The Dataset Viewer has been disabled on this dataset.

MS MARCO Anserini Index

Description

This is an index of the MS MARCO passage (v1) dataset with Anserini. It can be used for passage retrieval using lexical methods.

Usage

>>> from pyterrier_anserini import AnseriniIndex
>>> index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
>>> bm25 = index.bm25(include_fields=['contents'])
>>> bm25.search('terrier breeds')
  qid           query    docno    score  rank                                      contents
0   1  terrier breeds  5785957  11.9588     0  The Jack Russell Terrier and the Russell ...
1   1  terrier breeds  7455374  11.9343     1  FCI, ANKC, and IKC recognize the shorts a...
2   1  terrier breeds  1406578  11.8640     2  Norfolk terrier (English breed of small t...
3   1  terrier breeds  3984886  11.7518     3  Terrier Group is the name of a breed Grou...
4   1  terrier breeds  7728131  11.5660     4  The Yorkshire Terrier didn't begin as the...
...

Benchmarks

TREC DL 2019

Code
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged')
pt.Experiment(
  [index.bm25(), index.qld(), index.tfidf()],
  dataset.get_topics(),
  dataset.get_qrels(),
  [nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
  ['BM25', 'QLD', 'TF-IDF'],
  round=4,
)
name nDCG@10 nDCG RR(rel=2) AP(rel=2) R(rel=2)@1000
0 BM25 0.5121 0.61 0.715 0.3069 0.7529
1 QLD 0.4689 0.5995 0.606 0.3014 0.7662
2 TF-IDF 0.3742 0.5083 0.5203 0.2012 0.7016

TREC DL 2020

Code
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2020/judged')
pt.Experiment(
  [index.bm25(), index.qld(), index.tfidf()],
  dataset.get_topics(),
  dataset.get_qrels(),
  [nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
  ['BM25', 'QLD', 'TF-IDF'],
  round=4,
)
name nDCG@10 nDCG RR(rel=2) AP(rel=2) R(rel=2)@1000
0 BM25 0.4769 0.5832 0.672 0.2827 0.7865
1 QLD 0.4584 0.5872 0.6238 0.2811 0.8179
2 TF-IDF 0.4029 0.5039 0.5526 0.2107 0.7323

MS MARCO Dev (small)

Code
from ir_measures import RR, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/dev/small')
pt.Experiment(
  [index.bm25(), index.qld(), index.tfidf()],
  dataset.get_topics(),
  dataset.get_qrels(),
  [RR@10, R@1000],
  ['BM25', 'QLD', 'TF-IDF'],
  round=4,
)
name RR@10 R@1000
0 BM25 0.1844 0.8567
1 QLD 0.1664 0.8508
2 TF-IDF 0.1368 0.8288

Reproduction

>>> import pyterrier as pt
>>> import pyterrier_anserini
>>> idx = pyterrier_anserini.AnseriniIndex('msmarco-passage.anserini')
>>> idx.indexer().index(pt.get_dataset('irds:msmarco-passage').get_corpus_iter())

Metadata

{
  "type": "sparse_index",
  "format": "anserini",
  "package_hint": "pyterrier-anserini"
}
Downloads last month
30