File size: 4,892 Bytes
a4ee508
6344f8a
 
 
 
 
 
62be3ab
 
 
 
 
 
 
a4ee508
 
 
 
 
 
6344f8a
 
17c8294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6344f8a
 
 
 
 
 
 
 
 
 
 
 
 
17c8294
62be3ab
6344f8a
 
 
 
 
 
 
 
 
 
 
62be3ab
 
 
6344f8a
 
 
 
 
62be3ab
 
 
a4ee508
 
 
 
62be3ab
6344f8a
62be3ab
a4ee508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import zipfile
from typing import List

import datasets
import pandas as pd
from datasets import ClassLabel, Value

DATASETS_URLS = [{
    "name": "go_emotions",
    "urls": [
        "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv",
        "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv",
        "https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv",
    ],
    "license": "apache license 2.0"},
    {
        "name": "daily_dialog",
        "urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"],
        "license": "CC BY-NC-SA 4.0"
    }
]

_CLASS_NAMES = [
    "no emotion",
    "happiness",
    "admiration",
    "amusement",
    "anger",
    "annoyance",
    "approval",
    "caring",
    "confusion",
    "curiosity",
    "desire",
    "disappointment",
    "disapproval",
    "disgust",
    "embarrassment",
    "excitement",
    "fear",
    "gratitude",
    "grief",
    "joy",
    "love",
    "nervousness",
    "optimism",
    "pride",
    "realization",
    "relief",
    "remorse",
    "sadness",
    "surprise",
    "neutral",
]


class EmotionsDatasetConfig(datasets.BuilderConfig):

    def __init__(self, features, label_classes, **kwargs):
        super().__init__(**kwargs)
        self.features = features
        self.label_classes = label_classes


class EmotionsDataset(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        EmotionsDatasetConfig(
            name="all",
            label_classes=_CLASS_NAMES,
            features=["text", "label", "dataset", "license"]
        )
    ]

    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    'text': Value(dtype='string', id=None),
                    'label': ClassLabel(names=_CLASS_NAMES, id=None),
                    'dataset': Value(dtype='string', id=None),
                    'license': Value(dtype='string', id=None)
                }
            )
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        splits = []
        for d in DATASETS_URLS:
            downloaded_files = dl_manager.download_and_extract(d.get("urls"))
            splits.append(datasets.SplitGenerator(name=d.get("name"),
                                                  gen_kwargs={"filepaths": downloaded_files,
                                                              "dataset": d.get("name"),
                                                              "license": d.get("license")}))
        return splits

    def _generate_examples(self, filepaths, dataset, license):
        if dataset == "go_emotions":
            for i, filepath in enumerate(filepaths):
                df = pd.read_csv(filepath)
                current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES)))
                df = df[["text"] + current_classes]
                df = df[df[current_classes].sum(axis=1) == 1].reset_index(drop=True)
                for row_idx, row in df.iterrows():
                    uid = f"go_emotions_{i}_{row_idx}"
                    yield uid, {"text": row["text"],
                                "id": uid,
                                "dataset": dataset,
                                "license": license,
                                "label": row[current_classes][row == 1].index.item()}
        elif dataset == "daily_dialog":
            emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust",
                           3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"}
            for i, filepath in enumerate(filepaths):
                with zipfile.ZipFile(filepath, 'r') as archive:
                    emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode().split("\n")
                    text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode().split("\n")
                    for idx_out, (e, t) in enumerate(zip(emotions, text)):
                        if len(t.strip()) > 0:
                            cast_emotions = [int(j) for j in e.strip().split(" ")]
                            cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)]
                            for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)):
                                uid = f"daily_dialog_{i}_{idx_out}_{idx_in}"
                                yield uid, {"text": ct,
                                            "id": uid,
                                            "dataset": dataset,
                                            "license": license,
                                            "label": emo_mapping[ce]}


print()