - split: tremolo.2 path: librispeech_asr-test.clean/tremolo.2-* - split: tremolo.3 path: librispeech_asr-test.clean/tremolo.3-* - split: tremolo.4 path: librispeech_asr-test.clean/tremolo.4-* - split: treble.1 path: librispeech_asr-test.clean/treble.1-* - split: treble.2 path: librispeech_asr-test.clean/treble.2-* - split: treble.3 path: librispeech_asr-test.clean/treble.3-* - split: treble.4 path: librispeech_asr-test.clean/treble.4-* - split: bass.1 path: librispeech_asr-test.clean/bass.1-* - split: bass.2 path: librispeech_asr-test.clean/bass.2-* - split: bass.3 path: librispeech_asr-test.clean/bass.3-* - split: bass.4 path: librispeech_asr-test.clean/bass.4-* - split: chorus.1 path: librispeech_asr-test.clean/chorus.1-* - split: chorus.2 path: librispeech_asr-test.clean/chorus.2-* - split: chorus.3 path: librispeech_asr-test.clean/chorus.3-* - split: chorus.4 path: librispeech_asr-test.clean/chorus.4-* - config_name: librispeech_asr-test.clean_pertEval_500_30 data_files: - split: gnoise.1 path: librispeech_asr-test.clean_pertEval_500_30/gnoise.1-* - split: env_noise_esc50.1 path: librispeech_asr-test.clean_pertEval_500_30/env_noise_esc50.1-* - config_name: multilingual_librispeech-french_test data_files: - split: gnoise.1 path: multilingual_librispeech-french_test/gnoise.1-* - split: gnoise.2 path: multilingual_librispeech-french_test/gnoise.2-* - split: gnoise.3 path: multilingual_librispeech-french_test/gnoise.3-* - split: speedup.1 path: multilingual_librispeech-french_test/speedup.1-* - split: speedup.2 path: multilingual_librispeech-french_test/speedup.2-* - split: speedup.3 path: multilingual_librispeech-french_test/speedup.3-* - split: slowdown.1 path: multilingual_librispeech-french_test/slowdown.1-* - split: slowdown.2 path: multilingual_librispeech-french_test/slowdown.2-* - split: slowdown.3 path: multilingual_librispeech-french_test/slowdown.3-* - split: pitch_up.1 path: multilingual_librispeech-french_test/pitch_up.1-* - split: pitch_up.2 path: multilingual_librispeech-french_test/pitch_up.2-* - split: pitch_up.3 path: multilingual_librispeech-french_test/pitch_up.3-* - split: pitch_down.1 path: multilingual_librispeech-french_test/pitch_down.1-* - split: pitch_down.2 path: multilingual_librispeech-french_test/pitch_down.2-* - split: env_noise.1 path: multilingual_librispeech-french_test/env_noise.1-* - split: env_noise.3 path: multilingual_librispeech-french_test/env_noise.3-* - split: env_noise_wham.1 path: multilingual_librispeech-french_test/env_noise_wham.1-* - split: env_noise_wham.2 path: multilingual_librispeech-french_test/env_noise_wham.2-* - split: real_rir.3 path: multilingual_librispeech-french_test/real_rir.3-* - split: env_noise.2 path: multilingual_librispeech-french_test/env_noise.2-* - split: env_noise_esc50.1 path: multilingual_librispeech-french_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: multilingual_librispeech-french_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: multilingual_librispeech-french_test/env_noise_esc50.3-* - split: env_noise_musan.1 path: multilingual_librispeech-french_test/env_noise_musan.1-* - split: env_noise_musan.2 path: multilingual_librispeech-french_test/env_noise_musan.2-* - split: env_noise_musan.3 path: multilingual_librispeech-french_test/env_noise_musan.3-* - split: env_noise_wham.3 path: multilingual_librispeech-french_test/env_noise_wham.3-* - split: pitch_down.3 path: multilingual_librispeech-french_test/pitch_down.3-* - split: rir.1 path: multilingual_librispeech-french_test/rir.1-* - split: rir.2 path: multilingual_librispeech-french_test/rir.2-* - split: rir.3 path: multilingual_librispeech-french_test/rir.3-* - split: real_rir.1 path: multilingual_librispeech-french_test/real_rir.1-* - split: real_rir.2 path: multilingual_librispeech-french_test/real_rir.2-* - split: resample.1 path: multilingual_librispeech-french_test/resample.1-* - split: resample.2 path: multilingual_librispeech-french_test/resample.2-* - split: resample.3 path: multilingual_librispeech-french_test/resample.3-* - split: gain.1 path: multilingual_librispeech-french_test/gain.1-* - split: gain.2 path: multilingual_librispeech-french_test/gain.2-* - split: gain.3 path: multilingual_librispeech-french_test/gain.3-* - split: echo.1 path: multilingual_librispeech-french_test/echo.1-* - split: echo.2 path: multilingual_librispeech-french_test/echo.2-* - split: echo.3 path: multilingual_librispeech-french_test/echo.3-* - split: phaser.1 path: multilingual_librispeech-french_test/phaser.1-* - split: phaser.2 path: multilingual_librispeech-french_test/phaser.2-* - split: phaser.3 path: multilingual_librispeech-french_test/phaser.3-* - split: tempo_up.1 path: multilingual_librispeech-french_test/tempo_up.1-* - split: tempo_up.2 path: multilingual_librispeech-french_test/tempo_up.2-* - split: tempo_up.3 path: multilingual_librispeech-french_test/tempo_up.3-* - split: tempo_down.1 path: multilingual_librispeech-french_test/tempo_down.1-* - split: tempo_down.2 path: multilingual_librispeech-french_test/tempo_down.2-* - split: tempo_down.3 path: multilingual_librispeech-french_test/tempo_down.3-* - split: lowpass.1 path: multilingual_librispeech-french_test/lowpass.1-* - split: lowpass.2 path: multilingual_librispeech-french_test/lowpass.2-* - split: lowpass.3 path: multilingual_librispeech-french_test/lowpass.3-* - split: highpass.1 path: multilingual_librispeech-french_test/highpass.1-* - split: highpass.2 path: multilingual_librispeech-french_test/highpass.2-* - split: highpass.3 path: multilingual_librispeech-french_test/highpass.3-* - split: music.1 path: multilingual_librispeech-french_test/music.1-* - split: music.2 path: multilingual_librispeech-french_test/music.2-* - split: music.3 path: multilingual_librispeech-french_test/music.3-* - split: crosstalk.1 path: multilingual_librispeech-french_test/crosstalk.1-* - split: crosstalk.2 path: multilingual_librispeech-french_test/crosstalk.2-* - split: crosstalk.3 path: multilingual_librispeech-french_test/crosstalk.3-* - split: tremolo.1 path: multilingual_librispeech-french_test/tremolo.1-* - split: tremolo.2 path: multilingual_librispeech-french_test/tremolo.2-* - split: tremolo.3 path: multilingual_librispeech-french_test/tremolo.3-* - split: treble.1 path: multilingual_librispeech-french_test/treble.1-* - split: treble.2 path: multilingual_librispeech-french_test/treble.2-* - split: treble.3 path: multilingual_librispeech-french_test/treble.3-* - split: bass.1 path: multilingual_librispeech-french_test/bass.1-* - split: bass.2 path: multilingual_librispeech-french_test/bass.2-* - split: bass.3 path: multilingual_librispeech-french_test/bass.3-* - split: chorus.1 path: multilingual_librispeech-french_test/chorus.1-* - split: chorus.2 path: multilingual_librispeech-french_test/chorus.2-* - split: chorus.3 path: multilingual_librispeech-french_test/chorus.3-* - split: gnoise.4 path: multilingual_librispeech-french_test/gnoise.4-* - split: env_noise.4 path: multilingual_librispeech-french_test/env_noise.4-* - split: env_noise_esc50.4 path: multilingual_librispeech-french_test/env_noise_esc50.4-* - split: env_noise_musan.4 path: multilingual_librispeech-french_test/env_noise_musan.4-* - split: env_noise_wham.4 path: multilingual_librispeech-french_test/env_noise_wham.4-* - split: speedup.4 path: multilingual_librispeech-french_test/speedup.4-* - split: slowdown.4 path: multilingual_librispeech-french_test/slowdown.4-* - split: pitch_up.4 path: multilingual_librispeech-french_test/pitch_up.4-* - split: pitch_down.4 path: multilingual_librispeech-french_test/pitch_down.4-* - split: rir.4 path: multilingual_librispeech-french_test/rir.4-* - split: real_rir.4 path: multilingual_librispeech-french_test/real_rir.4-* - split: resample.4 path: multilingual_librispeech-french_test/resample.4-* - split: gain.4 path: multilingual_librispeech-french_test/gain.4-* - split: echo.4 path: multilingual_librispeech-french_test/echo.4-* - split: phaser.4 path: multilingual_librispeech-french_test/phaser.4-* - split: tempo_up.4 path: multilingual_librispeech-french_test/tempo_up.4-* - split: tempo_down.4 path: multilingual_librispeech-french_test/tempo_down.4-* - split: lowpass.4 path: multilingual_librispeech-french_test/lowpass.4-* - split: highpass.4 path: multilingual_librispeech-french_test/highpass.4-* - split: music.4 path: multilingual_librispeech-french_test/music.4-* - split: crosstalk.4 path: multilingual_librispeech-french_test/crosstalk.4-* - split: tremolo.4 path: multilingual_librispeech-french_test/tremolo.4-* - split: treble.4 path: multilingual_librispeech-french_test/treble.4-* - split: bass.4 path: multilingual_librispeech-french_test/bass.4-* - split: chorus.4 path: multilingual_librispeech-french_test/chorus.4-* - config_name: multilingual_librispeech-german_test data_files: - split: gnoise.1 path: multilingual_librispeech-german_test/gnoise.1-* - split: gnoise.2 path: multilingual_librispeech-german_test/gnoise.2-* - split: gnoise.3 path: multilingual_librispeech-german_test/gnoise.3-* - split: env_noise.1 path: multilingual_librispeech-german_test/env_noise.1-* - split: env_noise.2 path: multilingual_librispeech-german_test/env_noise.2-* - split: env_noise.3 path: multilingual_librispeech-german_test/env_noise.3-* - split: env_noise_esc50.1 path: multilingual_librispeech-german_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: multilingual_librispeech-german_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: multilingual_librispeech-german_test/env_noise_esc50.3-* - split: env_noise_musan.1 path: multilingual_librispeech-german_test/env_noise_musan.1-* - split: env_noise_musan.2 path: multilingual_librispeech-german_test/env_noise_musan.2-* - split: env_noise_musan.3 path: multilingual_librispeech-german_test/env_noise_musan.3-* - split: env_noise_wham.1 path: multilingual_librispeech-german_test/env_noise_wham.1-* - split: env_noise_wham.2 path: multilingual_librispeech-german_test/env_noise_wham.2-* - split: env_noise_wham.3 path: multilingual_librispeech-german_test/env_noise_wham.3-* - split: speedup.1 path: multilingual_librispeech-german_test/speedup.1-* - split: speedup.2 path: multilingual_librispeech-german_test/speedup.2-* - split: speedup.3 path: multilingual_librispeech-german_test/speedup.3-* - split: slowdown.1 path: multilingual_librispeech-german_test/slowdown.1-* - split: slowdown.2 path: multilingual_librispeech-german_test/slowdown.2-* - split: slowdown.3 path: multilingual_librispeech-german_test/slowdown.3-* - split: pitch_up.1 path: multilingual_librispeech-german_test/pitch_up.1-* - split: pitch_up.2 path: multilingual_librispeech-german_test/pitch_up.2-* - split: pitch_up.3 path: multilingual_librispeech-german_test/pitch_up.3-* - split: pitch_down.1 path: multilingual_librispeech-german_test/pitch_down.1-* - split: pitch_down.2 path: multilingual_librispeech-german_test/pitch_down.2-* - split: pitch_down.3 path: multilingual_librispeech-german_test/pitch_down.3-* - split: rir.1 path: multilingual_librispeech-german_test/rir.1-* - split: rir.2 path: multilingual_librispeech-german_test/rir.2-* - split: rir.3 path: multilingual_librispeech-german_test/rir.3-* - split: real_rir.1 path: multilingual_librispeech-german_test/real_rir.1-* - split: real_rir.2 path: multilingual_librispeech-german_test/real_rir.2-* - split: real_rir.3 path: multilingual_librispeech-german_test/real_rir.3-* - split: resample.1 path: multilingual_librispeech-german_test/resample.1-* - split: resample.2 path: multilingual_librispeech-german_test/resample.2-* - split: resample.3 path: multilingual_librispeech-german_test/resample.3-* - split: gain.1 path: multilingual_librispeech-german_test/gain.1-* - split: gain.2 path: multilingual_librispeech-german_test/gain.2-* - split: gain.3 path: multilingual_librispeech-german_test/gain.3-* - split: echo.1 path: multilingual_librispeech-german_test/echo.1-* - split: echo.2 path: multilingual_librispeech-german_test/echo.2-* - split: echo.3 path: multilingual_librispeech-german_test/echo.3-* - split: phaser.1 path: multilingual_librispeech-german_test/phaser.1-* - split: phaser.2 path: multilingual_librispeech-german_test/phaser.2-* - split: phaser.3 path: multilingual_librispeech-german_test/phaser.3-* - split: tempo_up.1 path: multilingual_librispeech-german_test/tempo_up.1-* - split: tempo_up.2 path: multilingual_librispeech-german_test/tempo_up.2-* - split: tempo_up.3 path: multilingual_librispeech-german_test/tempo_up.3-* - split: tempo_down.1 path: multilingual_librispeech-german_test/tempo_down.1-* - split: tempo_down.2 path: multilingual_librispeech-german_test/tempo_down.2-* - split: tempo_down.3 path: multilingual_librispeech-german_test/tempo_down.3-* - split: lowpass.1 path: multilingual_librispeech-german_test/lowpass.1-* - split: lowpass.2 path: multilingual_librispeech-german_test/lowpass.2-* - split: lowpass.3 path: multilingual_librispeech-german_test/lowpass.3-* - split: highpass.1 path: multilingual_librispeech-german_test/highpass.1-* - split: highpass.2 path: multilingual_librispeech-german_test/highpass.2-* - split: highpass.3 path: multilingual_librispeech-german_test/highpass.3-* - split: music.1 path: multilingual_librispeech-german_test/music.1-* - split: music.2 path: multilingual_librispeech-german_test/music.2-* - split: music.3 path: multilingual_librispeech-german_test/music.3-* - split: crosstalk.1 path: multilingual_librispeech-german_test/crosstalk.1-* - split: crosstalk.2 path: multilingual_librispeech-german_test/crosstalk.2-* - split: crosstalk.3 path: multilingual_librispeech-german_test/crosstalk.3-* - split: tremolo.1 path: multilingual_librispeech-german_test/tremolo.1-* - split: tremolo.2 path: multilingual_librispeech-german_test/tremolo.2-* - split: tremolo.3 path: multilingual_librispeech-german_test/tremolo.3-* - split: treble.1 path: multilingual_librispeech-german_test/treble.1-* - split: treble.2 path: multilingual_librispeech-german_test/treble.2-* - split: treble.3 path: multilingual_librispeech-german_test/treble.3-* - split: bass.1 path: multilingual_librispeech-german_test/bass.1-* - split: bass.2 path: multilingual_librispeech-german_test/bass.2-* - split: bass.3 path: multilingual_librispeech-german_test/bass.3-* - split: chorus.1 path: multilingual_librispeech-german_test/chorus.1-* - split: chorus.2 path: multilingual_librispeech-german_test/chorus.2-* - split: chorus.3 path: multilingual_librispeech-german_test/chorus.3-* - split: gnoise.4 path: multilingual_librispeech-german_test/gnoise.4-* - split: env_noise.4 path: multilingual_librispeech-german_test/env_noise.4-* - split: env_noise_esc50.4 path: multilingual_librispeech-german_test/env_noise_esc50.4-* - split: env_noise_musan.4 path: multilingual_librispeech-german_test/env_noise_musan.4-* - split: env_noise_wham.4 path: multilingual_librispeech-german_test/env_noise_wham.4-* - split: speedup.4 path: multilingual_librispeech-german_test/speedup.4-* - split: slowdown.4 path: multilingual_librispeech-german_test/slowdown.4-* - split: pitch_up.4 path: multilingual_librispeech-german_test/pitch_up.4-* - split: pitch_down.4 path: multilingual_librispeech-german_test/pitch_down.4-* - split: rir.4 path: multilingual_librispeech-german_test/rir.4-* - split: real_rir.4 path: multilingual_librispeech-german_test/real_rir.4-* - split: resample.4 path: multilingual_librispeech-german_test/resample.4-* - split: gain.4 path: multilingual_librispeech-german_test/gain.4-* - split: echo.4 path: multilingual_librispeech-german_test/echo.4-* - split: phaser.4 path: multilingual_librispeech-german_test/phaser.4-* - split: tempo_up.4 path: multilingual_librispeech-german_test/tempo_up.4-* - split: tempo_down.4 path: multilingual_librispeech-german_test/tempo_down.4-* - split: lowpass.4 path: multilingual_librispeech-german_test/lowpass.4-* - split: highpass.4 path: multilingual_librispeech-german_test/highpass.4-* - split: music.4 path: multilingual_librispeech-german_test/music.4-* - split: crosstalk.4 path: multilingual_librispeech-german_test/crosstalk.4-* - split: tremolo.4 path: multilingual_librispeech-german_test/tremolo.4-* - split: treble.4 path: multilingual_librispeech-german_test/treble.4-* - split: bass.4 path: multilingual_librispeech-german_test/bass.4-* - split: chorus.4 path: multilingual_librispeech-german_test/chorus.4-* - config_name: multilingual_librispeech-spanish_test data_files: - split: None.0 path: multilingual_librispeech-spanish_test/None.0-* - split: gnoise.1 path: multilingual_librispeech-spanish_test/gnoise.1-* - split: gnoise.2 path: multilingual_librispeech-spanish_test/gnoise.2-* - split: gnoise.3 path: multilingual_librispeech-spanish_test/gnoise.3-* - split: gnoise.4 path: multilingual_librispeech-spanish_test/gnoise.4-* - split: env_noise.1 path: multilingual_librispeech-spanish_test/env_noise.1-* - split: env_noise.2 path: multilingual_librispeech-spanish_test/env_noise.2-* - split: env_noise.3 path: multilingual_librispeech-spanish_test/env_noise.3-* - split: env_noise.4 path: multilingual_librispeech-spanish_test/env_noise.4-* - split: rir.1 path: multilingual_librispeech-spanish_test/rir.1-* - split: rir.2 path: multilingual_librispeech-spanish_test/rir.2-* - split: rir.3 path: multilingual_librispeech-spanish_test/rir.3-* - split: rir.4 path: multilingual_librispeech-spanish_test/rir.4-* - split: speedup.1 path: multilingual_librispeech-spanish_test/speedup.1-* - split: speedup.2 path: multilingual_librispeech-spanish_test/speedup.2-* - split: speedup.3 path: multilingual_librispeech-spanish_test/speedup.3-* - split: speedup.4 path: multilingual_librispeech-spanish_test/speedup.4-* - split: slowdown.1 path: multilingual_librispeech-spanish_test/slowdown.1-* - split: slowdown.2 path: multilingual_librispeech-spanish_test/slowdown.2-* - split: slowdown.3 path: multilingual_librispeech-spanish_test/slowdown.3-* - split: slowdown.4 path: multilingual_librispeech-spanish_test/slowdown.4-* - split: pitch_up.3 path: multilingual_librispeech-spanish_test/pitch_up.3-* - split: pitch_up.4 path: multilingual_librispeech-spanish_test/pitch_up.4-* - split: pitch_down.1 path: multilingual_librispeech-spanish_test/pitch_down.1-* - split: pitch_down.2 path: multilingual_librispeech-spanish_test/pitch_down.2-* - split: pitch_down.3 path: multilingual_librispeech-spanish_test/pitch_down.3-* - split: pitch_down.4 path: multilingual_librispeech-spanish_test/pitch_down.4-* - split: pitch_up.1 path: multilingual_librispeech-spanish_test/pitch_up.1-* - split: pitch_up.2 path: multilingual_librispeech-spanish_test/pitch_up.2-* - split: resample.2 path: multilingual_librispeech-spanish_test/resample.2-* - split: resample.3 path: multilingual_librispeech-spanish_test/resample.3-* - split: resample.4 path: multilingual_librispeech-spanish_test/resample.4-* - split: env_noise_esc50.1 path: multilingual_librispeech-spanish_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: multilingual_librispeech-spanish_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: multilingual_librispeech-spanish_test/env_noise_esc50.3-* - split: env_noise_esc50.4 path: multilingual_librispeech-spanish_test/env_noise_esc50.4-* - split: resample.1 path: multilingual_librispeech-spanish_test/resample.1-* - split: gain.1 path: multilingual_librispeech-spanish_test/gain.1-* - split: gain.2 path: multilingual_librispeech-spanish_test/gain.2-* - split: gain.3 path: multilingual_librispeech-spanish_test/gain.3-* - split: gain.4 path: multilingual_librispeech-spanish_test/gain.4-* - split: echo.4 path: multilingual_librispeech-spanish_test/echo.4-* - split: echo.1 path: multilingual_librispeech-spanish_test/echo.1-* - split: echo.2 path: multilingual_librispeech-spanish_test/echo.2-* - split: echo.3 path: multilingual_librispeech-spanish_test/echo.3-* - split: tempo_up.1 path: multilingual_librispeech-spanish_test/tempo_up.1-* - split: tempo_up.2 path: multilingual_librispeech-spanish_test/tempo_up.2-* - split: tempo_up.3 path: multilingual_librispeech-spanish_test/tempo_up.3-* - split: tempo_up.4 path: multilingual_librispeech-spanish_test/tempo_up.4-* - split: tempo_down.1 path: multilingual_librispeech-spanish_test/tempo_down.1-* - split: tempo_down.2 path: multilingual_librispeech-spanish_test/tempo_down.2-* - split: tempo_down.3 path: multilingual_librispeech-spanish_test/tempo_down.3-* - split: tempo_down.4 path: multilingual_librispeech-spanish_test/tempo_down.4-* - split: lowpass.1 path: multilingual_librispeech-spanish_test/lowpass.1-* - split: lowpass.2 path: multilingual_librispeech-spanish_test/lowpass.2-* - split: lowpass.3 path: multilingual_librispeech-spanish_test/lowpass.3-* - split: lowpass.4 path: multilingual_librispeech-spanish_test/lowpass.4-* - split: highpass.1 path: multilingual_librispeech-spanish_test/highpass.1-* - split: highpass.2 path: multilingual_librispeech-spanish_test/highpass.2-* - split: highpass.3 path: multilingual_librispeech-spanish_test/highpass.3-* - split: highpass.4 path: multilingual_librispeech-spanish_test/highpass.4-* - split: phaser.1 path: multilingual_librispeech-spanish_test/phaser.1-* - split: phaser.2 path: multilingual_librispeech-spanish_test/phaser.2-* - split: phaser.3 path: multilingual_librispeech-spanish_test/phaser.3-* - split: phaser.4 path: multilingual_librispeech-spanish_test/phaser.4-* - split: env_noise_musan.1 path: multilingual_librispeech-spanish_test/env_noise_musan.1-* - split: env_noise_musan.2 path: multilingual_librispeech-spanish_test/env_noise_musan.2-* - split: env_noise_musan.3 path: multilingual_librispeech-spanish_test/env_noise_musan.3-* - split: env_noise_musan.4 path: multilingual_librispeech-spanish_test/env_noise_musan.4-* - split: music.1 path: multilingual_librispeech-spanish_test/music.1-* - split: music.2 path: multilingual_librispeech-spanish_test/music.2-* - split: music.3 path: multilingual_librispeech-spanish_test/music.3-* - split: music.4 path: multilingual_librispeech-spanish_test/music.4-* - split: crosstalk.1 path: multilingual_librispeech-spanish_test/crosstalk.1-* - split: crosstalk.2 path: multilingual_librispeech-spanish_test/crosstalk.2-* - split: crosstalk.3 path: multilingual_librispeech-spanish_test/crosstalk.3-* - split: crosstalk.4 path: multilingual_librispeech-spanish_test/crosstalk.4-* - split: env_noise_wham.1 path: multilingual_librispeech-spanish_test/env_noise_wham.1-* - split: env_noise_wham.2 path: multilingual_librispeech-spanish_test/env_noise_wham.2-* - split: env_noise_wham.3 path: multilingual_librispeech-spanish_test/env_noise_wham.3-* - split: env_noise_wham.4 path: multilingual_librispeech-spanish_test/env_noise_wham.4-* - split: tremolo.1 path: multilingual_librispeech-spanish_test/tremolo.1-* - split: tremolo.2 path: multilingual_librispeech-spanish_test/tremolo.2-* - split: tremolo.4 path: multilingual_librispeech-spanish_test/tremolo.4-* - split: treble.1 path: multilingual_librispeech-spanish_test/treble.1-* - split: treble.2 path: multilingual_librispeech-spanish_test/treble.2-* - split: treble.3 path: multilingual_librispeech-spanish_test/treble.3-* - split: treble.4 path: multilingual_librispeech-spanish_test/treble.4-* - split: bass.1 path: multilingual_librispeech-spanish_test/bass.1-* - split: bass.2 path: multilingual_librispeech-spanish_test/bass.2-* - split: bass.3 path: multilingual_librispeech-spanish_test/bass.3-* - split: bass.4 path: multilingual_librispeech-spanish_test/bass.4-* - split: chorus.1 path: multilingual_librispeech-spanish_test/chorus.1-* - split: chorus.2 path: multilingual_librispeech-spanish_test/chorus.2-* - split: chorus.3 path: multilingual_librispeech-spanish_test/chorus.3-* - split: chorus.4 path: multilingual_librispeech-spanish_test/chorus.4-* - split: tremolo.3 path: multilingual_librispeech-spanish_test/tremolo.3-* - split: voice_conversion_bark.1 path: multilingual_librispeech-spanish_test/voice_conversion_bark.1-* - config_name: multilingual_librispeech-spanish_test_pertEval_500_30 data_files: - split: gnoise.1 path: multilingual_librispeech-spanish_test_pertEval_500_30/gnoise.1-* - split: env_noise_esc50.1 path: multilingual_librispeech-spanish_test_pertEval_500_30/env_noise_esc50.1-* - config_name: tedlium-release3_test data_files: - split: gnoise.1 path: tedlium-release3_test/gnoise.1-* - split: gnoise.2 path: tedlium-release3_test/gnoise.2-* - split: gnoise.3 path: tedlium-release3_test/gnoise.3-* - split: env_noise_esc50.1 path: tedlium-release3_test/env_noise_esc50.1-* - split: env_noise_esc50.2 path: tedlium-release3_test/env_noise_esc50.2-* - split: env_noise_esc50.3 path: tedlium-release3_test/env_noise_esc50.3-* - split: speedup.1 path: tedlium-release3_test/speedup.1-* - split: speedup.2 path: tedlium-release3_test/speedup.2-* - split: speedup.3 path: tedlium-release3_test/speedup.3-* - split: slowdown.1 path: tedlium-release3_test/slowdown.1-* - split: slowdown.2 path: tedlium-release3_test/slowdown.2-* - split: slowdown.3 path: tedlium-release3_test/slowdown.3-* - split: pitch_up.1 path: tedlium-release3_test/pitch_up.1-* - split: pitch_up.2 path: tedlium-release3_test/pitch_up.2-* - split: pitch_up.3 path: tedlium-release3_test/pitch_up.3-* - split: pitch_down.1 path: tedlium-release3_test/pitch_down.1-* - split: pitch_down.2 path: tedlium-release3_test/pitch_down.2-* - split: pitch_down.3 path: tedlium-release3_test/pitch_down.3-* - split: rir.1 path: tedlium-release3_test/rir.1-* - split: rir.2 path: tedlium-release3_test/rir.2-* - split: rir.3 path: tedlium-release3_test/rir.3-* - split: voice_conversion_vctk.1 path: tedlium-release3_test/voice_conversion_vctk.1-* - split: resample.1 path: tedlium-release3_test/resample.1-* - split: resample.2 path: tedlium-release3_test/resample.2-* - split: resample.3 path: tedlium-release3_test/resample.3-* - split: gain.1 path: tedlium-release3_test/gain.1-* - split: gain.2 path: tedlium-release3_test/gain.2-* - split: gain.3 path: tedlium-release3_test/gain.3-* - split: echo.1 path: tedlium-release3_test/echo.1-* - split: echo.2 path: tedlium-release3_test/echo.2-* - split: echo.3 path: tedlium-release3_test/echo.3-* - split: phaser.1 path: tedlium-release3_test/phaser.1-* - split: phaser.2 path: tedlium-release3_test/phaser.2-* - split: phaser.3 path: tedlium-release3_test/phaser.3-* - split: tempo_up.1 path: tedlium-release3_test/tempo_up.1-* - split: tempo_up.2 path: tedlium-release3_test/tempo_up.2-* - split: tempo_up.3 path: tedlium-release3_test/tempo_up.3-* - split: tempo_down.1 path: tedlium-release3_test/tempo_down.1-* - split: tempo_down.2 path: tedlium-release3_test/tempo_down.2-* - split: tempo_down.3 path: tedlium-release3_test/tempo_down.3-* - split: lowpass.1 path: tedlium-release3_test/lowpass.1-* - split: lowpass.2 path: tedlium-release3_test/lowpass.2-* - split: lowpass.3 path: tedlium-release3_test/lowpass.3-* - split: highpass.1 path: tedlium-release3_test/highpass.1-* - split: highpass.2 path: tedlium-release3_test/highpass.2-* - split: highpass.3 path: tedlium-release3_test/highpass.3-* - split: gnoise.4 path: tedlium-release3_test/gnoise.4-* - split: env_noise_esc50.4 path: tedlium-release3_test/env_noise_esc50.4-* - split: speedup.4 path: tedlium-release3_test/speedup.4-* - split: slowdown.4 path: tedlium-release3_test/slowdown.4-* - split: pitch_up.4 path: tedlium-release3_test/pitch_up.4-* - split: pitch_down.4 path: tedlium-release3_test/pitch_down.4-* - split: rir.4 path: tedlium-release3_test/rir.4-* - split: resample.4 path: tedlium-release3_test/resample.4-* - split: gain.4 path: tedlium-release3_test/gain.4-* - split: echo.4 path: tedlium-release3_test/echo.4-* - split: phaser.4 path: tedlium-release3_test/phaser.4-* - split: tempo_up.4 path: tedlium-release3_test/tempo_up.4-* - split: tempo_down.4 path: tedlium-release3_test/tempo_down.4-* - split: lowpass.4 path: tedlium-release3_test/lowpass.4-* - split: highpass.4 path: tedlium-release3_test/highpass.4-* - split: None.0 path: tedlium-release3_test/None.0-* - split: music.1 path: tedlium-release3_test/music.1-* - split: music.2 path: tedlium-release3_test/music.2-* - split: music.3 path: tedlium-release3_test/music.3-* - split: music.4 path: tedlium-release3_test/music.4-* - split: crosstalk.1 path: tedlium-release3_test/crosstalk.1-* - split: crosstalk.2 path: tedlium-release3_test/crosstalk.2-* - split: crosstalk.3 path: tedlium-release3_test/crosstalk.3-* - split: crosstalk.4 path: tedlium-release3_test/crosstalk.4-* - split: env_noise_musan.1 path: tedlium-release3_test/env_noise_musan.1-* - split: env_noise_musan.2 path: tedlium-release3_test/env_noise_musan.2-* - split: env_noise_musan.3 path: tedlium-release3_test/env_noise_musan.3-* - split: env_noise_musan.4 path: tedlium-release3_test/env_noise_musan.4-* - split: real_rir.1 path: tedlium-release3_test/real_rir.1-* - split: real_rir.2 path: tedlium-release3_test/real_rir.2-* - split: real_rir.3 path: tedlium-release3_test/real_rir.3-* - split: real_rir.4 path: tedlium-release3_test/real_rir.4-* - split: env_noise.1 path: tedlium-release3_test/env_noise.1-* - split: env_noise.2 path: tedlium-release3_test/env_noise.2-* - split: env_noise.3 path: tedlium-release3_test/env_noise.3-* - split: env_noise.4 path: tedlium-release3_test/env_noise.4-* - split: env_noise_wham.1 path: tedlium-release3_test/env_noise_wham.1-* - split: env_noise_wham.2 path: tedlium-release3_test/env_noise_wham.2-* - split: env_noise_wham.3 path: tedlium-release3_test/env_noise_wham.3-* - split: env_noise_wham.4 path: tedlium-release3_test/env_noise_wham.4-* - split: tremolo.1 path: tedlium-release3_test/tremolo.1-* - split: tremolo.2 path: tedlium-release3_test/tremolo.2-* - split: tremolo.3 path: tedlium-release3_test/tremolo.3-* - split: tremolo.4 path: tedlium-release3_test/tremolo.4-* - split: treble.1 path: tedlium-release3_test/treble.1-* - split: treble.2 path: tedlium-release3_test/treble.2-* - split: treble.3 path: tedlium-release3_test/treble.3-* - split: treble.4 path: tedlium-release3_test/treble.4-* - split: bass.1 path: tedlium-release3_test/bass.1-* - split: bass.2 path: tedlium-release3_test/bass.2-* - split: bass.3 path: tedlium-release3_test/bass.3-* - split: bass.4 path: tedlium-release3_test/bass.4-* - split: chorus.1 path: tedlium-release3_test/chorus.1-* - split: chorus.2 path: tedlium-release3_test/chorus.2-* - split: chorus.4 path: tedlium-release3_test/chorus.4-* - split: chorus.3 path: tedlium-release3_test/chorus.3-* --- # Dataset Card for "speech_robust_bench" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
EdinburghNLP/xsum
EdinburghNLP
"2023-04-05T13:45:25Z"
11,667
96
[ "task_categories:summarization", "task_ids:news-articles-summarization", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:100K<n<1M", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:1808.08745", "region:us" ]
[ "summarization" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - found language_creators: - found language: - en license: - unknown multilinguality: - monolingual pretty_name: Extreme Summarization (XSum) paperswithcode_id: xsum size_categories: - 100K<n<1M source_datasets: - original task_categories: - summarization task_ids: - news-articles-summarization train-eval-index: - config: default task: summarization task_id: summarization splits: train_split: train eval_split: test col_mapping: document: text summary: target metrics: - type: rouge name: Rouge dataset_info: features: - name: document dtype: string - name: summary dtype: string - name: id dtype: string splits: - name: train num_bytes: 479206608 num_examples: 204045 - name: validation num_bytes: 26292901 num_examples: 11332 - name: test num_bytes: 26756165 num_examples: 11334 download_size: 257302866 dataset_size: 532255674 --- # Dataset Card for "xsum" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** - **Repository:** https://github.com/EdinburghNLP/XSum - **Paper:** [Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization](https://arxiv.org/abs/1808.08745) - **Point of Contact:** [Shashi Narayan](mailto:[email protected]) - **Size of downloaded dataset files:** 257.30 MB - **Size of the generated dataset:** 532.26 MB - **Total amount of disk used:** 789.56 MB ### Dataset Summary Extreme Summarization (XSum) Dataset. There are three features: - document: Input news article. - summary: One sentence summary of the article. - id: BBC ID of the article. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 257.30 MB - **Size of the generated dataset:** 532.26 MB - **Total amount of disk used:** 789.56 MB An example of 'validation' looks as follows. ``` { "document": "some-body", "id": "29750031", "summary": "some-sentence" } ``` ### Data Fields The data fields are the same among all splits. #### default - `document`: a `string` feature. - `summary`: a `string` feature. - `id`: a `string` feature. ### Data Splits | name |train |validation|test | |-------|-----:|---------:|----:| |default|204045| 11332|11334| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @article{Narayan2018DontGM, title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization}, author={Shashi Narayan and Shay B. Cohen and Mirella Lapata}, journal={ArXiv}, year={2018}, volume={abs/1808.08745} } ``` ### Contributions Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@jbragg](https://github.com/jbragg), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
mlabonne/FineTome-100k
mlabonne
"2024-07-29T09:52:30Z"
11,653
139
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-27T18:34:47Z"
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: source dtype: string - name: score dtype: float64 splits: - name: train num_bytes: 239650960.7474458 num_examples: 100000 download_size: 116531415 dataset_size: 239650960.7474458 configs: - config_name: default data_files: - split: train path: data/train-* --- # FineTome-100k ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/75I3ffI4XnRlheOQ7kNJ3.jpeg) The FineTome dataset is a subset of [arcee-ai/The-Tome](https://huggingface.co/datasets/arcee-ai/The-Tome) (without arcee-ai/qwen2-72b-magpie-en), re-filtered using [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier). It was made for my article ["Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth"](https://huggingface.co/blog/mlabonne/sft-llama3).
