File size: 6,035 Bytes
1baae2e
a4ee508
6344f8a
 
 
 
937f2e2
6344f8a
ad76541
 
 
 
 
 
 
 
 
 
a4ee508
 
 
ad76541
6344f8a
17c8294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6344f8a
 
 
 
 
 
 
 
 
 
 
 
 
17c8294
62be3ab
ad76541
 
 
 
 
 
 
 
 
 
6344f8a
 
 
 
 
 
 
 
 
 
 
62be3ab
 
 
6344f8a
 
 
 
 
62be3ab
ad76541
 
 
 
 
 
 
 
 
 
 
 
a4ee508
ad76541
 
62be3ab
6344f8a
62be3ab
a4ee508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1baae2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import zipfile
from typing import List

import datasets
import pandas as pd
from datasets import ClassLabel, Value

_URLS = {
    "go_emotions": {
        "urls": [
            "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv",
            "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv",
            "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv",
        ],
        "license": "apache license 2.0"
    },
    "daily_dialog": {
        "urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"],
        "license": "CC BY-NC-SA 4.0"
    }
}

_CLASS_NAMES = [
    "no emotion",
    "happiness",
    "admiration",
    "amusement",
    "anger",
    "annoyance",
    "approval",
    "caring",
    "confusion",
    "curiosity",
    "desire",
    "disappointment",
    "disapproval",
    "disgust",
    "embarrassment",
    "excitement",
    "fear",
    "gratitude",
    "grief",
    "joy",
    "love",
    "nervousness",
    "optimism",
    "pride",
    "realization",
    "relief",
    "remorse",
    "sadness",
    "surprise",
    "neutral",
]


class EmotionsDatasetConfig(datasets.BuilderConfig):

    def __init__(self, features, label_classes, **kwargs):
        super().__init__(**kwargs)
        self.features = features
        self.label_classes = label_classes


class EmotionsDataset(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        EmotionsDatasetConfig(
            name="all",
            label_classes=_CLASS_NAMES,
            features=["text", "label", "dataset", "license"]
        ),
        EmotionsDatasetConfig(
            name="go_emotions",
            label_classes=_CLASS_NAMES,
            features=["text", "label", "dataset", "license"]
        ),
        EmotionsDatasetConfig(
            name="daily_dialog",
            label_classes=_CLASS_NAMES,
            features=["text", "label", "dataset", "license"]
        )
    ]

    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    'text': Value(dtype='string', id=None),
                    'label': ClassLabel(names=_CLASS_NAMES, id=None),
                    'dataset': Value(dtype='string', id=None),
                    'license': Value(dtype='string', id=None)
                }
            )
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        splits = []
        if self.config.name == "all":
            for k, v in _URLS.items():
                downloaded_files = dl_manager.download_and_extract(v.get("urls"))
                splits.append(datasets.SplitGenerator(name=k,
                                                      gen_kwargs={"filepaths": downloaded_files,
                                                                  "dataset": k,
                                                                  "license": v}))
        else:
            k = self.config.name
            v = _URLS.get(k)
            downloaded_files = dl_manager.download_and_extract(v.get("urls"))
            splits.append(datasets.SplitGenerator(name=k,
                                                  gen_kwargs={"filepaths": downloaded_files,
                                                              "dataset": k,
                                                              "license": v}))
        return splits

    def _generate_examples(self, filepaths, dataset, license):
        if dataset == "go_emotions":
            for i, filepath in enumerate(filepaths):
                df = pd.read_csv(filepath)
                current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES)))
                df = df[["text"] + current_classes]
                df = df[df[current_classes].sum(axis=1) == 1].reset_index(drop=True)
                for row_idx, row in df.iterrows():
                    uid = f"go_emotions_{i}_{row_idx}"
                    yield uid, {"text": row["text"],
                                "id": uid,
                                "dataset": dataset,
                                "license": license,
                                "label": row[current_classes][row == 1].index.item()}
        elif dataset == "daily_dialog":
            emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust",
                           3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"}
            for i, filepath in enumerate(filepaths):
                if os.path.isdir(filepath):
                    emotions = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_emotion.txt"), "r").read()
                    text = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_text.txt"), "r").read()
                else:
                    archive = zipfile.ZipFile(filepath, 'r')
                    emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode()
                    text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode()
                emotions = emotions.split("\n")
                text = text.split("\n")

                for idx_out, (e, t) in enumerate(zip(emotions, text)):
                    if len(t.strip()) > 0:
                        cast_emotions = [int(j) for j in e.strip().split(" ")]
                        cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)]
                        for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)):
                            uid = f"daily_dialog_{i}_{idx_out}_{idx_in}"
                            yield uid, {"text": ct,
                                        "id": uid,
                                        "dataset": dataset,
                                        "license": license,
                                        "label": emo_mapping[ce]}