The Dataset Viewer has been disabled on this dataset.
MS MARCO Anserini Index
Description
This is an index of the MS MARCO passage (v1) dataset with Anserini. It can be used for passage retrieval using lexical methods.
Usage
>>> from pyterrier_anserini import AnseriniIndex
>>> index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
>>> bm25 = index.bm25(include_fields=['contents'])
>>> bm25.search('terrier breeds')
qid query docno score rank contents
0 1 terrier breeds 5785957 11.9588 0 The Jack Russell Terrier and the Russell ...
1 1 terrier breeds 7455374 11.9343 1 FCI, ANKC, and IKC recognize the shorts a...
2 1 terrier breeds 1406578 11.8640 2 Norfolk terrier (English breed of small t...
3 1 terrier breeds 3984886 11.7518 3 Terrier Group is the name of a breed Grou...
4 1 terrier breeds 7728131 11.5660 4 The Yorkshire Terrier didn't begin as the...
...
Benchmarks
TREC DL 2019
Code
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged')
pt.Experiment(
[index.bm25(), index.qld(), index.tfidf()],
dataset.get_topics(),
dataset.get_qrels(),
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
['BM25', 'QLD', 'TF-IDF'],
round=4,
)
name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |
---|---|---|---|---|---|---|
0 | BM25 | 0.5121 | 0.61 | 0.715 | 0.3069 | 0.7529 |
1 | QLD | 0.4689 | 0.5995 | 0.606 | 0.3014 | 0.7662 |
2 | TF-IDF | 0.3742 | 0.5083 | 0.5203 | 0.2012 | 0.7016 |
TREC DL 2020
Code
from ir_measures import nDCG, RR, MAP, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2020/judged')
pt.Experiment(
[index.bm25(), index.qld(), index.tfidf()],
dataset.get_topics(),
dataset.get_qrels(),
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000],
['BM25', 'QLD', 'TF-IDF'],
round=4,
)
name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |
---|---|---|---|---|---|---|
0 | BM25 | 0.4769 | 0.5832 | 0.672 | 0.2827 | 0.7865 |
1 | QLD | 0.4584 | 0.5872 | 0.6238 | 0.2811 | 0.8179 |
2 | TF-IDF | 0.4029 | 0.5039 | 0.5526 | 0.2107 | 0.7323 |
MS MARCO Dev (small)
Code
from ir_measures import RR, R
import pyterrier as pt
from pyterrier_anserini import AnseriniIndex
index = AnseriniIndex.from_hf('macavaney/msmarco-passage.anserini')
dataset = pt.get_dataset('irds:msmarco-passage/dev/small')
pt.Experiment(
[index.bm25(), index.qld(), index.tfidf()],
dataset.get_topics(),
dataset.get_qrels(),
[RR@10, R@1000],
['BM25', 'QLD', 'TF-IDF'],
round=4,
)
name | RR@10 | R@1000 | |
---|---|---|---|
0 | BM25 | 0.1844 | 0.8567 |
1 | QLD | 0.1664 | 0.8508 |
2 | TF-IDF | 0.1368 | 0.8288 |
Reproduction
>>> import pyterrier as pt
>>> import pyterrier_anserini
>>> idx = pyterrier_anserini.AnseriniIndex('msmarco-passage.anserini')
>>> idx.indexer().index(pt.get_dataset('irds:msmarco-passage').get_corpus_iter())
Metadata
{
"type": "sparse_index",
"format": "anserini",
"package_hint": "pyterrier-anserini"
}
- Downloads last month
- 30