lmms-lab/POPE
lmms-lab
"2024-05-23T03:29:23Z"
11,641
6
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-01-18T15:13:42Z"
--- dataset_info: - config_name: Full features: - name: id dtype: string - name: question_id dtype: string - name: question dtype: string - name: answer dtype: string - name: image_source dtype: string - name: image dtype: image - name: category dtype: string splits: - name: adversarial num_bytes: 490408158.0 num_examples: 3000 - name: popular num_bytes: 490397000.0 num_examples: 3000 - name: random num_bytes: 490394976.0 num_examples: 3000 download_size: 255022914 dataset_size: 1471200134.0 - config_name: default features: - name: id dtype: string - name: question_id dtype: string - name: question dtype: string - name: answer dtype: string - name: image_source dtype: string - name: image dtype: image - name: category dtype: string splits: - name: test num_bytes: 1471200135.0 num_examples: 9000 download_size: 255022914 dataset_size: 1471200135.0 configs: - config_name: Full data_files: - split: adversarial path: Full/adversarial-* - split: popular path: Full/popular-* - split: random path: Full/random-* - config_name: default data_files: - split: test path: data/test-* --- <p align="center" width="100%"> <img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png" width="100%" height="80%"> </p> # Large-scale Multi-modality Models Evaluation Suite > Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval` 🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab) # This Dataset This is a formatted version of [POPE](https://github.com/RUCAIBox/POPE). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models. ``` @article{li2023evaluating, title={Evaluating object hallucination in large vision-language models}, author={Li, Yifan and Du, Yifan and Zhou, Kun and Wang, Jinpeng and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2305.10355}, year={2023} } ```
microsoft/orca-agentinstruct-1M-v1
microsoft
"2024-11-01T00:14:29Z"
11,592
408
[ "task_categories:question-answering", "language:en", "license:cdla-permissive-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
"2024-10-25T23:41:54Z"
--- language: - en license: cdla-permissive-2.0 size_categories: - 1M<n<10M task_categories: - question-answering dataset_info: features: - name: messages dtype: string splits: - name: creative_content num_bytes: 288747542 num_examples: 50000 - name: text_modification num_bytes: 346421282 num_examples: 50000 - name: struct2text_flow num_bytes: 251920604 num_examples: 50000 - name: rc num_bytes: 282448904 num_examples: 50000 - name: rag num_bytes: 421188673 num_examples: 50000 - name: text_extraction num_bytes: 312246895 num_examples: 50000 - name: mcq num_bytes: 230459938 num_examples: 99986 - name: follow_up num_bytes: 881311205 num_examples: 99054 - name: analytical_reasoning num_bytes: 100724491 num_examples: 25000 - name: fermi num_bytes: 78109959 num_examples: 25000 - name: fs_cot_flow num_bytes: 109007740 num_examples: 25000 - name: code_ num_bytes: 617418962 num_examples: 100000 - name: brain_teaser num_bytes: 124523402 num_examples: 50000 - name: text_classification num_bytes: 151217275 num_examples: 50000 - name: open_domain_qa num_bytes: 616935002 num_examples: 272370 download_size: 2210440144 dataset_size: 4812681874 configs: - config_name: default data_files: - split: creative_content path: data/creative_content-* - split: text_modification path: data/text_modification-* - split: struct2text_flow path: data/struct2text_flow-* - split: rc path: data/rc-* - split: rag path: data/rag-* - split: text_extraction path: data/text_extraction-* - split: mcq path: data/mcq-* - split: follow_up path: data/follow_up-* - split: analytical_reasoning path: data/analytical_reasoning-* - split: fermi path: data/fermi-* - split: fs_cot_flow path: data/fs_cot_flow-* - split: code_ path: data/code_-* - split: brain_teaser path: data/brain_teaser-* - split: text_classification path: data/text_classification-* - split: open_domain_qa path: data/open_domain_qa-* --- ### Dataset Card This dataset is a fully synthetic set of instruction pairs where both the prompts and the responses have been synthetically generated, using the AgentInstruct framework. AgentInstruct is an extensible agentic framework for synthetic data generation. This dataset contains ~1 million instruction pairs generated by the AgentInstruct, using only raw text content publicly avialble on the Web as seeds. The data covers different capabilities, such as text editing, creative writing, coding, reading comprehension, etc. The dataset can be used for instruction tuning of any base LLM. Using the full AgentInstruct data (a superset of this dataset with ~25M instruction pairs), we post-trained Mistral-7b. When comparing the resulting model Orca-3-Mistral to Mistral-7b-Instruct (which uses the same base model), we observe significant improvements across many benchmarks. For example, 40% improvement on AGIEval, 19% improvement on MMLU, 54% improvement on GSM8K, 38% improvement on BBH and 45% improvement on AlpacaEval. Please refer to AgentInstruct: Toward Generative Teaching with Agentic Flows for further details. ### Dataset Sources **Repository:** microsoft/orca-agentinstruct-1M-v1 **Paper:** AgentInstruct: Toward Generative Teaching with Agentic Flows ### Direct Use This is a general dataset created by the AgentInstruct methodology. It contains diverse synthetic data. This could be used for research on instruction tuning and synthetic data use and generaiton. ### Out-of-Scope Use This dataset is being shared for research purposes. For training models to perform real-world tasks, we recommend further testing and validation where needed. This dataset is not intended for use in educational systems or organizations, or for use in health systems. ### Dataset Structure ### Data Instances A typical data entry in the dataset consists of a conversation i.e. sequence of question and its corresponding answer. Below is an example from the dataset: ```json { "messages": [ { "role": "system", "content": "" }, { "role": "user", "content": "Argue the importance of having a strong understanding of physics and mechanics in the design of electron beam systems for semiconductor equipment." }, { "role": "assistant", "content": "Having a strong understanding of physics and mechanics is crucial in the design of electron beam systems for semiconductor equipment. This is because electron beam systems rely heavily on the principles of physics and mechanics to function effectively and efficiently.\n\nFirstly, a strong understanding of physics is necessary to design the electron gun, which is the heart of the electron beam system. The electron gun generates and accelerates the electrons that are used to create the beam. The design of the electron gun must take into account the properties of electrons, such as their charge, mass, and velocity, as well as the principles of electromagnetism and quantum mechanics. Without a thorough understanding of these principles, it would be impossible to design an electron gun that can generate and accelerate electrons with the required energy and precision.\n\nSecondly, a strong understanding of mechanics is essential in the design of the electron beam system's optics. The optics are responsible for shaping and focusing the electron beam, which is critical for achieving high-resolution imaging and precise material processing. The design of the optics must take into account the principles of optics, such as refraction, reflection, and diffraction, as well as the mechanical properties of the components, such as their stiffness, thermal expansion, and vibration resistance. Without a thorough understanding of these principles, it would be impossible to design optics that can shape and focus the electron beam with the required precision and stability.\n\nIn conclusion, a strong understanding of physics and mechanics is essential in the design of electron beam systems for semiconductor equipment. Without this understanding, it would be impossible to design electron guns and optics that can generate and shape the electron beam with the required precision and stability. Therefore, designers of electron beam systems must have a solid foundation in physics and mechanics to ensure that their designs are effective and efficient." }, { "role": "user", "content": "Could you perhaps rephrase your entire explanation using only haiku poetry? It would certainly give your answer a more artistic touch, don't you think?" }, { "role": "assistant", "content": "Electron streams flow,\nPhysics guides their path and speed,\nSemiconduct's soul.\n\nElectron gun's heart,\nQuantum dance, charged particles,\nPrecision's fine art.\n\nOptics shape the beam,\nMechanics' firm hand guides light,\nFocused like a dream.\n\nIn the silicon dance,\nPhysics, mechanics embrace,\nAdvance our expanse.\n\nDesign's core must know,\nNature's laws to harness force,\nFor tech to grow, glow." }, { "role": "user", "content": "Just to make sure I've got it right, your haikus suggest that the electron gun and optics are like artists, requiring precision and a deep understanding of natural laws to create their masterpiece?" }, { "role": "assistant", "content": "Indeed, that's a poetic interpretation. The haikus suggest that the electron gun (the creator of the electron beam) and the optics (which shape and focus the beam) require a precise understanding of physics and mechanics, much like artists need a deep understanding of their tools and materials to create a masterpiece. The natural laws are the guidelines within which they must work to achieve the desired outcome in semiconductor equipment design." }, { "role": "user", "content": "I'd like to understand more about the 'precision's fine art' you mentioned. Can you explain how precision is achieved in the design of the electron gun and optics?" }, { "role": "assistant", "content": "Certainly! Achieving precision in the design of the electron gun and optics in electron beam systems involves several key factors:\n\n1. **Electron Gun Design:**\n - **Vacuum Environment:** The electron gun operates in a high vacuum to prevent electron scattering by air molecules, ensuring a precise and concentrated beam.\n - **Cathode Material:** The choice of cathode material affects the emission efficiency and stability of the electron beam. Materials like tungsten or lanthanum hexaboride are often used for their high melting points and low work functions.\n - **Anode Configuration:** The anode accelerates the electrons and its design, including the shape and voltage applied, determines the beam's energy and focus.\n - **Electromagnetic Lenses:** These lenses control the focus of the electron beam, and their design must account for spherical and chromatic aberrations to maintain precision.\n\n2. **Optics Design:**\n - **Electromagnetic Lenses:** Just like in the electron gun, these lenses in the optical column are used to focus and deflect the electron beam with high precision. The design and alignment of these lenses are critical for achieving the desired spot size and shape on the target.\n - **Stigmators:** These are used to correct for astigmatism in the electron beam, ensuring that the beam remains symmetrical and focused over a range of operating conditions.\n - **Apertures:** Placed at strategic points in the optical column, apertures help to shape the beam and eliminate electrons that stray from the desired path, improving resolution and reducing aberrations.\n - **Thermal Stability:** Precision in electron beam systems also depends on maintaining thermal stability to prevent drift or deformation of the optical components.\n\n3. **Control Systems:**\n - **Feedback Loops:** Precision is maintained through feedback systems that monitor the beam's characteristics and make real-time adjustments to the electron gun and optics to correct any deviations.\n - **Vibration Isolation:** The entire system must be isolated from external vibrations that could disturb the beam's path, often using pneumatic or magnetic isolation systems.\n\n4. **Material Science:**\n - **Material Properties:** The materials used in the construction of the electron gun and optics must be chosen for their stability under the operating conditions, including resistance to thermal expansion and electromagnetic interference.\n\n5. **Computational Modeling:**\n - **Simulation Software:** Advanced software is used to model the electron beam's behavior and interactions with the system's components, allowing for the optimization of the design before physical construction.\n\nIn summary, 'precision's fine art' in the context of electron beam systems refers to the meticulous design and engineering of the electron gun and optics, which are achieved through a deep understanding of physics and materials science, as well as the implementation of sophisticated control and feedback mechanisms." } ], } ``` ### Data Fields The dataset comprises the following fields: messages: String representing a conversation in OpenAI format. ```json [ {"role": "system", "content": "...."}, {"role": "user", "content": "...."}, {"role": "assistant", "content": "...."}, {"role": "user", "content": "...."}, {"role": "assistant", "content": "...."}, .... ] ``` To read the conversation use `json.loads()` ### Data Splits train ### Dataset Creation ### Source Data Please refer to AgentInstruct: Toward Generative Teaching with Agentic Flows for further detail ### Data Collection and Processing Please refer to AgentInstruct: Toward Generative Teaching with Agentic Flows for further details for details about the dataset construction. ### Who are the source data producers? Microsoft ### Annotation process We generate questions and answers using using Azure GPT-4. ### Personal and Sensitive Information None ### Bias, Risks, and Limitations • This dataset is in English. • The dataset inherits the biases, errors, and omissions known to exist in data used for seed sources and models used for data generaiton. • This dataset is not intended to represent any specific domain, and contains generic data. However, the AgentInstruct methodology, which was used to create this dataset, can be used to generate high-quality domain specific data, which can be used to fine-tune any existing model for a specific domain. • The dataset is synthetically gnerated and hence may contain inaccuracies that do not accurately reflect real-world phenomena. • The synthetic nature of this dataset may limit its ability to generalize to real-world cases. • The data is intended for research and exoerumentation for model training and synthetic data generation. ### Citation If you find this work useful in your method, you can cite the paper as below: @misc{ title={ AgentInstruct: Toward Generative Teaching with Agentic Flows}, author={Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Codas, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, Fillipe Silva, Hamed Khanpour, Yash Lara, Ahmed Awadallah}, year={2024}, eprint={ 2407.03502}, archivePrefix={arXiv}, primaryClass={cs.CL} } Dataset Card Contact [email protected]
mteb/scifact
mteb
"2024-03-02T19:11:40Z"
11,509
3
[ "task_categories:text-retrieval", "task_ids:document-retrieval", "multilinguality:monolingual", "source_datasets:scifact", "language:en", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "text-retrieval" ]
[ "text-retrieval" ]
"2024-02-26T15:56:04Z"
--- language: - en multilinguality: - monolingual task_categories: - text-retrieval source_datasets: - scifact task_ids: - document-retrieval config_names: - corpus tags: - text-retrieval dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 splits: - name: train num_bytes: 24585 num_examples: 919 - name: test num_bytes: 9092 num_examples: 339 - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string splits: - name: corpus num_bytes: 7874970 num_examples: 5183 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: queries num_bytes: 111225 num_examples: 1109 configs: - config_name: default data_files: - split: train path: qrels/train.jsonl - split: test path: qrels/test.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl ---
CohereForAI/Global-MMLU
CohereForAI
"2024-12-12T13:49:50Z"
11,438
99
[ "language:en", "language:ar", "language:bn", "language:es", "language:fr", "language:hi", "language:ru", "language:de", "language:id", "language:it", "language:ja", "language:ko", "language:pt", "language:zh", "language:yo", "language:nl", "language:ro", "language:uk", "language:vi", "language:tr", "language:pl", "language:fa", "language:cs", "language:he", "language:el", "language:ms", "language:fil", "language:te", "language:si", "language:ne", "language:ky", "language:sv", "language:lt", "language:sr", "language:mg", "language:so", "language:ha", "language:am", "language:sn", "language:ig", "language:ny", "language:sw", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:argilla", "arxiv:2412.03304", "region:us", "argilla" ]
null
"2024-12-01T22:45:59Z"
--- dataset_info: - config_name: am features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 209505 num_examples: 285 - name: test num_bytes: 12085768 num_examples: 14042 download_size: 10260448 dataset_size: 12295273 - config_name: ar features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 202343 num_examples: 285 - name: test num_bytes: 11621977 num_examples: 14042 download_size: 9817049 dataset_size: 11824320 - config_name: bn features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 301875 num_examples: 285 - name: test num_bytes: 18061158 num_examples: 14042 download_size: 12524784 dataset_size: 18363033 - config_name: cs features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 149807 num_examples: 285 - name: test num_bytes: 8607308 num_examples: 14042 download_size: 8640151 dataset_size: 8757115 - config_name: de features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 162406 num_examples: 285 - name: test num_bytes: 9575360 num_examples: 14042 download_size: 9187953 dataset_size: 9737766 - config_name: el features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 254308 num_examples: 285 - name: test num_bytes: 14502137 num_examples: 14042 download_size: 12288940 dataset_size: 14756445 - config_name: en features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 146364 num_examples: 285 - name: test num_bytes: 8440632 num_examples: 14042 download_size: 7912429 dataset_size: 8586996 - config_name: es features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 160633 num_examples: 285 - name: test num_bytes: 9399724 num_examples: 14042 download_size: 8752720 dataset_size: 9560357 - config_name: fa features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 202609 num_examples: 285 - name: test num_bytes: 11611890 num_examples: 14042 download_size: 9564082 dataset_size: 11814499 - config_name: fil features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 165182 num_examples: 285 - name: test num_bytes: 9510179 num_examples: 14042 download_size: 8564879 dataset_size: 9675361 - config_name: fr features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 166173 num_examples: 285 - name: test num_bytes: 9858873 num_examples: 14042 download_size: 9202595 dataset_size: 10025046 - config_name: ha features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 147406 num_examples: 285 - name: test num_bytes: 8445707 num_examples: 14042 download_size: 7665529 dataset_size: 8593113 - config_name: he features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 178912 num_examples: 285 - name: test num_bytes: 10248592 num_examples: 14042 download_size: 8818618 dataset_size: 10427504 - config_name: hi features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 308254 num_examples: 285 - name: test num_bytes: 17970478 num_examples: 14042 download_size: 12407854 dataset_size: 18278732 - config_name: id features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 154692 num_examples: 285 - name: test num_bytes: 8886643 num_examples: 14042 download_size: 7793365 dataset_size: 9041335 - config_name: ig features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 157376 num_examples: 285 - name: test num_bytes: 9221405 num_examples: 14042 download_size: 7644102 dataset_size: 9378781 - config_name: it features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 157547 num_examples: 285 - name: test num_bytes: 9374481 num_examples: 14042 download_size: 8873034 dataset_size: 9532028 - config_name: ja features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 167646 num_examples: 285 - name: test num_bytes: 9830716 num_examples: 14042 download_size: 8826164 dataset_size: 9998362 - config_name: ko features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 160572 num_examples: 285 - name: test num_bytes: 9454859 num_examples: 14042 download_size: 8640457 dataset_size: 9615431 - config_name: ky features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 235001 num_examples: 285 - name: test num_bytes: 13483934 num_examples: 14042 download_size: 11148813 dataset_size: 13718935 - config_name: lt features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 148917 num_examples: 285 - name: test num_bytes: 8504949 num_examples: 14042 download_size: 8416467 dataset_size: 8653866 - config_name: mg features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 161992 num_examples: 285 - name: test num_bytes: 9337415 num_examples: 14042 download_size: 8011427 dataset_size: 9499407 - config_name: ms features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 152549 num_examples: 285 - name: test num_bytes: 8823844 num_examples: 14042 download_size: 7783581 dataset_size: 8976393 - config_name: ne features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 294790 num_examples: 285 - name: test num_bytes: 16972110 num_examples: 14042 download_size: 11895818 dataset_size: 17266900 - config_name: nl features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 158122 num_examples: 285 - name: test num_bytes: 9099176 num_examples: 14042 download_size: 8565959 dataset_size: 9257298 - config_name: ny features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 151315 num_examples: 285 - name: test num_bytes: 8686819 num_examples: 14042 download_size: 7822699 dataset_size: 8838134 - config_name: pl features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 157290 num_examples: 285 - name: test num_bytes: 8980730 num_examples: 14042 download_size: 8981270 dataset_size: 9138020 - config_name: pt features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 154592 num_examples: 285 - name: test num_bytes: 8983299 num_examples: 14042 download_size: 8517588 dataset_size: 9137891 - config_name: ro features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 158311 num_examples: 285 - name: test num_bytes: 9163189 num_examples: 14042 download_size: 8773232 dataset_size: 9321500 - config_name: ru features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 246059 num_examples: 285 - name: test num_bytes: 14059847 num_examples: 14042 download_size: 11904365 dataset_size: 14305906 - config_name: si features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 297843 num_examples: 285 - name: test num_bytes: 17374939 num_examples: 14042 download_size: 12790098 dataset_size: 17672782 - config_name: sn features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 147355 num_examples: 285 - name: test num_bytes: 8507368 num_examples: 14042 download_size: 7962672 dataset_size: 8654723 - config_name: so features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 156282 num_examples: 285 - name: test num_bytes: 9033243 num_examples: 14042 download_size: 8706693 dataset_size: 9189525 - config_name: sr features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 221580 num_examples: 285 - name: test num_bytes: 12695546 num_examples: 14042 download_size: 10748391 dataset_size: 12917126 - config_name: sv features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 147893 num_examples: 285 - name: test num_bytes: 8549708 num_examples: 14042 download_size: 8181997 dataset_size: 8697601 - config_name: sw features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 147069 num_examples: 285 - name: test num_bytes: 8653210 num_examples: 14042 download_size: 7932986 dataset_size: 8800279 - config_name: te features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 315724 num_examples: 285 - name: test num_bytes: 18170058 num_examples: 14042 download_size: 12631358 dataset_size: 18485782 - config_name: tr features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 153426 num_examples: 285 - name: test num_bytes: 8833244 num_examples: 14042 download_size: 8351339 dataset_size: 8986670 - config_name: uk features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 229888 num_examples: 285 - name: test num_bytes: 13233771 num_examples: 14042 download_size: 11347842 dataset_size: 13463659 - config_name: vi features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 185712 num_examples: 285 - name: test num_bytes: 10604332 num_examples: 14042 download_size: 8971266 dataset_size: 10790044 - config_name: yo features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 153810 num_examples: 285 - name: test num_bytes: 10694916 num_examples: 14042 download_size: 9303668 dataset_size: 10848726 - config_name: zh features: - name: sample_id dtype: string - name: subject dtype: string - name: subject_category dtype: string - name: question dtype: string - name: option_a dtype: string - name: option_b dtype: string - name: option_c dtype: string - name: option_d dtype: string - name: answer dtype: string - name: required_knowledge dtype: string - name: time_sensitive dtype: string - name: reference dtype: string - name: culture dtype: string - name: region dtype: string - name: country dtype: string - name: cultural_sensitivity_label dtype: string - name: is_annotated dtype: bool splits: - name: dev num_bytes: 127577 num_examples: 285 - name: test num_bytes: 7393764 num_examples: 14042 download_size: 7322261 dataset_size: 7521341 configs: - config_name: am data_files: - split: test path: am/test-* - split: dev path: am/dev-* - config_name: ar data_files: - split: test path: ar/test-* - split: dev path: ar/dev-* - config_name: bn data_files: - split: test path: bn/test-* - split: dev path: bn/dev-* - config_name: cs data_files: - split: test path: cs/test-* - split: dev path: cs/dev-* - config_name: de data_files: - split: test path: de/test-* - split: dev path: de/dev-* - config_name: el data_files: - split: test path: el/test-* - split: dev path: el/dev-* - config_name: en data_files: - split: test path: en/test-* - split: dev path: en/dev-* - config_name: es data_files: - split: test path: es/test-* - split: dev path: es/dev-* - config_name: fa data_files: - split: test path: fa/test-* - split: dev path: fa/dev-* - config_name: fil data_files: - split: test path: fil/test-* - split: dev path: fil/dev-* - config_name: fr data_files: - split: test path: fr/test-* - split: dev path: fr/dev-* - config_name: ha data_files: - split: test path: ha/test-* - split: dev path: ha/dev-* - config_name: he data_files: - split: test path: he/test-* - split: dev path: he/dev-* - config_name: hi data_files: - split: test path: hi/test-* - split: dev path: hi/dev-* - config_name: id data_files: - split: test path: id/test-* - split: dev path: id/dev-* - config_name: ig data_files: - split: test path: ig/test-* - split: dev path: ig/dev-* - config_name: it data_files: - split: test path: it/test-* - split: dev path: it/dev-* - config_name: ja data_files: - split: test path: ja/test-* - split: dev path: ja/dev-* - config_name: ko data_files: - split: test path: ko/test-* - split: dev path: ko/dev-* - config_name: ky data_files: - split: test path: ky/test-* - split: dev path: ky/dev-* - config_name: lt data_files: - split: test path: lt/test-* - split: dev path: lt/dev-* - config_name: mg data_files: - split: test path: mg/test-* - split: dev path: mg/dev-* - config_name: ms data_files: - split: test path: ms/test-* - split: dev path: ms/dev-* - config_name: ne data_files: - split: test path: ne/test-* - split: dev path: ne/dev-* - config_name: nl data_files: - split: test path: nl/test-* - split: dev path: nl/dev-* - config_name: ny data_files: - split: test path: ny/test-* - split: dev path: ny/dev-* - config_name: pl data_files: - split: test path: pl/test-* - split: dev path: pl/dev-* - config_name: pt data_files: - split: test path: pt/test-* - split: dev path: pt/dev-* - config_name: ro data_files: - split: test path: ro/test-* - split: dev path: ro/dev-* - config_name: ru data_files: - split: test path: ru/test-* - split: dev path: ru/dev-* - config_name: si data_files: - split: test path: si/test-* - split: dev path: si/dev-* - config_name: sn data_files: - split: test path: sn/test-* - split: dev path: sn/dev-* - config_name: so data_files: - split: test path: so/test-* - split: dev path: so/dev-* - config_name: sr data_files: - split: test path: sr/test-* - split: dev path: sr/dev-* - config_name: sv data_files: - split: test path: sv/test-* - split: dev path: sv/dev-* - config_name: sw data_files: - split: test path: sw/test-* - split: dev path: sw/dev-* - config_name: te data_files: - split: test path: te/test-* - split: dev path: te/dev-* - config_name: tr data_files: - split: test path: tr/test-* - split: dev path: tr/dev-* - config_name: uk data_files: - split: test path: uk/test-* - split: dev path: uk/dev-* - config_name: vi data_files: - split: test path: vi/test-* - split: dev path: vi/dev-* - config_name: yo data_files: - split: test path: yo/test-* - split: dev path: yo/dev-* - config_name: zh data_files: - split: test path: zh/test-* - split: dev path: zh/dev-* tags: - argilla language: - en - ar - bn - es - fr - hi - ru - de - id - it - ja - ko - pt - zh - yo - nl - ro - uk - vi - tr - pl - fa - cs - he - el - ms - fil - te - si - ne - ky - sv - lt - sr - mg - so - ha - am - sn - ig - ny - sw --- ![GlobalMMLU Header](https://huggingface.co/datasets/CohereForAI/Global-MMLU/resolve/main/global_mmlu.jpg) # Dataset Summary [Global-MMLU](https://arxiv.org/abs/2412.03304) 🌍 is a multilingual evaluation set spanning 42 languages, including English. This dataset combines machine translations for [MMLU](https://huggingface.co/datasets/cais/mmlu) questions along with professional translations and crowd-sourced post-edits. It also includes cultural sensitivity annotations for a subset of the questions (2850 questions per language) and classifies them as *Culturally Sensitive* (CS) 🗽 or *Culturally Agnostic* (CA) ⚖️. These annotations were collected as part of an open science initiative led by Cohere For AI in collaboration with many external collaborators from both industry and academia. - **Curated by:** Professional annotators and contributors of [Cohere For AI Community](https://cohere.com/research). - **Language(s):** 42 languages. - **License:** [Apache 2.0](https://opensource.org/license/apache-2-0) **Note:** We also provide a "lite" version of Global MMLU called ["Global-MMLU-Lite"](https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite). This datatset is more balanced containing 200 samples each for CA and CS subsets for each language. And provides coverage for 15 languages with human translations. ### **Global-MMLU Dataset Family:** | Name | Explanation | |------|--------------| | [Global-MMLU](https://huggingface.co/datasets/CohereForAI/Global-MMLU) | Full Global-MMLU set with translations for all 14K samples including CS and CA subsets| | [Global-MMLU-Lite](https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite) | Lite version of Global-MMLU with human translated samples in 15 languages and containing 200 samples each for CS and CA subsets per language.| ## Load with Datasets To load this dataset with `datasets`, you'll first need to install it using `pip install datasets` and then use the following code: ```python from datasets import load_dataset # load HF dataset global_mmlu = load_dataset("CohereForAI/Global-MMLU", 'en') # can also be used as pandas dataframe global_mmlu.set_format("pandas") global_mmlu_test = global_mmlu['test'][:] global_mmlu_dev = global_mmlu['dev'][:] ``` <details> <summary> additional details </summary> The columns corresponding to annotations collected from our cultural bias study (i.e. 'required_knowledge', 'time_sensitive', 'reference', 'culture', 'region', 'country') contain a list of values representing annotations from different annotators. However, to avoid conversion issues to HF dataset, these columns are provided as string in the final dataset. You can convert these columns back to list of values for easier manipulation as follows: ```python import ast # convert string values to list global_mmlu_df['required_knowledge'] = global_mmlu_df['required_knowledge'].apply(lamda x: ast.literal_eval(x)) ``` </details> <br> ## Data Fields The data fields are the same among all splits. Brief description of each field is provided below. <details> <summary> data field description </summary> - `sample_id`: A unique identifier for the question. - `subject`: The main topic the question falls under. - `subject_category`: The high-level category the subject falls under i.e. STEM/Humanities/Social Sciences/Medical/Business/Other. - `question`: translated question from MMLU - `option_a`: one of the possible option choices - `option_b`: one of the possible option choices - `option_c`: one of the possible option choices - `option_d`: one of the possible option choices - `answer': the correct answer (A/B/C/D) - `required_knowledge`: annotator votes for knowledge needed to answer the question correctly. Possible values include: "cultural", "regional", "dialect" or "none" - `time_sensitive`: annotator votes indicating if the question's answer is time-dependent. Possible values include: Yes/No - `reference`: annotations for which part of the question contains cultural/regional/dialect references. The different items in the list are annotations from different annotators. - `culture`: annotations for which culture does the question belong to. The different items in the list correspond to annotations from different annotators. - `region`: Geographic region the question is relevant to. Each item in the list correspond to annotations from different annotators. - `country`: Specific country the question pertains to. Each item in the list correspond to annotations from different annotators. - `cultural_sensitivity_label`: Label to indicate if question is culturally sensitive (CS) or culturally agnostic (CA) based on annotator votes. - `is_annotated`: True/False flag to indicate if sample contains any annotations from our cultural bias study. </details> <br> ## Data Splits The following are the splits of the data: | Split | No. of instances | Language Coverage | |-------|------------------|-------------------| | test | 589,764 | 42 | | dev | 11,970 | 42 | ## Data Instances An example from `test` set looks as follows: ```json {'sample_id': 'world_religions/test/170' 'subject': 'world_religions', 'subject_category': 'Humanities', 'question': ' The numen of Augustus referred to which of the following characteristics?', 'option_a': 'Divine power', 'option_b': 'Sexual virility', 'option_c': 'Military acumen', 'option_d': 'Philosophical intellect', 'answer': 'A', 'required_knowledge': "['none', 'cultural', 'cultural', 'cultural']", 'time_sensitive': "['No', 'No', 'No', 'No']", 'reference': "['-', '-', {'end': 22, 'label': 'Cultural', 'score': None, 'start': 5}, {'end': 22, 'label': 'Cultural', 'score': None, 'start': 5}]", 'culture': "['Western Culture', 'Western Culture', 'Western Culture']", 'region': "['North America', 'Europe']", 'country': "['Italy']", 'cultural_sensitivity_label': 'CS', 'is_annotated': True, } ``` ## Statistics ### Annotation Types The following is the breakdown of CS🗽, CA⚖️ and MA📝 samples in the final dataset. | Type of Annotation | Instances per language | No. of languages | Total instances |--------------------|------------------------|------------------|----------------| | Culturally Sensitive 🗽 | 792 | 42 | 33,264 | | Culturally Agnostic ⚖️ | 2058 |42 | 86,436 | | MMLU Annotated 📝| 2850 |42 | 119,700 | ### Languages The dataset covers 42 languages: 20 high-resource, 9 mid-resource, and 13 low-resource languages. The following is details about the languages included in the dataset. <details> <summary> Languages Info </summary> | ISO Code | Language | Resources | |----------|----------|-----------| | `am` | Amharic | Low | | `ar` | Arabic (Standard)| High | | `bn` | Bengali | Mid | | `de` | German | High | | `el` | Greek | Mid | | `en` | English | High | | `fil` | Filipino | Mid | | `fr` | French | High | | `ha` | Hausa | Low | | `he` | Hebrew | Mid | | `hi` | Hindi | High | | `ig` | Igbo | Low | | `id` | Indonesian | Mid | | `it` | Italian | High | | `ja` | Japanese | High | | `ky` | Kyrgyz | Low | | `ko` | Korean | Mid | | `lt` | Lithuanian | Mid | | `mg` | Malagasy | Low | | `ms` | Malay | Mid | | `ne` | Nepali | Low | | `nl` | Dutch | High | | `ny` | Chichewa | Low | | `fa` | Persian | High | | `pl` | Polish | High | | `pt` | Portuguese | High | | `ru` | Russian | High | | `si` | Sinhala | Low | | `sn` | Shona | Low | | `so` | Somali | Low | | `es` | Spanish | High | | `sr` | Serbian | High | | `sw` | Swahili | Low | | `sw` | Swedish | High | | `te` | Telugu | Low | | `tr` | Turkish | High | | `uk` | Ukrainian | Mid | | `vi` | Vietnamese | High | | `yo` | Yorùbá | Low | | `zh` | Chinese (Simplified) | High | </details> <br> # Known Limitations A brief overview of limitations of this dataset is provided below. <details> <summary> show limitations </summary> - **Language and dialect coverage:** Global-MMLU focusses on 42 languages. However, this is still only a tiny fraction of the world’s linguistic diversity. Future work is needed to continue to improve evaluations beyond these 42 languages and take into account how technology serves different dialects. - **Uneven distribution of contributions:** The dataset contains translation post-edits from community volunteers, with a 'long tail' of volunteers making only one or two contributions. Similarly, there is a huge gap between languages with the highest number of contributions and ones with the lowest number of contributions. - **Toxic or offensive speech:** Our annotation process did not focus on flagging for toxic,harmful, or offensive speech, so it is possible that Global-MMLU contains some data that could be considered harmful. We believe this is of relatively low risk because of the nature of the original MMLU and the focus on examination material. - **Region Category Assignment:** For the annotation of geographically sensitive questions, we classified regions into six geographic regions (Africa, Asia, Europe, North America, Oceania,and South America). However, based upon discussions we would going forward recommend switching to the taxonomy proposed by the World Bank which is more granular and includes separate designations for Central America and Sub-Saharan Africa. - **Identifying cultural sensitivity does not guarantee cultural inclusion:** While Global-MMLU highlights important limitations in current datasets by identifying gaps in non-Western cultural representation. Future work must prioritize the integration of diverse culturally grounded knowledge to achieve true inclusivity and fairness in multilingual AI evaluation. </details> <br> # Additional Information ## Provenance - **Methods Used:** Professional annotations as well as crowd-sourced through volunteer annotations. - **Methodology Details:** We collected cultural bias annotations as well as post-edits of translations for different mmlu questions. - [Cultural Sensitivity Annotation Platform](https://huggingface.co/spaces/CohereForAI/MMLU-evaluation) - [Translation Quality Annotation Platform](https://huggingface.co/spaces/CohereForAI/review-mmlu-translations) - Dates of Collection: May 2024 - Aug 2024 ## Dataset Version and Maintenance - **Maintenance Status:** Actively Maintained - **Version Details:** - *Current version:* 1.0 - *Last Update:* 12/2024 - *First Release:* 12/2024 ## Authorship - **Publishing Organization:** [Cohere For AI](https://cohere.com/research) - **Industry Type:** Not-for-profit - Tech ## Licensing Information This dataset can be used for any purpose, under the terms of the [Apache 2.0](https://opensource.org/license/apache-2-0) License. ## Additional Details For any additional details, please check our paper, [Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation](https://arxiv.org/abs/2412.03304). ## Citation Information ```bibtex @misc{singh2024globalmmluunderstandingaddressing, title={Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation}, author={Shivalika Singh and Angelika Romanou and Clémentine Fourrier and David I. Adelani and Jian Gang Ngui and Daniel Vila-Suero and Peerat Limkonchotiwat and Kelly Marchisio and Wei Qi Leong and Yosephine Susanto and Raymond Ng and Shayne Longpre and Wei-Yin Ko and Madeline Smith and Antoine Bosselut and Alice Oh and Andre F. T. Martins and Leshem Choshen and Daphne Ippolito and Enzo Ferrante and Marzieh Fadaee and Beyza Ermis and Sara Hooker}, year={2024}, eprint={2412.03304}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.03304}, } ```
databricks/databricks-dolly-15k
databricks
"2023-06-30T18:34:13Z"
11,437
775
[ "task_categories:question-answering", "task_categories:summarization", "language:en", "license:cc-by-sa-3.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2203.02155", "region:us" ]
[ "question-answering", "summarization" ]
"2023-04-11T16:43:13Z"
--- license: cc-by-sa-3.0 task_categories: - question-answering - summarization language: - en size_categories: - 10K<n<100K --- # Summary `databricks-dolly-15k` is an open source dataset of instruction-following records generated by thousands of Databricks employees in several of the behavioral categories outlined in the [InstructGPT](https://arxiv.org/abs/2203.02155) paper, including brainstorming, classification, closed QA, generation, information extraction, open QA, and summarization. This dataset can be used for any purpose, whether academic or commercial, under the terms of the [Creative Commons Attribution-ShareAlike 3.0 Unported License](https://creativecommons.org/licenses/by-sa/3.0/legalcode). Supported Tasks: - Training LLMs - Synthetic Data Generation - Data Augmentation Languages: English Version: 1.0 **Owner: Databricks, Inc.** # Dataset Overview `databricks-dolly-15k` is a corpus of more than 15,000 records generated by thousands of Databricks employees to enable large language models to exhibit the magical interactivity of ChatGPT. Databricks employees were invited to create prompt / response pairs in each of eight different instruction categories, including the seven outlined in the InstructGPT paper, as well as an open-ended free-form category. The contributors were instructed to avoid using information from any source on the web with the exception of Wikipedia (for particular subsets of instruction categories), and explicitly instructed to avoid using generative AI in formulating instructions or responses. Examples of each behavior were provided to motivate the types of questions and instructions appropriate to each category. Halfway through the data generation process, contributors were given the option of answering questions posed by other contributors. They were asked to rephrase the original question and only select questions they could be reasonably expected to answer correctly. For certain categories contributors were asked to provide reference texts copied from Wikipedia. Reference text (indicated by the `context` field in the actual dataset) may contain bracketed Wikipedia citation numbers (e.g. `[42]`) which we recommend users remove for downstream applications. # Intended Uses While immediately valuable for instruction fine tuning large language models, as a corpus of human-generated instruction prompts, this dataset also presents a valuable opportunity for synthetic data generation in the methods outlined in the Self-Instruct paper. For example, contributor--generated prompts could be submitted as few-shot examples to a large open language model to generate a corpus of millions of examples of instructions in each of the respective InstructGPT categories. Likewise, both the instructions and responses present fertile ground for data augmentation. A paraphrasing model might be used to restate each prompt or short responses, with the resulting text associated to the respective ground-truth sample. Such an approach might provide a form of regularization on the dataset that could allow for more robust instruction-following behavior in models derived from these synthetic datasets. # Dataset ## Purpose of Collection As part of our continuing commitment to open source, Databricks developed what is, to the best of our knowledge, the first open source, human-generated instruction corpus specifically designed to enable large language models to exhibit the magical interactivity of ChatGPT. Unlike other datasets that are limited to non-commercial use, this dataset can be used, modified, and extended for any purpose, including academic or commercial applications. ## Sources - **Human-generated data**: Databricks employees were invited to create prompt / response pairs in each of eight different instruction categories. - **Wikipedia**: For instruction categories that require an annotator to consult a reference text (information extraction, closed QA, summarization) contributors selected passages from Wikipedia for particular subsets of instruction categories. No guidance was given to annotators as to how to select the target passages. ## Annotator Guidelines To create a record, employees were given a brief description of the annotation task as well as examples of the types of prompts typical of each annotation task. Guidelines were succinct by design so as to encourage a high task completion rate, possibly at the cost of rigorous compliance to an annotation rubric that concretely and reliably operationalizes the specific task. Caveat emptor. The annotation guidelines for each of the categories are as follows: - **Creative Writing**: Write a question or instruction that requires a creative, open-ended written response. The instruction should be reasonable to ask of a person with general world knowledge and should not require searching. In this task, your prompt should give very specific instructions to follow. Constraints, instructions, guidelines, or requirements all work, and the more of them the better. - **Closed QA**: Write a question or instruction that requires factually correct response based on a passage of text from Wikipedia. The question can be complex and can involve human-level reasoning capabilities, but should not require special knowledge. To create a question for this task include both the text of the question as well as the reference text in the form. - **Open QA**: Write a question that can be answered using general world knowledge or at most a single search. This task asks for opinions and facts about the world at large and does not provide any reference text for consultation. - **Summarization**: Give a summary of a paragraph from Wikipedia. Please don't ask questions that will require more than 3-5 minutes to answer. To create a question for this task include both the text of the question as well as the reference text in the form. - **Information Extraction**: These questions involve reading a paragraph from Wikipedia and extracting information from the passage. Everything required to produce an answer (e.g. a list, keywords etc) should be included in the passages. To create a question for this task include both the text of the question as well as the reference text in the form. - **Classification**: These prompts contain lists or examples of entities to be classified, e.g. movie reviews, products, etc. In this task the text or list of entities under consideration is contained in the prompt (e.g. there is no reference text.). You can choose any categories for classification you like, the more diverse the better. - **Brainstorming**: Think up lots of examples in response to a question asking to brainstorm ideas. ## Personal or Sensitive Data This dataset contains public information (e.g., some information from Wikipedia). To our knowledge, there are no private person’s personal identifiers or sensitive information. ## Language American English # Known Limitations - Wikipedia is a crowdsourced corpus and the contents of this dataset may reflect the bias, factual errors and topical focus found in Wikipedia - Some annotators may not be native English speakers - Annotator demographics and subject matter may reflect the makeup of Databricks employees # Citation ``` @online{DatabricksBlog2023DollyV2, author = {Mike Conover and Matt Hayes and Ankit Mathur and Jianwei Xie and Jun Wan and Sam Shah and Ali Ghodsi and Patrick Wendell and Matei Zaharia and Reynold Xin}, title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM}, year = {2023}, url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}, urldate = {2023-06-30} } ``` # License/Attribution **Copyright (2023) Databricks, Inc.** This dataset was developed at Databricks (https://www.databricks.com) and its use is subject to the CC BY-SA 3.0 license. Certain categories of material in the dataset include materials from the following sources, licensed under the CC BY-SA 3.0 license: Wikipedia (various pages) - https://www.wikipedia.org/ Copyright © Wikipedia editors and contributors.
asahi417/seamless-align-enA-jaA.speaker-embedding.xlsr-2b
asahi417
"2024-06-24T08:26:07Z"
11,349
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-06-12T06:54:19Z"
--- dataset_info: - config_name: subset_1 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 16310450373 num_examples: 2073 download_size: 16362791193 dataset_size: 16310450373 - config_name: subset_10 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14507997777 num_examples: 1961 download_size: 14554505952 dataset_size: 14507997777 - config_name: subset_100 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14129720831 num_examples: 1757 download_size: 14173975107 dataset_size: 14129720831 - config_name: subset_101 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14993273606 num_examples: 1873 download_size: 15040705190 dataset_size: 14993273606 - config_name: subset_102 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15427157956 num_examples: 1868 download_size: 15475633129 dataset_size: 15427157956 - config_name: subset_103 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15482076366 num_examples: 1879 download_size: 15530574846 dataset_size: 15482076366 - config_name: subset_104 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15390676969 num_examples: 1901 download_size: 15439431804 dataset_size: 15390676969 - config_name: subset_105 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15184436320 num_examples: 1875 download_size: 15231369480 dataset_size: 15184436320 - config_name: subset_106 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15272910298 num_examples: 1880 download_size: 15320755279 dataset_size: 15272910298 - config_name: subset_107 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14914011605 num_examples: 1854 download_size: 14961302329 dataset_size: 14914011605 - config_name: subset_108 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15180068428 num_examples: 1834 download_size: 15228372695 dataset_size: 15180068428 - config_name: subset_109 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14466035226 num_examples: 1770 download_size: 14511537163 dataset_size: 14466035226 - config_name: subset_11 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13101664907 num_examples: 1779 download_size: 13144308567 dataset_size: 13101664907 - config_name: subset_110 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15611661731 num_examples: 1908 download_size: 15659409356 dataset_size: 15611661731 - config_name: subset_111 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15278480945 num_examples: 1877 download_size: 15327096988 dataset_size: 15278480945 - config_name: subset_112 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15724141438 num_examples: 1924 download_size: 15772924053 dataset_size: 15724141438 - config_name: subset_113 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15575717731 num_examples: 1930 download_size: 15625880579 dataset_size: 15575717731 - config_name: subset_114 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15882425444 num_examples: 1940 download_size: 15931108324 dataset_size: 15882425444 - config_name: subset_115 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15508119355 num_examples: 1902 download_size: 15558088350 dataset_size: 15508119355 - config_name: subset_116 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15790391750 num_examples: 1910 download_size: 15839269103 dataset_size: 15790391750 - config_name: subset_117 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15442029172 num_examples: 1901 download_size: 15490765116 dataset_size: 15442029172 - config_name: subset_118 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15796646573 num_examples: 1911 download_size: 15846588578 dataset_size: 15796646573 - config_name: subset_119 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15363910769 num_examples: 1867 download_size: 15412415056 dataset_size: 15363910769 - config_name: subset_12 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14593616895 num_examples: 1916 download_size: 14640738281 dataset_size: 14593616895 - config_name: subset_120 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14564344621 num_examples: 1774 download_size: 14609587966 dataset_size: 14564344621 - config_name: subset_121 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15707595472 num_examples: 1895 download_size: 15757411615 dataset_size: 15707595472 - config_name: subset_122 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15173277199 num_examples: 1851 download_size: 15220532819 dataset_size: 15173277199 - config_name: subset_123 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15999251579 num_examples: 1923 download_size: 16048976124 dataset_size: 15999251579 - config_name: subset_124 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15601517059 num_examples: 1886 download_size: 15649292085 dataset_size: 15601517059 - config_name: subset_125 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15779512647 num_examples: 1928 download_size: 15829615675 dataset_size: 15779512647 - config_name: subset_126 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15356045351 num_examples: 1903 download_size: 15404217390 dataset_size: 15356045351 - config_name: subset_127 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15746607635 num_examples: 1902 download_size: 15796480801 dataset_size: 15746607635 - config_name: subset_128 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15375262005 num_examples: 1890 download_size: 15423317041 dataset_size: 15375262005 - config_name: subset_129 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14491367899 num_examples: 1752 download_size: 14536131741 dataset_size: 14491367899 - config_name: subset_13 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13188431829 num_examples: 1769 download_size: 13231483897 dataset_size: 13188431829 - config_name: subset_130 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15116628991 num_examples: 1830 download_size: 15164906379 dataset_size: 15116628991 - config_name: subset_131 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15597505674 num_examples: 1882 download_size: 15646436161 dataset_size: 15597505674 - config_name: subset_132 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15682009564 num_examples: 1918 download_size: 15731148123 dataset_size: 15682009564 - config_name: subset_133 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15253685409 num_examples: 1886 download_size: 15302350698 dataset_size: 15253685409 - config_name: subset_134 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15689301205 num_examples: 1912 download_size: 15739304449 dataset_size: 15689301205 - config_name: subset_135 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15581938369 num_examples: 1888 download_size: 15631772490 dataset_size: 15581938369 - config_name: subset_136 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15412182385 num_examples: 1875 download_size: 15460732037 dataset_size: 15412182385 - config_name: subset_137 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15360445304 num_examples: 1866 download_size: 15408941456 dataset_size: 15360445304 - config_name: subset_138 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15290751173 num_examples: 1863 download_size: 15339201722 dataset_size: 15290751173 - config_name: subset_139 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15256641544 num_examples: 1859 download_size: 15305102287 dataset_size: 15256641544 - config_name: subset_14 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12993946901 num_examples: 1734 download_size: 13035965994 dataset_size: 12993946901 - config_name: subset_140 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14712168776 num_examples: 1766 download_size: 14758529545 dataset_size: 14712168776 - config_name: subset_141 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15597842345 num_examples: 1865 download_size: 15647499851 dataset_size: 15597842345 - config_name: subset_142 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15493296202 num_examples: 1893 download_size: 15541947212 dataset_size: 15493296202 - config_name: subset_143 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15528880887 num_examples: 1894 download_size: 15578798622 dataset_size: 15528880887 - config_name: subset_144 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11610659779 num_examples: 1381 download_size: 11647759826 dataset_size: 11610659779 - config_name: subset_15 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14365778430 num_examples: 1914 download_size: 14412046441 dataset_size: 14365778430 - config_name: subset_16 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13652391626 num_examples: 1862 download_size: 13697579329 dataset_size: 13652391626 - config_name: subset_17 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14220432427 num_examples: 1875 download_size: 14266917233 dataset_size: 14220432427 - config_name: subset_18 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14758117694 num_examples: 1937 download_size: 14806166262 dataset_size: 14758117694 - config_name: subset_19 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14263981046 num_examples: 1917 download_size: 14310683240 dataset_size: 14263981046 - config_name: subset_2 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14854535769 num_examples: 1929 download_size: 14902477949 dataset_size: 14854535769 - config_name: subset_20 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14108138618 num_examples: 1877 download_size: 14154663716 dataset_size: 14108138618 - config_name: subset_21 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13644053955 num_examples: 1761 download_size: 13688549900 dataset_size: 13644053955 - config_name: subset_22 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13872299017 num_examples: 1850 download_size: 13916933531 dataset_size: 13872299017 - config_name: subset_23 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13582453701 num_examples: 1790 download_size: 13627175034 dataset_size: 13582453701 - config_name: subset_24 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13368705263 num_examples: 1758 download_size: 13412036987 dataset_size: 13368705263 - config_name: subset_25 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14867350268 num_examples: 1898 download_size: 14914077907 dataset_size: 14867350268 - config_name: subset_26 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14564112565 num_examples: 1943 download_size: 14612260797 dataset_size: 14564112565 - config_name: subset_27 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14403352351 num_examples: 1903 download_size: 14449996819 dataset_size: 14403352351 - config_name: subset_28 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14603029543 num_examples: 1912 download_size: 14650911489 dataset_size: 14603029543 - config_name: subset_29 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14673048791 num_examples: 1945 download_size: 14719897418 dataset_size: 14673048791 - config_name: subset_3 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14307378756 num_examples: 1899 download_size: 14353984563 dataset_size: 14307378756 - config_name: subset_30 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14710205080 num_examples: 1902 download_size: 14757936886 dataset_size: 14710205080 - config_name: subset_31 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14025445242 num_examples: 1805 download_size: 14071428675 dataset_size: 14025445242 - config_name: subset_32 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13945538622 num_examples: 1797 download_size: 13989843317 dataset_size: 13945538622 - config_name: subset_33 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13615084926 num_examples: 1757 download_size: 13659554271 dataset_size: 13615084926 - config_name: subset_34 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14564415851 num_examples: 1893 download_size: 14609576153 dataset_size: 14564415851 - config_name: subset_35 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14755481346 num_examples: 1928 download_size: 14803386359 dataset_size: 14755481346 - config_name: subset_36 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14405715735 num_examples: 1863 download_size: 14452030865 dataset_size: 14405715735 - config_name: subset_37 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14459656749 num_examples: 1855 download_size: 14505278929 dataset_size: 14459656749 - config_name: subset_38 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14747294818 num_examples: 1890 download_size: 14794943834 dataset_size: 14747294818 - config_name: subset_39 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14583795374 num_examples: 1899 download_size: 14631576455 dataset_size: 14583795374 - config_name: subset_4 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13461749342 num_examples: 1835 download_size: 13505049439 dataset_size: 13461749342 - config_name: subset_40 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14996728508 num_examples: 1931 download_size: 15043987691 dataset_size: 14996728508 - config_name: subset_41 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13998657085 num_examples: 1784 download_size: 14043192313 dataset_size: 13998657085 - config_name: subset_42 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13997152060 num_examples: 1797 download_size: 14041809773 dataset_size: 13997152060 - config_name: subset_43 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13745374844 num_examples: 1757 download_size: 13787997899 dataset_size: 13745374844 - config_name: subset_44 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14470227992 num_examples: 1831 download_size: 14516259581 dataset_size: 14470227992 - config_name: subset_45 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14540526118 num_examples: 1891 download_size: 14588272101 dataset_size: 14540526118 - config_name: subset_46 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14936006712 num_examples: 1897 download_size: 14983643800 dataset_size: 14936006712 - config_name: subset_47 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15007636946 num_examples: 1897 download_size: 15056520164 dataset_size: 15007636946 - config_name: subset_48 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15007698844 num_examples: 1902 download_size: 15056591062 dataset_size: 15007698844 - config_name: subset_49 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14872319895 num_examples: 1875 download_size: 14917259741 dataset_size: 14872319895 - config_name: subset_5 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14727185951 num_examples: 1987 download_size: 14775476702 dataset_size: 14727185951 - config_name: subset_50 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15197781964 num_examples: 1951 download_size: 15247032911 dataset_size: 15197781964 - config_name: subset_51 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14076247457 num_examples: 1752 download_size: 14121778451 dataset_size: 14076247457 - config_name: subset_52 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14166667429 num_examples: 1780 download_size: 14212377834 dataset_size: 14166667429 - config_name: subset_53 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14663043837 num_examples: 1846 download_size: 14710380722 dataset_size: 14663043837 - config_name: subset_54 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13650359450 num_examples: 1723 download_size: 13694095020 dataset_size: 13650359450 - config_name: subset_55 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14667394581 num_examples: 1866 download_size: 14714877043 dataset_size: 14667394581 - config_name: subset_56 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15126039375 num_examples: 1893 download_size: 15174838075 dataset_size: 15126039375 - config_name: subset_57 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15160658347 num_examples: 1924 download_size: 15208466401 dataset_size: 15160658347 - config_name: subset_58 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14776270381 num_examples: 1881 download_size: 14823232990 dataset_size: 14776270381 - config_name: subset_59 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14820738246 num_examples: 1887 download_size: 14868333441 dataset_size: 14820738246 - config_name: subset_6 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13509749274 num_examples: 1810 download_size: 13554686583 dataset_size: 13509749274 - config_name: subset_60 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15012692080 num_examples: 1885 download_size: 15061442178 dataset_size: 15012692080 - config_name: subset_61 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13825585736 num_examples: 1728 download_size: 13869424308 dataset_size: 13825585736 - config_name: subset_62 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14059852714 num_examples: 1787 download_size: 14104565757 dataset_size: 14059852714 - config_name: subset_63 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14347818528 num_examples: 1790 download_size: 14393558940 dataset_size: 14347818528 - config_name: subset_64 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14454950614 num_examples: 1812 download_size: 14500831889 dataset_size: 14454950614 - config_name: subset_65 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15012253440 num_examples: 1877 download_size: 15060938596 dataset_size: 15012253440 - config_name: subset_66 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15063107203 num_examples: 1890 download_size: 15111909056 dataset_size: 15063107203 - config_name: subset_67 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14991421779 num_examples: 1873 download_size: 15038857831 dataset_size: 14991421779 - config_name: subset_68 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15139716092 num_examples: 1883 download_size: 15188419081 dataset_size: 15139716092 - config_name: subset_69 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15398369854 num_examples: 1916 download_size: 15447262341 dataset_size: 15398369854 - config_name: subset_7 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13642415322 num_examples: 1832 download_size: 13685996881 dataset_size: 13642415322 - config_name: subset_70 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15176201337 num_examples: 1903 download_size: 15224791080 dataset_size: 15176201337 - config_name: subset_71 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13922358727 num_examples: 1736 download_size: 13966560038 dataset_size: 13922358727 - config_name: subset_72 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15371189233 num_examples: 1887 download_size: 15419825117 dataset_size: 15371189233 - config_name: subset_73 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13830427317 num_examples: 1736 download_size: 13874422671 dataset_size: 13830427317 - config_name: subset_74 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14723538586 num_examples: 1829 download_size: 14770698909 dataset_size: 14723538586 - config_name: subset_75 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15010254373 num_examples: 1862 download_size: 15058831818 dataset_size: 15010254373 - config_name: subset_76 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15247986194 num_examples: 1914 download_size: 15296025961 dataset_size: 15247986194 - config_name: subset_77 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15110877308 num_examples: 1874 download_size: 15159532855 dataset_size: 15110877308 - config_name: subset_78 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15037318101 num_examples: 1871 download_size: 15085976191 dataset_size: 15037318101 - config_name: subset_79 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15137911072 num_examples: 1891 download_size: 15186694496 dataset_size: 15137911072 - config_name: subset_8 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14896343344 num_examples: 2009 download_size: 14944904571 dataset_size: 14896343344 - config_name: subset_80 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14886044351 num_examples: 1885 download_size: 14933598111 dataset_size: 14886044351 - config_name: subset_81 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15488479968 num_examples: 1913 download_size: 15537299076 dataset_size: 15488479968 - config_name: subset_82 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15484176671 num_examples: 1910 download_size: 15532974397 dataset_size: 15484176671 - config_name: subset_83 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15204999706 num_examples: 1887 download_size: 15253724799 dataset_size: 15204999706 - config_name: subset_84 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15046661582 num_examples: 1867 download_size: 15095251446 dataset_size: 15046661582 - config_name: subset_85 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15018316453 num_examples: 1881 download_size: 15067060203 dataset_size: 15018316453 - config_name: subset_86 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15000057699 num_examples: 1862 download_size: 15047257993 dataset_size: 15000057699 - config_name: subset_87 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15201873116 num_examples: 1897 download_size: 15250090060 dataset_size: 15201873116 - config_name: subset_88 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15311639315 num_examples: 1900 download_size: 15360401050 dataset_size: 15311639315 - config_name: subset_89 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15309755677 num_examples: 1886 download_size: 15358419262 dataset_size: 15309755677 - config_name: subset_9 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14569778419 num_examples: 1977 download_size: 14618200962 dataset_size: 14569778419 - config_name: subset_90 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15290839824 num_examples: 1913 download_size: 15339744563 dataset_size: 15290839824 - config_name: subset_91 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15397885579 num_examples: 1913 download_size: 15446720083 dataset_size: 15397885579 - config_name: subset_92 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15031825290 num_examples: 1886 download_size: 15080581026 dataset_size: 15031825290 - config_name: subset_93 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15285895893 num_examples: 1875 download_size: 15334493674 dataset_size: 15285895893 - config_name: subset_94 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15343527930 num_examples: 1900 download_size: 15392308839 dataset_size: 15343527930 - config_name: subset_95 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15015741095 num_examples: 1867 download_size: 15064356988 dataset_size: 15015741095 - config_name: subset_96 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15460278621 num_examples: 1900 download_size: 15509015959 dataset_size: 15460278621 - config_name: subset_97 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15474609177 num_examples: 1899 download_size: 15523317437 dataset_size: 15474609177 - config_name: subset_98 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15471182493 num_examples: 1904 download_size: 15519934699 dataset_size: 15471182493 - config_name: subset_99 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: jaA.id dtype: string - name: jaA.laser_score dtype: float64 - name: jaA.audio.speaker_embedding sequence: float32 - name: jaA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15562076261 num_examples: 1901 download_size: 15612040624 dataset_size: 15562076261 configs: - config_name: subset_1 data_files: - split: train path: subset_1/train-* - config_name: subset_10 data_files: - split: train path: subset_10/train-* - config_name: subset_100 data_files: - split: train path: subset_100/train-* - config_name: subset_101 data_files: - split: train path: subset_101/train-* - config_name: subset_102 data_files: - split: train path: subset_102/train-* - config_name: subset_103 data_files: - split: train path: subset_103/train-* - config_name: subset_104 data_files: - split: train path: subset_104/train-* - config_name: subset_105 data_files: - split: train path: subset_105/train-* - config_name: subset_106 data_files: - split: train path: subset_106/train-* - config_name: subset_107 data_files: - split: train path: subset_107/train-* - config_name: subset_108 data_files: - split: train path: subset_108/train-* - config_name: subset_109 data_files: - split: train path: subset_109/train-* - config_name: subset_11 data_files: - split: train path: subset_11/train-* - config_name: subset_110 data_files: - split: train path: subset_110/train-* - config_name: subset_111 data_files: - split: train path: subset_111/train-* - config_name: subset_112 data_files: - split: train path: subset_112/train-* - config_name: subset_113 data_files: - split: train path: subset_113/train-* - config_name: subset_114 data_files: - split: train path: subset_114/train-* - config_name: subset_115 data_files: - split: train path: subset_115/train-* - config_name: subset_116 data_files: - split: train path: subset_116/train-* - config_name: subset_117 data_files: - split: train path: subset_117/train-* - config_name: subset_118 data_files: - split: train path: subset_118/train-* - config_name: subset_119 data_files: - split: train path: subset_119/train-* - config_name: subset_12 data_files: - split: train path: subset_12/train-* - config_name: subset_120 data_files: - split: train path: subset_120/train-* - config_name: subset_121 data_files: - split: train path: subset_121/train-* - config_name: subset_122 data_files: - split: train path: subset_122/train-* - config_name: subset_123 data_files: - split: train path: subset_123/train-* - config_name: subset_124 data_files: - split: train path: subset_124/train-* - config_name: subset_125 data_files: - split: train path: subset_125/train-* - config_name: subset_126 data_files: - split: train path: subset_126/train-* - config_name: subset_127 data_files: - split: train path: subset_127/train-* - config_name: subset_128 data_files: - split: train path: subset_128/train-* - config_name: subset_129 data_files: - split: train path: subset_129/train-* - config_name: subset_13 data_files: - split: train path: subset_13/train-* - config_name: subset_130 data_files: - split: train path: subset_130/train-* - config_name: subset_131 data_files: - split: train path: subset_131/train-* - config_name: subset_132 data_files: - split: train path: subset_132/train-* - config_name: subset_133 data_files: - split: train path: subset_133/train-* - config_name: subset_134 data_files: - split: train path: subset_134/train-* - config_name: subset_135 data_files: - split: train path: subset_135/train-* - config_name: subset_136 data_files: - split: train path: subset_136/train-* - config_name: subset_137 data_files: - split: train path: subset_137/train-* - config_name: subset_138 data_files: - split: train path: subset_138/train-* - config_name: subset_139 data_files: - split: train path: subset_139/train-* - config_name: subset_14 data_files: - split: train path: subset_14/train-* - config_name: subset_140 data_files: - split: train path: subset_140/train-* - config_name: subset_141 data_files: - split: train path: subset_141/train-* - config_name: subset_142 data_files: - split: train path: subset_142/train-* - config_name: subset_143 data_files: - split: train path: subset_143/train-* - config_name: subset_144 data_files: - split: train path: subset_144/train-* - config_name: subset_15 data_files: - split: train path: subset_15/train-* - config_name: subset_16 data_files: - split: train path: subset_16/train-* - config_name: subset_17 data_files: - split: train path: subset_17/train-* - config_name: subset_18 data_files: - split: train path: subset_18/train-* - config_name: subset_19 data_files: - split: train path: subset_19/train-* - config_name: subset_2 data_files: - split: train path: subset_2/train-* - config_name: subset_20 data_files: - split: train path: subset_20/train-* - config_name: subset_21 data_files: - split: train path: subset_21/train-* - config_name: subset_22 data_files: - split: train path: subset_22/train-* - config_name: subset_23 data_files: - split: train path: subset_23/train-* - config_name: subset_24 data_files: - split: train path: subset_24/train-* - config_name: subset_25 data_files: - split: train path: subset_25/train-* - config_name: subset_26 data_files: - split: train path: subset_26/train-* - config_name: subset_27 data_files: - split: train path: subset_27/train-* - config_name: subset_28 data_files: - split: train path: subset_28/train-* - config_name: subset_29 data_files: - split: train path: subset_29/train-* - config_name: subset_3 data_files: - split: train path: subset_3/train-* - config_name: subset_30 data_files: - split: train path: subset_30/train-* - config_name: subset_31 data_files: - split: train path: subset_31/train-* - config_name: subset_32 data_files: - split: train path: subset_32/train-* - config_name: subset_33 data_files: - split: train path: subset_33/train-* - config_name: subset_34 data_files: - split: train path: subset_34/train-* - config_name: subset_35 data_files: - split: train path: subset_35/train-* - config_name: subset_36 data_files: - split: train path: subset_36/train-* - config_name: subset_37 data_files: - split: train path: subset_37/train-* - config_name: subset_38 data_files: - split: train path: subset_38/train-* - config_name: subset_39 data_files: - split: train path: subset_39/train-* - config_name: subset_4 data_files: - split: train path: subset_4/train-* - config_name: subset_40 data_files: - split: train path: subset_40/train-* - config_name: subset_41 data_files: - split: train path: subset_41/train-* - config_name: subset_42 data_files: - split: train path: subset_42/train-* - config_name: subset_43 data_files: - split: train path: subset_43/train-* - config_name: subset_44 data_files: - split: train path: subset_44/train-* - config_name: subset_45 data_files: - split: train path: subset_45/train-* - config_name: subset_46 data_files: - split: train path: subset_46/train-* - config_name: subset_47 data_files: - split: train path: subset_47/train-* - config_name: subset_48 data_files: - split: train path: subset_48/train-* - config_name: subset_49 data_files: - split: train path: subset_49/train-* - config_name: subset_5 data_files: - split: train path: subset_5/train-* - config_name: subset_50 data_files: - split: train path: subset_50/train-* - config_name: subset_51 data_files: - split: train path: subset_51/train-* - config_name: subset_52 data_files: - split: train path: subset_52/train-* - config_name: subset_53 data_files: - split: train path: subset_53/train-* - config_name: subset_54 data_files: - split: train path: subset_54/train-* - config_name: subset_55 data_files: - split: train path: subset_55/train-* - config_name: subset_56 data_files: - split: train path: subset_56/train-* - config_name: subset_57 data_files: - split: train path: subset_57/train-* - config_name: subset_58 data_files: - split: train path: subset_58/train-* - config_name: subset_59 data_files: - split: train path: subset_59/train-* - config_name: subset_6 data_files: - split: train path: subset_6/train-* - config_name: subset_60 data_files: - split: train path: subset_60/train-* - config_name: subset_61 data_files: - split: train path: subset_61/train-* - config_name: subset_62 data_files: - split: train path: subset_62/train-* - config_name: subset_63 data_files: - split: train path: subset_63/train-* - config_name: subset_64 data_files: - split: train path: subset_64/train-* - config_name: subset_65 data_files: - split: train path: subset_65/train-* - config_name: subset_66 data_files: - split: train path: subset_66/train-* - config_name: subset_67 data_files: - split: train path: subset_67/train-* - config_name: subset_68 data_files: - split: train path: subset_68/train-* - config_name: subset_69 data_files: - split: train path: subset_69/train-* - config_name: subset_7 data_files: - split: train path: subset_7/train-* - config_name: subset_70 data_files: - split: train path: subset_70/train-* - config_name: subset_71 data_files: - split: train path: subset_71/train-* - config_name: subset_72 data_files: - split: train path: subset_72/train-* - config_name: subset_73 data_files: - split: train path: subset_73/train-* - config_name: subset_74 data_files: - split: train path: subset_74/train-* - config_name: subset_75 data_files: - split: train path: subset_75/train-* - config_name: subset_76 data_files: - split: train path: subset_76/train-* - config_name: subset_77 data_files: - split: train path: subset_77/train-* - config_name: subset_78 data_files: - split: train path: subset_78/train-* - config_name: subset_79 data_files: - split: train path: subset_79/train-* - config_name: subset_8 data_files: - split: train path: subset_8/train-* - config_name: subset_80 data_files: - split: train path: subset_80/train-* - config_name: subset_81 data_files: - split: train path: subset_81/train-* - config_name: subset_82 data_files: - split: train path: subset_82/train-* - config_name: subset_83 data_files: - split: train path: subset_83/train-* - config_name: subset_84 data_files: - split: train path: subset_84/train-* - config_name: subset_85 data_files: - split: train path: subset_85/train-* - config_name: subset_86 data_files: - split: train path: subset_86/train-* - config_name: subset_87 data_files: - split: train path: subset_87/train-* - config_name: subset_88 data_files: - split: train path: subset_88/train-* - config_name: subset_89 data_files: - split: train path: subset_89/train-* - config_name: subset_9 data_files: - split: train path: subset_9/train-* - config_name: subset_90 data_files: - split: train path: subset_90/train-* - config_name: subset_91 data_files: - split: train path: subset_91/train-* - config_name: subset_92 data_files: - split: train path: subset_92/train-* - config_name: subset_93 data_files: - split: train path: subset_93/train-* - config_name: subset_94 data_files: - split: train path: subset_94/train-* - config_name: subset_95 data_files: - split: train path: subset_95/train-* - config_name: subset_96 data_files: - split: train path: subset_96/train-* - config_name: subset_97 data_files: - split: train path: subset_97/train-* - config_name: subset_98 data_files: - split: train path: subset_98/train-* - config_name: subset_99 data_files: - split: train path: subset_99/train-* ---
EuropeanParliament/Eurovoc
EuropeanParliament
"2024-05-14T10:12:12Z"
11,115
5
[ "license:eupl-1.1", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-09-01T07:46:44Z"
--- license: eupl-1.1 configs: - config_name: 1996-03 data_files: "files/1996-03.jsonl.gz" - config_name: 1996-04 data_files: "files/1996-04.jsonl.gz" - config_name: 1996-05 data_files: "files/1996-05.jsonl.gz" - config_name: 1996-06 data_files: "files/1996-06.jsonl.gz" - config_name: 1996-07 data_files: "files/1996-07.jsonl.gz" - config_name: 1996-08 data_files: "files/1996-08.jsonl.gz" - config_name: 1996-09 data_files: "files/1996-09.jsonl.gz" - config_name: 1996-10 data_files: "files/1996-10.jsonl.gz" - config_name: 1996-11 data_files: "files/1996-11.jsonl.gz" - config_name: 1996-12 data_files: "files/1996-12.jsonl.gz" - config_name: 1997-01 data_files: "files/1997-01.jsonl.gz" - config_name: 1997-02 data_files: "files/1997-02.jsonl.gz" - config_name: 1997-03 data_files: "files/1997-03.jsonl.gz" - config_name: 1997-04 data_files: "files/1997-04.jsonl.gz" - config_name: 1997-05 data_files: "files/1997-05.jsonl.gz" - config_name: 1997-06 data_files: "files/1997-06.jsonl.gz" - config_name: 1997-07 data_files: "files/1997-07.jsonl.gz" - config_name: 1997-08 data_files: "files/1997-08.jsonl.gz" - config_name: 1997-09 data_files: "files/1997-09.jsonl.gz" - config_name: 1997-10 data_files: "files/1997-10.jsonl.gz" - config_name: 1997-11 data_files: "files/1997-11.jsonl.gz" - config_name: 1997-12 data_files: "files/1997-12.jsonl.gz" - config_name: 1998-01 data_files: "files/1998-01.jsonl.gz" - config_name: 1998-02 data_files: "files/1998-02.jsonl.gz" - config_name: 1998-03 data_files: "files/1998-03.jsonl.gz" - config_name: 1998-04 data_files: "files/1998-04.jsonl.gz" - config_name: 1998-05 data_files: "files/1998-05.jsonl.gz" - config_name: 1998-06 data_files: "files/1998-06.jsonl.gz" - config_name: 1998-07 data_files: "files/1998-07.jsonl.gz" - config_name: 1998-08 data_files: "files/1998-08.jsonl.gz" - config_name: 1998-09 data_files: "files/1998-09.jsonl.gz" - config_name: 1998-10 data_files: "files/1998-10.jsonl.gz" - config_name: 1998-11 data_files: "files/1998-11.jsonl.gz" - config_name: 1998-12 data_files: "files/1998-12.jsonl.gz" - config_name: 1999-01 data_files: "files/1999-01.jsonl.gz" - config_name: 1999-02 data_files: "files/1999-02.jsonl.gz" - config_name: 1999-03 data_files: "files/1999-03.jsonl.gz" - config_name: 1999-04 data_files: "files/1999-04.jsonl.gz" - config_name: 1999-05 data_files: "files/1999-05.jsonl.gz" - config_name: 1999-06 data_files: "files/1999-06.jsonl.gz" - config_name: 1999-07 data_files: "files/1999-07.jsonl.gz" - config_name: 1999-08 data_files: "files/1999-08.jsonl.gz" - config_name: 1999-09 data_files: "files/1999-09.jsonl.gz" - config_name: 1999-10 data_files: "files/1999-10.jsonl.gz" - config_name: 1999-11 data_files: "files/1999-11.jsonl.gz" - config_name: 1999-12 data_files: "files/1999-12.jsonl.gz" - config_name: 2000-01 data_files: "files/2000-01.jsonl.gz" - config_name: 2000-02 data_files: "files/2000-02.jsonl.gz" - config_name: 2000-03 data_files: "files/2000-03.jsonl.gz" - config_name: 2000-04 data_files: "files/2000-04.jsonl.gz" - config_name: 2000-05 data_files: "files/2000-05.jsonl.gz" - config_name: 2000-06 data_files: "files/2000-06.jsonl.gz" - config_name: 2000-07 data_files: "files/2000-07.jsonl.gz" - config_name: 2000-08 data_files: "files/2000-08.jsonl.gz" - config_name: 2000-09 data_files: "files/2000-09.jsonl.gz" - config_name: 2000-10 data_files: "files/2000-10.jsonl.gz" - config_name: 2000-11 data_files: "files/2000-11.jsonl.gz" - config_name: 2000-12 data_files: "files/2000-12.jsonl.gz" - config_name: 2001-01 data_files: "files/2001-01.jsonl.gz" - config_name: 2001-02 data_files: "files/2001-02.jsonl.gz" - config_name: 2001-03 data_files: "files/2001-03.jsonl.gz" - config_name: 2001-04 data_files: "files/2001-04.jsonl.gz" - config_name: 2001-05 data_files: "files/2001-05.jsonl.gz" - config_name: 2001-06 data_files: "files/2001-06.jsonl.gz" - config_name: 2001-07 data_files: "files/2001-07.jsonl.gz" - config_name: 2001-08 data_files: "files/2001-08.jsonl.gz" - config_name: 2001-09 data_files: "files/2001-09.jsonl.gz" - config_name: 2001-10 data_files: "files/2001-10.jsonl.gz" - config_name: 2001-11 data_files: "files/2001-11.jsonl.gz" - config_name: 2001-12 data_files: "files/2001-12.jsonl.gz" - config_name: 2002-01 data_files: "files/2002-01.jsonl.gz" - config_name: 2002-02 data_files: "files/2002-02.jsonl.gz" - config_name: 2002-03 data_files: "files/2002-03.jsonl.gz" - config_name: 2002-04 data_files: "files/2002-04.jsonl.gz" - config_name: 2002-05 data_files: "files/2002-05.jsonl.gz" - config_name: 2002-06 data_files: "files/2002-06.jsonl.gz" - config_name: 2002-07 data_files: "files/2002-07.jsonl.gz" - config_name: 2002-08 data_files: "files/2002-08.jsonl.gz" - config_name: 2002-09 data_files: "files/2002-09.jsonl.gz" - config_name: 2002-10 data_files: "files/2002-10.jsonl.gz" - config_name: 2002-11 data_files: "files/2002-11.jsonl.gz" - config_name: 2002-12 data_files: "files/2002-12.jsonl.gz" - config_name: 2003-01 data_files: "files/2003-01.jsonl.gz" - config_name: 2003-02 data_files: "files/2003-02.jsonl.gz" - config_name: 2003-03 data_files: "files/2003-03.jsonl.gz" - config_name: 2003-04 data_files: "files/2003-04.jsonl.gz" - config_name: 2003-05 data_files: "files/2003-05.jsonl.gz" - config_name: 2003-06 data_files: "files/2003-06.jsonl.gz" - config_name: 2003-07 data_files: "files/2003-07.jsonl.gz" - config_name: 2003-08 data_files: "files/2003-08.jsonl.gz" - config_name: 2003-09 data_files: "files/2003-09.jsonl.gz" - config_name: 2003-10 data_files: "files/2003-10.jsonl.gz" - config_name: 2003-11 data_files: "files/2003-11.jsonl.gz" - config_name: 2003-12 data_files: "files/2003-12.jsonl.gz" - config_name: 2004-01 data_files: "files/2004-01.jsonl.gz" - config_name: 2004-02 data_files: "files/2004-02.jsonl.gz" - config_name: 2004-03 data_files: "files/2004-03.jsonl.gz" - config_name: 2004-04 data_files: "files/2004-04.jsonl.gz" - config_name: 2004-05 data_files: "files/2004-05.jsonl.gz" - config_name: 2004-06 data_files: "files/2004-06.jsonl.gz" - config_name: 2004-07 data_files: "files/2004-07.jsonl.gz" - config_name: 2004-08 data_files: "files/2004-08.jsonl.gz" - config_name: 2004-09 data_files: "files/2004-09.jsonl.gz" - config_name: 2004-10 data_files: "files/2004-10.jsonl.gz" - config_name: 2004-11 data_files: "files/2004-11.jsonl.gz" - config_name: 2004-12 data_files: "files/2004-12.jsonl.gz" - config_name: 2005-01 data_files: "files/2005-01.jsonl.gz" - config_name: 2005-02 data_files: "files/2005-02.jsonl.gz" - config_name: 2005-03 data_files: "files/2005-03.jsonl.gz" - config_name: 2005-04 data_files: "files/2005-04.jsonl.gz" - config_name: 2005-05 data_files: "files/2005-05.jsonl.gz" - config_name: 2005-06 data_files: "files/2005-06.jsonl.gz" - config_name: 2005-07 data_files: "files/2005-07.jsonl.gz" - config_name: 2005-08 data_files: "files/2005-08.jsonl.gz" - config_name: 2005-09 data_files: "files/2005-09.jsonl.gz" - config_name: 2005-10 data_files: "files/2005-10.jsonl.gz" - config_name: 2005-11 data_files: "files/2005-11.jsonl.gz" - config_name: 2005-12 data_files: "files/2005-12.jsonl.gz" - config_name: 2006-01 data_files: "files/2006-01.jsonl.gz" - config_name: 2006-02 data_files: "files/2006-02.jsonl.gz" - config_name: 2006-03 data_files: "files/2006-03.jsonl.gz" - config_name: 2006-04 data_files: "files/2006-04.jsonl.gz" - config_name: 2006-05 data_files: "files/2006-05.jsonl.gz" - config_name: 2006-06 data_files: "files/2006-06.jsonl.gz" - config_name: 2006-07 data_files: "files/2006-07.jsonl.gz" - config_name: 2006-08 data_files: "files/2006-08.jsonl.gz" - config_name: 2006-09 data_files: "files/2006-09.jsonl.gz" - config_name: 2006-10 data_files: "files/2006-10.jsonl.gz" - config_name: 2006-11 data_files: "files/2006-11.jsonl.gz" - config_name: 2006-12 data_files: "files/2006-12.jsonl.gz" - config_name: 2007-01 data_files: "files/2007-01.jsonl.gz" - config_name: 2007-02 data_files: "files/2007-02.jsonl.gz" - config_name: 2007-03 data_files: "files/2007-03.jsonl.gz" - config_name: 2007-04 data_files: "files/2007-04.jsonl.gz" - config_name: 2007-05 data_files: "files/2007-05.jsonl.gz" - config_name: 2007-06 data_files: "files/2007-06.jsonl.gz" - config_name: 2007-07 data_files: "files/2007-07.jsonl.gz" - config_name: 2007-08 data_files: "files/2007-08.jsonl.gz" - config_name: 2007-09 data_files: "files/2007-09.jsonl.gz" - config_name: 2007-10 data_files: "files/2007-10.jsonl.gz" - config_name: 2007-11 data_files: "files/2007-11.jsonl.gz" - config_name: 2007-12 data_files: "files/2007-12.jsonl.gz" - config_name: 2008-01 data_files: "files/2008-01.jsonl.gz" - config_name: 2008-02 data_files: "files/2008-02.jsonl.gz" - config_name: 2008-03 data_files: "files/2008-03.jsonl.gz" - config_name: 2008-04 data_files: "files/2008-04.jsonl.gz" - config_name: 2008-05 data_files: "files/2008-05.jsonl.gz" - config_name: 2008-06 data_files: "files/2008-06.jsonl.gz" - config_name: 2008-07 data_files: "files/2008-07.jsonl.gz" - config_name: 2008-08 data_files: "files/2008-08.jsonl.gz" - config_name: 2008-09 data_files: "files/2008-09.jsonl.gz" - config_name: 2008-10 data_files: "files/2008-10.jsonl.gz" - config_name: 2008-11 data_files: "files/2008-11.jsonl.gz" - config_name: 2008-12 data_files: "files/2008-12.jsonl.gz" - config_name: 2009-01 data_files: "files/2009-01.jsonl.gz" - config_name: 2009-02 data_files: "files/2009-02.jsonl.gz" - config_name: 2009-03 data_files: "files/2009-03.jsonl.gz" - config_name: 2009-04 data_files: "files/2009-04.jsonl.gz" - config_name: 2009-05 data_files: "files/2009-05.jsonl.gz" - config_name: 2009-06 data_files: "files/2009-06.jsonl.gz" - config_name: 2009-07 data_files: "files/2009-07.jsonl.gz" - config_name: 2009-08 data_files: "files/2009-08.jsonl.gz" - config_name: 2009-09 data_files: "files/2009-09.jsonl.gz" - config_name: 2009-10 data_files: "files/2009-10.jsonl.gz" - config_name: 2009-11 data_files: "files/2009-11.jsonl.gz" - config_name: 2009-12 data_files: "files/2009-12.jsonl.gz" - config_name: 2010-01 data_files: "files/2010-01.jsonl.gz" - config_name: 2010-02 data_files: "files/2010-02.jsonl.gz" - config_name: 2010-03 data_files: "files/2010-03.jsonl.gz" - config_name: 2010-04 data_files: "files/2010-04.jsonl.gz" - config_name: 2010-05 data_files: "files/2010-05.jsonl.gz" - config_name: 2010-06 data_files: "files/2010-06.jsonl.gz" - config_name: 2010-07 data_files: "files/2010-07.jsonl.gz" - config_name: 2010-08 data_files: "files/2010-08.jsonl.gz" - config_name: 2010-09 data_files: "files/2010-09.jsonl.gz" - config_name: 2010-10 data_files: "files/2010-10.jsonl.gz" - config_name: 2010-11 data_files: "files/2010-11.jsonl.gz" - config_name: 2010-12 data_files: "files/2010-12.jsonl.gz" - config_name: 2011-01 data_files: "files/2011-01.jsonl.gz" - config_name: 2011-02 data_files: "files/2011-02.jsonl.gz" - config_name: 2011-03 data_files: "files/2011-03.jsonl.gz" - config_name: 2011-04 data_files: "files/2011-04.jsonl.gz" - config_name: 2011-05 data_files: "files/2011-05.jsonl.gz" - config_name: 2011-06 data_files: "files/2011-06.jsonl.gz" - config_name: 2011-07 data_files: "files/2011-07.jsonl.gz" - config_name: 2011-08 data_files: "files/2011-08.jsonl.gz" - config_name: 2011-09 data_files: "files/2011-09.jsonl.gz" - config_name: 2011-10 data_files: "files/2011-10.jsonl.gz" - config_name: 2011-11 data_files: "files/2011-11.jsonl.gz" - config_name: 2011-12 data_files: "files/2011-12.jsonl.gz" - config_name: 2012-01 data_files: "files/2012-01.jsonl.gz" - config_name: 2012-02 data_files: "files/2012-02.jsonl.gz" - config_name: 2012-03 data_files: "files/2012-03.jsonl.gz" - config_name: 2012-04 data_files: "files/2012-04.jsonl.gz" - config_name: 2012-05 data_files: "files/2012-05.jsonl.gz" - config_name: 2012-06 data_files: "files/2012-06.jsonl.gz" - config_name: 2012-07 data_files: "files/2012-07.jsonl.gz" - config_name: 2012-08 data_files: "files/2012-08.jsonl.gz" - config_name: 2012-09 data_files: "files/2012-09.jsonl.gz" - config_name: 2012-10 data_files: "files/2012-10.jsonl.gz" - config_name: 2012-11 data_files: "files/2012-11.jsonl.gz" - config_name: 2012-12 data_files: "files/2012-12.jsonl.gz" - config_name: 2013-01 data_files: "files/2013-01.jsonl.gz" - config_name: 2013-02 data_files: "files/2013-02.jsonl.gz" - config_name: 2013-03 data_files: "files/2013-03.jsonl.gz" - config_name: 2013-04 data_files: "files/2013-04.jsonl.gz" - config_name: 2013-05 data_files: "files/2013-05.jsonl.gz" - config_name: 2013-06 data_files: "files/2013-06.jsonl.gz" - config_name: 2013-07 data_files: "files/2013-07.jsonl.gz" - config_name: 2013-08 data_files: "files/2013-08.jsonl.gz" - config_name: 2013-09 data_files: "files/2013-09.jsonl.gz" - config_name: 2013-10 data_files: "files/2013-10.jsonl.gz" - config_name: 2013-11 data_files: "files/2013-11.jsonl.gz" - config_name: 2013-12 data_files: "files/2013-12.jsonl.gz" - config_name: 2014-01 data_files: "files/2014-01.jsonl.gz" - config_name: 2014-02 data_files: "files/2014-02.jsonl.gz" - config_name: 2014-03 data_files: "files/2014-03.jsonl.gz" - config_name: 2014-04 data_files: "files/2014-04.jsonl.gz" - config_name: 2014-05 data_files: "files/2014-05.jsonl.gz" - config_name: 2014-06 data_files: "files/2014-06.jsonl.gz" - config_name: 2014-07 data_files: "files/2014-07.jsonl.gz" - config_name: 2014-08 data_files: "files/2014-08.jsonl.gz" - config_name: 2014-09 data_files: "files/2014-09.jsonl.gz" - config_name: 2014-10 data_files: "files/2014-10.jsonl.gz" - config_name: 2014-11 data_files: "files/2014-11.jsonl.gz" - config_name: 2014-12 data_files: "files/2014-12.jsonl.gz" - config_name: 2015-01 data_files: "files/2015-01.jsonl.gz" - config_name: 2015-02 data_files: "files/2015-02.jsonl.gz" - config_name: 2015-03 data_files: "files/2015-03.jsonl.gz" - config_name: 2015-04 data_files: "files/2015-04.jsonl.gz" - config_name: 2015-05 data_files: "files/2015-05.jsonl.gz" - config_name: 2015-06 data_files: "files/2015-06.jsonl.gz" - config_name: 2015-07 data_files: "files/2015-07.jsonl.gz" - config_name: 2015-08 data_files: "files/2015-08.jsonl.gz" - config_name: 2015-09 data_files: "files/2015-09.jsonl.gz" - config_name: 2015-10 data_files: "files/2015-10.jsonl.gz" - config_name: 2015-11 data_files: "files/2015-11.jsonl.gz" - config_name: 2015-12 data_files: "files/2015-12.jsonl.gz" - config_name: 2016-01 data_files: "files/2016-01.jsonl.gz" - config_name: 2016-02 data_files: "files/2016-02.jsonl.gz" - config_name: 2016-03 data_files: "files/2016-03.jsonl.gz" - config_name: 2016-04 data_files: "files/2016-04.jsonl.gz" - config_name: 2016-05 data_files: "files/2016-05.jsonl.gz" - config_name: 2016-06 data_files: "files/2016-06.jsonl.gz" - config_name: 2016-07 data_files: "files/2016-07.jsonl.gz" - config_name: 2016-08 data_files: "files/2016-08.jsonl.gz" - config_name: 2016-09 data_files: "files/2016-09.jsonl.gz" - config_name: 2016-10 data_files: "files/2016-10.jsonl.gz" - config_name: 2016-11 data_files: "files/2016-11.jsonl.gz" - config_name: 2016-12 data_files: "files/2016-12.jsonl.gz" - config_name: 2017-01 data_files: "files/2017-01.jsonl.gz" - config_name: 2017-02 data_files: "files/2017-02.jsonl.gz" - config_name: 2017-03 data_files: "files/2017-03.jsonl.gz" - config_name: 2017-04 data_files: "files/2017-04.jsonl.gz" - config_name: 2017-05 data_files: "files/2017-05.jsonl.gz" - config_name: 2017-06 data_files: "files/2017-06.jsonl.gz" - config_name: 2017-07 data_files: "files/2017-07.jsonl.gz" - config_name: 2017-08 data_files: "files/2017-08.jsonl.gz" - config_name: 2017-09 data_files: "files/2017-09.jsonl.gz" - config_name: 2017-10 data_files: "files/2017-10.jsonl.gz" - config_name: 2017-11 data_files: "files/2017-11.jsonl.gz" - config_name: 2017-12 data_files: "files/2017-12.jsonl.gz" - config_name: 2018-01 data_files: "files/2018-01.jsonl.gz" - config_name: 2018-02 data_files: "files/2018-02.jsonl.gz" - config_name: 2018-03 data_files: "files/2018-03.jsonl.gz" - config_name: 2018-04 data_files: "files/2018-04.jsonl.gz" - config_name: 2018-05 data_files: "files/2018-05.jsonl.gz" - config_name: 2018-06 data_files: "files/2018-06.jsonl.gz" - config_name: 2018-07 data_files: "files/2018-07.jsonl.gz" - config_name: 2018-08 data_files: "files/2018-08.jsonl.gz" - config_name: 2018-09 data_files: "files/2018-09.jsonl.gz" - config_name: 2018-10 data_files: "files/2018-10.jsonl.gz" - config_name: 2018-11 data_files: "files/2018-11.jsonl.gz" - config_name: 2018-12 data_files: "files/2018-12.jsonl.gz" - config_name: 2019-01 data_files: "files/2019-01.jsonl.gz" - config_name: 2019-02 data_files: "files/2019-02.jsonl.gz" - config_name: 2019-03 data_files: "files/2019-03.jsonl.gz" - config_name: 2019-04 data_files: "files/2019-04.jsonl.gz" - config_name: 2019-05 data_files: "files/2019-05.jsonl.gz" - config_name: 2019-06 data_files: "files/2019-06.jsonl.gz" - config_name: 2019-07 data_files: "files/2019-07.jsonl.gz" - config_name: 2019-08 data_files: "files/2019-08.jsonl.gz" - config_name: 2019-09 data_files: "files/2019-09.jsonl.gz" - config_name: 2019-10 data_files: "files/2019-10.jsonl.gz" - config_name: 2019-11 data_files: "files/2019-11.jsonl.gz" - config_name: 2019-12 data_files: "files/2019-12.jsonl.gz" - config_name: 2020-01 data_files: "files/2020-01.jsonl.gz" - config_name: 2020-02 data_files: "files/2020-02.jsonl.gz" - config_name: 2020-03 data_files: "files/2020-03.jsonl.gz" - config_name: 2020-04 data_files: "files/2020-04.jsonl.gz" - config_name: 2020-05 data_files: "files/2020-05.jsonl.gz" - config_name: 2020-06 data_files: "files/2020-06.jsonl.gz" - config_name: 2020-07 data_files: "files/2020-07.jsonl.gz" - config_name: 2020-08 data_files: "files/2020-08.jsonl.gz" - config_name: 2020-09 data_files: "files/2020-09.jsonl.gz" - config_name: 2020-10 data_files: "files/2020-10.jsonl.gz" - config_name: 2020-11 data_files: "files/2020-11.jsonl.gz" - config_name: 2020-12 data_files: "files/2020-12.jsonl.gz" - config_name: 2021-01 data_files: "files/2021-01.jsonl.gz" - config_name: 2021-02 data_files: "files/2021-02.jsonl.gz" - config_name: 2021-03 data_files: "files/2021-03.jsonl.gz" - config_name: 2021-04 data_files: "files/2021-04.jsonl.gz" - config_name: 2021-05 data_files: "files/2021-05.jsonl.gz" - config_name: 2021-06 data_files: "files/2021-06.jsonl.gz" - config_name: 2021-07 data_files: "files/2021-07.jsonl.gz" - config_name: 2021-08 data_files: "files/2021-08.jsonl.gz" - config_name: 2021-09 data_files: "files/2021-09.jsonl.gz" - config_name: 2021-10 data_files: "files/2021-10.jsonl.gz" - config_name: 2021-11 data_files: "files/2021-11.jsonl.gz" - config_name: 2021-12 data_files: "files/2021-12.jsonl.gz" - config_name: 2022-01 data_files: "files/2022-01.jsonl.gz" - config_name: 2022-02 data_files: "files/2022-02.jsonl.gz" - config_name: 2022-03 data_files: "files/2022-03.jsonl.gz" - config_name: 2022-04 data_files: "files/2022-04.jsonl.gz" - config_name: 2022-05 data_files: "files/2022-05.jsonl.gz" - config_name: 2022-06 data_files: "files/2022-06.jsonl.gz" - config_name: 2022-07 data_files: "files/2022-07.jsonl.gz" - config_name: 2022-08 data_files: "files/2022-08.jsonl.gz" - config_name: 2022-09 data_files: "files/2022-09.jsonl.gz" - config_name: 2022-10 data_files: "files/2022-10.jsonl.gz" - config_name: 2022-11 data_files: "files/2022-11.jsonl.gz" - config_name: 2022-12 data_files: "files/2022-12.jsonl.gz" - config_name: 2023-01 data_files: "files/2023-01.jsonl.gz" - config_name: 2023-02 data_files: "files/2023-02.jsonl.gz" - config_name: 2023-03 data_files: "files/2023-03.jsonl.gz" - config_name: 2023-04 data_files: "files/2023-04.jsonl.gz" - config_name: 2023-05 data_files: "files/2023-05.jsonl.gz" - config_name: 2023-06 data_files: "files/2023-06.jsonl.gz" - config_name: 2023-07 data_files: "files/2023-07.jsonl.gz" - config_name: 2023-08 data_files: "files/2023-08.jsonl.gz" - config_name: 2023-09 data_files: "files/2023-09.jsonl.gz" - config_name: 2023-10 data_files: "files/2023-10.jsonl.gz" - config_name: 2023-11 data_files: "files/2023-11.jsonl.gz" - config_name: 2023-12 data_files: "files/2023-12.jsonl.gz" --- # 🇪🇺 🏷️ EuroVoc dataset This dataset contains more that 3,700,000 documents in 39 languages with associated EuroVoc labels. ## What's Cellar ? Cellar is the common data repository of the Publications Office of the European Union. Digital publications and metadata are stored in and disseminated via Cellar, in order to be used by humans and machines. Aiming to transparently serve users, Cellar stores multilingual publications and metadata, it is open to all EU citizens and provides machine-readable data. https://op.europa.eu/fr/web/cellar ## Why was this dataset created ? "Extreme classification come with challenges of scalability due to large label spaces, data sparsity issues due to insufficient training samples." https://medium.com/datapy-ai/extreme-multi-label-classification-for-eurovoc-b51d74623820 ## How was dataset this created ? The source code is available, check `cellar.py` ## When this dataset was created ? 14 July 2023 ## What are the main characteristics of this dataset ? There are a total of 39 different languages present in this dataset, of which some are EU languages and some are not. As the following graph illustrates, most of the documents of the dataset are written in EU languages (English being the most present language in the dataset), and the non-EU languages are very poorly represented (for example Arabic, Japanese,...). Note that since the Irish language (`gle`) was granted full official and working status in the EU in 2022, there are very few documents in that language. Additionally, Croatian (`hrv`) is also less represented in the dataset as Croatia is the latest country to have joined the EU in 2013. ![language graph](images/nb_documents.png) The lengths of the documents also varies depending on the language it is written in. The document lengths are quite variable, especially in English. There is therefore a quite large disparity in document lengths in this dataset. Note that this boxplot does not present the outliers, since the length of certain documents can contain up to 86 million characters. The red lines in the boxplot indicates the median length of the documents for each language. ![boxplot](images/boxplot.png) We notice that the documents in Irish have a very wide variability in document lengths, due to the fact it has very few documents. Therefore, we present the same boxplot without the Irish language in order to visualize with more detail the document length distribution in the other languages. ![boxplot](images/boxplot2.png) ## How is the data structured ? An example of a sample of this dataset is the following : ```json { "title": "Commission information notice...", "date": "2023-09-29", "eurovoc_concepts": ["air transport", "intra-EU transport"], "url": "http://publications.europa.eu/resource/cellar/ec99987f-5e69-11ee-9220-01aa75ed71a1", "lang": "eng", "formats": ["fmx4", "pdfa2a", "xhtml"], "text": "To ensure ownership by the relevant actors,..." } ``` - `title` : title of the document - `date` : publication date of the document - `eurovoc_concepts` : list of the EuroVoc concepts related to this document - `url` : URL to access the document - `formats` : list of formats in which the original document is available - `text` : text content of the document ## Bibliography - Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos. 2019. Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation. In Proceedings of the Natural Legal Language Processing Workshop 2019, pages 78–87, Minneapolis, Minnesota. Association for Computational Linguistics. - I. Chalkidis, M. Fergadiotis, P. Malakasiotis and I. Androutsopoulos, Large-Scale Multi-Label Text Classification on EU Legislation. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, (short papers), 2019. - Andrei-Marius Avram, Vasile Pais, and Dan Ioan Tufis. 2021. PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 92–101, Held Online. INCOMA Ltd.. - SHAHEEN, Zein, WOHLGENANNT, Gerhard, et FILTZ, Erwin. Large scale legal text classification using transformer models. arXiv preprint arXiv:2010.12871, 2020. ## Author(s) Sébastien Campion <[email protected]>
agkphysics/AudioSet
agkphysics
"2024-02-03T12:09:42Z"
10,977
35
[ "task_categories:audio-classification", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "modality:audio", "region:us", "audio" ]
[ "audio-classification" ]
"2023-06-14T08:17:23Z"
--- language: - en license: cc-by-4.0 size_categories: - 10K<n<100K - 1M<n<10M source_datasets: - original task_categories: - audio-classification paperswithcode_id: audioset pretty_name: AudioSet config_names: - balanced - unbalanced tags: - audio dataset_info: - config_name: balanced features: - name: video_id dtype: string - name: audio dtype: audio - name: labels sequence: string - name: human_labels sequence: string splits: - name: train num_bytes: 26016210987 num_examples: 18685 - name: test num_bytes: 23763682278 num_examples: 17142 download_size: 49805654900 dataset_size: 49779893265 - config_name: unbalanced features: - name: video_id dtype: string - name: audio dtype: audio - name: labels sequence: string - name: human_labels sequence: string splits: - name: train num_bytes: 2408656417541 num_examples: 1738788 - name: test num_bytes: 23763682278 num_examples: 17142 download_size: 2433673104977 dataset_size: 2432420099819 --- # Dataset Card for AudioSet ## Dataset Description - **Homepage**: https://research.google.com/audioset/index.html - **Paper**: https://storage.googleapis.com/gweb-research2023-media/pubtools/pdf/45857.pdf - **Leaderboard**: https://paperswithcode.com/sota/audio-classification-on-audioset ### Dataset Summary [AudioSet](https://research.google.com/audioset/dataset/index.html) is a dataset of 10-second clips from YouTube, annotated into one or more sound categories, following the AudioSet ontology. ### Supported Tasks and Leaderboards - `audio-classification`: Classify audio clips into categories. The leaderboard is available [here](https://paperswithcode.com/sota/audio-classification-on-audioset) ### Languages The class labels in the dataset are in English. ## Dataset Structure ### Data Instances Example instance from the dataset: ```python { 'video_id': '--PJHxphWEs', 'audio': { 'path': 'audio/bal_train/--PJHxphWEs.flac', 'array': array([-0.04364824, -0.05268681, -0.0568949 , ..., 0.11446512, 0.14912748, 0.13409865]), 'sampling_rate': 48000 }, 'labels': ['/m/09x0r', '/t/dd00088'], 'human_labels': ['Speech', 'Gush'] } ``` ### Data Fields Instances have the following fields: - `video_id`: a `string` feature containing the original YouTube ID. - `audio`: an `Audio` feature containing the audio data and sample rate. - `labels`: a sequence of `string` features containing the labels associated with the audio clip. - `human_labels`: a sequence of `string` features containing the human-readable forms of the same labels as in `labels`. ### Data Splits The distribuion of audio clips is as follows: #### `balanced` configuration | |train|test | |-----------|----:|----:| |# instances|18685|17142| #### `unbalanced` configuration | |train |test | |-----------|------:|----:| |# instances|1738788|17142| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? The labels are from the AudioSet ontology. Audio clips are from YouTube. ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations 1. The YouTube videos in this copy of AudioSet were downloaded in March 2023, so not all of the original audios are available. The number of clips able to be downloaded is as follows: - Balanced train: 18685 audio clips out of 22160 originally. - Unbalanced train: 1738788 clips out of 2041789 originally. - Evaluation: 17142 audio clips out of 20371 originally. 2. Most audio is sampled at 48 kHz 24 bit, but about 10% is sampled at 44.1 kHz 24 bit. Audio files are stored in the FLAC format. ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information The AudioSet data is licensed under CC-BY-4.0 ## Citation ```bibtex @inproceedings{jort_audioset_2017, title = {Audio Set: An ontology and human-labeled dataset for audio events}, author = {Jort F. Gemmeke and Daniel P. W. Ellis and Dylan Freedman and Aren Jansen and Wade Lawrence and R. Channing Moore and Manoj Plakal and Marvin Ritter}, year = {2017}, booktitle = {Proc. IEEE ICASSP 2017}, address = {New Orleans, LA} } ```
bigscience/xP3mt
bigscience
"2023-05-30T15:50:57Z"
10,968
23
[ "task_categories:other", "annotations_creators:expert-generated", "annotations_creators:crowdsourced", "multilinguality:multilingual", "language:ak", "language:ar", "language:as", "language:bm", "language:bn", "language:ca", "language:code", "language:en", "language:es", "language:eu", "language:fon", "language:fr", "language:gu", "language:hi", "language:id", "language:ig", "language:ki", "language:kn", "language:lg", "language:ln", "language:ml", "language:mr", "language:ne", "language:nso", "language:ny", "language:or", "language:pa", "language:pt", "language:rn", "language:rw", "language:sn", "language:st", "language:sw", "language:ta", "language:te", "language:tn", "language:ts", "language:tum", "language:tw", "language:ur", "language:vi", "language:wo", "language:xh", "language:yo", "language:zh", "language:zu", "license:apache-2.0", "size_categories:10M<n<100M", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2211.01786", "region:us" ]
[ "other" ]
"2022-09-28T12:36:00Z"
--- annotations_creators: - expert-generated - crowdsourced language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript license: - apache-2.0 multilinguality: - multilingual pretty_name: xP3 size_categories: - 100M<n<1B task_categories: - other --- # Dataset Card for xP3 ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** https://github.com/bigscience-workshop/xmtf - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected]) ### Dataset Summary > xP3 (Crosslingual Public Pool of Prompts) is a collection of prompts & datasets across 46 of languages & 16 NLP tasks. It is used for the training of BLOOMZ and mT0, multilingual language models capable of following human instructions in dozens of languages zero-shot. - **Creation:** The dataset can be recreated using instructions available [here](https://github.com/bigscience-workshop/xmtf#create-xp3). We provide this version to save processing time and ease reproducibility. - **Languages:** 46 (Can be extended by [recreating with more splits](https://github.com/bigscience-workshop/xmtf#create-xp3)) - **xP3 Dataset Family:** <table> <tr> <th>Name</th> <th>Explanation</th> <th>Example models</th> </tr> <tr> <td><a href=https://huggingface.co/datasets/Muennighoff/xP3x>xP3x</a></t> <td>Mixture of 17 tasks in 277 languages with English prompts</td> <td>WIP - Join us at Project Aya @<a href=https://cohere.for.ai/>C4AI</a> to help!</td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3>xP3</a></t> <td>Mixture of 13 training tasks in 46 languages with English prompts</td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a> & <a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a></t> <td>Mixture of 13 training tasks in 46 languages with prompts in 20 languages (machine-translated from English)</td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a> & <a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3all>xP3all</a></t> <td>xP3 + evaluation datasets adding an additional 3 tasks for a total of 16 tasks in 46 languages with English prompts</td> <td></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/bigscience/xP3megds>xP3megds</a></t> <td><a href=https://github.com/bigscience-workshop/Megatron-DeepSpeed>Megatron-DeepSpeed</a> processed version of xP3</td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> <tr> <td><a href=https://huggingface.co/datasets/Muennighoff/P3>P3</a></t> <td>Repreprocessed version of the English-only <a href=https://huggingface.co/datasets/bigscience/P3>P3</a> with 8 training tasks</td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a> & <a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> </tr> </table> ## Dataset Structure ### Data Instances An example of "train" looks as follows: ```json { "inputs": "Oración 1: Fue académico en literatura metafísica, teología y ciencias clásicas.\Oración 2: Fue académico en literatura metafísica, teología y ciencia clásica.\nPregunta: ¿La oración 1 parafrasea la oración 2? ¿Si o no?", "targets": "Sí" } ``` ### Data Fields The data fields are the same among all splits: - `inputs`: the natural language input fed to the model - `targets`: the natural language target that the model has to generate ### Data Splits The below table summarizes sizes per language (computed from the `merged_{lang}.jsonl` files). Due to languages like `tw` only being single sentence translation samples from Flores, their byte percentage is significantly lower than their sample percentage. We machine-translated prompts for monolingual datasets, thus languages with only crosslingual datasets (e.g. Translation) do not have non-English prompts. Languages without non-English prompts are equivalent to [xP3](https://huggingface.co/datasets/bigscience/xP3). |Language|Kilobytes|%|Samples|%|Non-English prompts| |--------|------:|-:|---:|-:|-:| |tw|106288|0.11|265071|0.33| | |bm|107056|0.11|265180|0.33| | |ak|108096|0.11|265071|0.33| | |ca|110608|0.11|271191|0.34| | |eu|113008|0.12|281199|0.35| | |fon|113072|0.12|265063|0.33| | |st|114080|0.12|265063|0.33| | |ki|115040|0.12|265180|0.33| | |tum|116032|0.12|265063|0.33| | |wo|122560|0.13|365063|0.46| | |ln|126304|0.13|365060|0.46| | |as|156256|0.16|265063|0.33| | |or|161472|0.17|265063|0.33| | |kn|165456|0.17|265063|0.33| | |ml|175040|0.18|265864|0.33| | |rn|192992|0.2|318189|0.4| | |nso|229712|0.24|915051|1.14| | |tn|235536|0.24|915054|1.14| | |lg|235936|0.24|915021|1.14| | |rw|249360|0.26|915043|1.14| | |ts|250256|0.26|915044|1.14| | |sn|252496|0.26|865056|1.08| | |xh|254672|0.26|915058|1.14| | |zu|263712|0.27|915061|1.14| | |ny|272128|0.28|915063|1.14| | |ig|325440|0.33|950097|1.19|✅| |yo|339664|0.35|913021|1.14|✅| |ne|398144|0.41|315754|0.39|✅| |pa|529632|0.55|339210|0.42|✅| |sw|561392|0.58|1114439|1.39|✅| |gu|566576|0.58|347499|0.43|✅| |mr|674000|0.69|417269|0.52|✅| |bn|854864|0.88|428725|0.54|✅| |ta|943440|0.97|410633|0.51|✅| |te|1384016|1.42|573354|0.72|✅| |ur|1944416|2.0|855756|1.07|✅| |vi|3113184|3.2|1667306|2.08|✅| |code|4330752|4.46|2707724|3.38| | |hi|4469712|4.6|1543441|1.93|✅| |id|4538768|4.67|2582272|3.22|✅| |zh|4604112|4.74|3571636|4.46|✅| |ar|4703968|4.84|2148970|2.68|✅| |fr|5558912|5.72|5055942|6.31|✅| |pt|6130016|6.31|3562772|4.45|✅| |es|7579424|7.8|5151349|6.43|✅| |en|39252528|40.4|32740750|40.87| | |total|97150128|100.0|80100816|100.0|✅| ## Dataset Creation ### Source Data #### Training datasets - Code Miscellaneous - [CodeComplex](https://huggingface.co/datasets/codeparrot/codecomplex) - [Docstring Corpus](https://huggingface.co/datasets/teven/code_docstring_corpus) - [GreatCode](https://huggingface.co/datasets/great_code) - [State Changes](https://huggingface.co/datasets/Fraser/python-state-changes) - Closed-book QA - [Hotpot QA](https://huggingface.co/datasets/hotpot_qa) - [Trivia QA](https://huggingface.co/datasets/trivia_qa) - [Web Questions](https://huggingface.co/datasets/web_questions) - [Wiki QA](https://huggingface.co/datasets/wiki_qa) - Extractive QA - [Adversarial QA](https://huggingface.co/datasets/adversarial_qa) - [CMRC2018](https://huggingface.co/datasets/cmrc2018) - [DRCD](https://huggingface.co/datasets/clue) - [DuoRC](https://huggingface.co/datasets/duorc) - [MLQA](https://huggingface.co/datasets/mlqa) - [Quoref](https://huggingface.co/datasets/quoref) - [ReCoRD](https://huggingface.co/datasets/super_glue) - [ROPES](https://huggingface.co/datasets/ropes) - [SQuAD v2](https://huggingface.co/datasets/squad_v2) - [xQuAD](https://huggingface.co/datasets/xquad) - TyDI QA - [Primary](https://huggingface.co/datasets/khalidalt/tydiqa-primary) - [Goldp](https://huggingface.co/datasets/khalidalt/tydiqa-goldp) - Multiple-Choice QA - [ARC](https://huggingface.co/datasets/ai2_arc) - [C3](https://huggingface.co/datasets/c3) - [CoS-E](https://huggingface.co/datasets/cos_e) - [Cosmos](https://huggingface.co/datasets/cosmos) - [DREAM](https://huggingface.co/datasets/dream) - [MultiRC](https://huggingface.co/datasets/super_glue) - [OpenBookQA](https://huggingface.co/datasets/openbookqa) - [PiQA](https://huggingface.co/datasets/piqa) - [QUAIL](https://huggingface.co/datasets/quail) - [QuaRel](https://huggingface.co/datasets/quarel) - [QuaRTz](https://huggingface.co/datasets/quartz) - [QASC](https://huggingface.co/datasets/qasc) - [RACE](https://huggingface.co/datasets/race) - [SciQ](https://huggingface.co/datasets/sciq) - [Social IQA](https://huggingface.co/datasets/social_i_qa) - [Wiki Hop](https://huggingface.co/datasets/wiki_hop) - [WiQA](https://huggingface.co/datasets/wiqa) - Paraphrase Identification - [MRPC](https://huggingface.co/datasets/super_glue) - [PAWS](https://huggingface.co/datasets/paws) - [PAWS-X](https://huggingface.co/datasets/paws-x) - [QQP](https://huggingface.co/datasets/qqp) - Program Synthesis - [APPS](https://huggingface.co/datasets/codeparrot/apps) - [CodeContests](https://huggingface.co/datasets/teven/code_contests) - [JupyterCodePairs](https://huggingface.co/datasets/codeparrot/github-jupyter-text-code-pairs) - [MBPP](https://huggingface.co/datasets/Muennighoff/mbpp) - [NeuralCodeSearch](https://huggingface.co/datasets/neural_code_search) - [XLCoST](https://huggingface.co/datasets/codeparrot/xlcost-text-to-code) - Structure-to-text - [Common Gen](https://huggingface.co/datasets/common_gen) - [Wiki Bio](https://huggingface.co/datasets/wiki_bio) - Sentiment - [Amazon](https://huggingface.co/datasets/amazon_polarity) - [App Reviews](https://huggingface.co/datasets/app_reviews) - [IMDB](https://huggingface.co/datasets/imdb) - [Rotten Tomatoes](https://huggingface.co/datasets/rotten_tomatoes) - [Yelp](https://huggingface.co/datasets/yelp_review_full) - Simplification - [BiSECT](https://huggingface.co/datasets/GEM/BiSECT) - Summarization - [CNN Daily Mail](https://huggingface.co/datasets/cnn_dailymail) - [Gigaword](https://huggingface.co/datasets/gigaword) - [MultiNews](https://huggingface.co/datasets/multi_news) - [SamSum](https://huggingface.co/datasets/samsum) - [Wiki-Lingua](https://huggingface.co/datasets/GEM/wiki_lingua) - [XLSum](https://huggingface.co/datasets/GEM/xlsum) - [XSum](https://huggingface.co/datasets/xsum) - Topic Classification - [AG News](https://huggingface.co/datasets/ag_news) - [DBPedia](https://huggingface.co/datasets/dbpedia_14) - [TNEWS](https://huggingface.co/datasets/clue) - [TREC](https://huggingface.co/datasets/trec) - [CSL](https://huggingface.co/datasets/clue) - Translation - [Flores-200](https://huggingface.co/datasets/Muennighoff/flores200) - [Tatoeba](https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt) - Word Sense disambiguation - [WiC](https://huggingface.co/datasets/super_glue) - [XL-WiC](https://huggingface.co/datasets/pasinit/xlwic) #### Evaluation datasets (included in [xP3all](https://huggingface.co/datasets/bigscience/xP3all) except for NLI & HumanEval) - Natural Language Inference (NLI) - [ANLI](https://huggingface.co/datasets/anli) - [CB](https://huggingface.co/datasets/super_glue) - [RTE](https://huggingface.co/datasets/super_glue) - [XNLI](https://huggingface.co/datasets/xnli) - Coreference Resolution - [Winogrande](https://huggingface.co/datasets/winogrande) - [XWinograd](https://huggingface.co/datasets/Muennighoff/xwinograd) - Program Synthesis - [HumanEval](https://huggingface.co/datasets/openai_humaneval) - Sentence Completion - [COPA](https://huggingface.co/datasets/super_glue) - [Story Cloze](https://huggingface.co/datasets/story_cloze) - [XCOPA](https://huggingface.co/datasets/xcopa) - [XStoryCloze](https://huggingface.co/datasets/Muennighoff/xstory_cloze) ## Additional Information ### Licensing Information The dataset is released under Apache 2.0. ### Citation Information ```bibtex @misc{muennighoff2022crosslingual, title={Crosslingual Generalization through Multitask Finetuning}, author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel}, year={2022}, eprint={2211.01786}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Contributions Thanks to the contributors of [promptsource](https://github.com/bigscience-workshop/promptsource/graphs/contributors) for adding many prompts used in this dataset.
rayliuca/WikidataLabels
rayliuca
"2024-01-11T04:17:57Z"
10,892
1
[ "task_categories:translation", "task_categories:text2text-generation", "language:en", "language:fr", "language:de", "language:ja", "language:zh", "language:hi", "language:ar", "language:bn", "language:ru", "language:es", "license:cc0-1.0", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "translation", "text2text-generation" ]
"2024-01-01T00:23:08Z"
--- license: cc0-1.0 dataset_info: - config_name: aa features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13986211 num_examples: 436895 download_size: 9821312 dataset_size: 13986211 - config_name: ab features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5012532 num_examples: 159908 download_size: 3013706 dataset_size: 5012532 - config_name: abs features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4252728 num_examples: 143986 download_size: 2567450 dataset_size: 4252728 - config_name: ace features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 19105673 num_examples: 574712 download_size: 13573374 dataset_size: 19105673 - config_name: ady features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4444259 num_examples: 148627 download_size: 2705754 dataset_size: 4444259 - config_name: ady-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4412556 num_examples: 147884 download_size: 2682170 dataset_size: 4412556 - config_name: aeb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4305734 num_examples: 145198 download_size: 2606368 dataset_size: 4305734 - config_name: aeb-arab features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4467930 num_examples: 148796 download_size: 2722169 dataset_size: 4467930 - config_name: aeb-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12770359 num_examples: 404946 download_size: 8886489 dataset_size: 12770359 - config_name: af features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 58561042 num_examples: 1643153 download_size: 42539052 dataset_size: 58561042 - config_name: agq features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 1317 num_examples: 33 download_size: 2906 dataset_size: 1317 - config_name: ak features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14198715 num_examples: 443037 download_size: 9991525 dataset_size: 14198715 - config_name: aln features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13811116 num_examples: 432089 download_size: 9673418 dataset_size: 13811116 - config_name: als features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20691 num_examples: 543 download_size: 17540 dataset_size: 20691 - config_name: alt features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 108390 num_examples: 1814 download_size: 59046 dataset_size: 108390 - config_name: am features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5231176 num_examples: 163038 download_size: 3187164 dataset_size: 5231176 - config_name: ami features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 21519 num_examples: 686 download_size: 16640 dataset_size: 21519 - config_name: an features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 240345072 num_examples: 5921087 download_size: 164895205 dataset_size: 240345072 - config_name: ang features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14275715 num_examples: 443461 download_size: 10063758 dataset_size: 14275715 - config_name: anp features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8558258 num_examples: 241612 download_size: 4381360 dataset_size: 8558258 - config_name: ar features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 291173732 num_examples: 5724064 download_size: 159369497 dataset_size: 291173732 - config_name: arc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4473283 num_examples: 150006 download_size: 2722619 dataset_size: 4473283 - config_name: arn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13879729 num_examples: 433912 download_size: 9715431 dataset_size: 13879729 - config_name: arq features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4346991 num_examples: 146004 download_size: 2636972 dataset_size: 4346991 - config_name: ary features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5358568 num_examples: 171568 download_size: 3313402 dataset_size: 5358568 - config_name: arz features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 81806333 num_examples: 1669699 download_size: 49423508 dataset_size: 81806333 - config_name: as features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 21658610 num_examples: 450074 download_size: 9641626 dataset_size: 21658610 - config_name: ase features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4252943 num_examples: 143986 download_size: 2568106 dataset_size: 4252943 - config_name: ast features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 1385628786 num_examples: 20696237 download_size: 955908362 dataset_size: 1385628786 - config_name: atj features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12996229 num_examples: 411639 download_size: 9057557 dataset_size: 12996229 - config_name: av features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4722934 num_examples: 153781 download_size: 2880103 dataset_size: 4722934 - config_name: avk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13194485 num_examples: 414598 download_size: 9200917 dataset_size: 13194485 - config_name: awa features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8599312 num_examples: 242320 download_size: 4411751 dataset_size: 8599312 - config_name: ay features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14269432 num_examples: 443521 download_size: 10029939 dataset_size: 14269432 - config_name: az features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 21049248 num_examples: 516732 download_size: 14117527 dataset_size: 21049248 - config_name: azb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 30781587 num_examples: 607562 download_size: 16028687 dataset_size: 30781587 - config_name: ba features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 11525351 num_examples: 261509 download_size: 6733777 dataset_size: 11525351 - config_name: ban features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13674052 num_examples: 426706 download_size: 9513747 dataset_size: 13674052 - config_name: ban-bali features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 50961 num_examples: 748 download_size: 25817 dataset_size: 50961 - config_name: bar features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 54783034 num_examples: 1566120 download_size: 40389830 dataset_size: 54783034 - config_name: bbc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12820895 num_examples: 406960 download_size: 8917054 dataset_size: 12820895 - config_name: bcc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8017228 num_examples: 241977 download_size: 4344579 dataset_size: 8017228 - config_name: be features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 30978832 num_examples: 564184 download_size: 17461174 dataset_size: 30978832 - config_name: be-tarask features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 18931909 num_examples: 374396 download_size: 10871239 dataset_size: 18931909 - config_name: bg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 200628708 num_examples: 4383953 download_size: 137745533 dataset_size: 200628708 - config_name: bgn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 7999280 num_examples: 241566 download_size: 4331249 dataset_size: 7999280 - config_name: bi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14040026 num_examples: 438382 download_size: 9867032 dataset_size: 14040026 - config_name: bjn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8375348 num_examples: 254558 download_size: 5722334 dataset_size: 8375348 - config_name: bm features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 18145787 num_examples: 549694 download_size: 13129193 dataset_size: 18145787 - config_name: bn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 815803977 num_examples: 9767284 download_size: 261147329 dataset_size: 815803977 - config_name: bo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 11671330 num_examples: 278307 download_size: 5669602 dataset_size: 11671330 - config_name: bpy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15497749 num_examples: 347458 download_size: 6991190 dataset_size: 15497749 - config_name: bqi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8017455 num_examples: 241984 download_size: 4345123 dataset_size: 8017455 - config_name: br features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 58304963 num_examples: 1653800 download_size: 42722031 dataset_size: 58304963 - config_name: brh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5328437 num_examples: 171504 download_size: 3376189 dataset_size: 5328437 - config_name: bs features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 30441466 num_examples: 858190 download_size: 21606575 dataset_size: 30441466 - config_name: btm features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4252525 num_examples: 143980 download_size: 2567218 dataset_size: 4252525 - config_name: bto features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12841721 num_examples: 407470 download_size: 8934218 dataset_size: 12841721 - config_name: bug features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 7595464 num_examples: 235268 download_size: 5129941 dataset_size: 7595464 - config_name: bxr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4713699 num_examples: 153707 download_size: 2869313 dataset_size: 4713699 - config_name: ca features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 408509932 num_examples: 9936886 download_size: 288474980 dataset_size: 408509932 - config_name: cbk-zam features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14108232 num_examples: 440345 download_size: 9920793 dataset_size: 14108232 - config_name: cdo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 6503254 num_examples: 201362 download_size: 4137841 dataset_size: 6503254 - config_name: ce features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 28093148 num_examples: 607767 download_size: 16367596 dataset_size: 28093148 - config_name: ceb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 332947091 num_examples: 7769402 download_size: 219525737 dataset_size: 332947091 - config_name: ch features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13983906 num_examples: 436785 download_size: 9817385 dataset_size: 13983906 - config_name: cho features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13950786 num_examples: 435869 download_size: 9791296 dataset_size: 13950786 - config_name: chr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5386793 num_examples: 172855 download_size: 3419676 dataset_size: 5386793 - config_name: chy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13994916 num_examples: 437007 download_size: 9830465 dataset_size: 13994916 - config_name: ckb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 23343034 num_examples: 511183 download_size: 11459344 dataset_size: 23343034 - config_name: co features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 47080480 num_examples: 1346929 download_size: 34551346 dataset_size: 47080480 - config_name: cps features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12849864 num_examples: 407695 download_size: 8941921 dataset_size: 12849864 - config_name: cr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5516556 num_examples: 176667 download_size: 3532952 dataset_size: 5516556 - config_name: crh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 10864382 num_examples: 336709 download_size: 7542853 dataset_size: 10864382 - config_name: crh-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4419064 num_examples: 148046 download_size: 2688683 dataset_size: 4419064 - config_name: crh-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14201429 num_examples: 442905 download_size: 9986290 dataset_size: 14201429 - config_name: cs features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 140189244 num_examples: 3384048 download_size: 97516751 dataset_size: 140189244 - config_name: csb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20177120 num_examples: 619275 download_size: 14528772 dataset_size: 20177120 - config_name: cv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8047221 num_examples: 215611 download_size: 4857718 dataset_size: 8047221 - config_name: cy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 89241808 num_examples: 2244550 download_size: 62686006 dataset_size: 89241808 - config_name: da features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 130931077 num_examples: 3448894 download_size: 98202417 dataset_size: 130931077 - config_name: dag features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 2664957 num_examples: 78534 download_size: 2052615 dataset_size: 2664957 - config_name: de features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 765398522 num_examples: 17531361 download_size: 527642124 dataset_size: 765398522 - config_name: de-at features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 53043722 num_examples: 1515373 download_size: 38761571 dataset_size: 53043722 - config_name: de-ch features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 53480908 num_examples: 1528137 download_size: 39349412 dataset_size: 53480908 - config_name: de-formal features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4256391 num_examples: 144061 download_size: 2571862 dataset_size: 4256391 - config_name: din features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12819746 num_examples: 406591 download_size: 8922303 dataset_size: 12819746 - config_name: diq features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 7570161 num_examples: 232674 download_size: 5057742 dataset_size: 7570161 - config_name: dsb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16135830 num_examples: 491423 download_size: 11412316 dataset_size: 16135830 - config_name: dtp features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13867373 num_examples: 433733 download_size: 9720699 dataset_size: 13867373 - config_name: dty features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8839082 num_examples: 246026 download_size: 4551845 dataset_size: 8839082 - config_name: dua features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 2631 num_examples: 87 download_size: 3877 dataset_size: 2631 - config_name: dv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 81396462 num_examples: 2103276 download_size: 45332104 dataset_size: 81396462 - config_name: dz features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8590239 num_examples: 242196 download_size: 4406353 dataset_size: 8590239 - config_name: ee features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14377017 num_examples: 447208 download_size: 10136064 dataset_size: 14377017 - config_name: egl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13068224 num_examples: 413551 download_size: 9121776 dataset_size: 13068224 - config_name: el features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 32978562 num_examples: 592016 download_size: 19577876 dataset_size: 32978562 - config_name: eml features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14768563 num_examples: 458847 download_size: 10453636 dataset_size: 14768563 - config_name: en features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 6327454281 num_examples: 81801560 download_size: 4224231068 dataset_size: 6327454281 - config_name: en-ca features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 73305274 num_examples: 1909970 download_size: 53060194 dataset_size: 73305274 - config_name: en-gb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 115978412 num_examples: 2520405 download_size: 78924421 dataset_size: 115978412 - config_name: en-us features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14815 num_examples: 332 download_size: 9953 dataset_size: 14815 - config_name: eo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 256196064 num_examples: 6285304 download_size: 177219679 dataset_size: 256196064 - config_name: es features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 730214298 num_examples: 17233968 download_size: 514588069 dataset_size: 730214298 - config_name: es-419 features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4355180 num_examples: 146476 download_size: 2659218 dataset_size: 4355180 - config_name: es-formal features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4280933 num_examples: 144717 download_size: 2592085 dataset_size: 4280933 - config_name: et features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 65123623 num_examples: 1820762 download_size: 48197302 dataset_size: 65123623 - config_name: eu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 290282374 num_examples: 7109758 download_size: 197889378 dataset_size: 290282374 - config_name: ext features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 223257222 num_examples: 5359047 download_size: 147078789 dataset_size: 223257222 - config_name: fa features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 123727757 num_examples: 2142642 download_size: 65952114 dataset_size: 123727757 - config_name: ff features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14116652 num_examples: 440614 download_size: 9920388 dataset_size: 14116652 - config_name: fi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 286539944 num_examples: 6905698 download_size: 209916638 dataset_size: 286539944 - config_name: fit features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20217258 num_examples: 620391 download_size: 14566702 dataset_size: 20217258 - config_name: fj features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14159041 num_examples: 441745 download_size: 9956108 dataset_size: 14159041 - config_name: fkv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4328482 num_examples: 145988 download_size: 2619845 dataset_size: 4328482 - config_name: fo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 24474476 num_examples: 731732 download_size: 17876981 dataset_size: 24474476 - config_name: fr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 774128723 num_examples: 17908351 download_size: 534489308 dataset_size: 774128723 - config_name: frc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 17896106 num_examples: 547258 download_size: 12953740 dataset_size: 17896106 - config_name: frp features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 40902510 num_examples: 1191134 download_size: 29778105 dataset_size: 40902510 - config_name: frr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16979214 num_examples: 515350 download_size: 12069637 dataset_size: 16979214 - config_name: fur features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 42077410 num_examples: 1221071 download_size: 30714082 dataset_size: 42077410 - config_name: ga features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 471527543 num_examples: 11524282 download_size: 320967189 dataset_size: 471527543 - config_name: gag features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14149375 num_examples: 440732 download_size: 9940551 dataset_size: 14149375 - config_name: gan features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 31572161 num_examples: 905186 download_size: 18909564 dataset_size: 31572161 - config_name: gan-hans features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 31004794 num_examples: 889875 download_size: 18566811 dataset_size: 31004794 - config_name: gan-hant features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4374444 num_examples: 147098 download_size: 2657182 dataset_size: 4374444 - config_name: gcr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4311409 num_examples: 145829 download_size: 2618211 dataset_size: 4311409 - config_name: gd features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 49316935 num_examples: 1429457 download_size: 36220978 dataset_size: 49316935 - config_name: gl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 289484839 num_examples: 7052226 download_size: 197315151 dataset_size: 289484839 - config_name: glk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8327018 num_examples: 249115 download_size: 4538325 dataset_size: 8327018 - config_name: gn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14212974 num_examples: 442765 download_size: 10004863 dataset_size: 14212974 - config_name: gom features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4584575 num_examples: 150273 download_size: 2780570 dataset_size: 4584575 - config_name: gom-deva features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8585678 num_examples: 242131 download_size: 4400578 dataset_size: 8585678 - config_name: gom-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12783006 num_examples: 405302 download_size: 8897342 dataset_size: 12783006 - config_name: gor features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14667616 num_examples: 454512 download_size: 10319196 dataset_size: 14667616 - config_name: got features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5432139 num_examples: 172951 download_size: 3435531 dataset_size: 5432139 - config_name: grc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4494817 num_examples: 149631 download_size: 2746170 dataset_size: 4494817 - config_name: gu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 23788894 num_examples: 486140 download_size: 10779200 dataset_size: 23788894 - config_name: guc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 1419 num_examples: 38 download_size: 3054 dataset_size: 1419 - config_name: guw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 118 num_examples: 4 download_size: 1864 dataset_size: 118 - config_name: gv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20683485 num_examples: 631005 download_size: 14894590 dataset_size: 20683485 - config_name: ha features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14716168 num_examples: 455836 download_size: 10421790 dataset_size: 14716168 - config_name: hak features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 6128644 num_examples: 193036 download_size: 3991729 dataset_size: 6128644 - config_name: haw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14158084 num_examples: 441511 download_size: 9952975 dataset_size: 14158084 - config_name: he features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 43629050 num_examples: 884809 download_size: 27221301 dataset_size: 43629050 - config_name: hi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 37237187 num_examples: 668964 download_size: 17804873 dataset_size: 37237187 - config_name: hif features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14457954 num_examples: 449009 download_size: 10166264 dataset_size: 14457954 - config_name: hif-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14519845 num_examples: 454037 download_size: 10240704 dataset_size: 14519845 - config_name: hil features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12928914 num_examples: 409962 download_size: 9009705 dataset_size: 12928914 - config_name: ho features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13950504 num_examples: 435857 download_size: 9790849 dataset_size: 13950504 - config_name: hr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 61272623 num_examples: 1720527 download_size: 45307411 dataset_size: 61272623 - config_name: hrx features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12869295 num_examples: 407823 download_size: 8964114 dataset_size: 12869295 - config_name: hsb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 23720349 num_examples: 707100 download_size: 17145693 dataset_size: 23720349 - config_name: ht features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16835529 num_examples: 509955 download_size: 11880404 dataset_size: 16835529 - config_name: hu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 85054175 num_examples: 2200589 download_size: 64143342 dataset_size: 85054175 - config_name: hu-formal features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4252810 num_examples: 143986 download_size: 2567582 dataset_size: 4252810 - config_name: hy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 39339286 num_examples: 773925 download_size: 22108994 dataset_size: 39339286 - config_name: hyw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5443608 num_examples: 166902 download_size: 3238370 dataset_size: 5443608 - config_name: hz features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13948574 num_examples: 435804 download_size: 9788697 dataset_size: 13948574 - config_name: ia features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 229143237 num_examples: 5616433 download_size: 155877454 dataset_size: 229143237 - config_name: id features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 95220928 num_examples: 2512331 download_size: 69525046 dataset_size: 95220928 - config_name: ie features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 225725262 num_examples: 5533032 download_size: 153371930 dataset_size: 225725262 - config_name: ig features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20109388 num_examples: 617044 download_size: 14475407 dataset_size: 20109388 - config_name: ii features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4310418 num_examples: 145332 download_size: 2609723 dataset_size: 4310418 - config_name: ik features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13989609 num_examples: 436958 download_size: 9823174 dataset_size: 13989609 - config_name: ike-cans features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4352278 num_examples: 146355 download_size: 2645174 dataset_size: 4352278 - config_name: ike-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13851135 num_examples: 432932 download_size: 9714057 dataset_size: 13851135 - config_name: ilo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15955483 num_examples: 480555 download_size: 11141942 dataset_size: 15955483 - config_name: inh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4634360 num_examples: 152226 download_size: 2831580 dataset_size: 4634360 - config_name: io features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 233656822 num_examples: 5757440 download_size: 159720058 dataset_size: 233656822 - config_name: is features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 51679396 num_examples: 1483610 download_size: 37965494 dataset_size: 51679396 - config_name: it features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 536601426 num_examples: 12631487 download_size: 375025347 dataset_size: 536601426 - config_name: iu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5360588 num_examples: 172215 download_size: 3402239 dataset_size: 5360588 - config_name: ja features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 140641579 num_examples: 2917962 download_size: 92145329 dataset_size: 140641579 - config_name: jam features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 18849751 num_examples: 571777 download_size: 13684422 dataset_size: 18849751 - config_name: jbo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14301985 num_examples: 446512 download_size: 9994516 dataset_size: 14301985 - config_name: jv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 27232302 num_examples: 794181 download_size: 19651565 dataset_size: 27232302 - config_name: ka features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 24073345 num_examples: 399546 download_size: 11679979 dataset_size: 24073345 - config_name: kaa features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14082184 num_examples: 439411 download_size: 9902820 dataset_size: 14082184 - config_name: kab features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 18459676 num_examples: 557857 download_size: 13384218 dataset_size: 18459676 - config_name: kbd features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4594409 num_examples: 149733 download_size: 2759503 dataset_size: 4594409 - config_name: kbd-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4417661 num_examples: 148017 download_size: 2687531 dataset_size: 4417661 - config_name: kbp features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12873178 num_examples: 408039 download_size: 8965474 dataset_size: 12873178 - config_name: kea features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12793700 num_examples: 405901 download_size: 8896866 dataset_size: 12793700 - config_name: kg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 40949149 num_examples: 1193499 download_size: 29766747 dataset_size: 40949149 - config_name: khw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4308653 num_examples: 145279 download_size: 2608581 dataset_size: 4308653 - config_name: ki features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14056900 num_examples: 439015 download_size: 9875534 dataset_size: 14056900 - config_name: kj features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13881723 num_examples: 433861 download_size: 9733715 dataset_size: 13881723 - config_name: kjp features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8504302 num_examples: 240339 download_size: 4341523 dataset_size: 8504302 - config_name: kk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 19216115 num_examples: 428880 download_size: 11577682 dataset_size: 19216115 - config_name: kk-arab features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 7241749 num_examples: 211731 download_size: 4487032 dataset_size: 7241749 - config_name: kk-kz features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4937945 num_examples: 160027 download_size: 3062906 dataset_size: 4937945 - config_name: kk-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 22197825 num_examples: 677162 download_size: 16072332 dataset_size: 22197825 - config_name: kk-tr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20060635 num_examples: 616521 download_size: 14438929 dataset_size: 20060635 - config_name: ko features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 60335212 num_examples: 1364440 download_size: 39186630 dataset_size: 60335212 - config_name: ko-kp features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4338717 num_examples: 146150 download_size: 2630925 dataset_size: 4338717 - config_name: koi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4737590 num_examples: 155082 download_size: 2894674 dataset_size: 4737590 - config_name: kr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13886057 num_examples: 433990 download_size: 9737602 dataset_size: 13886057 - config_name: krc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4646136 num_examples: 151026 download_size: 2785454 dataset_size: 4646136 - config_name: kri features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12798530 num_examples: 406032 download_size: 8902330 dataset_size: 12798530 - config_name: krj features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13850324 num_examples: 433444 download_size: 9703460 dataset_size: 13850324 - config_name: krl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12788020 num_examples: 405729 download_size: 8893337 dataset_size: 12788020 - config_name: ks features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4390604 num_examples: 147033 download_size: 2671069 dataset_size: 4390604 - config_name: ks-deva features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8567518 num_examples: 241832 download_size: 4387687 dataset_size: 8567518 - config_name: ksh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20394712 num_examples: 624523 download_size: 14698860 dataset_size: 20394712 - config_name: ku features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8037777 num_examples: 239515 download_size: 5306097 dataset_size: 8037777 - config_name: ku-arab features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4577826 num_examples: 151290 download_size: 2796159 dataset_size: 4577826 - config_name: ku-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14683841 num_examples: 458802 download_size: 10371977 dataset_size: 14683841 - config_name: kum features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4252739 num_examples: 143985 download_size: 2567503 dataset_size: 4252739 - config_name: kv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4946978 num_examples: 158888 download_size: 2997865 dataset_size: 4946978 - config_name: kw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20245535 num_examples: 621432 download_size: 14581378 dataset_size: 20245535 - config_name: ky features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8909613 num_examples: 235165 download_size: 5462115 dataset_size: 8909613 - config_name: la features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 299766395 num_examples: 7085082 download_size: 201477460 dataset_size: 299766395 - config_name: lad features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20336417 num_examples: 622775 download_size: 14653199 dataset_size: 20336417 - config_name: lb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 56473066 num_examples: 1601093 download_size: 41410732 dataset_size: 56473066 - config_name: lbe features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4501470 num_examples: 149898 download_size: 2744786 dataset_size: 4501470 - config_name: lez features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4890798 num_examples: 155936 download_size: 2959653 dataset_size: 4890798 - config_name: lfn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14709210 num_examples: 456719 download_size: 10408539 dataset_size: 14709210 - config_name: lg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13979286 num_examples: 436009 download_size: 9802779 dataset_size: 13979286 - config_name: li features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 43476868 num_examples: 1253970 download_size: 31750932 dataset_size: 43476868 - config_name: lij features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 42327066 num_examples: 1227346 download_size: 30898971 dataset_size: 42327066 - config_name: liv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12781331 num_examples: 405236 download_size: 8895889 dataset_size: 12781331 - config_name: lki features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8039166 num_examples: 242526 download_size: 4363703 dataset_size: 8039166 - config_name: lld features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 90305 num_examples: 2634 download_size: 69672 dataset_size: 90305 - config_name: lmo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 18287638 num_examples: 545398 download_size: 13130119 dataset_size: 18287638 - config_name: ln features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14123637 num_examples: 439731 download_size: 9915851 dataset_size: 14123637 - config_name: lo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 9905189 num_examples: 271710 download_size: 5313218 dataset_size: 9905189 - config_name: loz features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13695602 num_examples: 428723 download_size: 9581113 dataset_size: 13695602 - config_name: lt features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 39902419 num_examples: 1096727 download_size: 29185765 dataset_size: 39902419 - config_name: ltg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13884707 num_examples: 433453 download_size: 9736637 dataset_size: 13884707 - config_name: lus features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13695197 num_examples: 428712 download_size: 9580538 dataset_size: 13695197 - config_name: luz features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8459036 num_examples: 253454 download_size: 4687414 dataset_size: 8459036 - config_name: lv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 27242119 num_examples: 764753 download_size: 19676667 dataset_size: 27242119 - config_name: lzh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 25067538 num_examples: 685152 download_size: 14998856 dataset_size: 25067538 - config_name: mdf features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4634268 num_examples: 152141 download_size: 2820744 dataset_size: 4634268 - config_name: mg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 43863002 num_examples: 1271074 download_size: 32016826 dataset_size: 43863002 - config_name: mh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13775721 num_examples: 431162 download_size: 9644397 dataset_size: 13775721 - config_name: mi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20857040 num_examples: 637118 download_size: 15060301 dataset_size: 20857040 - config_name: min features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 53044258 num_examples: 1464128 download_size: 38587450 dataset_size: 53044258 - config_name: mk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 24087229 num_examples: 449241 download_size: 12217912 dataset_size: 24087229 - config_name: ml features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 189266798 num_examples: 2664923 download_size: 71344031 dataset_size: 189266798 - config_name: mn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 9311543 num_examples: 219695 download_size: 5272784 dataset_size: 9311543 - config_name: mni features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8696893 num_examples: 243616 download_size: 4470994 dataset_size: 8696893 - config_name: mnw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8861861 num_examples: 244906 download_size: 4517726 dataset_size: 8861861 - config_name: mo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5377009 num_examples: 172144 download_size: 3405661 dataset_size: 5377009 - config_name: mr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 26855182 num_examples: 526220 download_size: 12358679 dataset_size: 26855182 - config_name: mrh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 68 num_examples: 2 download_size: 1820 dataset_size: 68 - config_name: mrj features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5007903 num_examples: 160889 download_size: 3073431 dataset_size: 5007903 - config_name: ms features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 64674328 num_examples: 1803714 download_size: 47165217 dataset_size: 64674328 - config_name: ms-arab features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 136496 num_examples: 2961 download_size: 92316 dataset_size: 136496 - config_name: mt features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 22632686 num_examples: 682867 download_size: 16352572 dataset_size: 22632686 - config_name: mus features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14013416 num_examples: 437688 download_size: 9835239 dataset_size: 14013416 - config_name: mwl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14493299 num_examples: 448926 download_size: 10225888 dataset_size: 14493299 - config_name: my features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16182182 num_examples: 345096 download_size: 7981905 dataset_size: 16182182 - config_name: mzn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 17973941 num_examples: 447870 download_size: 9174617 dataset_size: 17973941 - config_name: na features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13992666 num_examples: 436956 download_size: 9823328 dataset_size: 13992666 - config_name: nah features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14490294 num_examples: 449748 download_size: 10192501 dataset_size: 14490294 - config_name: nan-hani features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 191 num_examples: 6 download_size: 1925 dataset_size: 191 - config_name: nap features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 42362346 num_examples: 1229161 download_size: 30918265 dataset_size: 42362346 - config_name: nb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 142554768 num_examples: 3688026 download_size: 105549981 dataset_size: 142554768 - config_name: nds features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 58766114 num_examples: 1666813 download_size: 43421948 dataset_size: 58766114 - config_name: nds-nl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 44121756 num_examples: 1273149 download_size: 32201410 dataset_size: 44121756 - config_name: ne features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 11925386 num_examples: 295006 download_size: 6265232 dataset_size: 11925386 - config_name: new features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16906308 num_examples: 350362 download_size: 7680329 dataset_size: 16906308 - config_name: ng features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13870754 num_examples: 433582 download_size: 9723795 dataset_size: 13870754 - config_name: nia features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20649 num_examples: 515 download_size: 16535 dataset_size: 20649 - config_name: niu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12794247 num_examples: 405902 download_size: 8897260 dataset_size: 12794247 - config_name: nl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5016576732 num_examples: 61931959 download_size: 3380404239 dataset_size: 5016576732 - config_name: nn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 99997815 num_examples: 2708994 download_size: 74736304 dataset_size: 99997815 - config_name: 'no' features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 2934 num_examples: 64 download_size: 4108 dataset_size: 2934 - config_name: nod features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4322068 num_examples: 145566 download_size: 2618106 dataset_size: 4322068 - config_name: nov features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14150434 num_examples: 440903 download_size: 9947798 dataset_size: 14150434 - config_name: nqo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8094271 num_examples: 243184 download_size: 4398836 dataset_size: 8094271 - config_name: nrm features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 41330956 num_examples: 1203295 download_size: 30084065 dataset_size: 41330956 - config_name: nso features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14178321 num_examples: 443205 download_size: 9959708 dataset_size: 14178321 - config_name: nv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15351770 num_examples: 455188 download_size: 10472240 dataset_size: 15351770 - config_name: ny features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13989813 num_examples: 436764 download_size: 9821588 dataset_size: 13989813 - config_name: nys features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13092059 num_examples: 413241 download_size: 9153100 dataset_size: 13092059 - config_name: oc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 266612548 num_examples: 6569770 download_size: 180156462 dataset_size: 266612548 - config_name: olo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13200388 num_examples: 416935 download_size: 9214968 dataset_size: 13200388 - config_name: om features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5476389 num_examples: 175314 download_size: 3496637 dataset_size: 5476389 - config_name: or features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 22798709 num_examples: 470237 download_size: 10322832 dataset_size: 22798709 - config_name: os features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5946062 num_examples: 177054 download_size: 3583703 dataset_size: 5946062 - config_name: ota features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8015024 num_examples: 241903 download_size: 4343478 dataset_size: 8015024 - config_name: pa features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20505754 num_examples: 481522 download_size: 10552147 dataset_size: 20505754 - config_name: pam features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14527964 num_examples: 451253 download_size: 10242443 dataset_size: 14527964 - config_name: pap features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 54505401 num_examples: 1449881 download_size: 40415776 dataset_size: 54505401 - config_name: pcd features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 42132826 num_examples: 1221362 download_size: 30766812 dataset_size: 42132826 - config_name: pdc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14435256 num_examples: 448055 download_size: 10178322 dataset_size: 14435256 - config_name: pdt features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13994892 num_examples: 437200 download_size: 9819388 dataset_size: 13994892 - config_name: pfl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15461023 num_examples: 474198 download_size: 10893651 dataset_size: 15461023 - config_name: pi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8913354 num_examples: 250251 download_size: 4651392 dataset_size: 8913354 - config_name: pih features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13971081 num_examples: 436214 download_size: 9810653 dataset_size: 13971081 - config_name: pl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 426030491 num_examples: 10025139 download_size: 295767506 dataset_size: 426030491 - config_name: pms features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 51268512 num_examples: 1477043 download_size: 37698831 dataset_size: 51268512 - config_name: pnb features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16192682 num_examples: 409037 download_size: 9196626 dataset_size: 16192682 - config_name: pnt features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4439173 num_examples: 148336 download_size: 2703117 dataset_size: 4439173 - config_name: prg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 17940420 num_examples: 544030 download_size: 12958482 dataset_size: 17940420 - config_name: ps features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8860902 num_examples: 259186 download_size: 4916502 dataset_size: 8860902 - config_name: pt features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 491184040 num_examples: 11574568 download_size: 340831923 dataset_size: 491184040 - config_name: pt-br features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 318857431 num_examples: 7782980 download_size: 223442911 dataset_size: 318857431 - config_name: pwn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8500 num_examples: 269 download_size: 8738 dataset_size: 8500 - config_name: qu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15254702 num_examples: 468823 download_size: 10750388 dataset_size: 15254702 - config_name: quc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 32 num_examples: 1 download_size: 1772 dataset_size: 32 - config_name: qug features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13798264 num_examples: 431733 download_size: 9661685 dataset_size: 13798264 - config_name: rgn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 17001688 num_examples: 519871 download_size: 12258201 dataset_size: 17001688 - config_name: rif features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13792951 num_examples: 431588 download_size: 9657698 dataset_size: 13792951 - config_name: rm features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 44450577 num_examples: 1284908 download_size: 32519630 dataset_size: 44450577 - config_name: rmc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 159 num_examples: 4 download_size: 1963 dataset_size: 159 - config_name: rmy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5610156 num_examples: 179191 download_size: 3608283 dataset_size: 5610156 - config_name: rn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13935534 num_examples: 435271 download_size: 9779486 dataset_size: 13935534 - config_name: ro features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 247469452 num_examples: 5878366 download_size: 177525205 dataset_size: 247469452 - config_name: roa-tara features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14425120 num_examples: 448972 download_size: 10152875 dataset_size: 14425120 - config_name: ru features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 405103215 num_examples: 7485811 download_size: 257215625 dataset_size: 405103215 - config_name: rue features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4953403 num_examples: 159530 download_size: 3037824 dataset_size: 4953403 - config_name: rup features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14459686 num_examples: 450345 download_size: 10198398 dataset_size: 14459686 - config_name: ruq-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4434290 num_examples: 148404 download_size: 2700920 dataset_size: 4434290 - config_name: ruq-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13783683 num_examples: 430978 download_size: 9656941 dataset_size: 13783683 - config_name: rw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14090196 num_examples: 439172 download_size: 9901257 dataset_size: 14090196 - config_name: rwr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8568706 num_examples: 241841 download_size: 4388475 dataset_size: 8568706 - config_name: ryu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 2852 num_examples: 82 download_size: 4237 dataset_size: 2852 - config_name: sa features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 21404327 num_examples: 455674 download_size: 9692464 dataset_size: 21404327 - config_name: sat features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 10810040 num_examples: 284911 download_size: 5750917 dataset_size: 10810040 - config_name: sc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 47195572 num_examples: 1348137 download_size: 34521764 dataset_size: 47195572 - config_name: scn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 43458983 num_examples: 1259067 download_size: 31775157 dataset_size: 43458983 - config_name: sco features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 56960413 num_examples: 1611092 download_size: 41724559 dataset_size: 56960413 - config_name: sd features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14257513 num_examples: 363318 download_size: 7844047 dataset_size: 14257513 - config_name: sdc features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13975497 num_examples: 436913 download_size: 9800517 dataset_size: 13975497 - config_name: se features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 23962268 num_examples: 711439 download_size: 17409387 dataset_size: 23962268 - config_name: sei features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13827581 num_examples: 432520 download_size: 9684192 dataset_size: 13827581 - config_name: sg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13913524 num_examples: 434751 download_size: 9761739 dataset_size: 13913524 - config_name: sh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 30173635 num_examples: 746207 download_size: 20133594 dataset_size: 30173635 - config_name: shi-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13783218 num_examples: 430968 download_size: 9656828 dataset_size: 13783218 - config_name: shi-tfng features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4308577 num_examples: 145279 download_size: 2608525 dataset_size: 4308577 - config_name: shn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 10139002 num_examples: 260808 download_size: 4952168 dataset_size: 10139002 - config_name: shy-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4255322 num_examples: 144058 download_size: 2570625 dataset_size: 4255322 - config_name: si features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 7405400 num_examples: 189718 download_size: 4270591 dataset_size: 7405400 - config_name: sjd features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4300688 num_examples: 145047 download_size: 2604357 dataset_size: 4300688 - config_name: sje features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20970223 num_examples: 637639 download_size: 15120381 dataset_size: 20970223 - config_name: sju features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4315103 num_examples: 145655 download_size: 2620763 dataset_size: 4315103 - config_name: sk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 75586366 num_examples: 2050873 download_size: 54951330 dataset_size: 75586366 - config_name: skr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4274062 num_examples: 144443 download_size: 2585286 dataset_size: 4274062 - config_name: sl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 157883240 num_examples: 4112048 download_size: 118047353 dataset_size: 157883240 - config_name: sli features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13909208 num_examples: 434986 download_size: 9745964 dataset_size: 13909208 - config_name: sm features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13984823 num_examples: 436830 download_size: 9817472 dataset_size: 13984823 - config_name: sma features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20653595 num_examples: 630437 download_size: 14902319 dataset_size: 20653595 - config_name: smj features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 19640206 num_examples: 604326 download_size: 14133964 dataset_size: 19640206 - config_name: smn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 10902411 num_examples: 337543 download_size: 7576850 dataset_size: 10902411 - config_name: sms features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4462345 num_examples: 149355 download_size: 2741038 dataset_size: 4462345 - config_name: sn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20116601 num_examples: 618231 download_size: 14463728 dataset_size: 20116601 - config_name: sq features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 304708913 num_examples: 7311820 download_size: 225592169 dataset_size: 304708913 - config_name: sr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 52787253 num_examples: 1018361 download_size: 31364006 dataset_size: 52787253 - config_name: sr-ec features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 9237541 num_examples: 248556 download_size: 5875548 dataset_size: 9237541 - config_name: sr-el features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 48848162 num_examples: 1418824 download_size: 35859120 dataset_size: 48848162 - config_name: srq features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12796525 num_examples: 405957 download_size: 8899493 dataset_size: 12796525 - config_name: ss features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13823630 num_examples: 432423 download_size: 9682165 dataset_size: 13823630 - config_name: st features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13938937 num_examples: 435419 download_size: 9785161 dataset_size: 13938937 - config_name: stq features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14484394 num_examples: 449885 download_size: 10228446 dataset_size: 14484394 - config_name: su features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20025826 num_examples: 583096 download_size: 14042822 dataset_size: 20025826 - config_name: sv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 339074900 num_examples: 8115455 download_size: 236022796 dataset_size: 339074900 - config_name: sw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 50612064 num_examples: 1465385 download_size: 37096369 dataset_size: 50612064 - config_name: szl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16772062 num_examples: 500107 download_size: 11868254 dataset_size: 16772062 - config_name: szy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4332021 num_examples: 146136 download_size: 2633271 dataset_size: 4332021 - config_name: ta features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 31251824 num_examples: 546558 download_size: 15157673 dataset_size: 31251824 - config_name: tay features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4345269 num_examples: 146938 download_size: 2632535 dataset_size: 4345269 - config_name: tcy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 8723594 num_examples: 244350 download_size: 4487471 dataset_size: 8723594 - config_name: te features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 27587665 num_examples: 569615 download_size: 13669398 dataset_size: 27587665 - config_name: tet features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15092299 num_examples: 466244 download_size: 10702917 dataset_size: 15092299 - config_name: tg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 12643125 num_examples: 304625 download_size: 7622522 dataset_size: 12643125 - config_name: tg-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4504034 num_examples: 149533 download_size: 2755000 dataset_size: 4504034 - config_name: tg-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 19845835 num_examples: 610020 download_size: 14264492 dataset_size: 19845835 - config_name: th features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 32693750 num_examples: 537447 download_size: 15849247 dataset_size: 32693750 - config_name: ti features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4366995 num_examples: 146479 download_size: 2648869 dataset_size: 4366995 - config_name: tk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5797050 num_examples: 184302 download_size: 3728802 dataset_size: 5797050 - config_name: tl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13661554 num_examples: 387377 download_size: 9456413 dataset_size: 13661554 - config_name: tly features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4309748 num_examples: 145312 download_size: 2609307 dataset_size: 4309748 - config_name: tly-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 35 num_examples: 1 download_size: 1793 dataset_size: 35 - config_name: tn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13936132 num_examples: 435219 download_size: 9780279 dataset_size: 13936132 - config_name: to features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13980327 num_examples: 436460 download_size: 9810650 dataset_size: 13980327 - config_name: tpi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14169019 num_examples: 442133 download_size: 9961827 dataset_size: 14169019 - config_name: tr features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 72134544 num_examples: 1770267 download_size: 51032484 dataset_size: 72134544 - config_name: tru features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5322844 num_examples: 171327 download_size: 3371105 dataset_size: 5322844 - config_name: trv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 94285 num_examples: 3109 download_size: 65138 dataset_size: 94285 - config_name: ts features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13943481 num_examples: 435408 download_size: 9783789 dataset_size: 13943481 - config_name: tt features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 24182976 num_examples: 548502 download_size: 14868166 dataset_size: 24182976 - config_name: tt-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4943914 num_examples: 158198 download_size: 3048932 dataset_size: 4943914 - config_name: tt-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13842972 num_examples: 432513 download_size: 9702714 dataset_size: 13842972 - config_name: tum features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13924159 num_examples: 435110 download_size: 9770501 dataset_size: 13924159 - config_name: tw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13830508 num_examples: 432669 download_size: 9688164 dataset_size: 13830508 - config_name: ty features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 16816401 num_examples: 507332 download_size: 12098154 dataset_size: 16816401 - config_name: tyv features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4583082 num_examples: 149929 download_size: 2779632 dataset_size: 4583082 - config_name: tzm features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4253588 num_examples: 144002 download_size: 2569067 dataset_size: 4253588 - config_name: udm features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4854947 num_examples: 156300 download_size: 2958444 dataset_size: 4854947 - config_name: ug-arab features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4316690 num_examples: 145443 download_size: 2614962 dataset_size: 4316690 - config_name: ug-latn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13786474 num_examples: 431056 download_size: 9659723 dataset_size: 13786474 - config_name: uk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 251058352 num_examples: 5108733 download_size: 168140976 dataset_size: 251058352 - config_name: ur features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 57063750 num_examples: 987011 download_size: 28328459 dataset_size: 57063750 - config_name: uz features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 11731793 num_examples: 344615 download_size: 8102734 dataset_size: 11731793 - config_name: uz-cyrl features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4252574 num_examples: 143981 download_size: 2567325 dataset_size: 4252574 - config_name: ve features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 13932174 num_examples: 435216 download_size: 9777266 dataset_size: 13932174 - config_name: vec features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 52081230 num_examples: 1466867 download_size: 37307805 dataset_size: 52081230 - config_name: vep features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 6174898 num_examples: 192298 download_size: 3994582 dataset_size: 6174898 - config_name: vi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 246835524 num_examples: 5743737 download_size: 172949263 dataset_size: 246835524 - config_name: vls features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 42789297 num_examples: 1239359 download_size: 31228294 dataset_size: 42789297 - config_name: vmf features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 18352990 num_examples: 555205 download_size: 13289296 dataset_size: 18352990 - config_name: vo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 228352533 num_examples: 5610875 download_size: 155496988 dataset_size: 228352533 - config_name: vot features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5406190 num_examples: 173486 download_size: 3439433 dataset_size: 5406190 - config_name: wa features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 49235347 num_examples: 1426584 download_size: 36167816 dataset_size: 49235347 - config_name: war features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 190306474 num_examples: 4449062 download_size: 133786270 dataset_size: 190306474 - config_name: wls features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4033 num_examples: 104 download_size: 5150 dataset_size: 4033 - config_name: wo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 40961626 num_examples: 1193626 download_size: 29778666 dataset_size: 40961626 - config_name: wuu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 40570130 num_examples: 1127741 download_size: 24209117 dataset_size: 40570130 - config_name: wya features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 28 num_examples: 1 download_size: 1740 dataset_size: 28 - config_name: xal features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4475344 num_examples: 149984 download_size: 2722459 dataset_size: 4475344 - config_name: xh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 20036194 num_examples: 615514 download_size: 14405310 dataset_size: 20036194 - config_name: xmf features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5943645 num_examples: 169507 download_size: 3418593 dataset_size: 5943645 - config_name: xsy features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4262789 num_examples: 144305 download_size: 2573349 dataset_size: 4262789 - config_name: yav features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4070 num_examples: 102 download_size: 4718 dataset_size: 4070 - config_name: yi features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 5495313 num_examples: 170277 download_size: 3373820 dataset_size: 5495313 - config_name: yo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 25424749 num_examples: 724345 download_size: 18086773 dataset_size: 25424749 - config_name: za features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15159230 num_examples: 365892 download_size: 7774767 dataset_size: 15159230 - config_name: zea features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 14538518 num_examples: 451577 download_size: 10262897 dataset_size: 14538518 - config_name: zgh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 4253917 num_examples: 144006 download_size: 2569373 dataset_size: 4253917 - config_name: zh features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 264353677 num_examples: 5424320 download_size: 174420118 dataset_size: 264353677 - config_name: zh-cn features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 42868611 num_examples: 1158755 download_size: 27243799 dataset_size: 42868611 - config_name: zh-hans features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 57233156 num_examples: 1483225 download_size: 36583522 dataset_size: 57233156 - config_name: zh-hant features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 53502814 num_examples: 1356560 download_size: 36755083 dataset_size: 53502814 - config_name: zh-hk features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 15325323 num_examples: 408391 download_size: 10455809 dataset_size: 15325323 - config_name: zh-mo features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 6568267 num_examples: 180950 download_size: 3547260 dataset_size: 6568267 - config_name: zh-my features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 32637498 num_examples: 916876 download_size: 19289581 dataset_size: 32637498 - config_name: zh-sg features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 35325327 num_examples: 979652 download_size: 21150070 dataset_size: 35325327 - config_name: zh-tw features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 17500668 num_examples: 443057 download_size: 11121104 dataset_size: 17500668 - config_name: zh-yue features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 1352 num_examples: 30 download_size: 2963 dataset_size: 1352 - config_name: zu features: - name: wikidata_id dtype: string - name: lastrevid dtype: int64 - name: label dtype: string splits: - name: label num_bytes: 47349379 num_examples: 1380550 download_size: 34649660 dataset_size: 47349379 configs: - config_name: aa data_files: - split: label path: aa/label-* - config_name: ab data_files: - split: label path: ab/label-* - config_name: abs data_files: - split: label path: abs/label-* - config_name: ace data_files: - split: label path: ace/label-* - config_name: ady data_files: - split: label path: ady/label-* - config_name: ady-cyrl data_files: - split: label path: ady-cyrl/label-* - config_name: aeb data_files: - split: label path: aeb/label-* - config_name: aeb-arab data_files: - split: label path: aeb-arab/label-* - config_name: aeb-latn data_files: - split: label path: aeb-latn/label-* - config_name: af data_files: - split: label path: af/label-* - config_name: agq data_files: - split: label path: agq/label-* - config_name: ak data_files: - split: label path: ak/label-* - config_name: aln data_files: - split: label path: aln/label-* - config_name: als data_files: - split: label path: als/label-* - config_name: alt data_files: - split: label path: alt/label-* - config_name: am data_files: - split: label path: am/label-* - config_name: ami data_files: - split: label path: ami/label-* - config_name: an data_files: - split: label path: an/label-* - config_name: ang data_files: - split: label path: ang/label-* - config_name: anp data_files: - split: label path: anp/label-* - config_name: ar data_files: - split: label path: ar/label-* - config_name: arc data_files: - split: label path: arc/label-* - config_name: arn data_files: - split: label path: arn/label-* - config_name: arq data_files: - split: label path: arq/label-* - config_name: ary data_files: - split: label path: ary/label-* - config_name: arz data_files: - split: label path: arz/label-* - config_name: as data_files: - split: label path: as/label-* - config_name: ase data_files: - split: label path: ase/label-* - config_name: ast data_files: - split: label path: ast/label-* - config_name: atj data_files: - split: label path: atj/label-* - config_name: av data_files: - split: label path: av/label-* - config_name: avk data_files: - split: label path: avk/label-* - config_name: awa data_files: - split: label path: awa/label-* - config_name: ay data_files: - split: label path: ay/label-* - config_name: az data_files: - split: label path: az/label-* - config_name: azb data_files: - split: label path: azb/label-* - config_name: ba data_files: - split: label path: ba/label-* - config_name: ban data_files: - split: label path: ban/label-* - config_name: ban-bali data_files: - split: label path: ban-bali/label-* - config_name: bar data_files: - split: label path: bar/label-* - config_name: bbc data_files: - split: label path: bbc/label-* - config_name: bcc data_files: - split: label path: bcc/label-* - config_name: be data_files: - split: label path: be/label-* - config_name: be-tarask data_files: - split: label path: be-tarask/label-* - config_name: bg data_files: - split: label path: bg/label-* - config_name: bgn data_files: - split: label path: bgn/label-* - config_name: bi data_files: - split: label path: bi/label-* - config_name: bjn data_files: - split: label path: bjn/label-* - config_name: bm data_files: - split: label path: bm/label-* - config_name: bn data_files: - split: label path: bn/label-* - config_name: bo data_files: - split: label path: bo/label-* - config_name: bpy data_files: - split: label path: bpy/label-* - config_name: bqi data_files: - split: label path: bqi/label-* - config_name: br data_files: - split: label path: br/label-* - config_name: brh data_files: - split: label path: brh/label-* - config_name: bs data_files: - split: label path: bs/label-* - config_name: btm data_files: - split: label path: btm/label-* - config_name: bto data_files: - split: label path: bto/label-* - config_name: bug data_files: - split: label path: bug/label-* - config_name: bxr data_files: - split: label path: bxr/label-* - config_name: ca data_files: - split: label path: ca/label-* - config_name: cbk-zam data_files: - split: label path: cbk-zam/label-* - config_name: cdo data_files: - split: label path: cdo/label-* - config_name: ce data_files: - split: label path: ce/label-* - config_name: ceb data_files: - split: label path: ceb/label-* - config_name: ch data_files: - split: label path: ch/label-* - config_name: cho data_files: - split: label path: cho/label-* - config_name: chr data_files: - split: label path: chr/label-* - config_name: chy data_files: - split: label path: chy/label-* - config_name: ckb data_files: - split: label path: ckb/label-* - config_name: co data_files: - split: label path: co/label-* - config_name: cps data_files: - split: label path: cps/label-* - config_name: cr data_files: - split: label path: cr/label-* - config_name: crh data_files: - split: label path: crh/label-* - config_name: crh-cyrl data_files: - split: label path: crh-cyrl/label-* - config_name: crh-latn data_files: - split: label path: crh-latn/label-* - config_name: cs data_files: - split: label path: cs/label-* - config_name: csb data_files: - split: label path: csb/label-* - config_name: cv data_files: - split: label path: cv/label-* - config_name: cy data_files: - split: label path: cy/label-* - config_name: da data_files: - split: label path: da/label-* - config_name: dag data_files: - split: label path: dag/label-* - config_name: de data_files: - split: label path: de/label-* - config_name: de-at data_files: - split: label path: de-at/label-* - config_name: de-ch data_files: - split: label path: de-ch/label-* - config_name: de-formal data_files: - split: label path: de-formal/label-* - config_name: din data_files: - split: label path: din/label-* - config_name: diq data_files: - split: label path: diq/label-* - config_name: dsb data_files: - split: label path: dsb/label-* - config_name: dtp data_files: - split: label path: dtp/label-* - config_name: dty data_files: - split: label path: dty/label-* - config_name: dua data_files: - split: label path: dua/label-* - config_name: dv data_files: - split: label path: dv/label-* - config_name: dz data_files: - split: label path: dz/label-* - config_name: ee data_files: - split: label path: ee/label-* - config_name: egl data_files: - split: label path: egl/label-* - config_name: el data_files: - split: label path: el/label-* - config_name: eml data_files: - split: label path: eml/label-* - config_name: en data_files: - split: label path: en/label-* default: true - config_name: en-ca data_files: - split: label path: en-ca/label-* - config_name: en-gb data_files: - split: label path: en-gb/label-* - config_name: en-us data_files: - split: label path: en-us/label-* - config_name: eo data_files: - split: label path: eo/label-* - config_name: es data_files: - split: label path: es/label-* - config_name: es-419 data_files: - split: label path: es-419/label-* - config_name: es-formal data_files: - split: label path: es-formal/label-* - config_name: et data_files: - split: label path: et/label-* - config_name: eu data_files: - split: label path: eu/label-* - config_name: ext data_files: - split: label path: ext/label-* - config_name: fa data_files: - split: label path: fa/label-* - config_name: ff data_files: - split: label path: ff/label-* - config_name: fi data_files: - split: label path: fi/label-* - config_name: fit data_files: - split: label path: fit/label-* - config_name: fj data_files: - split: label path: fj/label-* - config_name: fkv data_files: - split: label path: fkv/label-* - config_name: fo data_files: - split: label path: fo/label-* - config_name: fr data_files: - split: label path: fr/label-* - config_name: frc data_files: - split: label path: frc/label-* - config_name: frp data_files: - split: label path: frp/label-* - config_name: frr data_files: - split: label path: frr/label-* - config_name: fur data_files: - split: label path: fur/label-* - config_name: ga data_files: - split: label path: ga/label-* - config_name: gag data_files: - split: label path: gag/label-* - config_name: gan data_files: - split: label path: gan/label-* - config_name: gan-hans data_files: - split: label path: gan-hans/label-* - config_name: gan-hant data_files: - split: label path: gan-hant/label-* - config_name: gcr data_files: - split: label path: gcr/label-* - config_name: gd data_files: - split: label path: gd/label-* - config_name: gl data_files: - split: label path: gl/label-* - config_name: glk data_files: - split: label path: glk/label-* - config_name: gn data_files: - split: label path: gn/label-* - config_name: gom data_files: - split: label path: gom/label-* - config_name: gom-deva data_files: - split: label path: gom-deva/label-* - config_name: gom-latn data_files: - split: label path: gom-latn/label-* - config_name: gor data_files: - split: label path: gor/label-* - config_name: got data_files: - split: label path: got/label-* - config_name: grc data_files: - split: label path: grc/label-* - config_name: gu data_files: - split: label path: gu/label-* - config_name: guc data_files: - split: label path: guc/label-* - config_name: guw data_files: - split: label path: guw/label-* - config_name: gv data_files: - split: label path: gv/label-* - config_name: ha data_files: - split: label path: ha/label-* - config_name: hak data_files: - split: label path: hak/label-* - config_name: haw data_files: - split: label path: haw/label-* - config_name: he data_files: - split: label path: he/label-* - config_name: hi data_files: - split: label path: hi/label-* - config_name: hif data_files: - split: label path: hif/label-* - config_name: hif-latn data_files: - split: label path: hif-latn/label-* - config_name: hil data_files: - split: label path: hil/label-* - config_name: ho data_files: - split: label path: ho/label-* - config_name: hr data_files: - split: label path: hr/label-* - config_name: hrx data_files: - split: label path: hrx/label-* - config_name: hsb data_files: - split: label path: hsb/label-* - config_name: ht data_files: - split: label path: ht/label-* - config_name: hu data_files: - split: label path: hu/label-* - config_name: hu-formal data_files: - split: label path: hu-formal/label-* - config_name: hy data_files: - split: label path: hy/label-* - config_name: hyw data_files: - split: label path: hyw/label-* - config_name: hz data_files: - split: label path: hz/label-* - config_name: ia data_files: - split: label path: ia/label-* - config_name: id data_files: - split: label path: id/label-* - config_name: ie data_files: - split: label path: ie/label-* - config_name: ig data_files: - split: label path: ig/label-* - config_name: ii data_files: - split: label path: ii/label-* - config_name: ik data_files: - split: label path: ik/label-* - config_name: ike-cans data_files: - split: label path: ike-cans/label-* - config_name: ike-latn data_files: - split: label path: ike-latn/label-* - config_name: ilo data_files: - split: label path: ilo/label-* - config_name: inh data_files: - split: label path: inh/label-* - config_name: io data_files: - split: label path: io/label-* - config_name: is data_files: - split: label path: is/label-* - config_name: it data_files: - split: label path: it/label-* - config_name: iu data_files: - split: label path: iu/label-* - config_name: ja data_files: - split: label path: ja/label-* - config_name: jam data_files: - split: label path: jam/label-* - config_name: jbo data_files: - split: label path: jbo/label-* - config_name: jv data_files: - split: label path: jv/label-* - config_name: ka data_files: - split: label path: ka/label-* - config_name: kaa data_files: - split: label path: kaa/label-* - config_name: kab data_files: - split: label path: kab/label-* - config_name: kbd data_files: - split: label path: kbd/label-* - config_name: kbd-cyrl data_files: - split: label path: kbd-cyrl/label-* - config_name: kbp data_files: - split: label path: kbp/label-* - config_name: kea data_files: - split: label path: kea/label-* - config_name: kg data_files: - split: label path: kg/label-* - config_name: khw data_files: - split: label path: khw/label-* - config_name: ki data_files: - split: label path: ki/label-* - config_name: kj data_files: - split: label path: kj/label-* - config_name: kjp data_files: - split: label path: kjp/label-* - config_name: kk data_files: - split: label path: kk/label-* - config_name: kk-arab data_files: - split: label path: kk-arab/label-* - config_name: kk-kz data_files: - split: label path: kk-kz/label-* - config_name: kk-latn data_files: - split: label path: kk-latn/label-* - config_name: kk-tr data_files: - split: label path: kk-tr/label-* - config_name: ko data_files: - split: label path: ko/label-* - config_name: ko-kp data_files: - split: label path: ko-kp/label-* - config_name: koi data_files: - split: label path: koi/label-* - config_name: kr data_files: - split: label path: kr/label-* - config_name: krc data_files: - split: label path: krc/label-* - config_name: kri data_files: - split: label path: kri/label-* - config_name: krj data_files: - split: label path: krj/label-* - config_name: krl data_files: - split: label path: krl/label-* - config_name: ks data_files: - split: label path: ks/label-* - config_name: ks-deva data_files: - split: label path: ks-deva/label-* - config_name: ksh data_files: - split: label path: ksh/label-* - config_name: ku data_files: - split: label path: ku/label-* - config_name: ku-arab data_files: - split: label path: ku-arab/label-* - config_name: ku-latn data_files: - split: label path: ku-latn/label-* - config_name: kum data_files: - split: label path: kum/label-* - config_name: kv data_files: - split: label path: kv/label-* - config_name: kw data_files: - split: label path: kw/label-* - config_name: ky data_files: - split: label path: ky/label-* - config_name: la data_files: - split: label path: la/label-* - config_name: lad data_files: - split: label path: lad/label-* - config_name: lb data_files: - split: label path: lb/label-* - config_name: lbe data_files: - split: label path: lbe/label-* - config_name: lez data_files: - split: label path: lez/label-* - config_name: lfn data_files: - split: label path: lfn/label-* - config_name: lg data_files: - split: label path: lg/label-* - config_name: li data_files: - split: label path: li/label-* - config_name: lij data_files: - split: label path: lij/label-* - config_name: liv data_files: - split: label path: liv/label-* - config_name: lki data_files: - split: label path: lki/label-* - config_name: lld data_files: - split: label path: lld/label-* - config_name: lmo data_files: - split: label path: lmo/label-* - config_name: ln data_files: - split: label path: ln/label-* - config_name: lo data_files: - split: label path: lo/label-* - config_name: loz data_files: - split: label path: loz/label-* - config_name: lt data_files: - split: label path: lt/label-* - config_name: ltg data_files: - split: label path: ltg/label-* - config_name: lus data_files: - split: label path: lus/label-* - config_name: luz data_files: - split: label path: luz/label-* - config_name: lv data_files: - split: label path: lv/label-* - config_name: lzh data_files: - split: label path: lzh/label-* - config_name: mdf data_files: - split: label path: mdf/label-* - config_name: mg data_files: - split: label path: mg/label-* - config_name: mh data_files: - split: label path: mh/label-* - config_name: mi data_files: - split: label path: mi/label-* - config_name: min data_files: - split: label path: min/label-* - config_name: mk data_files: - split: label path: mk/label-* - config_name: ml data_files: - split: label path: ml/label-* - config_name: mn data_files: - split: label path: mn/label-* - config_name: mni data_files: - split: label path: mni/label-* - config_name: mnw data_files: - split: label path: mnw/label-* - config_name: mo data_files: - split: label path: mo/label-* - config_name: mr data_files: - split: label path: mr/label-* - config_name: mrh data_files: - split: label path: mrh/label-* - config_name: mrj data_files: - split: label path: mrj/label-* - config_name: ms data_files: - split: label path: ms/label-* - config_name: ms-arab data_files: - split: label path: ms-arab/label-* - config_name: mt data_files: - split: label path: mt/label-* - config_name: mus data_files: - split: label path: mus/label-* - config_name: mwl data_files: - split: label path: mwl/label-* - config_name: my data_files: - split: label path: my/label-* - config_name: mzn data_files: - split: label path: mzn/label-* - config_name: na data_files: - split: label path: na/label-* - config_name: nah data_files: - split: label path: nah/label-* - config_name: nan-hani data_files: - split: label path: nan-hani/label-* - config_name: nap data_files: - split: label path: nap/label-* - config_name: nb data_files: - split: label path: nb/label-* - config_name: nds data_files: - split: label path: nds/label-* - config_name: nds-nl data_files: - split: label path: nds-nl/label-* - config_name: ne data_files: - split: label path: ne/label-* - config_name: new data_files: - split: label path: new/label-* - config_name: ng data_files: - split: label path: ng/label-* - config_name: nia data_files: - split: label path: nia/label-* - config_name: niu data_files: - split: label path: niu/label-* - config_name: nl data_files: - split: label path: nl/label-* - config_name: nn data_files: - split: label path: nn/label-* - config_name: 'no' data_files: - split: label path: no/label-* - config_name: nod data_files: - split: label path: nod/label-* - config_name: nov data_files: - split: label path: nov/label-* - config_name: nqo data_files: - split: label path: nqo/label-* - config_name: nrm data_files: - split: label path: nrm/label-* - config_name: nso data_files: - split: label path: nso/label-* - config_name: nv data_files: - split: label path: nv/label-* - config_name: ny data_files: - split: label path: ny/label-* - config_name: nys data_files: - split: label path: nys/label-* - config_name: oc data_files: - split: label path: oc/label-* - config_name: olo data_files: - split: label path: olo/label-* - config_name: om data_files: - split: label path: om/label-* - config_name: or data_files: - split: label path: or/label-* - config_name: os data_files: - split: label path: os/label-* - config_name: ota data_files: - split: label path: ota/label-* - config_name: pa data_files: - split: label path: pa/label-* - config_name: pam data_files: - split: label path: pam/label-* - config_name: pap data_files: - split: label path: pap/label-* - config_name: pcd data_files: - split: label path: pcd/label-* - config_name: pdc data_files: - split: label path: pdc/label-* - config_name: pdt data_files: - split: label path: pdt/label-* - config_name: pfl data_files: - split: label path: pfl/label-* - config_name: pi data_files: - split: label path: pi/label-* - config_name: pih data_files: - split: label path: pih/label-* - config_name: pl data_files: - split: label path: pl/label-* - config_name: pms data_files: - split: label path: pms/label-* - config_name: pnb data_files: - split: label path: pnb/label-* - config_name: pnt data_files: - split: label path: pnt/label-* - config_name: prg data_files: - split: label path: prg/label-* - config_name: ps data_files: - split: label path: ps/label-* - config_name: pt data_files: - split: label path: pt/label-* - config_name: pt-br data_files: - split: label path: pt-br/label-* - config_name: pwn data_files: - split: label path: pwn/label-* - config_name: qu data_files: - split: label path: qu/label-* - config_name: quc data_files: - split: label path: quc/label-* - config_name: qug data_files: - split: label path: qug/label-* - config_name: rgn data_files: - split: label path: rgn/label-* - config_name: rif data_files: - split: label path: rif/label-* - config_name: rm data_files: - split: label path: rm/label-* - config_name: rmc data_files: - split: label path: rmc/label-* - config_name: rmy data_files: - split: label path: rmy/label-* - config_name: rn data_files: - split: label path: rn/label-* - config_name: ro data_files: - split: label path: ro/label-* - config_name: roa-tara data_files: - split: label path: roa-tara/label-* - config_name: ru data_files: - split: label path: ru/label-* - config_name: rue data_files: - split: label path: rue/label-* - config_name: rup data_files: - split: label path: rup/label-* - config_name: ruq-cyrl data_files: - split: label path: ruq-cyrl/label-* - config_name: ruq-latn data_files: - split: label path: ruq-latn/label-* - config_name: rw data_files: - split: label path: rw/label-* - config_name: rwr data_files: - split: label path: rwr/label-* - config_name: ryu data_files: - split: label path: ryu/label-* - config_name: sa data_files: - split: label path: sa/label-* - config_name: sat data_files: - split: label path: sat/label-* - config_name: sc data_files: - split: label path: sc/label-* - config_name: scn data_files: - split: label path: scn/label-* - config_name: sco data_files: - split: label path: sco/label-* - config_name: sd data_files: - split: label path: sd/label-* - config_name: sdc data_files: - split: label path: sdc/label-* - config_name: se data_files: - split: label path: se/label-* - config_name: sei data_files: - split: label path: sei/label-* - config_name: sg data_files: - split: label path: sg/label-* - config_name: sh data_files: - split: label path: sh/label-* - config_name: shi-latn data_files: - split: label path: shi-latn/label-* - config_name: shi-tfng data_files: - split: label path: shi-tfng/label-* - config_name: shn data_files: - split: label path: shn/label-* - config_name: shy-latn data_files: - split: label path: shy-latn/label-* - config_name: si data_files: - split: label path: si/label-* - config_name: sjd data_files: - split: label path: sjd/label-* - config_name: sje data_files: - split: label path: sje/label-* - config_name: sju data_files: - split: label path: sju/label-* - config_name: sk data_files: - split: label path: sk/label-* - config_name: skr data_files: - split: label path: skr/label-* - config_name: sl data_files: - split: label path: sl/label-* - config_name: sli data_files: - split: label path: sli/label-* - config_name: sm data_files: - split: label path: sm/label-* - config_name: sma data_files: - split: label path: sma/label-* - config_name: smj data_files: - split: label path: smj/label-* - config_name: smn data_files: - split: label path: smn/label-* - config_name: sms data_files: - split: label path: sms/label-* - config_name: sn data_files: - split: label path: sn/label-* - config_name: sq data_files: - split: label path: sq/label-* - config_name: sr data_files: - split: label path: sr/label-* - config_name: sr-ec data_files: - split: label path: sr-ec/label-* - config_name: sr-el data_files: - split: label path: sr-el/label-* - config_name: srq data_files: - split: label path: srq/label-* - config_name: ss data_files: - split: label path: ss/label-* - config_name: st data_files: - split: label path: st/label-* - config_name: stq data_files: - split: label path: stq/label-* - config_name: su data_files: - split: label path: su/label-* - config_name: sv data_files: - split: label path: sv/label-* - config_name: sw data_files: - split: label path: sw/label-* - config_name: szl data_files: - split: label path: szl/label-* - config_name: szy data_files: - split: label path: szy/label-* - config_name: ta data_files: - split: label path: ta/label-* - config_name: tay data_files: - split: label path: tay/label-* - config_name: tcy data_files: - split: label path: tcy/label-* - config_name: te data_files: - split: label path: te/label-* - config_name: tet data_files: - split: label path: tet/label-* - config_name: tg data_files: - split: label path: tg/label-* - config_name: tg-cyrl data_files: - split: label path: tg-cyrl/label-* - config_name: tg-latn data_files: - split: label path: tg-latn/label-* - config_name: th data_files: - split: label path: th/label-* - config_name: ti data_files: - split: label path: ti/label-* - config_name: tk data_files: - split: label path: tk/label-* - config_name: tl data_files: - split: label path: tl/label-* - config_name: tly data_files: - split: label path: tly/label-* - config_name: tly-cyrl data_files: - split: label path: tly-cyrl/label-* - config_name: tn data_files: - split: label path: tn/label-* - config_name: to data_files: - split: label path: to/label-* - config_name: tpi data_files: - split: label path: tpi/label-* - config_name: tr data_files: - split: label path: tr/label-* - config_name: tru data_files: - split: label path: tru/label-* - config_name: trv data_files: - split: label path: trv/label-* - config_name: ts data_files: - split: label path: ts/label-* - config_name: tt data_files: - split: label path: tt/label-* - config_name: tt-cyrl data_files: - split: label path: tt-cyrl/label-* - config_name: tt-latn data_files: - split: label path: tt-latn/label-* - config_name: tum data_files: - split: label path: tum/label-* - config_name: tw data_files: - split: label path: tw/label-* - config_name: ty data_files: - split: label path: ty/label-* - config_name: tyv data_files: - split: label path: tyv/label-* - config_name: tzm data_files: - split: label path: tzm/label-* - config_name: udm data_files: - split: label path: udm/label-* - config_name: ug-arab data_files: - split: label path: ug-arab/label-* - config_name: ug-latn data_files: - split: label path: ug-latn/label-* - config_name: uk data_files: - split: label path: uk/label-* - config_name: ur data_files: - split: label path: ur/label-* - config_name: uz data_files: - split: label path: uz/label-* - config_name: uz-cyrl data_files: - split: label path: uz-cyrl/label-* - config_name: ve data_files: - split: label path: ve/label-* - config_name: vec data_files: - split: label path: vec/label-* - config_name: vep data_files: - split: label path: vep/label-* - config_name: vi data_files: - split: label path: vi/label-* - config_name: vls data_files: - split: label path: vls/label-* - config_name: vmf data_files: - split: label path: vmf/label-* - config_name: vo data_files: - split: label path: vo/label-* - config_name: vot data_files: - split: label path: vot/label-* - config_name: wa data_files: - split: label path: wa/label-* - config_name: war data_files: - split: label path: war/label-* - config_name: wls data_files: - split: label path: wls/label-* - config_name: wo data_files: - split: label path: wo/label-* - config_name: wuu data_files: - split: label path: wuu/label-* - config_name: wya data_files: - split: label path: wya/label-* - config_name: xal data_files: - split: label path: xal/label-* - config_name: xh data_files: - split: label path: xh/label-* - config_name: xmf data_files: - split: label path: xmf/label-* - config_name: xsy data_files: - split: label path: xsy/label-* - config_name: yav data_files: - split: label path: yav/label-* - config_name: yi data_files: - split: label path: yi/label-* - config_name: yo data_files: - split: label path: yo/label-* - config_name: za data_files: - split: label path: za/label-* - config_name: zea data_files: - split: label path: zea/label-* - config_name: zgh data_files: - split: label path: zgh/label-* - config_name: zh data_files: - split: label path: zh/label-* - config_name: zh-cn data_files: - split: label path: zh-cn/label-* - config_name: zh-hans data_files: - split: label path: zh-hans/label-* - config_name: zh-hant data_files: - split: label path: zh-hant/label-* - config_name: zh-hk data_files: - split: label path: zh-hk/label-* - config_name: zh-mo data_files: - split: label path: zh-mo/label-* - config_name: zh-my data_files: - split: label path: zh-my/label-* - config_name: zh-sg data_files: - split: label path: zh-sg/label-* - config_name: zh-tw data_files: - split: label path: zh-tw/label-* - config_name: zh-yue data_files: - split: label path: zh-yue/label-* - config_name: zu data_files: - split: label path: zu/label-* task_categories: - translation - text2text-generation language: - en - fr - de - ja - zh - hi - ar - bn - ru - es --- # Wikidata Labels Large parallel corpus for machine translation - Entity label data extracted from Wikidata (2022-01-03), filtered for item entities only - Only download the languages you need with `datasets>=2.14.0` - Similar dataset: https://huggingface.co/datasets/wmt/wikititles (18 Wikipedia titles pairs instead of all Wikidata entities) ## Dataset Details ### Dataset Sources - Wikidata JSON dump (wikidata-20220103-all.json.gz) https://www.wikidata.org/wiki/Wikidata:Database_download ## Uses You can generate parallel text examples from this dataset like below: ```python from datasets import load_dataset import pandas as pd def parallel_labels(lang_codes: list, how="inner", repo_id="rayliuca/wikidata_entity_label", merge_config={}, datasets_config={}) -> pd.DataFrame: out_df = None for lc in lang_codes: dataset = load_dataset(repo_id, lc, **datasets_config) dataset_df = dataset['label'].to_pandas().rename(columns={"label":lc}).drop(columns=['lastrevid']) if out_df is None: out_df = dataset_df else: out_df = out_df.merge( dataset_df, on='wikidata_id', how=how, **merge_config ) return out_df # Note: the "en" subset is >4GB parallel_labels(['en', 'fr', 'ja', 'zh']).head() ``` ### Output | | wikidata_id | en | fr | ja | zh | |---:|:--------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------|:---------------------------------------------| | 0 | Q109739412 | SARS-CoV-2 Omicron variant | variant Omicron du SARS-CoV-2 | SARSコロナウイルス2-オミクロン株 | 嚴重急性呼吸道症候群冠狀病毒2型Omicron變異株 | | 1 | Q108460606 | Ulughbegsaurus | Ulughbegsaurus | ウルグベグサウルス | 兀魯伯龍屬 | | 2 | Q108556886 | AUKUS | AUKUS | AUKUS | AUKUS | | 3 | Q106496152 | Claude Joseph | Claude Joseph | クロード・ジョゼフ | 克洛德·约瑟夫 | | 4 | Q105519361 | The World's Finest Assassin Gets Reincarnated in a Different World as an Aristocrat | The World's Finest Assassin Gets Reincarnated in Another World as an Aristocrat | 世界最高の暗殺者、異世界貴族に転生する | 世界頂尖的暗殺者轉生為異世界貴族 | Note: this example table above shows a quirk(?) of the Wiki data. The French Wikipedia page [The World's Finest Assassin Gets Reincarnated in Another World as an Aristocrat](https://fr.wikipedia.org/wiki/The_World%27s_Finest_Assassin_Gets_Reincarnated_in_Another_World_as_an_Aristocrat) uses English for its title. While this could be disadvantageous for direct translation training, it also provides insights into how native speakers might call this entity instead of the literal translation on the Wiki page as well ## Dataset Structure Each language has its own subset (aka config), which means you only have to download the languages you need with `datasets>=2.14.0` Each subset has these fields: - wikidata_id - lastrevid - label ## Dataset Creation #### Data Collection and Processing - Filtered for item entities only - Ignored the descriptions as those texts are not very parallel ## Bias, Risks, and Limitations - Might be slightly outdated (2022) - Popular languages have more entries - Labels are not guaranteed to be literal translations (see examples above)
asahi417/seamless-align-enA-zhA.speaker-embedding.xlsr-2b
asahi417
"2024-06-17T08:52:20Z"
10,889
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-06-14T10:18:38Z"
--- dataset_info: - config_name: subset_1 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14209259131 num_examples: 1962 download_size: 14256120203 dataset_size: 14209259131 - config_name: subset_10 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13574781625 num_examples: 2031 download_size: 13621966757 dataset_size: 13574781625 - config_name: subset_100 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13223964877 num_examples: 1891 download_size: 13269307182 dataset_size: 13223964877 - config_name: subset_101 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13038203739 num_examples: 1885 download_size: 13083404216 dataset_size: 13038203739 - config_name: subset_102 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12731679458 num_examples: 1863 download_size: 12775688644 dataset_size: 12731679458 - config_name: subset_103 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12967209285 num_examples: 1861 download_size: 13011071076 dataset_size: 12967209285 - config_name: subset_104 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12798692606 num_examples: 1875 download_size: 12842795816 dataset_size: 12798692606 - config_name: subset_105 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13127114114 num_examples: 1871 download_size: 13172271401 dataset_size: 13127114114 - config_name: subset_106 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12426801586 num_examples: 1865 download_size: 12469421998 dataset_size: 12426801586 - config_name: subset_107 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12484775174 num_examples: 1838 download_size: 12527398592 dataset_size: 12484775174 - config_name: subset_108 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13018346253 num_examples: 1860 download_size: 13063301347 dataset_size: 13018346253 - config_name: subset_109 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12986696298 num_examples: 1866 download_size: 13030608940 dataset_size: 12986696298 - config_name: subset_11 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13038519979 num_examples: 1994 download_size: 13084550040 dataset_size: 13038519979 - config_name: subset_110 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12537003686 num_examples: 1843 download_size: 12580875152 dataset_size: 12537003686 - config_name: subset_111 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12920543044 num_examples: 1845 download_size: 12964231904 dataset_size: 12920543044 - config_name: subset_112 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12666264009 num_examples: 1844 download_size: 12709732284 dataset_size: 12666264009 - config_name: subset_113 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12572103874 num_examples: 1839 download_size: 12615926245 dataset_size: 12572103874 - config_name: subset_114 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12918422777 num_examples: 1851 download_size: 12960836861 dataset_size: 12918422777 - config_name: subset_115 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12832082885 num_examples: 1821 download_size: 12875679807 dataset_size: 12832082885 - config_name: subset_116 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12805128711 num_examples: 1837 download_size: 12848847004 dataset_size: 12805128711 - config_name: subset_117 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12914312061 num_examples: 1854 download_size: 12957416120 dataset_size: 12914312061 - config_name: subset_118 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12536340519 num_examples: 1814 download_size: 12579845649 dataset_size: 12536340519 - config_name: subset_119 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12663849536 num_examples: 1823 download_size: 12706307005 dataset_size: 12663849536 - config_name: subset_12 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13345506634 num_examples: 2034 download_size: 13391815198 dataset_size: 13345506634 - config_name: subset_120 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12540967981 num_examples: 1835 download_size: 12584734529 dataset_size: 12540967981 - config_name: subset_121 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12881361209 num_examples: 1832 download_size: 12925049223 dataset_size: 12881361209 - config_name: subset_122 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12693240892 num_examples: 1824 download_size: 12736912334 dataset_size: 12693240892 - config_name: subset_123 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12762978970 num_examples: 1800 download_size: 12804981254 dataset_size: 12762978970 - config_name: subset_124 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13001669496 num_examples: 1830 download_size: 13045674231 dataset_size: 13001669496 - config_name: subset_125 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12993926322 num_examples: 1858 download_size: 13037516573 dataset_size: 12993926322 - config_name: subset_126 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13297930843 num_examples: 1888 download_size: 13343186712 dataset_size: 13297930843 - config_name: subset_127 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12751048394 num_examples: 1833 download_size: 12794759892 dataset_size: 12751048394 - config_name: subset_128 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13141818374 num_examples: 1835 download_size: 13185797931 dataset_size: 13141818374 - config_name: subset_129 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13304123905 num_examples: 1885 download_size: 13349335826 dataset_size: 13304123905 - config_name: subset_13 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13296351131 num_examples: 2021 download_size: 13342470698 dataset_size: 13296351131 - config_name: subset_130 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12913357124 num_examples: 1828 download_size: 12956967608 dataset_size: 12913357124 - config_name: subset_131 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12861389006 num_examples: 1813 download_size: 12904807434 dataset_size: 12861389006 - config_name: subset_132 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13234681867 num_examples: 1864 download_size: 13279044682 dataset_size: 13234681867 - config_name: subset_133 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12962105674 num_examples: 1844 download_size: 13005284694 dataset_size: 12962105674 - config_name: subset_134 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12743586667 num_examples: 1826 download_size: 12787256702 dataset_size: 12743586667 - config_name: subset_135 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13166439361 num_examples: 1853 download_size: 13211052569 dataset_size: 13166439361 - config_name: subset_136 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13099690718 num_examples: 1881 download_size: 13144846389 dataset_size: 13099690718 - config_name: subset_137 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12741551269 num_examples: 1837 download_size: 12785267794 dataset_size: 12741551269 - config_name: subset_138 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13205037463 num_examples: 1869 download_size: 13250209887 dataset_size: 13205037463 - config_name: subset_139 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12997304962 num_examples: 1830 download_size: 13040947110 dataset_size: 12997304962 - config_name: subset_14 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13147826343 num_examples: 2012 download_size: 13193978395 dataset_size: 13147826343 - config_name: subset_140 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12925120270 num_examples: 1815 download_size: 12968597687 dataset_size: 12925120270 - config_name: subset_141 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12720671970 num_examples: 1814 download_size: 12764228297 dataset_size: 12720671970 - config_name: subset_142 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13068068628 num_examples: 1851 download_size: 13111428243 dataset_size: 13068068628 - config_name: subset_143 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12707538206 num_examples: 1792 download_size: 12750667442 dataset_size: 12707538206 - config_name: subset_144 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13032830257 num_examples: 1856 download_size: 13077677610 dataset_size: 13032830257 - config_name: subset_145 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13125760032 num_examples: 1850 download_size: 13169372344 dataset_size: 13125760032 - config_name: subset_146 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13267575660 num_examples: 1847 download_size: 13312015745 dataset_size: 13267575660 - config_name: subset_147 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13027789155 num_examples: 1851 download_size: 13072382865 dataset_size: 13027789155 - config_name: subset_148 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13035403722 num_examples: 1848 download_size: 13079919602 dataset_size: 13035403722 - config_name: subset_149 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12973733702 num_examples: 1869 download_size: 13017673308 dataset_size: 12973733702 - config_name: subset_15 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13088705529 num_examples: 2010 download_size: 13134907161 dataset_size: 13088705529 - config_name: subset_150 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13483674365 num_examples: 1866 download_size: 13528056417 dataset_size: 13483674365 - config_name: subset_151 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13181178047 num_examples: 1862 download_size: 13225576965 dataset_size: 13181178047 - config_name: subset_152 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12941487991 num_examples: 1825 download_size: 12985061862 dataset_size: 12941487991 - config_name: subset_153 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13368213999 num_examples: 1859 download_size: 13412797003 dataset_size: 13368213999 - config_name: subset_154 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13297990214 num_examples: 1862 download_size: 13342836529 dataset_size: 13297990214 - config_name: subset_155 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13054204743 num_examples: 1827 download_size: 13097552879 dataset_size: 13054204743 - config_name: subset_156 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13062749902 num_examples: 1834 download_size: 13106716484 dataset_size: 13062749902 - config_name: subset_157 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13387093767 num_examples: 1861 download_size: 13431728772 dataset_size: 13387093767 - config_name: subset_158 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12880058650 num_examples: 1783 download_size: 12922917433 dataset_size: 12880058650 - config_name: subset_159 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11881220327 num_examples: 1654 download_size: 11920259054 dataset_size: 11881220327 - config_name: subset_16 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12462625538 num_examples: 1974 download_size: 12506159941 dataset_size: 12462625538 - config_name: subset_160 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13238783195 num_examples: 1841 download_size: 13282707085 dataset_size: 13238783195 - config_name: subset_161 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13020419071 num_examples: 1838 download_size: 13064546764 dataset_size: 13020419071 - config_name: subset_162 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12977261277 num_examples: 1783 download_size: 13020115761 dataset_size: 12977261277 - config_name: subset_163 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13154440690 num_examples: 1805 download_size: 13196753466 dataset_size: 13154440690 - config_name: subset_164 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13221774010 num_examples: 1785 download_size: 13265348083 dataset_size: 13221774010 - config_name: subset_165 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12890453538 num_examples: 1764 download_size: 12932702421 dataset_size: 12890453538 - config_name: subset_166 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13238731446 num_examples: 1865 download_size: 13283761551 dataset_size: 13238731446 - config_name: subset_167 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13116757486 num_examples: 1794 download_size: 13160391058 dataset_size: 13116757486 - config_name: subset_168 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13507948525 num_examples: 1871 download_size: 13553344138 dataset_size: 13507948525 - config_name: subset_169 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13281798625 num_examples: 1845 download_size: 13326150167 dataset_size: 13281798625 - config_name: subset_17 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12530147436 num_examples: 2005 download_size: 12574908317 dataset_size: 12530147436 - config_name: subset_170 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13529725455 num_examples: 1877 download_size: 13575090508 dataset_size: 13529725455 - config_name: subset_171 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13437938918 num_examples: 1863 download_size: 13482733557 dataset_size: 13437938918 - config_name: subset_172 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13501430052 num_examples: 1841 download_size: 13546564951 dataset_size: 13501430052 - config_name: subset_173 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13150686556 num_examples: 1846 download_size: 13195014459 dataset_size: 13150686556 - config_name: subset_174 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13175889059 num_examples: 1833 download_size: 13218163076 dataset_size: 13175889059 - config_name: subset_175 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13102902135 num_examples: 1781 download_size: 13146424916 dataset_size: 13102902135 - config_name: subset_176 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13113639029 num_examples: 1809 download_size: 13156636320 dataset_size: 13113639029 - config_name: subset_177 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12925639837 num_examples: 1779 download_size: 12968379518 dataset_size: 12925639837 - config_name: subset_178 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13408612490 num_examples: 1810 download_size: 13450580598 dataset_size: 13408612490 - config_name: subset_179 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13385760100 num_examples: 1808 download_size: 13429460828 dataset_size: 13385760100 - config_name: subset_18 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12199898588 num_examples: 1933 download_size: 12243282500 dataset_size: 12199898588 - config_name: subset_180 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13530721722 num_examples: 1844 download_size: 13575900699 dataset_size: 13530721722 - config_name: subset_181 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13329843658 num_examples: 1808 download_size: 13373550290 dataset_size: 13329843658 - config_name: subset_182 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13421206325 num_examples: 1807 download_size: 13463752732 dataset_size: 13421206325 - config_name: subset_183 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13293489170 num_examples: 1790 download_size: 13336547592 dataset_size: 13293489170 - config_name: subset_184 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13170304190 num_examples: 1756 download_size: 13212477470 dataset_size: 13170304190 - config_name: subset_185 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13090231354 num_examples: 1782 download_size: 13133751213 dataset_size: 13090231354 - config_name: subset_186 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13202410818 num_examples: 1791 download_size: 13246025198 dataset_size: 13202410818 - config_name: subset_187 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13117901283 num_examples: 1780 download_size: 13161452953 dataset_size: 13117901283 - config_name: subset_188 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13040538960 num_examples: 1783 download_size: 13083376359 dataset_size: 13040538960 - config_name: subset_189 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13439617718 num_examples: 1814 download_size: 13483108790 dataset_size: 13439617718 - config_name: subset_19 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12564662092 num_examples: 1983 download_size: 12608495037 dataset_size: 12564662092 - config_name: subset_190 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13250790159 num_examples: 1802 download_size: 13294475053 dataset_size: 13250790159 - config_name: subset_191 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13576629500 num_examples: 1794 download_size: 13621403290 dataset_size: 13576629500 - config_name: subset_192 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13534614314 num_examples: 1805 download_size: 13579424803 dataset_size: 13534614314 - config_name: subset_193 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13205308518 num_examples: 1801 download_size: 13249015229 dataset_size: 13205308518 - config_name: subset_194 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13173748624 num_examples: 1781 download_size: 13217312510 dataset_size: 13173748624 - config_name: subset_195 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13262230923 num_examples: 1793 download_size: 13305822959 dataset_size: 13262230923 - config_name: subset_196 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13442030054 num_examples: 1808 download_size: 13485707566 dataset_size: 13442030054 - config_name: subset_197 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13279014406 num_examples: 1813 download_size: 13322778547 dataset_size: 13279014406 - config_name: subset_198 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13372535801 num_examples: 1806 download_size: 13416177685 dataset_size: 13372535801 - config_name: subset_199 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13260187374 num_examples: 1798 download_size: 13303786873 dataset_size: 13260187374 - config_name: subset_2 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14824893136 num_examples: 2052 download_size: 14872062544 dataset_size: 14824893136 - config_name: subset_20 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12469186480 num_examples: 1959 download_size: 12512664696 dataset_size: 12469186480 - config_name: subset_200 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13405377823 num_examples: 1814 download_size: 13449064998 dataset_size: 13405377823 - config_name: subset_201 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12857648840 num_examples: 1743 download_size: 12899723972 dataset_size: 12857648840 - config_name: subset_202 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13875371606 num_examples: 1837 download_size: 13920369985 dataset_size: 13875371606 - config_name: subset_203 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13399467921 num_examples: 1802 download_size: 13443037100 dataset_size: 13399467921 - config_name: subset_204 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13199244957 num_examples: 1790 download_size: 13242850615 dataset_size: 13199244957 - config_name: subset_205 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13522066316 num_examples: 1805 download_size: 13566902309 dataset_size: 13522066316 - config_name: subset_206 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13358642027 num_examples: 1793 download_size: 13402228636 dataset_size: 13358642027 - config_name: subset_207 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13117565020 num_examples: 1803 download_size: 13160834483 dataset_size: 13117565020 - config_name: subset_208 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13382606765 num_examples: 1772 download_size: 13425953489 dataset_size: 13382606765 - config_name: subset_209 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12974477742 num_examples: 1760 download_size: 13016667136 dataset_size: 12974477742 - config_name: subset_21 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12085360980 num_examples: 1934 download_size: 12128838861 dataset_size: 12085360980 - config_name: subset_210 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13476138379 num_examples: 1796 download_size: 13519239424 dataset_size: 13476138379 - config_name: subset_211 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13419976632 num_examples: 1804 download_size: 13463566063 dataset_size: 13419976632 - config_name: subset_212 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13480363370 num_examples: 1782 download_size: 13523820554 dataset_size: 13480363370 - config_name: subset_213 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13318991720 num_examples: 1782 download_size: 13362474010 dataset_size: 13318991720 - config_name: subset_214 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13172359156 num_examples: 1797 download_size: 13214875172 dataset_size: 13172359156 - config_name: subset_215 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13280189404 num_examples: 1805 download_size: 13323825654 dataset_size: 13280189404 - config_name: subset_216 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13228612682 num_examples: 1784 download_size: 13272174030 dataset_size: 13228612682 - config_name: subset_217 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13301788292 num_examples: 1795 download_size: 13344755106 dataset_size: 13301788292 - config_name: subset_218 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13444033873 num_examples: 1787 download_size: 13486618579 dataset_size: 13444033873 - config_name: subset_219 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13385006271 num_examples: 1798 download_size: 13428624694 dataset_size: 13385006271 - config_name: subset_22 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12068647069 num_examples: 1919 download_size: 12112052242 dataset_size: 12068647069 - config_name: subset_220 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13387979539 num_examples: 1793 download_size: 13431556808 dataset_size: 13387979539 - config_name: subset_221 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13184366878 num_examples: 1768 download_size: 13227780561 dataset_size: 13184366878 - config_name: subset_222 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13019967994 num_examples: 1771 download_size: 13063453259 dataset_size: 13019967994 - config_name: subset_223 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13009363028 num_examples: 1758 download_size: 13052746979 dataset_size: 13009363028 - config_name: subset_224 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13653747955 num_examples: 1816 download_size: 13698603852 dataset_size: 13653747955 - config_name: subset_225 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13118240446 num_examples: 1793 download_size: 13161929983 dataset_size: 13118240446 - config_name: subset_226 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13687749995 num_examples: 1820 download_size: 13732610680 dataset_size: 13687749995 - config_name: subset_227 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13607917615 num_examples: 1780 download_size: 13652544829 dataset_size: 13607917615 - config_name: subset_228 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13342866303 num_examples: 1787 download_size: 13386381015 dataset_size: 13342866303 - config_name: subset_229 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13310021752 num_examples: 1749 download_size: 13353269100 dataset_size: 13310021752 - config_name: subset_23 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12351336675 num_examples: 1955 download_size: 12394781249 dataset_size: 12351336675 - config_name: subset_230 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13841783584 num_examples: 1822 download_size: 13886657543 dataset_size: 13841783584 - config_name: subset_231 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13716496527 num_examples: 1829 download_size: 13761486198 dataset_size: 13716496527 - config_name: subset_232 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13468291883 num_examples: 1783 download_size: 13510236937 dataset_size: 13468291883 - config_name: subset_233 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13380265372 num_examples: 1800 download_size: 13423849283 dataset_size: 13380265372 - config_name: subset_234 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13713921272 num_examples: 1815 download_size: 13758828731 dataset_size: 13713921272 - config_name: subset_235 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13514220908 num_examples: 1804 download_size: 13559019032 dataset_size: 13514220908 - config_name: subset_236 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13494111624 num_examples: 1801 download_size: 13537700105 dataset_size: 13494111624 - config_name: subset_237 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13544863571 num_examples: 1790 download_size: 13589626744 dataset_size: 13544863571 - config_name: subset_238 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13554393425 num_examples: 1811 download_size: 13597849508 dataset_size: 13554393425 - config_name: subset_239 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13546762388 num_examples: 1801 download_size: 13591616587 dataset_size: 13546762388 - config_name: subset_24 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12065934022 num_examples: 1912 download_size: 12109149622 dataset_size: 12065934022 - config_name: subset_240 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13196715201 num_examples: 1770 download_size: 13240155032 dataset_size: 13196715201 - config_name: subset_241 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13659450783 num_examples: 1832 download_size: 13704113396 dataset_size: 13659450783 - config_name: subset_242 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13246292263 num_examples: 1769 download_size: 13289711363 dataset_size: 13246292263 - config_name: subset_243 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13566094535 num_examples: 1791 download_size: 13610689089 dataset_size: 13566094535 - config_name: subset_244 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13087093994 num_examples: 1754 download_size: 13130462985 dataset_size: 13087093994 - config_name: subset_245 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13606181830 num_examples: 1790 download_size: 13650688469 dataset_size: 13606181830 - config_name: subset_246 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13477021726 num_examples: 1793 download_size: 13520536644 dataset_size: 13477021726 - config_name: subset_247 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13530919547 num_examples: 1820 download_size: 13575873477 dataset_size: 13530919547 - config_name: subset_248 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13076084830 num_examples: 1779 download_size: 13118512234 dataset_size: 13076084830 - config_name: subset_249 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13529657489 num_examples: 1797 download_size: 13574453907 dataset_size: 13529657489 - config_name: subset_25 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12305898739 num_examples: 1925 download_size: 12349158665 dataset_size: 12305898739 - config_name: subset_250 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13381525728 num_examples: 1802 download_size: 13425146039 dataset_size: 13381525728 - config_name: subset_251 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13822740954 num_examples: 1801 download_size: 13866366309 dataset_size: 13822740954 - config_name: subset_252 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13673963248 num_examples: 1800 download_size: 13718685655 dataset_size: 13673963248 - config_name: subset_253 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13835058700 num_examples: 1805 download_size: 13879166806 dataset_size: 13835058700 - config_name: subset_254 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13383712853 num_examples: 1767 download_size: 13426540477 dataset_size: 13383712853 - config_name: subset_255 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13560805607 num_examples: 1763 download_size: 13604948210 dataset_size: 13560805607 - config_name: subset_256 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13237669958 num_examples: 1758 download_size: 13281016253 dataset_size: 13237669958 - config_name: subset_257 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13923624660 num_examples: 1807 download_size: 13968391517 dataset_size: 13923624660 - config_name: subset_258 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11361216368 num_examples: 1503 download_size: 11398068945 dataset_size: 11361216368 - config_name: subset_26 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11342909197 num_examples: 1832 download_size: 11383158933 dataset_size: 11342909197 - config_name: subset_27 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11602861316 num_examples: 1862 download_size: 11643598489 dataset_size: 11602861316 - config_name: subset_28 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11423759992 num_examples: 1829 download_size: 11464108953 dataset_size: 11423759992 - config_name: subset_29 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11317928199 num_examples: 1828 download_size: 11358232335 dataset_size: 11317928199 - config_name: subset_3 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 15009073368 num_examples: 2081 download_size: 15059069139 dataset_size: 15009073368 - config_name: subset_30 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11340440138 num_examples: 1801 download_size: 11380580568 dataset_size: 11340440138 - config_name: subset_31 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11585306838 num_examples: 1904 download_size: 11626002198 dataset_size: 11585306838 - config_name: subset_32 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11839140118 num_examples: 1904 download_size: 11881221624 dataset_size: 11839140118 - config_name: subset_33 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11667822890 num_examples: 1874 download_size: 11709572131 dataset_size: 11667822890 - config_name: subset_34 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12102711256 num_examples: 1932 download_size: 12146166646 dataset_size: 12102711256 - config_name: subset_35 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12121565378 num_examples: 1902 download_size: 12164750724 dataset_size: 12121565378 - config_name: subset_36 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11813142889 num_examples: 1877 download_size: 11853807475 dataset_size: 11813142889 - config_name: subset_37 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12105640911 num_examples: 1862 download_size: 12148512935 dataset_size: 12105640911 - config_name: subset_38 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12055811433 num_examples: 1878 download_size: 12098864002 dataset_size: 12055811433 - config_name: subset_39 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12027703389 num_examples: 1879 download_size: 12070810328 dataset_size: 12027703389 - config_name: subset_4 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14871815890 num_examples: 2102 download_size: 14921781959 dataset_size: 14871815890 - config_name: subset_40 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12297307550 num_examples: 1919 download_size: 12340628479 dataset_size: 12297307550 - config_name: subset_41 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11673113363 num_examples: 1828 download_size: 11714539382 dataset_size: 11673113363 - config_name: subset_42 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12114525371 num_examples: 1884 download_size: 12157548017 dataset_size: 12114525371 - config_name: subset_43 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12072393153 num_examples: 1874 download_size: 12115455581 dataset_size: 12072393153 - config_name: subset_44 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12231430525 num_examples: 1894 download_size: 12274252942 dataset_size: 12231430525 - config_name: subset_45 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12138951543 num_examples: 1869 download_size: 12181833715 dataset_size: 12138951543 - config_name: subset_46 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12338384571 num_examples: 1899 download_size: 12381559009 dataset_size: 12338384571 - config_name: subset_47 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12595976439 num_examples: 1913 download_size: 12639701571 dataset_size: 12595976439 - config_name: subset_48 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12291667679 num_examples: 1922 download_size: 12335068918 dataset_size: 12291667679 - config_name: subset_49 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12076363347 num_examples: 1844 download_size: 12118856817 dataset_size: 12076363347 - config_name: subset_5 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14463875379 num_examples: 2045 download_size: 14511930615 dataset_size: 14463875379 - config_name: subset_50 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12201692647 num_examples: 1884 download_size: 12244065455 dataset_size: 12201692647 - config_name: subset_51 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12205237779 num_examples: 1918 download_size: 12247882809 dataset_size: 12205237779 - config_name: subset_52 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12189874310 num_examples: 1880 download_size: 12232943844 dataset_size: 12189874310 - config_name: subset_53 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12566145830 num_examples: 1897 download_size: 12609016174 dataset_size: 12566145830 - config_name: subset_54 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12446537009 num_examples: 1901 download_size: 12489664423 dataset_size: 12446537009 - config_name: subset_55 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12447865477 num_examples: 1890 download_size: 12490882006 dataset_size: 12447865477 - config_name: subset_56 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 11886184932 num_examples: 1851 download_size: 11927798488 dataset_size: 11886184932 - config_name: subset_57 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12488545723 num_examples: 1904 download_size: 12531536020 dataset_size: 12488545723 - config_name: subset_58 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12062402025 num_examples: 1850 download_size: 12105197651 dataset_size: 12062402025 - config_name: subset_59 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12373068180 num_examples: 1875 download_size: 12415995259 dataset_size: 12373068180 - config_name: subset_6 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14501738118 num_examples: 2090 download_size: 14551152342 dataset_size: 14501738118 - config_name: subset_60 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12180776572 num_examples: 1881 download_size: 12223818393 dataset_size: 12180776572 - config_name: subset_61 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12048086660 num_examples: 1849 download_size: 12090892833 dataset_size: 12048086660 - config_name: subset_62 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12657808103 num_examples: 1895 download_size: 12701743869 dataset_size: 12657808103 - config_name: subset_63 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12392654565 num_examples: 1874 download_size: 12434138173 dataset_size: 12392654565 - config_name: subset_64 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12350385561 num_examples: 1882 download_size: 12393397192 dataset_size: 12350385561 - config_name: subset_65 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12373129329 num_examples: 1871 download_size: 12410450046 dataset_size: 12373129329 - config_name: subset_66 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12278015011 num_examples: 1850 download_size: 12320703540 dataset_size: 12278015011 - config_name: subset_67 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12371002905 num_examples: 1896 download_size: 12414173841 dataset_size: 12371002905 - config_name: subset_68 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12305454575 num_examples: 1850 download_size: 12348208355 dataset_size: 12305454575 - config_name: subset_69 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12411747691 num_examples: 1854 download_size: 12454448363 dataset_size: 12411747691 - config_name: subset_7 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14508087261 num_examples: 2116 download_size: 14558140635 dataset_size: 14508087261 - config_name: subset_70 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12350275460 num_examples: 1851 download_size: 12393029167 dataset_size: 12350275460 - config_name: subset_71 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12537513558 num_examples: 1876 download_size: 12581645796 dataset_size: 12537513558 - config_name: subset_72 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12490553756 num_examples: 1841 download_size: 12533178091 dataset_size: 12490553756 - config_name: subset_73 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12518388540 num_examples: 1882 download_size: 12561275853 dataset_size: 12518388540 - config_name: subset_74 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12497263818 num_examples: 1865 download_size: 12540088306 dataset_size: 12497263818 - config_name: subset_75 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12305999986 num_examples: 1848 download_size: 12348789656 dataset_size: 12305999986 - config_name: subset_76 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12750830510 num_examples: 1894 download_size: 12795055702 dataset_size: 12750830510 - config_name: subset_77 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12671852813 num_examples: 1875 download_size: 12715112660 dataset_size: 12671852813 - config_name: subset_78 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12871126714 num_examples: 1933 download_size: 12914706808 dataset_size: 12871126714 - config_name: subset_79 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12749824472 num_examples: 1900 download_size: 12793397015 dataset_size: 12749824472 - config_name: subset_8 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 14210430391 num_examples: 2095 download_size: 14259459141 dataset_size: 14210430391 - config_name: subset_80 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12490567475 num_examples: 1821 download_size: 12533032118 dataset_size: 12490567475 - config_name: subset_81 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12666304824 num_examples: 1873 download_size: 12710378751 dataset_size: 12666304824 - config_name: subset_82 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12789616733 num_examples: 1862 download_size: 12833584641 dataset_size: 12789616733 - config_name: subset_83 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12338377273 num_examples: 1809 download_size: 12380811191 dataset_size: 12338377273 - config_name: subset_84 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12554741918 num_examples: 1792 download_size: 12597991658 dataset_size: 12554741918 - config_name: subset_85 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12701297528 num_examples: 1870 download_size: 12745293256 dataset_size: 12701297528 - config_name: subset_86 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12337303789 num_examples: 1838 download_size: 12378681021 dataset_size: 12337303789 - config_name: subset_87 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12515934904 num_examples: 1852 download_size: 12559866703 dataset_size: 12515934904 - config_name: subset_88 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12486460328 num_examples: 1867 download_size: 12529352258 dataset_size: 12486460328 - config_name: subset_89 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13005033357 num_examples: 1903 download_size: 13050512457 dataset_size: 13005033357 - config_name: subset_9 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13964425360 num_examples: 2073 download_size: 14011911721 dataset_size: 13964425360 - config_name: subset_90 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12508609901 num_examples: 1826 download_size: 12552399045 dataset_size: 12508609901 - config_name: subset_91 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12766878985 num_examples: 1852 download_size: 12810779213 dataset_size: 12766878985 - config_name: subset_92 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12484630250 num_examples: 1852 download_size: 12527348681 dataset_size: 12484630250 - config_name: subset_93 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12560208384 num_examples: 1830 download_size: 12602554131 dataset_size: 12560208384 - config_name: subset_94 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12563291097 num_examples: 1848 download_size: 12607156154 dataset_size: 12563291097 - config_name: subset_95 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12839362555 num_examples: 1857 download_size: 12882825153 dataset_size: 12839362555 - config_name: subset_96 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12907967612 num_examples: 1885 download_size: 12952072820 dataset_size: 12907967612 - config_name: subset_97 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12893205307 num_examples: 1869 download_size: 12935785916 dataset_size: 12893205307 - config_name: subset_98 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 12554140420 num_examples: 1860 download_size: 12598098176 dataset_size: 12554140420 - config_name: subset_99 features: - name: line_no dtype: int64 - name: enA.id dtype: string - name: enA.laser_score dtype: float64 - name: zhA.id dtype: string - name: zhA.laser_score dtype: float64 - name: zhA.audio.speaker_embedding sequence: float32 - name: zhA.audio.speaker_embedding.full sequence: sequence: float32 - name: enA.audio.speaker_embedding sequence: float32 - name: enA.audio.speaker_embedding.full sequence: sequence: float32 splits: - name: train num_bytes: 13502104593 num_examples: 1915 download_size: 13548188642 dataset_size: 13502104593 configs: - config_name: subset_1 data_files: - split: train path: subset_1/train-* - config_name: subset_10 data_files: - split: train path: subset_10/train-* - config_name: subset_100 data_files: - split: train path: subset_100/train-* - config_name: subset_101 data_files: - split: train path: subset_101/train-* - config_name: subset_102 data_files: - split: train path: subset_102/train-* - config_name: subset_103 data_files: - split: train path: subset_103/train-* - config_name: subset_104 data_files: - split: train path: subset_104/train-* - config_name: subset_105 data_files: - split: train path: subset_105/train-* - config_name: subset_106 data_files: - split: train path: subset_106/train-* - config_name: subset_107 data_files: - split: train path: subset_107/train-* - config_name: subset_108 data_files: - split: train path: subset_108/train-* - config_name: subset_109 data_files: - split: train path: subset_109/train-* - config_name: subset_11 data_files: - split: train path: subset_11/train-* - config_name: subset_110 data_files: - split: train path: subset_110/train-* - config_name: subset_111 data_files: - split: train path: subset_111/train-* - config_name: subset_112 data_files: - split: train path: subset_112/train-* - config_name: subset_113 data_files: - split: train path: subset_113/train-* - config_name: subset_114 data_files: - split: train path: subset_114/train-* - config_name: subset_115 data_files: - split: train path: subset_115/train-* - config_name: subset_116 data_files: - split: train path: subset_116/train-* - config_name: subset_117 data_files: - split: train path: subset_117/train-* - config_name: subset_118 data_files: - split: train path: subset_118/train-* - config_name: subset_119 data_files: - split: train path: subset_119/train-* - config_name: subset_12 data_files: - split: train path: subset_12/train-* - config_name: subset_120 data_files: - split: train path: subset_120/train-* - config_name: subset_121 data_files: - split: train path: subset_121/train-* - config_name: subset_122 data_files: - split: train path: subset_122/train-* - config_name: subset_123 data_files: - split: train path: subset_123/train-* - config_name: subset_124 data_files: - split: train path: subset_124/train-* - config_name: subset_125 data_files: - split: train path: subset_125/train-* - config_name: subset_126 data_files: - split: train path: subset_126/train-* - config_name: subset_127 data_files: - split: train path: subset_127/train-* - config_name: subset_128 data_files: - split: train path: subset_128/train-* - config_name: subset_129 data_files: - split: train path: subset_129/train-* - config_name: subset_13 data_files: - split: train path: subset_13/train-* - config_name: subset_130 data_files: - split: train path: subset_130/train-* - config_name: subset_131 data_files: - split: train path: subset_131/train-* - config_name: subset_132 data_files: - split: train path: subset_132/train-* - config_name: subset_133 data_files: - split: train path: subset_133/train-* - config_name: subset_134 data_files: - split: train path: subset_134/train-* - config_name: subset_135 data_files: - split: train path: subset_135/train-* - config_name: subset_136 data_files: - split: train path: subset_136/train-* - config_name: subset_137 data_files: - split: train path: subset_137/train-* - config_name: subset_138 data_files: - split: train path: subset_138/train-* - config_name: subset_139 data_files: - split: train path: subset_139/train-* - config_name: subset_14 data_files: - split: train path: subset_14/train-* - config_name: subset_140 data_files: - split: train path: subset_140/train-* - config_name: subset_141 data_files: - split: train path: subset_141/train-* - config_name: subset_142 data_files: - split: train path: subset_142/train-* - config_name: subset_143 data_files: - split: train path: subset_143/train-* - config_name: subset_144 data_files: - split: train path: subset_144/train-* - config_name: subset_145 data_files: - split: train path: subset_145/train-* - config_name: subset_146 data_files: - split: train path: subset_146/train-* - config_name: subset_147 data_files: - split: train path: subset_147/train-* - config_name: subset_148 data_files: - split: train path: subset_148/train-* - config_name: subset_149 data_files: - split: train path: subset_149/train-* - config_name: subset_15 data_files: - split: train path: subset_15/train-* - config_name: subset_150 data_files: - split: train path: subset_150/train-* - config_name: subset_151 data_files: - split: train path: subset_151/train-* - config_name: subset_152 data_files: - split: train path: subset_152/train-* - config_name: subset_153 data_files: - split: train path: subset_153/train-* - config_name: subset_154 data_files: - split: train path: subset_154/train-* - config_name: subset_155 data_files: - split: train path: subset_155/train-* - config_name: subset_156 data_files: - split: train path: subset_156/train-* - config_name: subset_157 data_files: - split: train path: subset_157/train-* - config_name: subset_158 data_files: - split: train path: subset_158/train-* - config_name: subset_159 data_files: - split: train path: subset_159/train-* - config_name: subset_16 data_files: - split: train path: subset_16/train-* - config_name: subset_160 data_files: - split: train path: subset_160/train-* - config_name: subset_161 data_files: - split: train path: subset_161/train-* - config_name: subset_162 data_files: - split: train path: subset_162/train-* - config_name: subset_163 data_files: - split: train path: subset_163/train-* - config_name: subset_164 data_files: - split: train path: subset_164/train-* - config_name: subset_165 data_files: - split: train path: subset_165/train-* - config_name: subset_166 data_files: - split: train path: subset_166/train-* - config_name: subset_167 data_files: - split: train path: subset_167/train-* - config_name: subset_168 data_files: - split: train path: subset_168/train-* - config_name: subset_169 data_files: - split: train path: subset_169/train-* - config_name: subset_17 data_files: - split: train path: subset_17/train-* - config_name: subset_170 data_files: - split: train path: subset_170/train-* - config_name: subset_171 data_files: - split: train path: subset_171/train-* - config_name: subset_172 data_files: - split: train path: subset_172/train-* - config_name: subset_173 data_files: - split: train path: subset_173/train-* - config_name: subset_174 data_files: - split: train path: subset_174/train-* - config_name: subset_175 data_files: - split: train path: subset_175/train-* - config_name: subset_176 data_files: - split: train path: subset_176/train-* - config_name: subset_177 data_files: - split: train path: subset_177/train-* - config_name: subset_178 data_files: - split: train path: subset_178/train-* - config_name: subset_179 data_files: - split: train path: subset_179/train-* - config_name: subset_18 data_files: - split: train path: subset_18/train-* - config_name: subset_180 data_files: - split: train path: subset_180/train-* - config_name: subset_181 data_files: - split: train path: subset_181/train-* - config_name: subset_182 data_files: - split: train path: subset_182/train-* - config_name: subset_183 data_files: - split: train path: subset_183/train-* - config_name: subset_184 data_files: - split: train path: subset_184/train-* - config_name: subset_185 data_files: - split: train path: subset_185/train-* - config_name: subset_186 data_files: - split: train path: subset_186/train-* - config_name: subset_187 data_files: - split: train path: subset_187/train-* - config_name: subset_188 data_files: - split: train path: subset_188/train-* - config_name: subset_189 data_files: - split: train path: subset_189/train-* - config_name: subset_19 data_files: - split: train path: subset_19/train-* - config_name: subset_190 data_files: - split: train path: subset_190/train-* - config_name: subset_191 data_files: - split: train path: subset_191/train-* - config_name: subset_192 data_files: - split: train path: subset_192/train-* - config_name: subset_193 data_files: - split: train path: subset_193/train-* - config_name: subset_194 data_files: - split: train path: subset_194/train-* - config_name: subset_195 data_files: - split: train path: subset_195/train-* - config_name: subset_196 data_files: - split: train path: subset_196/train-* - config_name: subset_197 data_files: - split: train path: subset_197/train-* - config_name: subset_198 data_files: - split: train path: subset_198/train-* - config_name: subset_199 data_files: - split: train path: subset_199/train-* - config_name: subset_2 data_files: - split: train path: subset_2/train-* - config_name: subset_20 data_files: - split: train path: subset_20/train-* - config_name: subset_200 data_files: - split: train path: subset_200/train-* - config_name: subset_201 data_files: - split: train path: subset_201/train-* - config_name: subset_202 data_files: - split: train path: subset_202/train-* - config_name: subset_203 data_files: - split: train path: subset_203/train-* - config_name: subset_204 data_files: - split: train path: subset_204/train-* - config_name: subset_205 data_files: - split: train path: subset_205/train-* - config_name: subset_206 data_files: - split: train path: subset_206/train-* - config_name: subset_207 data_files: - split: train path: subset_207/train-* - config_name: subset_208 data_files: - split: train path: subset_208/train-* - config_name: subset_209 data_files: - split: train path: subset_209/train-* - config_name: subset_21 data_files: - split: train path: subset_21/train-* - config_name: subset_210 data_files: - split: train path: subset_210/train-* - config_name: subset_211 data_files: - split: train path: subset_211/train-* - config_name: subset_212 data_files: - split: train path: subset_212/train-* - config_name: subset_213 data_files: - split: train path: subset_213/train-* - config_name: subset_214 data_files: - split: train path: subset_214/train-* - config_name: subset_215 data_files: - split: train path: subset_215/train-* - config_name: subset_216 data_files: - split: train path: subset_216/train-* - config_name: subset_217 data_files: - split: train path: subset_217/train-* - config_name: subset_218 data_files: - split: train path: subset_218/train-* - config_name: subset_219 data_files: - split: train path: subset_219/train-* - config_name: subset_22 data_files: - split: train path: subset_22/train-* - config_name: subset_220 data_files: - split: train path: subset_220/train-* - config_name: subset_221 data_files: - split: train path: subset_221/train-* - config_name: subset_222 data_files: - split: train path: subset_222/train-* - config_name: subset_223 data_files: - split: train path: subset_223/train-* - config_name: subset_224 data_files: - split: train path: subset_224/train-* - config_name: subset_225 data_files: - split: train path: subset_225/train-* - config_name: subset_226 data_files: - split: train path: subset_226/train-* - config_name: subset_227 data_files: - split: train path: subset_227/train-* - config_name: subset_228 data_files: - split: train path: subset_228/train-* - config_name: subset_229 data_files: - split: train path: subset_229/train-* - config_name: subset_23 data_files: - split: train path: subset_23/train-* - config_name: subset_230 data_files: - split: train path: subset_230/train-* - config_name: subset_231 data_files: - split: train path: subset_231/train-* - config_name: subset_232 data_files: - split: train path: subset_232/train-* - config_name: subset_233 data_files: - split: train path: subset_233/train-* - config_name: subset_234 data_files: - split: train path: subset_234/train-* - config_name: subset_235 data_files: - split: train path: subset_235/train-* - config_name: subset_236 data_files: - split: train path: subset_236/train-* - config_name: subset_237 data_files: - split: train path: subset_237/train-* - config_name: subset_238 data_files: - split: train path: subset_238/train-* - config_name: subset_239 data_files: - split: train path: subset_239/train-* - config_name: subset_24 data_files: - split: train path: subset_24/train-* - config_name: subset_240 data_files: - split: train path: subset_240/train-* - config_name: subset_241 data_files: - split: train path: subset_241/train-* - config_name: subset_242 data_files: - split: train path: subset_242/train-* - config_name: subset_243 data_files: - split: train path: subset_243/train-* - config_name: subset_244 data_files: - split: train path: subset_244/train-* - config_name: subset_245 data_files: - split: train path: subset_245/train-* - config_name: subset_246 data_files: - split: train path: subset_246/train-* - config_name: subset_247 data_files: - split: train path: subset_247/train-* - config_name: subset_248 data_files: - split: train path: subset_248/train-* - config_name: subset_249 data_files: - split: train path: subset_249/train-* - config_name: subset_25 data_files: - split: train path: subset_25/train-* - config_name: subset_250 data_files: - split: train path: subset_250/train-* - config_name: subset_251 data_files: - split: train path: subset_251/train-* - config_name: subset_252 data_files: - split: train path: subset_252/train-* - config_name: subset_253 data_files: - split: train path: subset_253/train-* - config_name: subset_254 data_files: - split: train path: subset_254/train-* - config_name: subset_255 data_files: - split: train path: subset_255/train-* - config_name: subset_256 data_files: - split: train path: subset_256/train-* - config_name: subset_257 data_files: - split: train path: subset_257/train-* - config_name: subset_258 data_files: - split: train path: subset_258/train-* - config_name: subset_26 data_files: - split: train path: subset_26/train-* - config_name: subset_27 data_files: - split: train path: subset_27/train-* - config_name: subset_28 data_files: - split: train path: subset_28/train-* - config_name: subset_29 data_files: - split: train path: subset_29/train-* - config_name: subset_3 data_files: - split: train path: subset_3/train-* - config_name: subset_30 data_files: - split: train path: subset_30/train-* - config_name: subset_31 data_files: - split: train path: subset_31/train-* - config_name: subset_32 data_files: - split: train path: subset_32/train-* - config_name: subset_33 data_files: - split: train path: subset_33/train-* - config_name: subset_34 data_files: - split: train path: subset_34/train-* - config_name: subset_35 data_files: - split: train path: subset_35/train-* - config_name: subset_36 data_files: - split: train path: subset_36/train-* - config_name: subset_37 data_files: - split: train path: subset_37/train-* - config_name: subset_38 data_files: - split: train path: subset_38/train-* - config_name: subset_39 data_files: - split: train path: subset_39/train-* - config_name: subset_4 data_files: - split: train path: subset_4/train-* - config_name: subset_40 data_files: - split: train path: subset_40/train-* - config_name: subset_41 data_files: - split: train path: subset_41/train-* - config_name: subset_42 data_files: - split: train path: subset_42/train-* - config_name: subset_43 data_files: - split: train path: subset_43/train-* - config_name: subset_44 data_files: - split: train path: subset_44/train-* - config_name: subset_45 data_files: - split: train path: subset_45/train-* - config_name: subset_46 data_files: - split: train path: subset_46/train-* - config_name: subset_47 data_files: - split: train path: subset_47/train-* - config_name: subset_48 data_files: - split: train path: subset_48/train-* - config_name: subset_49 data_files: - split: train path: subset_49/train-* - config_name: subset_5 data_files: - split: train path: subset_5/train-* - config_name: subset_50 data_files: - split: train path: subset_50/train-* - config_name: subset_51 data_files: - split: train path: subset_51/train-* - config_name: subset_52 data_files: - split: train path: subset_52/train-* - config_name: subset_53 data_files: - split: train path: subset_53/train-* - config_name: subset_54 data_files: - split: train path: subset_54/train-* - config_name: subset_55 data_files: - split: train path: subset_55/train-* - config_name: subset_56 data_files: - split: train path: subset_56/train-* - config_name: subset_57 data_files: - split: train path: subset_57/train-* - config_name: subset_58 data_files: - split: train path: subset_58/train-* - config_name: subset_59 data_files: - split: train path: subset_59/train-* - config_name: subset_6 data_files: - split: train path: subset_6/train-* - config_name: subset_60 data_files: - split: train path: subset_60/train-* - config_name: subset_61 data_files: - split: train path: subset_61/train-* - config_name: subset_62 data_files: - split: train path: subset_62/train-* - config_name: subset_63 data_files: - split: train path: subset_63/train-* - config_name: subset_64 data_files: - split: train path: subset_64/train-* - config_name: subset_65 data_files: - split: train path: subset_65/train-* - config_name: subset_66 data_files: - split: train path: subset_66/train-* - config_name: subset_67 data_files: - split: train path: subset_67/train-* - config_name: subset_68 data_files: - split: train path: subset_68/train-* - config_name: subset_69 data_files: - split: train path: subset_69/train-* - config_name: subset_7 data_files: - split: train path: subset_7/train-* - config_name: subset_70 data_files: - split: train path: subset_70/train-* - config_name: subset_71 data_files: - split: train path: subset_71/train-* - config_name: subset_72 data_files: - split: train path: subset_72/train-* - config_name: subset_73 data_files: - split: train path: subset_73/train-* - config_name: subset_74 data_files: - split: train path: subset_74/train-* - config_name: subset_75 data_files: - split: train path: subset_75/train-* - config_name: subset_76 data_files: - split: train path: subset_76/train-* - config_name: subset_77 data_files: - split: train path: subset_77/train-* - config_name: subset_78 data_files: - split: train path: subset_78/train-* - config_name: subset_79 data_files: - split: train path: subset_79/train-* - config_name: subset_8 data_files: - split: train path: subset_8/train-* - config_name: subset_80 data_files: - split: train path: subset_80/train-* - config_name: subset_81 data_files: - split: train path: subset_81/train-* - config_name: subset_82 data_files: - split: train path: subset_82/train-* - config_name: subset_83 data_files: - split: train path: subset_83/train-* - config_name: subset_84 data_files: - split: train path: subset_84/train-* - config_name: subset_85 data_files: - split: train path: subset_85/train-* - config_name: subset_86 data_files: - split: train path: subset_86/train-* - config_name: subset_87 data_files: - split: train path: subset_87/train-* - config_name: subset_88 data_files: - split: train path: subset_88/train-* - config_name: subset_89 data_files: - split: train path: subset_89/train-* - config_name: subset_9 data_files: - split: train path: subset_9/train-* - config_name: subset_90 data_files: - split: train path: subset_90/train-* - config_name: subset_91 data_files: - split: train path: subset_91/train-* - config_name: subset_92 data_files: - split: train path: subset_92/train-* - config_name: subset_93 data_files: - split: train path: subset_93/train-* - config_name: subset_94 data_files: - split: train path: subset_94/train-* - config_name: subset_95 data_files: - split: train path: subset_95/train-* - config_name: subset_96 data_files: - split: train path: subset_96/train-* - config_name: subset_97 data_files: - split: train path: subset_97/train-* - config_name: subset_98 data_files: - split: train path: subset_98/train-* - config_name: subset_99 data_files: - split: train path: subset_99/train-* ---
jacobbieker/gk2a-kerchunk
jacobbieker
"2024-07-18T19:12:08Z"
10,774
0
[ "license:mit", "doi:10.57967/hf/1640", "region:us" ]
null
"2024-01-09T13:32:56Z"
--- license: mit ---
zalando-datasets/fashion_mnist
zalando-datasets
"2024-08-08T06:10:25Z"
10,731
49
[ "task_categories:image-classification", "task_ids:multi-class-image-classification", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1708.07747", "region:us" ]
[ "image-classification" ]
"2022-03-02T23:29:22Z"
--- annotations_creators: - expert-generated language_creators: - found language: - en license: - mit multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - image-classification task_ids: - multi-class-image-classification paperswithcode_id: fashion-mnist pretty_name: FashionMNIST dataset_info: config_name: fashion_mnist features: - name: image dtype: image - name: label dtype: class_label: names: '0': T - shirt / top '1': Trouser '2': Pullover '3': Dress '4': Coat '5': Sandal '6': Shirt '7': Sneaker '8': Bag '9': Ankle boot splits: - name: train num_bytes: 31049107.0 num_examples: 60000 - name: test num_bytes: 5192560.0 num_examples: 10000 download_size: 36106894 dataset_size: 36241667.0 configs: - config_name: fashion_mnist data_files: - split: train path: fashion_mnist/train-* - split: test path: fashion_mnist/test-* default: true --- # Dataset Card for FashionMNIST ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [GitHub](https://github.com/zalandoresearch/fashion-mnist) - **Repository:** [GitHub](https://github.com/zalandoresearch/fashion-mnist) - **Paper:** [arXiv](https://arxiv.org/pdf/1708.07747.pdf) - **Leaderboard:** - **Point of Contact:** ### Dataset Summary Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits. ### Supported Tasks and Leaderboards - `image-classification`: The goal of this task is to classify a given image of Zalando's article into one of 10 classes. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-fashion-mnist). ### Languages [More Information Needed] ## Dataset Structure ### Data Instances A data point comprises an image and its label. ``` { 'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=28x28 at 0x27601169DD8>, 'label': 9 } ``` ### Data Fields - `image`: A `PIL.Image.Image` object containing the 28x28 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`. - `label`: an integer between 0 and 9 representing the classes with the following mapping: | Label | Description | | --- | --- | | 0 | T-shirt/top | | 1 | Trouser | | 2 | Pullover | | 3 | Dress | | 4 | Coat | | 5 | Sandal | | 6 | Shirt | | 7 | Sneaker | | 8 | Bag | | 9 | Ankle boot | ### Data Splits The data is split into training and test set. The training set contains 60,000 images and the test set 10,000 images. ## Dataset Creation ### Curation Rationale **From the arXiv paper:** The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others." Here are some good reasons: - MNIST is too easy. Convolutional nets can achieve 99.7% on MNIST. Classic machine learning algorithms can also achieve 97% easily. Check out our side-by-side benchmark for Fashion-MNIST vs. MNIST, and read "Most pairs of MNIST digits can be distinguished pretty well by just one pixel." - MNIST is overused. In this April 2017 Twitter thread, Google Brain research scientist and deep learning expert Ian Goodfellow calls for people to move away from MNIST. - MNIST can not represent modern CV tasks, as noted in this April 2017 Twitter thread, deep learning expert/Keras author François Chollet. ### Source Data #### Initial Data Collection and Normalization **From the arXiv paper:** Fashion-MNIST is based on the assortment on Zalando’s website. Every fashion product on Zalando has a set of pictures shot by professional photographers, demonstrating different aspects of the product, i.e. front and back looks, details, looks with model and in an outfit. The original picture has a light-gray background (hexadecimal color: #fdfdfd) and stored in 762 × 1000 JPEG format. For efficiently serving different frontend components, the original picture is resampled with multiple resolutions, e.g. large, medium, small, thumbnail and tiny. We use the front look thumbnail images of 70,000 unique products to build Fashion-MNIST. Those products come from different gender groups: men, women, kids and neutral. In particular, whitecolor products are not included in the dataset as they have low contrast to the background. The thumbnails (51 × 73) are then fed into the following conversion pipeline: 1. Converting the input to a PNG image. 2. Trimming any edges that are close to the color of the corner pixels. The “closeness” is defined by the distance within 5% of the maximum possible intensity in RGB space. 3. Resizing the longest edge of the image to 28 by subsampling the pixels, i.e. some rows and columns are skipped over. 4. Sharpening pixels using a Gaussian operator of the radius and standard deviation of 1.0, with increasing effect near outlines. 5. Extending the shortest edge to 28 and put the image to the center of the canvas. 6. Negating the intensities of the image. 7. Converting the image to 8-bit grayscale pixels. #### Who are the source language producers? **From the arXiv paper:** Every fashion product on Zalando has a set of pictures shot by professional photographers, demonstrating different aspects of the product, i.e. front and back looks, details, looks with model and in an outfit. ### Annotations #### Annotation process **From the arXiv paper:** For the class labels, they use the silhouette code of the product. The silhouette code is manually labeled by the in-house fashion experts and reviewed by a separate team at Zalando. Each product Zalando is the Europe’s largest online fashion platform. Each product contains only one silhouette code. #### Who are the annotators? **From the arXiv paper:** The silhouette code is manually labeled by the in-house fashion experts and reviewed by a separate team at Zalando. ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Han Xiao and Kashif Rasul and Roland Vollgraf ### Licensing Information MIT Licence ### Citation Information ``` @article{DBLP:journals/corr/abs-1708-07747, author = {Han Xiao and Kashif Rasul and Roland Vollgraf}, title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms}, journal = {CoRR}, volume = {abs/1708.07747}, year = {2017}, url = {http://arxiv.org/abs/1708.07747}, archivePrefix = {arXiv}, eprint = {1708.07747}, timestamp = {Mon, 13 Aug 2018 16:47:27 +0200}, biburl = {https://dblp.org/rec/bib/journals/corr/abs-1708-07747}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ### Contributions Thanks to [@gchhablani](https://github.com/gchablani) for adding this dataset.
Meranti/CLAP_freesound
Meranti
"2023-07-09T17:09:18Z"
10,705
23
[ "task_categories:audio-classification", "language:en", "size_categories:1M<n<10M", "modality:audio", "modality:text", "region:us", "audio", "text", "contrastive learning" ]
[ "audio-classification" ]
"2023-06-02T00:42:03Z"
--- task_categories: - audio-classification language: - en tags: - audio - text - contrastive learning pretty_name: freesound size_categories: - 1M<n<10M --- # LAION-Audio-630K Freesound Dataset [LAION-Audio-630K](https://github.com/LAION-AI/audio-dataset/blob/main/laion-audio-630k/README.md) is the largest audio-text dataset publicly available and a magnitude larger than previous audio-text datasets (by 2022-11-05). Notably, it combines eight distinct datasets, which includes the Freesound dataset. Specifically, this Hugging face repository contains two versions of Freesound dataset. Details of each dataset (e.g. how captions are made etc.) could be found in the "datacard" column of the table below. - **Freesound (full)**: The complete Freesound dataset, available at `/freesound` folder. - **Freesound (no overlap)**: Made based on Freesound(full), with samples from ESC50, FSD50K, Urbansound8K and Clotho removed. available at `/freesound_no_overlap` folder. As of the structure and format of `freesound` and `freesound_no_overlap` folder, please refer to [this page](https://github.com/LAION-AI/audio-dataset/blob/main/data_preprocess/README.md). | Name |Duration |Number of Samples |Data Type | Metadata | Data Card | |--------------------------------------------------|-------------------------|--------------------|--------- |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------- | | Freesound (no overlap) |2817.31hrs | 460801 |1-2 captions per audio, audio | [website](https://freesound.org/) <br> [csv]()|[data card](/data_card/freesound.md)| | Freesound (full) |3033.38hrs | 515581 |1-2 captions per audio, audio | [website](https://freesound.org/) <br> [csv]() |[data card](/data_card/freesound.md)| ## Metadata csv file For each of the two datasets, we provide a metadata csv file including the following columns: - **audio_filename**: The filename of the audio file in `.tar` files. `exemple: 2394.flac` - **caption_i**: the i-th caption of the audio file - **freesound_id**: The freesound id of the audio file. - **username**: The username of the uploader of the audio file. - **freesound_url**: The url of the audio file in freesound.org - **username**: The freesound username of the uploader of the audio file. - **license**: The license of the audio file. `http://creativecommons.org/licenses/by/3.0/` ## Credits & Licence - **!!!TERM OF USE!!!**: **By downloading files in this repository, you agree that you will use them <u> for research purposes only </u>. If you want to use Freesound clips in LAION-Audio-630K for commercial purposes, please contact Frederic Font Corbera at [email protected].** ### Freesound Credit: All audio clips from Freesound are released under Creative Commons (CC) licenses, while each clip has its own license as defined by the clip uploader in Freesound, some of them requiring attribution to their original authors and some forbidding further commercial reuse. Specifically, here is the statistics about licenses of audio clips involved in LAION-Audio-630K: | License | Number of Samples | | :--- | :--- | | http://creativecommons.org/publicdomain/zero/1.0/ | 260134 | | https://creativecommons.org/licenses/by/4.0/ | 97090 | | http://creativecommons.org/licenses/by/3.0/ | 89337 | | http://creativecommons.org/licenses/by-nc/3.0/ | 31680 | | https://creativecommons.org/licenses/by-nc/4.0/ | 26736 | | http://creativecommons.org/licenses/sampling+/1.0/ | 11116 | ## Acknowledgement The whole collection process as well as all usage of the LAION-Audio-630K are conducted by Germany non-profit pure research organization [LAION](https://laion.ai/). All contributors and collectors of the dataset are considered as open source contributors affiliated to LAION. These community contributors (Discord ids) include but not limited to: @marianna13#7139, @Chr0my#0173, @PiEquals4#1909, @Yuchen Hui#8574, @Antoniooooo#4758, @IYWO#9072, krishna#1648, @dicknascarsixtynine#3885, and @turian#1607. We would like to appreciate all of them for their efforts on the LAION-Audio-630k dataset.
Sterzhang/PVIT-3M
Sterzhang
"2024-11-02T07:41:57Z"
10,626
17
[ "task_categories:visual-question-answering", "task_categories:image-text-to-text", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:json", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2410.07113", "region:us", "multi-modal", "personalized" ]
[ "visual-question-answering", "image-text-to-text" ]
"2024-10-07T09:28:17Z"
--- configs: - config_name: PVIT-3M data_files: - split: all_data path: PVIT-3M.json language: - en task_categories: - visual-question-answering - image-text-to-text tags: - multi-modal - personalized license: apache-2.0 pretty_name: personalized visual instruction tuning size_categories: - 1M<n<10M --- # PVIT-3M The paper titled "[**Personalized Visual Instruction Tuning**](https://arxiv.org/abs/2410.07113)" introduces a novel dataset called PVIT-3M. This dataset is specifically designed for tuning MLLMs in the context of personalized visual instruction tasks. The dataset consists of 3 million image-text pairs that aim to improve MLLMs' abilities to generate responses based on personalized visual inputs, making them more tailored and adaptable to individual user needs and preferences. Here’s the PVIT-3M statistics: <img width="900" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/65d8b0f0661492b25c6623de/BLF2Uo72nqpvjPv_yplbt.png"> ## Directory The images in the PVIT-3M dataset have been organized into 40 separate folders, each named pvit-3m_0 to pvit-3m_39. After downloading, you can combine all the subfolders for a unified dataset structure. ``` Sterzhang/PVIT-3M └─ image └─ pvit-3m_0 └─ aug-face └─ coco └─ concat-person └─ crop-face └─ flickr30k └─ object365 └─ vg └─ pvit-3m_1 └─ ... └─ ... └─ PVIT-3M.json └─ README.md ``` ## Json Structure The PVIT-3M.json file contains structured data for each conversation instance in the PVIT-3M dataset. Below is an outline of the key fields: - `image`: A list of image file paths related to the conversation. - `conversations`: A list of dictionaries, each representing a turn in the conversation. - `from`: `human` or `gpt`. - `value`: The content of the conversation. - `type`: A string indicating the type. ## Example Here is an example from the PVIT-3M: ```json { "image": [ "crop-face/object365/objects365_v2_01169026/2.jpg", "object365/objects365_v2_01169026.jpg" ], "conversations": [ { "from": "human", "value": "<image>\nThis is a photo of Erin.\n<image>\nHow does Erin look in this photo?" }, { "from": "gpt", "value": "Erin is a woman with short, brown hair. She is wearing a dark blue dress with short sleeves and a ruffled design. She has a pearl necklace and a watch on her left wrist. She is also wearing a ring on her left hand." } ], "type": "crop description" } ``` "crop-face/object365/objects365_v2_01169026/2.jpg": <img width="100" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/65d8b0f0661492b25c6623de/lJi0aDYE44wyGP2QMZ13W.png"> "object365/objects365_v2_01169026.jpg": <img width="400" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/65d8b0f0661492b25c6623de/RY_80A5rSOO1vv6A6CuJy.png"> ## Script The script processes conversation data in the **PVIT-3M** dataset by adding personalized wrapper tokens (`<person_s>` and `<person_e>`) around specific segments. This helps the model correctly associate personalized text and images with each individual, reducing ambiguity in multimodal training. ```python import json def process_image_description(text): segments = text.split('<image>\n') processed_segments = [] for i, segment in enumerate(segments): if i == 0: processed_segments.append(segment) elif i == len(segments) - 1: continue else: last_newline_index = segment.rfind('\n') if last_newline_index != -1: segment = segment[:last_newline_index] + '<person_e>' + segment[last_newline_index:] else: segment += '<person_e>' processed_segments.append(f'<person_s><image>\n{segment}') processed_segments.append(f"<image>\n{segments[-1]}") return ''.join(processed_segments) def process_conversation_data(input_path, output_path): with open(input_path, 'r', encoding='utf-8') as f: data = json.load(f) for item in data: conversation_value = item["conversations"][0]["value"] item["conversations"][0]["value"] = process_image_description(conversation_value) with open(output_path, 'w', encoding='utf-8') as f: json.dump(data, f, ensure_ascii=False, indent=4) input_file = "" output_file = "" process_conversation_data(input_file, output_file) ``` # Code Our code will be released in [PVIT](https://github.com/sterzhang/PVIT), containing scripts for generating PVIT dataset as well as our code for training. # Case Study <img width="1000" alt="image" src="https://github.com/user-attachments/assets/d50fa03f-fdb6-41ff-ab25-806578d29f3e"> # Citation Our paper is now available at: [https://arxiv.org/abs/2410.07113](https://arxiv.org/abs/2410.07113) ```bibtex @misc{pi2024personalizedvisualinstructiontuning, title={Personalized Visual Instruction Tuning}, author={Renjie Pi and Jianshu Zhang and Tianyang Han and Jipeng Zhang and Rui Pan and Tong Zhang}, year={2024}, eprint={2410.07113}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2410.07113}, }
mteb/nfcorpus
mteb
"2024-03-03T11:16:55Z"
10,606
2
[ "task_categories:text-retrieval", "task_ids:document-retrieval", "multilinguality:monolingual", "source_datasets:nfcorpus", "language:en", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "text-retrieval" ]
[ "text-retrieval" ]
"2024-03-02T21:17:27Z"
--- language: - en multilinguality: - monolingual task_categories: - text-retrieval source_datasets: - nfcorpus task_ids: - document-retrieval config_names: - corpus tags: - text-retrieval dataset_info: - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: float64 splits: - name: train num_bytes: 3720942 num_examples: 110575 - name: dev num_bytes: 383427 num_examples: 11385 - name: test num_bytes: 415220 num_examples: 12334 - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: text dtype: string splits: - name: corpus num_bytes: 5856698 num_examples: 3633 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: queries num_bytes: 128355 num_examples: 3237 configs: - config_name: default data_files: - split: train path: qrels/train.jsonl - split: dev path: qrels/dev.jsonl - split: test path: qrels/test.jsonl - config_name: corpus data_files: - split: corpus path: corpus.jsonl - config_name: queries data_files: - split: queries path: queries.jsonl ---
OpenDriveLab/OpenScene
OpenDriveLab
"2024-04-22T18:51:08Z"
10,605
4
[ "license:cc-by-nc-sa-4.0", "size_categories:n<1K", "modality:text", "region:us" ]
null
"2024-03-02T04:33:04Z"
--- license: cc-by-nc-sa-4.0 ---
AnonymousGM/MultiSetTransformerData
AnonymousGM
"2024-09-02T00:56:24Z"
10,519
0
[ "license:mit", "region:us" ]
null
"2024-02-19T22:05:51Z"
--- license: mit --- ## General Description MultiSetTransformerData is a large dataset designed to train and validate neural Symbolic Regression models. It was designed to solve the Multi-Set Symbolic Skeleton Prediction (MSSP) problems, described in the paper **"Univariate Skeleton Prediction in Multivariate Systems Using Transformers"**. However, it can be used for training generic SR models as well. This dataset consists of artificially generated **univariate symbolic skeletons**, from which mathematical expressions are sampled, which are then used to sample data sets. In this repository, a dataset **Q1** is presented: * **Q1**: Consists of mathematical expressions that use up to 5 unary and binary operators (e.g., \\(1 + 1 / (\sin(2x) + 3)\\) uses five operators). It allows up to one nested operator (e.g., \\(\sin( \exp(x))\\) is allowed but \\(\sin( \exp(x^2))\\) is not). ## Dataset Structure In the **Q1** folder, you will find a training set alongside its corresponding validation set. Then, each folder consists of a collection of HDF5 files, as shown below: ``` ├── Q1 │ ├── training │ │ ├── 0.h5 │ │ ├── 1.h5 │ │ ├── ... │ ├── validation │ │ ├── 0.h5 │ │ ├── 1.h5 │ │ ├── ... ``` Each HDF5 file contains 5000 **blocks** and has the following structure: ``` { "block_1": { "X": "Support vector, shape (10000, 10)", "Y": "Response vector, shape (10000, 10)", "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list", "exprs": "Symbolic skeleton expression, str", "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton" }, "block_2": { "X": "Support, shape (10000, 10)", "Y": "Response, shape (10000, 10)", "tokenized": "Symbolic skeleton expression tokenized using vocabulary, list", "exprs": "Symbolic skeleton expression, str", "sampled_exprs": "Ten mathematical expressions sampled from a common skeleton" }, ... } ``` More specifically, each block corresponds to one univariate symbolic skeleton (i.e., a function without defined constant values); for example, `c + c/(c*sin(c*x_1) + c)`. From this skeleton, 10 random functions are sampled; for example: * `-2.284 + 0.48/(-sin(0.787*x_1) - 1.136)` * `4.462 - 2.545/(3.157*sin(0.422*x_1) - 1.826)`, ... Then, for the \\(i\\)-th function (where \\(i \in [0, 1, ..., 9]\\)), we sample a **support vector** `X[:, i]` of 10000 elements whose values are drawn from a uniform distribution \\(\mathcal{U}(-10, 10)\\). The support vector `X[:, i]` is evaluated on the \\(i\\)-th function to obtain the response vector `Y[:, i]`. In other words, a block contains input-output data generated from 10 **different functions that share the same symbolic skeleton**. For instance, the following figure shows 10 sets of data generated from the symbolic skeleton `c + c/(c*sin(c*x_1) + c)`: <p align="center"> <img src="images/data_example.jpg" alt="alt text" width="600"> </p> ## Loading Data Once the data is downloaded, it can be loaded using Python as follows: ``` imort os import glob import h5py def open_h5(path): block = [] with h5py.File(path, "r") as hf: # Iterate through the groups in the HDF5 file (group names are integers) for group_name in hf: group = hf[group_name] X = group["X"][:] Y = group["Y"][:] # Load 'tokenized' as a list of integers tokenized = list(group["tokenized"]) # Load 'exprs' as a string exprs = group["exprs"][()].tobytes().decode("utf-8") # Load 'sampled_exprs' as a list of sympy expressions sampled_exprs = [expr_str for expr_str in group["sampled_exprs"][:].astype(str)] block.append([X, Y, tokenized, exprs, sampled_exprs]) return block train_path = 'data/Q1/training' train_files = glob.glob(os.path.join(self.sampledData_train_path, '*.h5')) for tfile in train_files: # Read block block = open_h5(tfile) # Do stuff with your data ``` ## Vocabulary and Expression Generation The table below provides the vocabulary used to construct the expressions of this dataset. <p align="center"> <img src="images/vocabulary.jpg" alt="alt text" width="500"> </p> We use a method that builds the expression tree recursively in a preorder fashion, which allows us to enforce certain conditions and constraints effectively. That is, we forbid certain combinations of operators and set a maximum limit on the nesting depth of unary operators within each other. For example, we avoid embedding the operator \\(\text{log}\\) within the operator \\(\text{exp}\\), or vice versa, since such composition could lead to direct simplification (e.g., \\(\text{log}\left( \text{exp} (x) \right) = x\\). We can also avoid combinations of operators that would generate extremely large values (e.g., \\(\text{exp}\left( \text{exp} (x) \right)\\) and \\(\text{sinh} \left( \text{sinh} (x) \right)\\)). The table below shows the forbidden operators we considered for some specific parent operators. <p align="center"> <img src="images/forbidden_ops.jpg" alt="alt text" width="500"> </p> ## Citation Use this Bibtex to cite this repository ``` @INPROCEEDINGS{MultiSetSR, author="Morales, Giorgio and Sheppard, John W.", editor="Bifet, Albert and Daniu{\v{s}}is, Povilas and Davis, Jesse and Krilavi{\v{c}}ius, Tomas and Kull, Meelis and Ntoutsi, Eirini and Puolam{\"a}ki, Kai and {\v{Z}}liobait{\.{e}}, Indr{\.{e}}", title="Univariate Skeleton Prediction in Multivariate Systems Using Transformers", booktitle="Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track", year="2024", publisher="Springer Nature Switzerland", address="Cham", pages="107--125", isbn="978-3-031-70371-3" } ```
bigscience/evaluation-results
bigscience
"2023-05-28T00:13:53Z"
10,514
10
[ "task_categories:other", "size_categories:100M<n<1B", "region:us" ]
[ "other" ]
"2022-08-01T18:35:58Z"
--- pretty_name: evaluation-results size_categories: - 100M<n<1B task_categories: - other --- # BigScience BLOOM Evaluation Results This repository contains evaluation results & original predictions of BLOOM & friends. ## Usage You can load numeric results via: ```python from datasets import load_dataset ds = load_dataset("bigscience/evaluation-results", "bloom") ``` If it takes too long, it may be faster to clone the repository and load the data from disk: ```python !git clone https://huggingface.co/datasets/bigscience/evaluation-results ds = load_dataset("evaluation-results", "bloom") ``` For example generations (.jsonl files), you need to manually browse the repository. ## Structure For `bigsciencelmevalharness`, `lmevalharness` & `codeeval` evaluation_frameworks the structure is: `model_name > evaluation_framework > checkpoint_type > dataset_name > data` ## Evaluation Procedure - `bigsciencelmevalharness` files were created using the below: - https://github.com/bigscience-workshop/Megatron-DeepSpeed/pull/291 - https://github.com/bigscience-workshop/lm-evaluation-harness - `lmevalharness` files were created using the below: - https://github.com/bigscience-workshop/Megatron-DeepSpeed - https://github.com/EleutherAI/lm-evaluation-harness - `codeeval` files were created using the HumanEval code dataset with the below: - https://github.com/loubnabnl/bloom-code-evaluation
labelmaker/arkit_labelmaker
labelmaker
"2024-10-22T19:00:08Z"
10,491
1
[ "language:en", "license:bsd", "size_categories:1K<n<10K", "arxiv:2410.13924", "doi:10.57967/hf/2389", "region:us", "3D semantic segmentation", "indoor 3D scene dataset" ]
null
"2024-04-24T17:17:33Z"
--- viewer: false license: bsd language: - en tags: - 3D semantic segmentation - indoor 3D scene dataset pretty_name: arkit_labelmaker size_categories: - 1K<n<10K --- # ARKit Labelmaker: A New Scale for Indoor 3D Scene Understanding [[arxiv]](https://arxiv.org/abs/2410.13924) [[website]](https://labelmaker.org/) We complement ARKitScenes dataset with dense semantic annotations that are automatically generated at scale. This produces the first large-scale, real-world 3D dataset with dense semantic annotations. Training on this auto-generated data, we push forward the state-of-the-art performance on ScanNet and ScanNet200 with prevalent 3D semantic segmentation models.
distil-whisper/librispeech_long
distil-whisper
"2023-11-02T14:22:54Z"
10,481
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2023-11-02T14:22:51Z"
--- dataset_info: config_name: clean features: - name: audio dtype: audio splits: - name: validation num_bytes: 1998609.0 num_examples: 1 download_size: 1984721 dataset_size: 1998609.0 configs: - config_name: clean data_files: - split: validation path: clean/validation-* --- # Dataset Card for "librispeech_long" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
knkarthick/dialogsum
knkarthick
"2023-10-03T10:56:21Z"
10,478
191
[ "task_categories:summarization", "task_categories:text2text-generation", "task_categories:text-generation", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "dialogue-summary", "one-liner-summary", "meeting-title", "email-subject" ]
[ "summarization", "text2text-generation", "text-generation" ]
"2022-06-28T10:17:20Z"
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: cc-by-nc-sa-4.0 multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - summarization - text2text-generation - text-generation task_ids: [] pretty_name: DIALOGSum Corpus tags: - dialogue-summary - one-liner-summary - meeting-title - email-subject --- # Dataset Card for DIALOGSum Corpus ## Dataset Description ### Links - **Homepage:** https://aclanthology.org/2021.findings-acl.449 - **Repository:** https://github.com/cylnlp/dialogsum - **Paper:** https://aclanthology.org/2021.findings-acl.449 - **Point of Contact:** https://huggingface.co/knkarthick ### Dataset Summary DialogSum is a large-scale dialogue summarization dataset, consisting of 13,460 (Plus 100 holdout data for topic generation) dialogues with corresponding manually labeled summaries and topics. ### Languages English ## Dataset Structure ### Data Instances DialogSum is a large-scale dialogue summarization dataset, consisting of 13,460 dialogues (+1000 tests) split into train, test and validation. The first instance in the training set: {'id': 'train_0', 'summary': "Mr. Smith's getting a check-up, and Doctor Hawkins advises him to have one every year. Hawkins'll give some information about their classes and medications to help Mr. Smith quit smoking.", 'dialogue': "#Person1#: Hi, Mr. Smith. I'm Doctor Hawkins. Why are you here today?\n#Person2#: I found it would be a good idea to get a check-up.\n#Person1#: Yes, well, you haven't had one for 5 years. You should have one every year.\n#Person2#: I know. I figure as long as there is nothing wrong, why go see the doctor?\n#Person1#: Well, the best way to avoid serious illnesses is to find out about them early. So try to come at least once a year for your own good.\n#Person2#: Ok.\n#Person1#: Let me see here. Your eyes and ears look fine. Take a deep breath, please. Do you smoke, Mr. Smith?\n#Person2#: Yes.\n#Person1#: Smoking is the leading cause of lung cancer and heart disease, you know. You really should quit.\n#Person2#: I've tried hundreds of times, but I just can't seem to kick the habit.\n#Person1#: Well, we have classes and some medications that might help. I'll give you more information before you leave.\n#Person2#: Ok, thanks doctor.", 'topic': "get a check-up} ### Data Fields - dialogue: text of dialogue. - summary: human written summary of the dialogue. - topic: human written topic/one liner of the dialogue. - id: unique file id of an example. ### Data Splits - train: 12460 - val: 500 - test: 1500 - holdout: 100 [Only 3 features: id, dialogue, topic] ## Dataset Creation ### Curation Rationale In paper: We collect dialogue data for DialogSum from three public dialogue corpora, namely Dailydialog (Li et al., 2017), DREAM (Sun et al., 2019) and MuTual (Cui et al., 2019), as well as an English speaking practice website. These datasets contain face-to-face spoken dialogues that cover a wide range of daily-life topics, including schooling, work, medication, shopping, leisure, travel. Most conversations take place between friends, colleagues, and between service providers and customers. Compared with previous datasets, dialogues from DialogSum have distinct characteristics: Under rich real-life scenarios, including more diverse task-oriented scenarios; Have clear communication patterns and intents, which is valuable to serve as summarization sources; Have a reasonable length, which comforts the purpose of automatic summarization. We ask annotators to summarize each dialogue based on the following criteria: Convey the most salient information; Be brief; Preserve important named entities within the conversation; Be written from an observer perspective; Be written in formal language. ### Who are the source language producers? linguists ### Who are the annotators? language experts ## Licensing Information CC BY-NC-SA 4.0 ## Citation Information ``` @inproceedings{chen-etal-2021-dialogsum, title = "{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset", author = "Chen, Yulong and Liu, Yang and Chen, Liang and Zhang, Yue", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.449", doi = "10.18653/v1/2021.findings-acl.449", pages = "5062--5074", ``` ## Contributions Thanks to [@cylnlp](https://github.com/cylnlp) for adding this dataset.
openslr/librispeech_asr
openslr
"2024-08-14T10:48:50Z"
10,472
131
[ "task_categories:automatic-speech-recognition", "task_categories:audio-classification", "task_ids:speaker-identification", "annotations_creators:expert-generated", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "region:us" ]
[ "automatic-speech-recognition", "audio-classification" ]
"2022-03-02T23:29:22Z"
--- pretty_name: LibriSpeech annotations_creators: - expert-generated language_creators: - crowdsourced - expert-generated language: - en license: - cc-by-4.0 multilinguality: - monolingual paperswithcode_id: librispeech-1 size_categories: - 100K<n<1M source_datasets: - original task_categories: - automatic-speech-recognition - audio-classification task_ids: - speaker-identification dataset_info: - config_name: clean features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string splits: - name: train.100 num_bytes: 6619683041 num_examples: 28539 - name: train.360 num_bytes: 23898214592 num_examples: 104014 - name: validation num_bytes: 359572231 num_examples: 2703 - name: test num_bytes: 367705423 num_examples: 2620 download_size: 30121377654 dataset_size: 31245175287 - config_name: other features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string splits: - name: train.500 num_bytes: 31810256902 num_examples: 148688 - name: validation num_bytes: 337283304 num_examples: 2864 - name: test num_bytes: 352396474 num_examples: 2939 download_size: 31236565377 dataset_size: 32499936680 - config_name: all features: - name: file dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: speaker_id dtype: int64 - name: chapter_id dtype: int64 - name: id dtype: string splits: - name: train.clean.100 num_bytes: 6627791685 num_examples: 28539 - name: train.clean.360 num_bytes: 23927767570 num_examples: 104014 - name: train.other.500 num_bytes: 31852502880 num_examples: 148688 - name: validation.clean num_bytes: 359505691 num_examples: 2703 - name: validation.other num_bytes: 337213112 num_examples: 2864 - name: test.clean num_bytes: 368449831 num_examples: 2620 - name: test.other num_bytes: 353231518 num_examples: 2939 download_size: 61357943031 dataset_size: 63826462287 --- # Dataset Card for librispeech_asr ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [LibriSpeech ASR corpus](http://www.openslr.org/12) - **Repository:** [Needs More Information] - **Paper:** [LibriSpeech: An ASR Corpus Based On Public Domain Audio Books](https://www.danielpovey.com/files/2015_icassp_librispeech.pdf) - **Leaderboard:** [The 🤗 Speech Bench](https://huggingface.co/spaces/huggingface/hf-speech-bench) - **Point of Contact:** [Daniel Povey](mailto:[email protected]) ### Dataset Summary LibriSpeech is a corpus of approximately 1000 hours of 16kHz read English speech, prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read audiobooks from the LibriVox project, and has been carefully segmented and aligned. ### Supported Tasks and Leaderboards - `automatic-speech-recognition`, `audio-speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active Hugging Face leaderboard which can be found at https://huggingface.co/spaces/huggingface/hf-speech-bench. The leaderboard ranks models uploaded to the Hub based on their WER. An external leaderboard at https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean ranks the latest models from research and academia. ### Languages The audio is in English. There are two configurations: `clean` and `other`. The speakers in the corpus were ranked according to the WER of the transcripts of a model trained on a different dataset, and were divided roughly in the middle, with the lower-WER speakers designated as "clean" and the higher WER speakers designated as "other". ## Dataset Structure ### Data Instances A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided. ``` {'chapter_id': 141231, 'file': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac', 'audio': {'path': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac', 'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32), 'sampling_rate': 16000}, 'id': '1272-141231-0000', 'speaker_id': 1272, 'text': 'A MAN SAID TO THE UNIVERSE SIR I EXIST'} ``` ### Data Fields - file: A path to the downloaded audio file in .flac format. - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`. - text: the transcription of the audio file. - id: unique id of the data sample. - speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples. - chapter_id: id of the audiobook chapter which includes the transcription. ### Data Splits The size of the corpus makes it impractical, or at least inconvenient for some users, to distribute it as a single large archive. Thus the training portion of the corpus is split into three subsets, with approximate size 100, 360 and 500 hours respectively. A simple automatic procedure was used to select the audio in the first two sets to be, on average, of higher recording quality and with accents closer to US English. An acoustic model was trained on WSJ’s si-84 data subset and was used to recognize the audio in the corpus, using a bigram LM estimated on the text of the respective books. We computed the Word Error Rate (WER) of this automatic transcript relative to our reference transcripts obtained from the book texts. The speakers in the corpus were ranked according to the WER of the WSJ model’s transcripts, and were divided roughly in the middle, with the lower-WER speakers designated as "clean" and the higher-WER speakers designated as "other". For "clean", the data is split into train, validation, and test set. The train set is further split into train.100 and train.360 respectively accounting for 100h and 360h of the training data. For "other", the data is split into train, validation, and test set. The train set contains approximately 500h of recorded speech. | | Train.500 | Train.360 | Train.100 | Valid | Test | | ----- | ------ | ----- | ---- | ---- | ---- | | clean | - | 104014 | 28539 | 2703 | 2620| | other | 148688 | - | - | 2864 | 2939 | ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset. ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators The dataset was initially created by Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. ### Licensing Information [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) ### Citation Information ``` @inproceedings{panayotov2015librispeech, title={Librispeech: an ASR corpus based on public domain audio books}, author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev}, booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on}, pages={5206--5210}, year={2015}, organization={IEEE} } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
mlfoundations/dclm-pool-1b-5x
mlfoundations
"2024-06-22T05:50:04Z"
10,453
1
[ "license:cc-by-4.0", "region:us" ]
null
"2024-06-12T04:26:45Z"
--- license: cc-by-4.0 ---
IGNF/PASTIS-HD
IGNF
"2024-10-04T13:39:24Z"
10,428
10
[ "task_categories:image-classification", "task_categories:image-segmentation", "license:etalab-2.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "arxiv:2107.07933", "arxiv:2112.07558", "arxiv:2404.08351", "region:us", "remote sensing", "Agricultural" ]
[ "image-classification", "image-segmentation" ]
"2024-04-02T14:58:15Z"
--- license: etalab-2.0 task_categories: - image-classification - image-segmentation tags: - remote sensing - Agricultural size_categories: - 1K<n<10K --- # 🌱 PASTIS-HD 🌿 Panoptic Agricultural Satellite TIme Series : optical time series, radar time series and very high resolution image [PASTIS](https://github.com/VSainteuf/pastis-benchmark) is a benchmark dataset for panoptic and semantic segmentation of agricultural parcels from satellite time series. It contains 2,433 patches within the French metropolitan territory with panoptic annotations (instance index + semantic label for each pixel). Each patch is a Sentinel-2 multispectral image time series of variable lentgh. This dataset have been extended in 2021 with aligned radar Sentinel-1 observations for all 2433 patches. For each patch, it constains approximately 70 observations of Sentinel-1 in ascending orbit, and 70 observations in descending orbit. Each each Sentinel1 observation is assembled into a 3-channel image: vertical polarization (VV), horizontal polarisation (VH), and the ratio vertical over horizontal polarization (VV/VH). This extension is named PASTIS-R. We extend PASTIS with aligned very high resolution satellite images from SPOT 6-7 constellation for all 2433 patches in addition to the Sentinel-1 and 2 time series. The image are resampled to a 1m resolution and converted to 8 bits. This enhancement significantly improves the dataset's spatial content, providing more granular information for agricultural parcel segmentation. **PASTIS-HD** can be used to evaluate multi-modal fusion methods (with optical time series, radar time series and VHR images) for parcel-based classification, semantic segmentation, and panoptic segmentation. ## Dataset in numbers 🛰️ Sentinel 2 | 🛰️ Sentinel 1 | 🛰️ **SPOT 6-7 VHR** | 🗻 Annotations :-------------------------------------------- | :-------------------------------------------------- | :------------------------------| :------------------------------ ➡️ 2,433 time series | ➡️ 2 time 2,433 time series | ➡️ **2,433 images** | 124,422 individual parcels ➡️ 10m / pixel | ➡️ 10m / pixel | ➡️ **1.5m / pixel** | covers ~4,000 km² ➡️ 128x128 pixels / images | ➡️ 128x128 pixels / images | ➡️ **1280x1280 pixels / images** | over 2B pixels ➡️ 38-61 acquisitions / series | ➡️ ~ 70 acquisitions / series | ➡️ **One observation** | 18 crop types ➡️ 10 spectral bands |➡️ 2 spectral bands | ➡️ **3 spectral bands** | ⚠️ The **SPOT data are natively 1.5m resolution**, but we over-sampled them at 1m to align them pixel-perfect with Sentinel data. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6582b7dd75754a803e484487/sxmnCAGs0p2u_PALLsqyN.jpeg) ## Data loading The Github repository associated to this dataset contains a PyTorch dataset class of [the OmniSat repository](https://github.com/gastruc/OmniSat/blob/main/src/data/Pastis.py) that can be readily used to load data for training models on PASTIS-HD. The time series contained in PASTIS have variable lengths. The Sentinel 1 and 2 time series are stored in numpy array. The SPOT images are in TIFF format. The annotations are in numpy array too. ⚠️ The S2 and S1 folders contains more than 2433 files on the contrary to the labels folder. Some patches are not labelled and not used for training. The relevant information can be find in the metadata.geojson file (with 2433 entries), which is used as an index by the dataloader. ### Remark about the folder names ⚠️ The **DATA_S1A** folder contains the Sentinel-1 **ascendent** images whereas the **DATA_S1D** folder contains the Sentinel-1 **descendant** images. ## Ground Truth Annotations The agricultural parcels are grouped into 18 different crop classes as shown in the table below. The backgroud class corresponds to non-agricultural land, and the void label for parcels that are mostly outside their patch. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6582b7dd75754a803e484487/aHQB0uq4cqBX-7hkCkpFn.png) Additional information about the dataset can be found in the documentation/pastis-documentation.pdf document. ## Credits - The Sentinel imagery used in PASTIS was retrieved from [THEIA](www.theia.land.fr): "Value-added data processed by the CNES for the Theia www.theia.land.fr data cluster using Copernicus data. The treatments use algorithms developed by Theia’s Scientific Expertise Centres. " - The annotations used in PASTIS stem from the French [land parcel identification system](https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/) produced by IGN. - The SPOT images are opendata thanks to the Dataterra Dinamis initiative in the case of the ["Couverture France DINAMIS"](https://dinamis.data-terra.org/opendata/) program. ## References If you use PASTIS please cite the [related paper](https://arxiv.org/abs/2107.07933): ``` @article{garnot2021panoptic, title={Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks}, author={Sainte Fare Garnot, Vivien and Landrieu, Loic}, journal={ICCV}, year={2021} } ``` For the PASTIS-R optical-radar fusion dataset, please also cite [this paper](https://arxiv.org/abs/2112.07558v1): ``` @article{garnot2021mmfusion, title = {Multi-modal temporal attention models for crop mapping from satellite time series}, journal = {ISPRS Journal of Photogrammetry and Remote Sensing}, year = {2022}, doi = {https://doi.org/10.1016/j.isprsjprs.2022.03.012}, author = {Vivien {Sainte Fare Garnot} and Loic Landrieu and Nesrine Chehata}, } ``` For the PASTIS-HD with the 3 modalities optical-radar time series plus VHR images dataset, please also cite [this paper](https://arxiv.org/abs/2404.08351): ``` @article{astruc2024omnisat, title={Omni{S}at: {S}elf-Supervised Modality Fusion for {E}arth Observation}, author={Astruc, Guillaume and Gonthier, Nicolas and Mallet, Clement and Landrieu, Loic}, journal={ECCV}, year={2024} } ```
deepghs/gelbooru_full
deepghs
"2025-01-02T20:35:28Z"
10,417
37
[ "task_categories:image-classification", "task_categories:zero-shot-image-classification", "task_categories:text-to-image", "annotations_creators:no-annotation", "source_datasets:gelbooru", "language:en", "license:other", "size_categories:10M<n<100M", "region:us", "art", "anime", "not-for-all-audiences" ]
[ "image-classification", "zero-shot-image-classification", "text-to-image" ]
"2024-04-26T18:57:28Z"
--- license: other task_categories: - image-classification - zero-shot-image-classification - text-to-image language: - en tags: - art - anime - not-for-all-audiences size_categories: - 10M<n<100M annotations_creators: - no-annotation source_datasets: - gelbooru --- # Gelbooru Full Dataset This is the full dataset of [gelbooru.com](https://gelbooru.com/). And all the original images are maintained here. # How to Painlessly Use This Use [cheesechaser](https://github.com/deepghs/cheesechaser) to quickly get images from this repository. Before using this code, you have to **grant the access from this gated repository**. And then **set your personal HuggingFace token into `HF_TOKEN` environment variable** to give the code authorization for this repository. ```python from cheesechaser.datapool import GelbooruDataPool pool = GelbooruDataPool() pool.batch_download_to_directory( # download images #7000000-7000100, any ranges or id lists are okay resource_ids=range(7000000, 7000100), # save to directory /data/gelbooru dst_dir='/data/gelbooru', ) ``` # Information ## Images There are 10102818 images in total. The maximum ID of these images is 11191859. Last updated at `2025-01-03 05:29:50 JST`. These are the information of recent 50 images: | id | filename | width | height | mimetype | tags | file_size | file_url | |---------:|:--------------|--------:|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------:|:-----------------------------------------------------------------------------| | 11191859 | 11191859.jpeg | 1211 | 2048 | image/jpeg | 1boy black_bodysuit blue_eyes bodysuit closed_mouth colored_skin dragon_ball dragon_ball_super earrings expressionless fused_zamasu green_skin jewelry long_sleeves looking_at_viewer luna_306 pointy_ears potara_earrings red_sash sash solo spiked_hair white_hair | 304541 | https://img3.gelbooru.com/images/77/34/7734c747ab552629e27b6781697af073.jpeg | | 11191858 | 11191858.jpeg | 1953 | 2859 | image/jpeg | 1girl aile_(mega_man_zx) alternate_breast_size arms_at_sides artist_name black_bodysuit black_footwear blannis blue_background blue_footwear blue_jacket bodysuit boots bracelet breasts brown_hair capcom covered_collarbone covered_navel cropped_jacket embarrassed eyebrows eyelashes female_focus from_above full_body green_eyes grin jacket jewelry large_breasts lips long_hair looking_at_viewer looking_up low_ponytail mega_man_(series) multicolored_footwear multicolored_jacket nervous nervous_smile open_clothes open_jacket ponytail shorts simple_background smile solo standing teeth two-tone_jacket white_shorts yellow_footwear yellow_jacket | 308768 | https://img3.gelbooru.com/images/8e/fa/8efa0dfc7e83f44bd45ffc8133746e35.jpeg | | 11191857 | 11191857.png | 1993 | 2464 | image/png | 1boy 1girl absurdres ahegao alternate_hairstyle anal artist_name bandages belly black_eyes black_thighhighs blunt_bangs breasts breasts_out clenched_hand clothes_lift clothes_pull colored_pubic_hair covering_privates cum cum_in_ass cum_on_ass cum_on_body cum_on_lower_body drooling english_text eyelashes female_masturbation fingernails frilled_shirt frilled_sleeves frills grabbing_another's_breast green_hair green_pubic_hair groping heart heart-shaped_pupils highres large_breasts long_hair long_sleeves looking_ahead looking_at_another lying makeup masturbating_while_penetrated masturbation midriff miniskirt moaning nail_polish navel nipples on_back one_piece open_mouth patreon_username pelvic_curtain penis perona pink_eyes pink_hair pink_nails pleated_skirt pussy pussy_juice pussy_juice_trail pussy_rub red_skirt roronoa_zoro runny_makeup saliva saliva_trail sex shirt shirt_pull short_hair simple_background skirt skirt_lift skull_and_crossbones skull_print snegovski sparkle_background speech_bubble star_(symbol) star_print star_tattoo steam steaming_body stomach striped_clothes striped_thighhighs sweat sweatdrop symbol-shaped_pupils tattoo tearing_up teeth testicles thighhighs tongue topless_male torn_clothes torn_thighhighs two-tone_thighhighs veins very_long_hair white_shirt white_thighhighs | 5741788 | https://img3.gelbooru.com/images/2e/e9/2ee9bfe452b6bef6948c1d37e0529ff0.png | | 11191856 | 11191856.jpeg | 3568 | 2813 | image/jpeg | 2boys bodysuit closed_mouth dougi dragon_ball dragon_ball_super earrings expressionless eye_contact gimdol_z goku_black greyscale jewelry long_sleeves looking_at_another mohawk monochrome multiple_boys parted_lips pointy_ears potara_earrings saiyan shirt short_hair spiked_hair white_background white_hair zamasu | 734125 | https://img3.gelbooru.com/images/82/48/8248dc9d6efc694637011522741149af.jpeg | | 11191855 | 11191855.jpeg | 768 | 1024 | image/jpeg | 1girl 2boys :d ash_ketchum asymmetrical_hair black_footwear black_hair blush boots bow brock_(pokemon) brown_hair brown_pants capelet christmas closed_eyes closed_mouth creatures_(company) fur_trim game_freak gen_1_pokemon gift gloves green_eyes hat holding hood jacket misty_(pokemon) multiple_boys nintendo onix open_mouth orange_hair pants pikachu pokemon ponytail psyduck sack santa_costume santa_hat shoes short_hair side_ponytail sitting smile squatting sweatdrop tongue | 156370 | https://img3.gelbooru.com/images/16/75/1675e80998438d8f47b6e474eeddae3d.jpeg | | 11191854 | 11191854.jpeg | 1307 | 1200 | image/jpeg | 1girl :3 blush closed_eyes closed_mouth creatures_(company) eevee game_freak gen_1_pokemon highres misty_(pokemon) nintendo open_mouth orange_hair pokemon pokemon_rgby seashell shell smile starfish starmie staryu swimming vaporeon water yurano_(upao) | 815648 | https://img3.gelbooru.com/images/78/a1/78a1edb96b87093ee4394ab1d90c40ef.jpeg | | 11191853 | 11191853.jpg | 1879 | 2756 | image/jpeg | 1girl absurdres bare_shoulders breasts cigarette cleavage collarbone dark-skinned_female dark_skin ear_piercing highres holding holding_cigarette huge_breasts monochrome name_tag norman_maggot off-shoulder_shirt off_shoulder olverse original pencil_skirt piercing sarah_(ol-chan) shirt short_hair skirt solo swept_bangs thighs | 244863 | https://img3.gelbooru.com/images/8f/be/8fbe58951b2a4845a4b9ac002ba1e566.jpg | | 11191852 | 11191852.png | 1198 | 1255 | image/png | 1boy 1girl aristocratic_clothes blue_eyes color_guide commentary dated english_commentary fire_emblem fire_emblem_fates gradient_clothes gradient_hair highres japanese_clothes limited_palette long_hair male_focus multicolored_hair nintendo one_eye_closed ponytail red_eyes red_ribbon ribbon sandragh signature simple_background solo takumi_(fire_emblem) two-tone_eyes very_long_hair | 971525 | https://img3.gelbooru.com/images/82/39/823936c08bf752e98dab4cf5c8ed45eb.png | | 11191851 | 11191851.jpg | 2468 | 1635 | image/jpeg | 6+girls ahoge akari_(blue_archive) angcha apron bad_food black_bow black_coat black_hair black_hat black_horns black_shirt blonde_hair blue_archive blue_halo blunt_bangs bow braid breasts breath_weapon breathing_fire brown_eyes brown_hair closed_eyes closed_mouth coat collared_shirt cooking demon_girl demon_horns eating fire food frilled_sleeves frills fuuka_(blue_archive) hair_on_horn halo haruna_(blue_archive) hat headscarf highres holding holding_detonator holding_food horns iori_(blue_archive) izumi_(blue_archive) junko_(blue_archive) juri_(blue_archive) kettle lantern large_breasts long_hair long_sleeves multiple_girls necktie night open_mouth puffy_long_sleeves puffy_sleeves purple_halo red_hair red_halo red_necktie sanpaku scarf school_uniform shirt shoes short_necktie side_braid sidelocks smile tearing_up twintails white_apron white_hair white_shirt wiping_mouth yellow_halo | 499829 | https://img3.gelbooru.com/images/4e/44/4e44b9ab450725b80d042a8565a0f98c.jpg | | 11191850 | 11191850.jpg | 1390 | 900 | image/jpeg | 1girl alternate_costume blue_eyes blue_sky border breasts commentary elysia_(honkai_impact) english_commentary hairband honkai_(series) honkai_impact_3rd long_hair lying nami_(tznami) on_back parted_lips pink_hair sky smile snow solo sweater tree twitter_username white_border white_hairband white_sweater | 141503 | https://img3.gelbooru.com/images/54/61/54618b41d4a01d14d6b9aab3f051ba63.jpg | | 11191849 | 11191849.png | 1296 | 1148 | image/png | 1boy abs ass bald bandaged_chest bandages blood bloody_bandages bodysuit clenched_hand closed_eyes closed_mouth commentary_request dragon_ball dragon_ball_super from_behind greyscale hit_(dragon_ball) kamatama_(bobojobobo) looking_down male_focus monochrome multiple_views muscular muscular_male solo sound_effects topless_male twitter_username veins veiny_arms | 640513 | https://img3.gelbooru.com/images/f7/5d/f75ded0d0af252383e61a56a9e8ded37.png | | 11191848 | 11191848.jpg | 3000 | 3000 | image/jpeg | 1boy absurdres artist_name black_fur bracelet cape christmas chromatic_aberration closed_mouth commentary feet_out_of_frame film_grain fur-trimmed_headwear fur_trim furry furry_male glint gloves hat hedgehog_boy highres instagram_logo instagram_username jewelry looking_at_viewer male_focus red_cape red_eyes red_fur red_hat santa_hat shadow_the_hedgehog shiiyou shoes smile snowflakes solo sonic_(series) symbol-only_commentary twitter_username twitter_x_logo two-tone_fur white_footwear white_gloves | 2152633 | https://img3.gelbooru.com/images/f4/23/f423150983af5d9a5c54808bb0e10d0c.jpg | | 11191847 | 11191847.jpg | 1763 | 3294 | image/jpeg | 1girl :d absurdres artist_name belt black_thighhighs blonde_hair blurry blurry_background breasts burnice_white commentary cup drinking_glass english_commentary eyewear_on_head fingernails fire foxyreine highres holding holding_cup large_breasts looking_at_viewer medium_hair nail_polish naked_ribbon navel open_mouth red_belt red_eyes red_nails ribbon smile solo standing stomach sunglasses teeth thighhighs thighs twintails zenless_zone_zero | 672121 | https://img3.gelbooru.com/images/8a/e4/8ae4b90c57c2908788eb44e05464f762.jpg | | 11191846 | 11191846.jpg | 2718 | 4096 | image/jpeg | 1girl absurdres akami_chiyo black_hair black_necktie black_pants black_tail chromatic_aberration collared_shirt ear_piercing earrings fins fish_tail highres indie_virtual_youtuber jewelry light_blush long_hair looking_at_viewer necktie pants piercing plunplun red_eyes red_hair red_shirt sharp_teeth shirt solo tail teeth virtual_youtuber wing_collar | 830643 | https://img3.gelbooru.com/images/5b/2b/5b2bb15468ebb759d55825e6ef0640bc.jpg | | 11191845 | 11191845.png | 1012 | 1433 | image/png | 1girl :p bike_shorts blue_eyes blush breasts brown_hair cameltoe clothes_pull covering_breasts covering_privates creatures_(company) game_freak grey_background groin highres holding huuuna large_breasts licking_lips looking_at_viewer may_(pokemon) navel nintendo pokemon pokemon_rse pulling_own_clothes red_shirt shirt short_hair shorts skirt skirt_pull solo thighs tongue tongue_out undressing | 746214 | https://img3.gelbooru.com/images/cc/d3/ccd32a632db8e9d2e7eadfacc03473a0.png | | 11191844 | 11191844.png | 2200 | 2200 | image/png | 2girls :d adapted_costume alternate_costume armpits bare_shoulders bat_tattoo beelstarmon bell belt bikini bikini_top_only black_belt black_gloves black_hair black_leotard black_mask black_shorts black_vest blonde_hair blue_eyes box breasts capelet christmas chromatic_aberration cleavage collarbone commentary covered_navel cropped_legs cropped_vest dclaret demon_girl demon_wings detached_sleeves digimon digimon_(creature) elbow_gloves english_commentary eye_mask eyeshadow facial_mark forehead_mark forehead_tattoo fur-trimmed_bikini fur-trimmed_capelet fur-trimmed_shorts fur_trim gift gift_box gloves green_ribbon grin groin hair_ornament hand_up highres holding holding_gift holding_sack horns jingle_bell large_breasts leotard lilithmon long_hair looking_at_viewer makeup mask merry_christmas multiple_girls navel one_eye_closed open_fly open_mouth parted_bangs pointy_ears purple_eyeshadow purple_lips red_background red_bikini red_capelet red_ribbon red_sleeves ribbon sack see-through_cleavage see-through_clothes short_hair short_shorts shorts sidelocks smile standing stomach striped_ribbon swimsuit tattoo teeth third_eye twitter_username underboob v vest wings | 10262725 | https://img3.gelbooru.com/images/6c/0a/6c0a6f3cf889cc2bde83a79394b0b961.png | | 11191843 | 11191843.jpg | 1508 | 2048 | image/jpeg | 1girl black_hair black_ribbon blazer bloom blurry blurry_background book closed_mouth commentary depth_of_field fangs flower fukumaru_koito grey_jacket grey_skirt hair_down hair_flower hair_ornament highres holding holding_book hugging_book hugging_object idolmaster idolmaster_shiny_colors jacket lens_flare light_rays long_sleeves looking_at_viewer medium_hair neck_ribbon pink_eyes pleated_skirt qinglai_haiji ribbon school_uniform shirt sidelighting skin_fangs skirt smile solo sparkle sparkling_aura symbol-only_commentary wavy_hair white_shirt | 313690 | https://img3.gelbooru.com/images/81/95/81957e2dc97875dde99456b6ed4eb835.jpg | | 11191842 | 11191842.jpg | 1920 | 1200 | image/jpeg | 1boy 2girls :3 :d apple_on_head arm_wrap arrow_through_apple baggy_pants black_gloves black_hair black_shirt blonde_hair blue_eyes blue_pants blush bow brown_jacket brown_pants brown_sash brown_shirt brown_skirt colored_skin copyright_notice creature crescent crop_top flower flower_on_head full_body fur-trimmed_sleeves fur_trim gloves green_skin guest_art gun gunslinger_(ragnarok_online) hair_bow hanbok highres holding holding_gun holding_weapon ice ice_cave in-universe_location jacket korean_clothes logo long_sleeves looking_at_another medium_hair multiple_girls navel ninja_(ragnarok_online) obi obijime official_art official_wallpaper open_clothes open_jacket open_mouth orc pants pink_bow pink_flower ragnarok_online sash shirt siroma sitting skirt sleeveless sleeveless_shirt smile soul_linker_(ragnarok_online) standing sui_hutami weapon | 1250973 | https://img3.gelbooru.com/images/b4/17/b41738db807d035a9a2dd8e06bddce8c.jpg | | 11191841 | 11191841.jpg | 1910 | 2048 | image/jpeg | 2girls ? bare_shoulders black_gloves breasts brown_jacket cleavage clothing_cutout collared_shirt commentary dress gloves grey_hair highres jacket jewelry large_breasts long_hair long_sleeves multiple_girls necklace o_204 off_shoulder parted_bangs path_to_nowhere pricilla_(path_to_nowhere) purple_hair red_dress red_lips shirt simple_background strapless strapless_dress swept_bangs tetra_(path_to_nowhere) underboob_cutout upper_body white_background white_shirt | 373507 | https://img3.gelbooru.com/images/dc/65/dc65c57fef534bf69fa3b96dfc0837a2.jpg | | 11191840 | 11191840.jpg | 1920 | 1200 | image/jpeg | 1girl 2boys armor armored_boots bandeau beret bikini bikini_bottom_only black_hair black_tabard blue_bikini blue_hat blush boots breastplate cape chibi copyright_notice cross detached_sleeves flat_chest full_body green_eyes green_hat guest_art gypsy_(ragnarok_online) hat highres hitting jewelry kankiriko leg_armor living_armor logo long_hair lord_knight_(ragnarok_online) multiple_boys navel necklace official_art official_wallpaper open_mouth pauldrons poop_on_head purple_hair ragnarok_online red_cape red_sleeves running shaded_face shoulder_armor solo_focus swimsuit sword_guardian tabard white_bandeau | 1685423 | https://img3.gelbooru.com/images/4d/16/4d160a96e4e268ba4b7d371b7c947c5a.jpg | | 11191839 | 11191839.jpg | 3096 | 4096 | image/jpeg | 1girl absurdres anna_o_renko bandeau bikini blurry blurry_background blush breasts earrings elbow_gloves elle_(vtuber) fur-trimmed_gloves fur-trimmed_headwear fur_trim gloves hat highres hoop_earrings indie_virtual_youtuber jewelry large_breasts looking_at_viewer medium_breasts navel reaching reaching_towards_viewer red_bikini red_hair revealing_clothes santa_bikini santa_gloves santa_hat skindentation smile solo swimsuit twitter_username virtual_youtuber yellow_eyes | 776765 | https://img3.gelbooru.com/images/c7/b4/c7b4ae4c490365e6fd23a37fc0c9b175.jpg | | 11191838 | 11191838.jpg | 4440 | 7761 | image/jpeg | 1girl absurdres alternate_color arm_under_breasts armpit_crease artist_name ascot bare_shoulders blurry blurry_background bottomless censored check_clothing christmas_tree closed_mouth clothing_request commentary convenient_censoring covered_eyes cup drinking_glass english_commentary english_text feather_boa fingernails flower hair_ribbon hat hat_flower herta_(honkai:_star_rail) highres holding holding_cup honkai:_star_rail honkai_(series) indoors jewelry key key_necklace lilpalette long_hair merry_christmas nail_polish necklace red_flower red_hat red_nails red_ribbon ribbon smile solo the_herta_(honkai:_star_rail) very_long_hair white_ascot witch_hat | 9162960 | https://img3.gelbooru.com/images/03/93/0393d5cbc0e589baee262b5ae1f302de.jpg | | 11191837 | 11191837.jpg | 1189 | 2048 | image/jpeg | animal_print bat_print breasts burning burnt collarbone covered_erect_nipples covered_pussy darkstalkers fire green_hair head_wings highres large_breasts messy_hair midriff morrigan_aensland navel nude pantyhose print_pantyhose rokuba tagme torn_clothes wings | 241410 | https://img3.gelbooru.com/images/a3/a6/a3a6d416b9c5f962412d839152a86345.jpg | | 11191836 | 11191836.jpg | 2894 | 4093 | image/jpeg | 1girl :d absurdres blush bow brown_eyes brown_hair coat commentary_request eyelashes hair_bow happy high_ponytail highres inukai_komugi jacket long_hair looking_at_viewer one_eye_closed open_mouth ponytail precure rice_rabbit22 scarf smile snow snowman solo white_jacket winter_clothes winter_coat wonderful_precure! | 1625799 | https://img3.gelbooru.com/images/05/b3/05b3a84394b6e680826e4756c70d1af9.jpg | | 11191835 | 11191835.jpg | 1920 | 1200 | image/jpeg | 3boys 3girls animal_ears armor assassin_(ragnarok_online) assassin_cross_(ragnarok_online) bandages black_gloves black_leotard black_shirt black_wings blunt_bangs bob_cut bow bow_bra bra breasts brown_gloves brown_hair brown_jacket castle cat_ears cat_girl cherry_blossoms cleavage closed_mouth copyright_notice dagger dark-skinned_female dark_skin demon_girl demon_horns demon_wings dog_boy dog_ears elbow_gloves falling fingerless_gloves fish_in_mouth food fox_mask gloves green_eyes grey_eyes grey_hair grin guest_art head_wings highres holding holding_dagger holding_knife holding_weapon horns jacket jamadhar knife large_breasts leotard logo long_hair long_sleeves looking_at_viewer mask mask_on_head meat medium_breasts multiple_boys multiple_girls official_art official_wallpaper one_eye_closed open_mouth pauldrons pointy_ears purple_shirt ragnarok_online red_bow red_scarf scarf shirt short_hair shoulder_armor shrug_(clothing) sideboob sleeveless sleeveless_shirt small_breasts smile thief_(ragnarok_online) torn_clothes torn_scarf underwear upper_body vambraces weapon white_bra wings yuikawa_kazuno | 1428894 | https://img3.gelbooru.com/images/19/4a/194a6d01a2c0c0247e8e7b6d15744f0c.jpg | | 11191834 | 11191834.jpg | 2894 | 4093 | image/jpeg | 1girl absurdres animal_ear_fluff animal_ear_piercing animal_ears black_bow black_bowtie black_choker black_skirt blouse bow bowtie brooch cat_ears cat_girl cat_tail choker chromatic_aberration collared_shirt crossed_bangs enya_yoruneko flying_sweatdrops frilled_shirt frilled_skirt frills green_eyes hair_bow heart heart_brooch highres indie_virtual_youtuber jewelry leaning_forward light_blush long_hair looking_at_viewer multicolored_hair pink_hair pink_tail plunplun puffy_short_sleeves puffy_sleeves shirt short_sleeves skirt smile solo streaked_hair suspender_skirt suspenders tail virtual_youtuber white_hair white_shirt | 1346220 | https://img3.gelbooru.com/images/ac/7c/ac7c2284d81e38a484313f5fb2fc7465.jpg | | 11191833 | 11191833.png | 4303 | 6314 | image/png | 1girl absurdres ass ass_focus back black_choker blending breasts ceres_fauna choker colored_inner_hair commentary cowboy_shot cross-laced_clothes cross-laced_dress dress earrings english_commentary frilled_dress frills from_behind greatodoggo green_hair hair_over_one_eye hair_over_shoulder hand_on_own_chest highres hololive hololive_english horns huge_ass jewelry large_breasts long_hair looking_at_viewer mole mole_under_eye multicolored_hair negative_space one_eye_covered panties parted_lips short_dress sideboob skindentation smile solo thick_thighs thighhighs thighs tree_horns underwear virtual_youtuber white_background white_dress white_hair white_panties white_thighhighs yellow_eyes | 6700316 | https://img3.gelbooru.com/images/f5/a0/f5a036874d1805474906e7e31966bf7b.png | | 11191832 | 11191832.jpg | 1248 | 1135 | image/jpeg | 1other burning exposed_heart fire headless mask najashi oni_mask original rope skeleton standing undead white_rope | 242779 | https://img3.gelbooru.com/images/4e/cc/4eccaf1f020fece510abe916ec25430b.jpg | | 11191831 | 11191831.jpeg | 1000 | 1000 | image/jpeg | 1boy 1girl agpro back-to-back black_hair blue_hair closed_mouth creatures_(company) dress eyelashes game_freak grey_eyes hand_up hat misty_(pokemon) nintendo petals pokemon pokemon_adventures red_(pokemon) shirt short_hair smile upper_body | 876912 | https://img3.gelbooru.com/images/4c/90/4c904a5209c1c207aa07d70e03583bd7.jpeg | | 11191830 | 11191830.jpeg | 699 | 992 | image/jpeg | 1boy 1girl aged_up agpro bad_tag blush breasts closed_mouth creatures_(company) game_freak gym_leader hair_between_eyes looking_at_viewer looking_back misty_(pokemon) nintendo pokemon pokemon_adventures red_(pokemon) shirt short_hair smile | 251624 | https://img3.gelbooru.com/images/37/b5/37b59d6bbc46c52d9ce575a1ec4ac53f.jpeg | | 11191829 | 11191829.png | 2500 | 3125 | image/png | 1girl all_fours animal_ears bare_shoulders black_thighhighs bleach breasts cat_ears cat_paws collarbone dae_dae dark-skinned_female dark_skin fake_animal_ears fake_tail female_focus hair_ornament hanging_breasts highres large_breasts lips long_hair panties parted_bangs ponytail purple_hair shihouin_yoruichi shiny_skin simple_background skindentation tail thighhighs thighs underwear white_background yellow_eyes | 2195504 | https://img3.gelbooru.com/images/11/2a/112a7124e50bc594fa9cd061e707c003.png | | 11191828 | 11191828.jpeg | 2507 | 3541 | image/jpeg | 1girl aftersex akan_mori bikini blonde_hair character_request cum cum_in_pussy dot_nose eyelashes female_focus gloves looking_at_viewer open_mouth pink_hair pink_theme ponytail pussy smile solo sweat swimsuit thick_thighs thighhighs thighs v white_bikini white_gloves white_thighhighs | 585834 | https://img3.gelbooru.com/images/44/52/4452b3447c6676572805642b1bbc71ed.jpeg | | 11191827 | 11191827.png | 3069 | 2170 | image/png | 1boy 4girls absurdres adventurer ahoge arm_behind_head armor belt bikini_armor black_hair blonde_hair blue_eyes breasts closed_eyes collar commission commissioner_upload dagger elf flat_chest glasses green_eyes hair_bun highres hilda_(someinternetloser) knife large_breasts loincloth medium_breasts monika_tatsumi multiple_girls nipples original pointy_ears ponytail purple_hair red_eyes red_hair shield short_hair slave staff sword tattoo_on_neck the_dark_mangaka topless topless_male warrior weapon witch yellow_eyes | 5497138 | https://img3.gelbooru.com/images/84/93/8493d5c5db2721fd856a2d0d3d4b1bfe.png | | 11191826 | 11191826.jpeg | 1000 | 1414 | image/jpeg | 2girls blood christmas gift_bag loli multiple_girls no_panties nosebleed onii-chan_wa_oshimai! oyama_mahiro | 374780 | https://img3.gelbooru.com/images/21/2b/212b47ee1726af6044e1a19a6a364015.jpeg | | 11191825 | 11191825.jpeg | 2859 | 1953 | image/jpeg | 2girls arms_under_breasts artist_name bare_legs black_hair black_jacket black_pants blannis blush breasts closed_mouth coat creatures_(company) crossed_arms crossed_legs dendra_(pokemon) embarrassed eye_contact eyebrows eyelashes eyeshadow feet_out_of_frame female_focus fingerless_gloves fingernails from_side game_freak gloves green_eyes hand_in_pocket huge_breasts implied_yuri indoors jacket large_breasts leaning_forward lips long_fingernails long_sleeves looking_at_another makeup medium_hair miriam_(pokemon) multicolored_hair multicolored_jacket multiple_girls nail_polish nervous nervous_sweating nintendo nose_blush orange_eyes pants parted_lips pink_eyeshadow pink_hair pokemon pokemon_sv ponytail purple_hair purple_skirt sidelocks sitting skirt streaked_hair sweat sweater table teeth track_jacket two-tone_hair two-tone_jacket two-tone_pants wavy_mouth white_coat yellow_jacket yellow_nails yellow_pants yellow_sweater | 602270 | https://img3.gelbooru.com/images/b1/a5/b1a5b076fe70e3b1dfc819160733dd7a.jpeg | | 11191824 | 11191824.jpeg | 1351 | 2048 | image/jpeg | 1girl blue_hair blush boots collar crop_top earrings eyeliner heart jewelry long_hair makeup nintendo octoling red_eyes shiver_(splatoon) sitting skirt smile solo splatoon_(series) splatoon_3 tentacle_hair | 229399 | https://img3.gelbooru.com/images/b9/b1/b9b15820baaead6c7441369132b0fd77.jpeg | | 11191823 | 11191823.jpeg | 1900 | 2600 | image/jpeg | crossover dark-skinned_female dark_skin green_hair hands_behind_own_head iggybomb jungle_de_ikou mecha_pilot_suit mii_(jungle_de_ikou) neon_genesis_evangelion plugsuit shiny_clothes shiny_skin smile tan | 254683 | https://img3.gelbooru.com/images/bc/94/bc945eab8fe815fc06b64e6a5b45df7c.jpeg | | 11191822 | 11191822.jpeg | 1792 | 2600 | image/jpeg | breasts cleavage crossover eiken gigantic_breasts hand_on_own_hip huge_breasts iggybomb long_hair mecha_pilot_suit misono_kirika neon_genesis_evangelion plugsuit purple_eyes purple_hair salute shiny_clothes sidelocks smile v very_long_hair wide_hips | 291791 | https://img3.gelbooru.com/images/b8/b4/b8b4dca4d61f8bc15be6293ff35f70b0.jpeg | | 11191821 | 11191821.jpeg | 1884 | 2600 | image/jpeg | blonde_hair breasts crossover hellsing huge_breasts iggybomb large_breasts mecha_pilot_suit medium_hair neon_genesis_evangelion plugsuit salute seras_victoria | 264715 | https://img3.gelbooru.com/images/99/d3/99d342cf945304401337cfd03ec8c0b6.jpeg | | 11191820 | 11191820.jpeg | 4096 | 1936 | image/jpeg | blonde_hair blue_eyes breasts cleavage crossover dark-skinned_female dark_skin eiken gigantic_breasts green_hair hand_on_own_hip hands_behind_own_head hellsing huge_breasts iggybomb jungle_de_ikou large_breasts long_hair mecha_pilot_suit medium_hair mii_(jungle_de_ikou) misono_kirika multiple_crossover neon_genesis_evangelion plugsuit purple_eyes purple_hair salute seras_victoria shiny_clothes sidelocks smile tan v very_long_hair wide_hips | 545268 | https://img3.gelbooru.com/images/01/19/0119d42770015a5b58c0bb4323af30d9.jpeg | | 11191819 | 11191819.jpeg | 3541 | 2507 | image/jpeg | 1girl akan_mori blonde_hair blue_background blue_flower breasts fang female_focus fingerless_gloves flower gloves hood horns japanese_text large_breasts looking_at_viewer open_mouth purple_eyes skin_fang smile solo translation_request v | 789262 | https://img3.gelbooru.com/images/63/1d/631d8b6c472a66179d18ec5a8b4777c1.jpeg | | 11191818 | 11191818.jpeg | 1000 | 1000 | image/jpeg | 3girls animal_costume antlers bell chloe_von_einzbern christmas fate/kaleid_liner_prisma_illya fate_(series) hanagata_kai horns illyasviel_von_einzbern looking_at_viewer miyu_edelfelt multiple_girls reindeer_antlers reindeer_costume ribbon | 330059 | https://img3.gelbooru.com/images/08/dc/08dc542046dc19486ec9d187c70dca61.jpeg | | 11191817 | 11191817.jpeg | 768 | 1024 | image/jpeg | 1girl adversarial_noise blunt_bangs blush collarbone grey_hair humanization kokei_hakai long_hair looking_at_viewer marie_(splatoon) mole mole_under_eye nintendo open_mouth solo splatoon_(series) splatoon_3 strapless suspenders tube_top upper_body yellow_eyes | 117805 | https://img3.gelbooru.com/images/a7/c8/a7c812144b3be77a4b6614196c92eb32.jpeg | | 11191816 | 11191816.png | 2800 | 2600 | image/png | 1boy 1girl absurdly_long_hair absurdres akari_(pokemon) arms_behind_back ass bdsm black_bodysuit black_eyes blue_hair blue_jacket blush bodysuit bondage bound bound_wrists breasts creatures_(company) crotch_rope cursed_delta drooling fellatio female_focus fur-trimmed_sleeves fur_trim game_freak headband headscarf highres huge_ass jacket large_breasts long_hair long_sleeves looking_at_viewer looking_to_the_side looking_up multiple_views nintendo nipples obi obijime open_clothes open_jacket oral penis pokemon pokemon_legends:_arceus red_scarf rope saliva sash scarf seductive_gaze seductive_smile shibari shibari_over_clothes short_sleeves sidelocks simple_background skin_tight skindentation smile solo_focus thick_thighs thighs very_long_hair white_background white_headband white_headscarf | 3176723 | https://img3.gelbooru.com/images/7f/18/7f18952ec046882bb5772a1adf336e71.png | | 11191815 | 11191815.png | 2800 | 2600 | image/png | 1boy 1girl absurdly_long_hair absurdres akari_(pokemon) arms_behind_back ass ball_gag bdsm black_bodysuit black_eyes blue_hair blue_jacket blush bodysuit bondage bound bound_wrists breasts creatures_(company) crotch_rope cursed_delta drooling fellatio female_focus fur-trimmed_sleeves fur_trim gag gagged game_freak headband headscarf highres huge_ass jacket large_breasts long_hair long_sleeves looking_at_viewer looking_to_the_side looking_up multiple_views nintendo nipples obi obijime open_clothes open_jacket oral penis pokemon pokemon_legends:_arceus red_scarf rope saliva sash scarf seductive_gaze seductive_smile shibari shibari_over_clothes short_sleeves sidelocks simple_background skin_tight skindentation smile solo_focus thick_thighs thighs very_long_hair white_background white_headband white_headscarf | 2794396 | https://img3.gelbooru.com/images/bd/1e/bd1e33b5310b354cd4b9bd1fe5ef19d2.png | | 11191814 | 11191814.png | 2800 | 2600 | image/png | 1boy 1girl absurdly_long_hair absurdres akari_(pokemon) arms_behind_back ass ball_gag bdsm black_bodysuit black_eyes blue_hair blue_jacket blush bodysuit bondage bound bound_wrists breasts creatures_(company) crotch_rope cursed_delta drooling fellatio female_focus fur-trimmed_sleeves fur_trim gag gagged game_freak headband headscarf highres huge_ass jacket large_breasts long_hair long_sleeves looking_at_viewer looking_to_the_side looking_up multiple_views nintendo obi obijime oral penis pokemon pokemon_legends:_arceus red_scarf rope saliva sash scarf seductive_gaze seductive_smile shibari shibari_over_clothes short_sleeves sidelocks simple_background skin_tight skindentation smile solo_focus thick_thighs thighs very_long_hair white_background white_headband white_headscarf | 2776945 | https://img3.gelbooru.com/images/29/c5/29c578f9d1bcfb82470bab61f0c11e9c.png | | 11191813 | 11191813.png | 2894 | 4093 | image/png | 1girl absurdres animal_ear_piercing animal_ears ball bare_shoulders beachball bikini bikini_top_only bow breasts brown_hair brown_tail camouflage_bikini_top collarbone commentary_request cowlick double_bikini eyewear_on_head fangs full_body gold_necklace hair_ornament hairclip highres horse_ears horse_girl horse_tail jewelry jungle_pocket_(umamusume) layered_bikini light_blush looking_at_viewer navel nebusoku necklace open_mouth sidelocks sky small_breasts solo swimsuit tail umamusume water water_drop wet yellow_bikini yellow_eyes | 4551495 | https://img3.gelbooru.com/images/b0/3c/b03cbbe84d24b14211e74c3c25477c02.png | | 11191812 | 11191812.jpeg | 1277 | 1381 | image/jpeg | 1girl child cool-kyou_shinja dragon_girl dragon_horns dragon_tail dress hat horns kanna_kamui kobayashi-san_chi_no_maidragon official_art santa_costume santa_dress santa_hat speech_bubble tail | 177509 | https://img3.gelbooru.com/images/54/63/5463202c29fa1e71219f7225670fb487.jpeg | | 11191811 | 11191811.jpg | 2970 | 4096 | image/jpeg | 1girl absurdres animal_ears artist_name black_pants blue_coat branch coat creature feet_out_of_frame fox_ears fox_girl grey_scarf hair_between_eyes hair_ornament hairclip hat highres holding holding_creature light_particles looking_at_viewer muted_color outdoors pants phase_connect purple_eyes santa_hat scarf short_hair sitting snow snowing swing taku_artworks tenma_maemi theo_(tenma_maemi) watermark white_hair winter winter_clothes | 856135 | https://img3.gelbooru.com/images/e3/63/e363f0ca671d10baa7653d1c4938756f.jpg | | 11191810 | 11191810.jpg | 1320 | 1978 | image/jpeg | 18dikart 5girls animal_ears apricot_the_lich bipsygg black_hair blonde_hair blue_eyes blush box breasts cat_tail christmas_tree commentary demon_horns dress dyarikku_(vtuber) english_commentary fur-trimmed_dress fur-trimmed_headwear fur_trim green_eyes grey_hair hat highres horns huge_breasts in_box in_container indie_virtual_youtuber long_hair looking_at_viewer mini_person minigirl multicolored_hair multiple_girls obkatiekat pink_hair purple_horns red_dress santa_dress santa_hat second-party_source smile solo solo_focus tail twintails twitter_username two-tone_hair virtual_youtuber vshojo yellow_eyes | 362979 | https://img3.gelbooru.com/images/64/cd/64cd174856c93216ca37f5b9947add02.jpg | ## Tags There are 969173 tags in total. These are the top 30 tags (125 tags in total) of type `unknown (-1)`: | id | name | type | count | ambiguous | |-----:|:--------------------------------------------------------------------------------------------------------------------------------------------|-------:|--------:|:------------| | -1 | straightchromia | -1 | 263 | False | | -1 | gekijigen_tag:_blanc_+_neptune_vs_zombie_gundan | -1 | 171 | False | | -1 | seiki_kyushu | -1 | 23 | False | | -1 | toyotaro | -1 | 15 | False | | -1 | ensemble_stars!;character:akehoshi_subaru;happy_elements;male | -1 | 9 | False | | -1 | _double_dash!! | -1 | 7 | False | | -1 | dash!! | -1 | 7 | False | | -1 | fubuki_kyoko | -1 | 7 | False | | -1 | mario_k | -1 | 7 | False | | -1 | star_\(symbol\) | -1 | 7 | False | | -1 | \// | -1 | 6 | False | | -1 | shrug_\(clothing\) | -1 | 6 | False | | -1 | € | -1 | 6 | False | | -1 | kami-sama_onegai!_onii-chan_no_aka-chan_ninshin_shitai_no!_~tsundere_imouto_&_seijun_imouto_to_ecchi_na_kiseki_de_trouble_kozukuri_zanmai♪~ | -1 | 5 | False | | -1 | slime_\(creature\) | -1 | 5 | False | | -1 | \\// | -1 | 4 | False | | -1 | akizuki_rasenn | -1 | 4 | False | | -1 | juju_(pixiv4563634) | -1 | 4 | False | | -1 | pom_pom_\(clothes\) | -1 | 4 | False | | -1 | source:https://nijie.info/view.php?id=151930 | -1 | 4 | False | | -1 | +\l.l./+_(path_to_nowhere) | -1 | 3 | False | | -1 | handing_breasts | -1 | 3 | False | | -1 | star_\(sky\) | -1 | 3 | False | | -1 | /tm | -1 | 2 | False | | -1 | compl\pussy | -1 | 2 | False | | -1 | mahitoⅶ | -1 | 2 | False | | -1 | to_heart:_remember_my_memories | -1 | 2 | False | | -1 | ulquiorra_schiffer | -1 | 2 | False | | -1 | violet_plan | -1 | 2 | False | | -1 | "artist: | -1 | 1 | False | These are the top 30 tags (454442 tags in total) of type `general (0)`: | id | name | type | count | ambiguous | |-------:|:------------------|-------:|--------:|:------------| | 152532 | 1girl | 0 | 6971160 | False | | 12336 | solo | 0 | 5465193 | False | | 265 | long_hair | 0 | 4666744 | True | | 27 | breasts | 0 | 4408977 | False | | 33975 | looking_at_viewer | 0 | 3646980 | False | | 92 | blush | 0 | 3543354 | False | | 796 | smile | 0 | 3091345 | False | | 1100 | open_mouth | 0 | 2664446 | False | | 52 | short_hair | 0 | 2404809 | False | | 67 | blue_eyes | 0 | 2040706 | False | | 28545 | simple_background | 0 | 1996572 | False | | 21905 | large_breasts | 0 | 1992413 | False | | 271 | blonde_hair | 0 | 1792287 | False | | 1999 | shirt | 0 | 1781163 | False | | 66 | black_hair | 0 | 1706716 | True | | 337 | brown_hair | 0 | 1703242 | False | | 179739 | white_background | 0 | 1633759 | False | | 138893 | 1boy | 0 | 1621309 | False | | 107 | skirt | 0 | 1589035 | False | | 98 | gloves | 0 | 1424182 | True | | 1864 | hair_ornament | 0 | 1422965 | False | | 175068 | multiple_girls | 0 | 1412393 | False | | 51 | red_eyes | 0 | 1392377 | True | | 13957 | long_sleeves | 0 | 1371983 | False | | 3477 | navel | 0 | 1345295 | False | | 432 | nipples | 0 | 1327179 | False | | 123 | dress | 0 | 1312217 | False | | 23 | thighhighs | 0 | 1298307 | False | | 6383 | holding | 0 | 1233592 | False | | 153 | animal_ears | 0 | 1187147 | False | These are the top 30 tags (281452 tags in total) of type `artist (1)`: | id | name | type | count | ambiguous | |--------:|:-------------------------|-------:|--------:|:------------| | 46733 | qp:flapper | 1 | 15602 | False | | 555502 | kagami_hirotaka | 1 | 8255 | False | | 219408 | nel-zel_formula | 1 | 8087 | False | | 594229 | ebifurya | 1 | 5771 | False | | 719488 | aoi_nagisa_(metalder) | 1 | 5407 | False | | 470499 | haruyama_kazunori | 1 | 5386 | False | | 25270 | lolita_channel | 1 | 4910 | False | | 401040 | hammer_(sunset_beach) | 1 | 4824 | False | | 603058 | butcha-u | 1 | 4539 | False | | 56027 | yaegashi_nan | 1 | 4460 | False | | 67040 | piromizu | 1 | 4309 | False | | 38088 | yoko_juusuke | 1 | 4149 | False | | 21718 | drawfag | 1 | 4005 | False | | 652987 | ruu_(tksymkw) | 1 | 3879 | False | | 118829 | kanon_(kurogane_knights) | 1 | 3876 | False | | 487842 | boris_(noborhys) | 1 | 3760 | False | | 76506 | circle_anco | 1 | 3733 | False | | 410 | azasuke | 1 | 3622 | False | | 1128557 | kou_hiyoyo | 1 | 3409 | False | | 380097 | matsunaga_kouyou | 1 | 3399 | False | | 1069930 | tony_taka | 1 | 3397 | False | | 481438 | itomugi-kun | 1 | 3288 | False | | 729154 | naga_u | 1 | 3177 | False | | 1051176 | hara_(harayutaka) | 1 | 3069 | False | | 569895 | ojipon | 1 | 3047 | False | | 354817 | bow_(bhp) | 1 | 3023 | False | | 445614 | blade_(galaxist) | 1 | 2989 | False | | 355711 | rebecca_(keinelove) | 1 | 2960 | False | | 14795 | awa | 1 | 2856 | True | | 509171 | neocoill | 1 | 2814 | False | These are the top 30 tags (39877 tags in total) of type `copyright (3)`: | id | name | type | count | ambiguous | |--------:|:----------------------------|-------:|--------:|:------------| | 118 | original | 3 | 1271600 | False | | 126 | touhou | 3 | 780895 | False | | 44106 | nintendo | 3 | 622394 | False | | 448625 | kantai_collection | 3 | 423460 | True | | 43567 | pokemon | 3 | 360475 | False | | 306228 | game_freak | 3 | 358171 | False | | 875834 | creatures_(company) | 3 | 358153 | False | | 342429 | fate_(series) | 3 | 331416 | False | | 1037340 | blue_archive | 3 | 247426 | False | | 545521 | fate/grand_order | 3 | 239095 | False | | 86 | idolmaster | 3 | 235513 | True | | 943985 | genshin_impact | 3 | 225557 | False | | 865663 | hololive | 3 | 217524 | False | | 44086 | vocaloid | 3 | 162662 | False | | 705390 | love_live! | 3 | 150758 | False | | 807658 | arknights | 3 | 135727 | False | | 805915 | azur_lane | 3 | 130432 | False | | 338818 | idolmaster_cinderella_girls | 3 | 120701 | False | | 5074 | fire_emblem | 3 | 112653 | False | | 924 | digimon | 3 | 110402 | False | | 851189 | umamusume | 3 | 102438 | False | | 238 | final_fantasy | 3 | 98925 | False | | 878809 | honkai_(series) | 3 | 88965 | False | | 247 | one_piece | 3 | 81736 | False | | 374082 | girls_und_panzer | 3 | 66277 | False | | 237493 | mahou_shoujo_madoka_magica | 3 | 64504 | False | | 1048700 | hololive_english | 3 | 63359 | False | | 845788 | nijisanji | 3 | 62314 | False | | 1121184 | girls'_frontline | 3 | 61995 | False | | 7 | gundam | 3 | 60344 | True | These are the top 30 tags (189513 tags in total) of type `character (4)`: | id | name | type | count | ambiguous | |--------:|:-------------------------|-------:|--------:|:------------| | 14087 | hatsune_miku | 4 | 110217 | False | | 855 | hakurei_reimu | 4 | 60150 | False | | 130 | kirisame_marisa | 4 | 50925 | False | | 486 | flandre_scarlet | 4 | 46348 | False | | 850 | remilia_scarlet | 4 | 40828 | False | | 1141830 | artoria_pendragon_(fate) | 4 | 37556 | False | | 849 | izayoi_sakuya | 4 | 34169 | False | | 36382 | komeiji_koishi | 4 | 30410 | False | | 848 | konpaku_youmu | 4 | 29152 | False | | 1293 | cirno | 4 | 27961 | False | | 127 | alice_margatroid | 4 | 26944 | False | | 484 | patchouli_knowledge | 4 | 26748 | False | | 14543 | kochiya_sanae | 4 | 26447 | False | | 658 | yakumo_yukari | 4 | 25307 | False | | 83295 | souryuu_asuka_langley | 4 | 23178 | False | | 481 | shameimaru_aya | 4 | 22636 | False | | 237491 | akemi_homura | 4 | 21506 | False | | 847 | reisen_udongein_inaba | 4 | 21363 | False | | 237492 | kaname_madoka | 4 | 21311 | False | | 24290 | nami_(one_piece) | 4 | 20849 | False | | 36383 | komeiji_satori | 4 | 20748 | False | | 761745 | saber_(fate) | 4 | 20348 | False | | 125 | fujiwara_no_mokou | 4 | 20203 | False | | 493 | saigyouji_yuyuko | 4 | 20145 | False | | 14131 | kagamine_rin | 4 | 20139 | False | | 15099 | inubashiri_momiji | 4 | 20050 | False | | 804254 | artoria_pendragon_(all) | 4 | 20043 | False | | 1059472 | ganyu_(genshin_impact) | 4 | 18785 | False | | 881 | link | 4 | 18193 | False | | 2335 | tifa_lockhart | 4 | 17440 | False | These are the top 30 tags (407 tags in total) of type `metadata (5)`: | id | name | type | count | ambiguous | |--------:|:-----------------------|-------:|--------:|:------------| | 262 | highres | 5 | 5951899 | False | | 559 | absurdres | 5 | 1992877 | False | | 150649 | commentary_request | 5 | 1188848 | False | | 136261 | bad_id | 5 | 831072 | False | | 760546 | bad_pixiv_id | 5 | 698226 | False | | 25266 | commentary | 5 | 653731 | False | | 136 | translation_request | 5 | 522206 | False | | 1306 | official_art | 5 | 324500 | False | | 52372 | tagme | 5 | 300150 | False | | 23213 | artist_request | 5 | 247617 | False | | 831896 | english_commentary | 5 | 243145 | False | | 69 | game_cg | 5 | 189273 | True | | 209468 | commission | 5 | 155812 | False | | 13710 | translated | 5 | 155707 | False | | 2229 | lowres | 5 | 113509 | False | | 47252 | character_request | 5 | 110757 | False | | 755092 | bad_twitter_id | 5 | 103829 | False | | 19982 | traditional_media | 5 | 84434 | False | | 789724 | chinese_commentary | 5 | 83837 | False | | 888401 | non-web_source | 5 | 73076 | False | | 853984 | third-party_edit | 5 | 64375 | False | | 426 | scan | 5 | 64344 | False | | 66551 | copyright_request | 5 | 63246 | False | | 323949 | revision | 5 | 56986 | False | | 1139885 | symbol-only_commentary | 5 | 56930 | False | | 1034097 | skeb_commission | 5 | 53527 | False | | 1223605 | paid_reward_available | 5 | 44609 | False | | 191513 | md5_mismatch | 5 | 39240 | False | | 2481 | source_request | 5 | 38997 | False | | 63275 | huge_filesize | 5 | 34145 | True | These are the top 30 tags (3357 tags in total) of type `deprecated (6)`: | id | name | type | count | ambiguous | |--------:|:------------------|-------:|--------:|:------------| | 275 | silver_hair | 6 | 336682 | False | | 205 | striped | 6 | 264451 | False | | 24219 | see-through | 6 | 160050 | False | | 286 | uniform | 6 | 159560 | True | | 214641 | grabbing | 6 | 145175 | False | | 3404 | plaid | 6 | 137228 | False | | 889718 | black_headwear | 6 | 112049 | False | | 264199 | black_legwear | 6 | 102146 | False | | 56035 | light_brown_hair | 6 | 87604 | False | | 850221 | white_headwear | 6 | 82957 | False | | 264263 | white_legwear | 6 | 80489 | False | | 47407 | looking_away | 6 | 65435 | False | | 2818 | ass_grab | 6 | 59394 | False | | 918581 | red_headwear | 6 | 41346 | False | | 82157 | french_braid | 6 | 36466 | False | | 54997 | multiple_penises | 6 | 36286 | False | | 853048 | blue_headwear | 6 | 35686 | False | | 17164 | breast_hold | 6 | 35279 | False | | 18310 | vertical_stripes | 6 | 34542 | False | | 1048560 | light_purple_hair | 6 | 33258 | False | | 26046 | arm_grab | 6 | 26380 | False | | 712440 | red_neckwear | 6 | 26251 | False | | 488916 | oni_horns | 6 | 25061 | False | | 670 | wallpaper | 6 | 24516 | False | | 268269 | torn_legwear | 6 | 21955 | False | | 51586 | screencap | 6 | 20524 | False | | 842746 | green_headwear | 6 | 20207 | False | | 918583 | brown_headwear | 6 | 20205 | False | | 265499 | striped_legwear | 6 | 19590 | False | | 20303 | turret | 6 | 17887 | False |
lmms-lab/MMMU
lmms-lab
"2024-03-08T05:09:42Z"
10,386
4
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-01-15T06:32:16Z"
--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: options dtype: string - name: explanation dtype: string - name: image_1 dtype: image - name: image_2 dtype: image - name: image_3 dtype: image - name: image_4 dtype: image - name: image_5 dtype: image - name: image_6 dtype: image - name: image_7 dtype: image - name: img_type dtype: string - name: answer dtype: string - name: topic_difficulty dtype: string - name: question_type dtype: string - name: subfield dtype: string splits: - name: dev num_bytes: 57719107.0 num_examples: 150 - name: validation num_bytes: 347519954.0 num_examples: 900 - name: test num_bytes: 3271046267.0 num_examples: 10500 download_size: 3377778136 dataset_size: 3676285328.0 configs: - config_name: default data_files: - split: dev path: data/dev-* - split: validation path: data/validation-* - split: test path: data/test-* --- This is a merged version of [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) with all subsets concatenated. <p align="center" width="100%"> <img src="https://i.postimg.cc/g0QRgMVv/WX20240228-113337-2x.png" width="100%" height="80%"> </p> # Large-scale Multi-modality Models Evaluation Suite > Accelerating the development of large-scale multi-modality models (LMMs) with `lmms-eval` 🏠 [Homepage](https://lmms-lab.github.io/) | 📚 [Documentation](docs/README.md) | 🤗 [Huggingface Datasets](https://huggingface.co/lmms-lab) # This Dataset This is a formatted version of [MMMU](https://github.com/MMMU-Benchmark/MMMU). It is used in our `lmms-eval` pipeline to allow for one-click evaluations of large multi-modality models. ``` @article{yue2023mmmu, title={Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi}, author={Yue, Xiang and Ni, Yuansheng and Zhang, Kai and Zheng, Tianyu and Liu, Ruoqi and Zhang, Ge and Stevens, Samuel and Jiang, Dongfu and Ren, Weiming and Sun, Yuxuan and others}, journal={arXiv preprint arXiv:2311.16502}, year={2023} } ```
avalab/Allo-AVA
avalab
"2024-10-15T18:19:45Z"
10,372
1
[ "language:en", "license:cc", "size_categories:n>1T", "modality:audio", "modality:text", "modality:video", "region:us", "code" ]
null
"2024-10-15T12:58:23Z"
--- license: cc language: - en tags: - code size_categories: - n>1T ---
stanford-oval/wikipedia
stanford-oval
"2024-11-04T22:50:33Z"
10,244
3
[ "task_categories:text-retrieval", "task_categories:text-generation", "language:en", "language:de", "language:it", "language:pt", "language:fa", "language:fr", "language:ja", "language:es", "language:ru", "language:zh", "size_categories:100M<n<1B", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2305.14292", "arxiv:2406.00562", "region:us" ]
[ "text-retrieval", "text-generation" ]
"2024-08-23T07:39:01Z"
--- task_categories: - text-retrieval - text-generation language: - en - de - it - pt - fa - fr - ja - es - ru - zh pretty_name: Preprocessed Multilingual Wikipedia size_categories: - 100M<n<1B configs: - config_name: "20240401" data_files: - "20240401/en/collection.jsonl" - "20240401/de/collection.jsonl" - "20240401/es/collection.jsonl" - "20240401/fa/collection.jsonl" - "20240401/fr/collection.jsonl" - "20240401/it/collection.jsonl" - "20240401/zh/collection.jsonl" - "20240401/ru/collection.jsonl" - "20240401/ja/collection.jsonl" - "20240401/pt/collection.jsonl" - config_name: "20240801" data_files: - "20240801/en/collection.jsonl" - "20240801/de/collection.jsonl" - "20240801/es/collection.jsonl" - "20240801/fa/collection.jsonl" - "20240801/fr/collection.jsonl" - "20240801/it/collection.jsonl" - "20240801/zh/collection.jsonl" - "20240801/ru/collection.jsonl" - "20240801/ja/collection.jsonl" - "20240801/pt/collection.jsonl" - config_name: '20241001' data_files: - 20241001/en/collection.jsonl - 20241001/de/collection.jsonl - 20241001/es/collection.jsonl - 20241001/fa/collection.jsonl - 20241001/fr/collection.jsonl - 20241001/it/collection.jsonl - 20241001/zh/collection.jsonl - 20241001/ru/collection.jsonl - 20241001/ja/collection.jsonl - 20241001/pt/collection.jsonl --- This dataset contains preprocessed and chunked Wikipedia HTML dumps from 10 languages. Refer to the following for more information: GitHub repository: https://github.com/stanford-oval/WikiChat Papers: - [WikiChat: Stopping the Hallucination of Large Language Model Chatbots by Few-Shot Grounding on Wikipedia](https://arxiv.org/abs/2305.14292) - [SPAGHETTI: Open-Domain Question Answering from Heterogeneous Data Sources with Retrieval and Semantic Parsing](https://arxiv.org/abs/2406.00562) <p align="center"> <img src="https://github.com/stanford-oval/WikiChat/blob/main/public/logo_light.png?raw=true" width="100px" alt="WikiChat Logo" /> <h1 align="center"> <b>WikiChat</b> <br> <a href="https://github.com/stanford-oval/WikiChat/stargazers"> <img src="https://img.shields.io/github/stars/stanford-oval/WikiChat?style=social" alt="Github Stars"> </a> </h1> </p> <p align="center"> Stopping the Hallucination of Large Language Model Chatbots by Few-Shot Grounding on Wikipedia </p> <p align="center"> Online demo: <a href="https://wikichat.genie.stanford.edu" target="_blank"> https://wikichat.genie.stanford.edu </a> <br> </p> <p align="center"> <img src="https://raw.githubusercontent.com/stanford-oval/WikiChat/ee25ff7d355c8fbb1321489e1e955be8ae068367/public/pipeline.svg" width="700px" alt="WikiChat Pipeline" /> </p>
OpenGVLab/OmniCorpus-CC
OpenGVLab
"2024-11-17T07:08:46Z"
10,224
12
[ "task_categories:image-to-text", "task_categories:visual-question-answering", "language:en", "license:cc-by-4.0", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.08418", "region:us" ]
[ "image-to-text", "visual-question-answering" ]
"2024-08-30T06:16:02Z"
--- language: - en license: cc-by-4.0 size_categories: - 100M<n<1B task_categories: - image-to-text - visual-question-answering dataset_info: - config_name: CC-MAIN-2013-20 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 19908676196 num_examples: 3878063 download_size: 9303464923 dataset_size: 19908676196 - config_name: CC-MAIN-2013-48 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 15282078925 num_examples: 3091537 download_size: 6965036866 dataset_size: 15282078925 - config_name: CC-MAIN-2014-10 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 7227087609 num_examples: 1390034 download_size: 3259239561 dataset_size: 7227087609 - config_name: CC-MAIN-2014-15 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 10106913108 num_examples: 1968361 download_size: 4567738362 dataset_size: 10106913108 - config_name: CC-MAIN-2014-23 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 7997621043 num_examples: 1455331 download_size: 3468852905 dataset_size: 7997621043 - config_name: CC-MAIN-2014-35 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 6228103779 num_examples: 1219200 download_size: 2849584613 dataset_size: 6228103779 - config_name: CC-MAIN-2014-41 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 8321822952 num_examples: 1573955 download_size: 3775989970 dataset_size: 8321822952 - config_name: CC-MAIN-2014-42 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 7732679416 num_examples: 1511931 download_size: 3505766162 dataset_size: 7732679416 - config_name: CC-MAIN-2014-49 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 4473311810 num_examples: 837735 download_size: 1982728919 dataset_size: 4473311810 - config_name: CC-MAIN-2014-52 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 7292722888 num_examples: 1304730 download_size: 2957626766 dataset_size: 7292722888 - config_name: CC-MAIN-2015-06 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 5775826679 num_examples: 1061940 download_size: 2462379667 dataset_size: 5775826679 - config_name: CC-MAIN-2015-11 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 6263650452 num_examples: 1129411 download_size: 2528026633 dataset_size: 6263650452 - config_name: CC-MAIN-2015-14 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 4524425019 num_examples: 885221 download_size: 1939222111 dataset_size: 4524425019 - config_name: CC-MAIN-2015-18 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 6195227565 num_examples: 1104115 download_size: 2634204322 dataset_size: 6195227565 - config_name: CC-MAIN-2015-22 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 7008276790 num_examples: 1290530 download_size: 2913627974 dataset_size: 7008276790 - config_name: CC-MAIN-2015-27 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 4320140953 num_examples: 784496 download_size: 1828575226 dataset_size: 4320140953 - config_name: CC-MAIN-2015-32 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 4952806590 num_examples: 875601 download_size: 2065207099 dataset_size: 4952806590 - config_name: CC-MAIN-2015-35 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 6053257306 num_examples: 1086470 download_size: 2632032769 dataset_size: 6053257306 - config_name: CC-MAIN-2015-40 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 5206096790 num_examples: 924036 download_size: 2203603087 dataset_size: 5206096790 - config_name: CC-MAIN-2015-48 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 8343050753 num_examples: 1537468 download_size: 3489600630 dataset_size: 8343050753 - config_name: CC-MAIN-2016-07 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 9329220105 num_examples: 1738650 download_size: 4005599785 dataset_size: 9329220105 - config_name: CC-MAIN-2016-18 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 3897220786 num_examples: 747570 download_size: 1675500816 dataset_size: 3897220786 - config_name: CC-MAIN-2016-22 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 4623903344 num_examples: 857060 download_size: 2000624854 dataset_size: 4623903344 - config_name: CC-MAIN-2016-26 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 3414418701 num_examples: 627995 download_size: 1403890884 dataset_size: 3414418701 - config_name: CC-MAIN-2016-30 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 7244342539 num_examples: 1183776 download_size: 2913394840 dataset_size: 7244342539 - config_name: CC-MAIN-2016-36 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 5402565529 num_examples: 915878 download_size: 2248454753 dataset_size: 5402565529 - config_name: CC-MAIN-2016-40 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 5938544915 num_examples: 1113534 download_size: 2530904625 dataset_size: 5938544915 - config_name: CC-MAIN-2016-44 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 15819536321 num_examples: 3528637 download_size: 6516546200 dataset_size: 15819536321 - config_name: CC-MAIN-2016-50 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 10822695594 num_examples: 2215939 download_size: 4439728574 dataset_size: 10822695594 - config_name: CC-MAIN-2017-04 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 11949732148 num_examples: 2441316 download_size: 5045763620 dataset_size: 11949732148 - config_name: CC-MAIN-2017-09 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 12473370126 num_examples: 2561539 download_size: 5398993614 dataset_size: 12473370126 - config_name: CC-MAIN-2017-13 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 12209904783 num_examples: 2458486 download_size: 5422393873 dataset_size: 12209904783 - config_name: CC-MAIN-2017-17 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 13763109013 num_examples: 2615558 download_size: 6025106556 dataset_size: 13763109013 - config_name: CC-MAIN-2017-22 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 14456991831 num_examples: 2775332 download_size: 6258001465 dataset_size: 14456991831 - config_name: CC-MAIN-2017-26 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 15036103558 num_examples: 2973499 download_size: 6813218532 dataset_size: 15036103558 - config_name: CC-MAIN-2017-30 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 18833639414 num_examples: 3870197 download_size: 8464443468 dataset_size: 18833639414 - config_name: CC-MAIN-2017-34 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 25828116836 num_examples: 4848154 download_size: 11599137919 dataset_size: 25828116836 - config_name: CC-MAIN-2017-39 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 29432150311 num_examples: 4840435 download_size: 13172655761 dataset_size: 29432150311 - config_name: CC-MAIN-2017-43 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 32672966840 num_examples: 5724493 download_size: 15041820212 dataset_size: 32672966840 - config_name: CC-MAIN-2017-47 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 34301891443 num_examples: 5291581 download_size: 15593452226 dataset_size: 34301891443 - config_name: CC-MAIN-2017-51 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 30012533603 num_examples: 5466672 download_size: 14005518471 dataset_size: 30012533603 - config_name: CC-MAIN-2018-05 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 47738703452 num_examples: 8053879 download_size: 22533983733 dataset_size: 47738703452 - config_name: CC-MAIN-2018-09 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 45503126107 num_examples: 8045410 download_size: 21900491411 dataset_size: 45503126107 - config_name: CC-MAIN-2018-13 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 43904789090 num_examples: 7980931 download_size: 21178075620 dataset_size: 43904789090 - config_name: CC-MAIN-2018-17 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 44481167440 num_examples: 8699878 download_size: 21623780968 dataset_size: 44481167440 - config_name: CC-MAIN-2018-22 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 64369136465 num_examples: 13332059 download_size: 32293951649 dataset_size: 64369136465 - config_name: CC-MAIN-2018-26 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 81232597180 num_examples: 16249638 download_size: 41007491366 dataset_size: 81232597180 - config_name: CC-MAIN-2018-30 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 151537007358 num_examples: 32535697 download_size: 77517210537 dataset_size: 151537007358 - config_name: CC-MAIN-2018-34 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 39026071869 num_examples: 6347230 download_size: 19285382621 dataset_size: 39026071869 - config_name: CC-MAIN-2018-39 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 35948493161 num_examples: 6372711 download_size: 17597722170 dataset_size: 35948493161 - config_name: CC-MAIN-2018-43 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 50928918805 num_examples: 8758225 download_size: 25291022646 dataset_size: 50928918805 - config_name: CC-MAIN-2018-47 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 43961213014 num_examples: 7270815 download_size: 22024998684 dataset_size: 43961213014 - config_name: CC-MAIN-2018-51 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 58902353921 num_examples: 10215384 download_size: 29497256483 dataset_size: 58902353921 - config_name: CC-MAIN-2019-04 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 54814836003 num_examples: 9930553 download_size: 27458854931 dataset_size: 54814836003 - config_name: CC-MAIN-2019-09 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 54426174385 num_examples: 8897510 download_size: 28125345656 dataset_size: 54426174385 - config_name: CC-MAIN-2019-13 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 48712051219 num_examples: 7803004 download_size: 25156014252 dataset_size: 48712051219 - config_name: CC-MAIN-2019-18 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 48203751852 num_examples: 7532171 download_size: 24844412087 dataset_size: 48203751852 - config_name: CC-MAIN-2019-22 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 51674379059 num_examples: 8339842 download_size: 26257475492 dataset_size: 51674379059 - config_name: CC-MAIN-2019-26 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 43336967638 num_examples: 7320268 download_size: 21900316910 dataset_size: 43336967638 - config_name: CC-MAIN-2019-30 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 46313133200 num_examples: 7682281 download_size: 23262218065 dataset_size: 46313133200 - config_name: CC-MAIN-2019-35 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 49570657315 num_examples: 8098108 download_size: 24938729240 dataset_size: 49570657315 - config_name: CC-MAIN-2019-39 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 43538081906 num_examples: 7102645 download_size: 21728983014 dataset_size: 43538081906 - config_name: CC-MAIN-2019-43 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 52817470138 num_examples: 8567061 download_size: 26105523209 dataset_size: 52817470138 - config_name: CC-MAIN-2019-47 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 42252827792 num_examples: 6775943 download_size: 21228532199 dataset_size: 42252827792 - config_name: CC-MAIN-2019-51 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 38926356094 num_examples: 6415558 download_size: 19510339598 dataset_size: 38926356094 - config_name: CC-MAIN-2020-05 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 48189844491 num_examples: 7921372 download_size: 24235687030 dataset_size: 48189844491 - config_name: CC-MAIN-2020-10 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 48904133840 num_examples: 8211791 download_size: 24576159189 dataset_size: 48904133840 - config_name: CC-MAIN-2020-16 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 51243682770 num_examples: 8578633 download_size: 25485035979 dataset_size: 51243682770 - config_name: CC-MAIN-2020-24 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 59424939072 num_examples: 10438139 download_size: 29827361603 dataset_size: 59424939072 - config_name: CC-MAIN-2020-29 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 66229730938 num_examples: 11475631 download_size: 33030161773 dataset_size: 66229730938 - config_name: CC-MAIN-2020-34 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 54287690582 num_examples: 9495610 download_size: 27018821467 dataset_size: 54287690582 - config_name: CC-MAIN-2020-40 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 71587907978 num_examples: 12058149 download_size: 35795677487 dataset_size: 71587907978 - config_name: CC-MAIN-2020-45 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 59172857400 num_examples: 9694734 download_size: 29495814784 dataset_size: 59172857400 - config_name: CC-MAIN-2020-50 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 58557861606 num_examples: 9539918 download_size: 29083801775 dataset_size: 58557861606 - config_name: CC-MAIN-2021-04 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 74507336015 num_examples: 12273028 download_size: 36874887518 dataset_size: 74507336015 - config_name: CC-MAIN-2021-10 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 60802783945 num_examples: 10176190 download_size: 30326513365 dataset_size: 60802783945 - config_name: CC-MAIN-2021-17 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 75061494488 num_examples: 12343366 download_size: 37345114890 dataset_size: 75061494488 - config_name: CC-MAIN-2021-21 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 70036417178 num_examples: 11584034 download_size: 34806730527 dataset_size: 70036417178 - config_name: CC-MAIN-2021-25 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 73653674063 num_examples: 12065281 download_size: 36581310312 dataset_size: 73653674063 - config_name: CC-MAIN-2021-31 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 79535885182 num_examples: 13383552 download_size: 39702500971 dataset_size: 79535885182 - config_name: CC-MAIN-2021-39 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 90302065651 num_examples: 14794773 download_size: 45211764750 dataset_size: 90302065651 - config_name: CC-MAIN-2021-43 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 108356023335 num_examples: 17698206 download_size: 54292215300 dataset_size: 108356023335 - config_name: CC-MAIN-2021-49 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 95867022229 num_examples: 15643875 download_size: 47902433321 dataset_size: 95867022229 - config_name: CC-MAIN-2022-05 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 97602903488 num_examples: 15772898 download_size: 48711364812 dataset_size: 97602903488 - config_name: CC-MAIN-2022-21 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 127495492928 num_examples: 21745889 download_size: 63379692210 dataset_size: 127495492928 - config_name: CC-MAIN-2022-27 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 128061655541 num_examples: 21580054 download_size: 63763936007 dataset_size: 128061655541 - config_name: CC-MAIN-2022-33 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 126436062118 num_examples: 21495687 download_size: 63067252044 dataset_size: 126436062118 - config_name: CC-MAIN-2022-40 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 123806739937 num_examples: 20206120 download_size: 61929035270 dataset_size: 123806739937 - config_name: CC-MAIN-2022-49 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 152577158166 num_examples: 24634059 download_size: 76529854484 dataset_size: 152577158166 - config_name: CC-MAIN-2023-06 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 174815301023 num_examples: 28962355 download_size: 87301203013 dataset_size: 174815301023 - config_name: CC-MAIN-2023-14 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 227631152876 num_examples: 37223376 download_size: 114188282465 dataset_size: 227631152876 - config_name: CC-MAIN-2023-23 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 321036722459 num_examples: 52119692 download_size: 161491274249 dataset_size: 321036722459 - config_name: CC-MAIN-2023-40 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 648032999611 num_examples: 101292016 download_size: 317965522325 dataset_size: 648032999611 - config_name: CC-MAIN-2023-50 features: - name: general_metadata struct: - name: domain sequence: string - name: fluency_prob dtype: float64 - name: id dtype: string - name: non_advertisement_prob dtype: float64 - name: politics_prob dtype: float64 - name: porn_prob dtype: float64 - name: toxic_prob dtype: float64 - name: url dtype: string - name: images sequence: string - name: texts sequence: string - name: metadata list: - name: aesthetic_prob dtype: float64 - name: bytes dtype: int64 - name: d_hash dtype: string - name: d_hash_dup_count dtype: int64 - name: height dtype: int64 - name: img_url_sha dtype: string - name: p_hash dtype: string - name: p_hash_dup_count dtype: int64 - name: unsafe_prob dtype: float64 - name: width dtype: int64 splits: - name: train num_bytes: 744768384551 num_examples: 117073004 download_size: 365332295606 dataset_size: 744768384551 configs: - config_name: CC-MAIN-2013-20 data_files: - split: train path: CC-MAIN-2013-20/train-* - config_name: CC-MAIN-2013-48 data_files: - split: train path: CC-MAIN-2013-48/train-* - config_name: CC-MAIN-2014-10 data_files: - split: train path: CC-MAIN-2014-10/train-* - config_name: CC-MAIN-2014-15 data_files: - split: train path: CC-MAIN-2014-15/train-* - config_name: CC-MAIN-2014-23 data_files: - split: train path: CC-MAIN-2014-23/train-* - config_name: CC-MAIN-2014-35 data_files: - split: train path: CC-MAIN-2014-35/train-* - config_name: CC-MAIN-2014-41 data_files: - split: train path: CC-MAIN-2014-41/train-* - config_name: CC-MAIN-2014-42 data_files: - split: train path: CC-MAIN-2014-42/train-* - config_name: CC-MAIN-2014-49 data_files: - split: train path: CC-MAIN-2014-49/train-* - config_name: CC-MAIN-2014-52 data_files: - split: train path: CC-MAIN-2014-52/train-* - config_name: CC-MAIN-2015-06 data_files: - split: train path: CC-MAIN-2015-06/train-* - config_name: CC-MAIN-2015-11 data_files: - split: train path: CC-MAIN-2015-11/train-* - config_name: CC-MAIN-2015-14 data_files: - split: train path: CC-MAIN-2015-14/train-* - config_name: CC-MAIN-2015-18 data_files: - split: train path: CC-MAIN-2015-18/train-* - config_name: CC-MAIN-2015-22 data_files: - split: train path: CC-MAIN-2015-22/train-* - config_name: CC-MAIN-2015-27 data_files: - split: train path: CC-MAIN-2015-27/train-* - config_name: CC-MAIN-2015-32 data_files: - split: train path: CC-MAIN-2015-32/train-* - config_name: CC-MAIN-2015-35 data_files: - split: train path: CC-MAIN-2015-35/train-* - config_name: CC-MAIN-2015-40 data_files: - split: train path: CC-MAIN-2015-40/train-* - config_name: CC-MAIN-2015-48 data_files: - split: train path: CC-MAIN-2015-48/train-* - config_name: CC-MAIN-2016-07 data_files: - split: train path: CC-MAIN-2016-07/train-* - config_name: CC-MAIN-2016-18 data_files: - split: train path: CC-MAIN-2016-18/train-* - config_name: CC-MAIN-2016-22 data_files: - split: train path: CC-MAIN-2016-22/train-* - config_name: CC-MAIN-2016-26 data_files: - split: train path: CC-MAIN-2016-26/train-* - config_name: CC-MAIN-2016-30 data_files: - split: train path: CC-MAIN-2016-30/train-* - config_name: CC-MAIN-2016-36 data_files: - split: train path: CC-MAIN-2016-36/train-* - config_name: CC-MAIN-2016-40 data_files: - split: train path: CC-MAIN-2016-40/train-* - config_name: CC-MAIN-2016-44 data_files: - split: train path: CC-MAIN-2016-44/train-* - config_name: CC-MAIN-2016-50 data_files: - split: train path: CC-MAIN-2016-50/train-* - config_name: CC-MAIN-2017-04 data_files: - split: train path: CC-MAIN-2017-04/train-* - config_name: CC-MAIN-2017-09 data_files: - split: train path: CC-MAIN-2017-09/train-* - config_name: CC-MAIN-2017-13 data_files: - split: train path: CC-MAIN-2017-13/train-* - config_name: CC-MAIN-2017-17 data_files: - split: train path: CC-MAIN-2017-17/train-* - config_name: CC-MAIN-2017-22 data_files: - split: train path: CC-MAIN-2017-22/train-* - config_name: CC-MAIN-2017-26 data_files: - split: train path: CC-MAIN-2017-26/train-* - config_name: CC-MAIN-2017-30 data_files: - split: train path: CC-MAIN-2017-30/train-* - config_name: CC-MAIN-2017-34 data_files: - split: train path: CC-MAIN-2017-34/train-* - config_name: CC-MAIN-2017-39 data_files: - split: train path: CC-MAIN-2017-39/train-* - config_name: CC-MAIN-2017-43 data_files: - split: train path: CC-MAIN-2017-43/train-* - config_name: CC-MAIN-2017-47 data_files: - split: train path: CC-MAIN-2017-47/train-* - config_name: CC-MAIN-2017-51 data_files: - split: train path: CC-MAIN-2017-51/train-* - config_name: CC-MAIN-2018-05 data_files: - split: train path: CC-MAIN-2018-05/train-* - config_name: CC-MAIN-2018-09 data_files: - split: train path: CC-MAIN-2018-09/train-* - config_name: CC-MAIN-2018-13 data_files: - split: train path: CC-MAIN-2018-13/train-* - config_name: CC-MAIN-2018-17 data_files: - split: train path: CC-MAIN-2018-17/train-* - config_name: CC-MAIN-2018-22 data_files: - split: train path: CC-MAIN-2018-22/train-* - config_name: CC-MAIN-2018-26 data_files: - split: train path: CC-MAIN-2018-26/train-* - config_name: CC-MAIN-2018-30 data_files: - split: train path: CC-MAIN-2018-30/train-* - config_name: CC-MAIN-2018-34 data_files: - split: train path: CC-MAIN-2018-34/train-* - config_name: CC-MAIN-2018-39 data_files: - split: train path: CC-MAIN-2018-39/train-* - config_name: CC-MAIN-2018-43 data_files: - split: train path: CC-MAIN-2018-43/train-* - config_name: CC-MAIN-2018-47 data_files: - split: train path: CC-MAIN-2018-47/train-* - config_name: CC-MAIN-2018-51 data_files: - split: train path: CC-MAIN-2018-51/train-* - config_name: CC-MAIN-2019-04 data_files: - split: train path: CC-MAIN-2019-04/train-* - config_name: CC-MAIN-2019-09 data_files: - split: train path: CC-MAIN-2019-09/train-* - config_name: CC-MAIN-2019-13 data_files: - split: train path: CC-MAIN-2019-13/train-* - config_name: CC-MAIN-2019-18 data_files: - split: train path: CC-MAIN-2019-18/train-* - config_name: CC-MAIN-2019-22 data_files: - split: train path: CC-MAIN-2019-22/train-* - config_name: CC-MAIN-2019-26 data_files: - split: train path: CC-MAIN-2019-26/train-* - config_name: CC-MAIN-2019-30 data_files: - split: train path: CC-MAIN-2019-30/train-* - config_name: CC-MAIN-2019-35 data_files: - split: train path: CC-MAIN-2019-35/train-* - config_name: CC-MAIN-2019-39 data_files: - split: train path: CC-MAIN-2019-39/train-* - config_name: CC-MAIN-2019-43 data_files: - split: train path: CC-MAIN-2019-43/train-* - config_name: CC-MAIN-2019-47 data_files: - split: train path: CC-MAIN-2019-47/train-* - config_name: CC-MAIN-2019-51 data_files: - split: train path: CC-MAIN-2019-51/train-* - config_name: CC-MAIN-2020-05 data_files: - split: train path: CC-MAIN-2020-05/train-* - config_name: CC-MAIN-2020-10 data_files: - split: train path: CC-MAIN-2020-10/train-* - config_name: CC-MAIN-2020-16 data_files: - split: train path: CC-MAIN-2020-16/train-* - config_name: CC-MAIN-2020-24 data_files: - split: train path: CC-MAIN-2020-24/train-* - config_name: CC-MAIN-2020-29 data_files: - split: train path: CC-MAIN-2020-29/train-* - config_name: CC-MAIN-2020-34 data_files: - split: train path: CC-MAIN-2020-34/train-* - config_name: CC-MAIN-2020-40 data_files: - split: train path: CC-MAIN-2020-40/train-* - config_name: CC-MAIN-2020-45 data_files: - split: train path: CC-MAIN-2020-45/train-* - config_name: CC-MAIN-2020-50 data_files: - split: train path: CC-MAIN-2020-50/train-* - config_name: CC-MAIN-2021-04 data_files: - split: train path: CC-MAIN-2021-04/train-* - config_name: CC-MAIN-2021-10 data_files: - split: train path: CC-MAIN-2021-10/train-* - config_name: CC-MAIN-2021-17 data_files: - split: train path: CC-MAIN-2021-17/train-* - config_name: CC-MAIN-2021-21 data_files: - split: train path: CC-MAIN-2021-21/train-* - config_name: CC-MAIN-2021-25 data_files: - split: train path: CC-MAIN-2021-25/train-* - config_name: CC-MAIN-2021-31 data_files: - split: train path: CC-MAIN-2021-31/train-* - config_name: CC-MAIN-2021-39 data_files: - split: train path: CC-MAIN-2021-39/train-* - config_name: CC-MAIN-2021-43 data_files: - split: train path: CC-MAIN-2021-43/train-* - config_name: CC-MAIN-2021-49 data_files: - split: train path: CC-MAIN-2021-49/train-* - config_name: CC-MAIN-2022-05 data_files: - split: train path: CC-MAIN-2022-05/train-* - config_name: CC-MAIN-2022-21 data_files: - split: train path: CC-MAIN-2022-21/train-* - config_name: CC-MAIN-2022-27 data_files: - split: train path: CC-MAIN-2022-27/train-* - config_name: CC-MAIN-2022-33 data_files: - split: train path: CC-MAIN-2022-33/train-* - config_name: CC-MAIN-2022-40 data_files: - split: train path: CC-MAIN-2022-40/train-* - config_name: CC-MAIN-2022-49 data_files: - split: train path: CC-MAIN-2022-49/train-* - config_name: CC-MAIN-2023-06 data_files: - split: train path: CC-MAIN-2023-06/train-* - config_name: CC-MAIN-2023-14 data_files: - split: train path: CC-MAIN-2023-14/train-* - config_name: CC-MAIN-2023-23 data_files: - split: train path: CC-MAIN-2023-23/train-* - config_name: CC-MAIN-2023-40 data_files: - split: train path: CC-MAIN-2023-40/train-* - config_name: CC-MAIN-2023-50 data_files: - split: train path: CC-MAIN-2023-50/train-* --- ⭐️ **NOTE:** Several parquet files were marked unsafe (viruses) by official scaning of hf, while they are reported safe by ClamAV and Virustotal. We found [many false positive cases](https://discuss.huggingface.co/u/mcpotato/summary) of the hf automatic scanning in hf discussions and raise [one discussion](https://discuss.huggingface.co/t/one-parquet-file-of-my-dataset-was-marked-unsafe/113745) to ask for a re-scanning. # OmniCorpus-CC This is the repository of OmniCorpus-CC, which contains 988 million image-text interleaved documents collected from [Common Crawl](https://commoncrawl.org/). - Repository: https://github.com/OpenGVLab/OmniCorpus - Paper: https://arxiv.org/abs/2406.08418 OmniCorpus dataset is a large-scale image-text interleaved dataset, which pushes the boundaries of scale and diversity by encompassing **8.6 billion images** interleaved with **1,696 text tokens** from diverse sources, significantly surpassing previous datasets. This dataset demonstrates several advantages over its counterparts: 1. **Larger data scale:** Our dataset is 1.7 times larger in images and 12.5 times larger in texts compared to the previously largest multimodal dataset, LAION-5B, while maintaining excellent data quality. 2. **Richer data diversity:** Drawing from a broader range of data sources, our dataset is more diverse than other image-text interleaved datasets. It includes bilingual multimodal data in both Chinese and English, and encompasses text-centric and vision-centric documents extracted from common websites and video platforms. 3. **More flexible format:** The streaming data format of our dataset offers exceptional flexibility, allowing adaptation to various data structures, including pure text corpora, image-text pairs, and interleaved data formats. <img width="578" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/641a6427-ba50-41e6-8634-8810113fd803"> The OmniCorpus contains three sections: - **OmniCorpus-CC**: processed from dumps in Common Crawl from 2013 to Nov./Dec. 2023. - **OmniCorpus-CW**: sourced from Chinese internet resources, will be availiable in [OpenDataLab](https://opendatalab.com/) platform. - **OmniCorpus-YT**: samples Youtube video frames as images and collects subtitles as texts. Code for pre-training, evaluating, main body extracting, and filtering have been released in the official [repository](https://github.com/OpenGVLab/OmniCorpus). A pre-trained model is availiable [here](https://huggingface.co/Qingyun/OmniCorpus-InternVL). # Data Pipeline Our data pipeline consists of five key stages: main body extraction, preliminary text filtering, document deduplication, image downloading \& filtering, and detailed text filtering. Each stage efficiently reduces the dataset to retain only high-quality data. Please refer to our paper for more details about the data pipeline. <img width="723" alt="image" src="https://github.com/OpenGVLab/OmniCorpus/assets/47669167/a6de8928-58fb-4ff4-8ef9-4bd90e9ada5f"> # Usages The image-text interleaved documents are recommanded for the following usages: - Pre-training multimodal large language model (MLLM): Recent MLLMs (such as Flamingo series, EMU series, IDEFICS series, MM1, Cambrian-1, and xGen-MM) have shown that image-text interleaved data aids multimodal in-context learning and maintains the capabilities of large language models during multimodal fine-tuning. - Long text-image retrieval: We provide image-text similarities calculated with CLIP, which can convert the documents to image-text retrieval dataset with longer text. A retrieval model pre-trained on such data can retrieval images based on longer text, which can be used for multimodal RAG, converting pure text to multimodal sample, etc. - Source for futher dataset research: Our data is large-scale, which can serve as the source for researches for data curation strategies. We provide many useful attributes as metadata for each document, which can enrich the filtering strategy and reduce the cost. - ...... # Data Format Following common practices, the data is organized into Parquet file format. You might encounter errors when using `pandas.read_parquet` (because the data structure contains nested elements). We recommend using fastparquet to load the parquet files. ```Python import fastparquet df = fastparquet.ParquetFile(parquet_file_path).to_pandas() # You can also use iter_batches parquet_file = pq.ParquetFile(filepath) for batch in parquet_file.iter_batches(): df = batch.to_pandas() ``` You can convert the i-th document and convert it into a dictionary. ```Python doc_dict = df.iloc[i].to_dict() ``` The document format is as follow: ```json { 'images': [ <str: image_1_url>, None, <str: image_2_url>, None, ], 'texts': [ None, <str: text_paragraph_1_content> None, <str: text_paragraph_2_content>, ] 'metadata': [ <dict: image_1_metadata>, None, <dict: image_2_metadata>, None ], 'general_metadata': { "url": <str: document url>, "id": <str: document id>, "domain": <list[str]: domains extracted from document url>, "fluency_prob": <float: the probability of fluency>, "non_advertisement_prob": <float: the probability of non-advertisement>, "porn_prob": <float: the probability of porn content>, "politics_prob": <float: the probability of politics content>, "toxic_prob": <float: the probability of toxic content>, } } ``` Each image metadata is as follow: ```json { "img_url_sha": <str: sha code of image url>, "width": <int: image width>, "height": <int: image height>, "bytes": <int: byte number of the image file>, "d_hash": <str: d_hash code of the image, used for image deduplication>, "p_hash": <str: p_hash code of the image, used for image deduplication>, "d_hash_dup_count": <int: duplicated times detected by d_hash code>, "p_hash_dup_count": <int: duplicated times detected by p_hash code>, "aesthetic prob": <float: aesthetic probility>, "unsafe prob": <float: NSFW probility>, } ``` # License OmniCorpus is released under a [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/deed.en) license, with the primary intent of supporting research activities. # Citation ``` @article{li2024omnicorpus, title={OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text}, author={Li, Qingyun and Chen, Zhe and Wang, Weiyun and Wang, Wenhai and Ye, Shenglong and Jin, Zhenjiang and others}, journal={arXiv preprint arXiv:2406.08418}, year={2024} } ```