Datasets:
license: other
license_name: other
license_link: https://huggingface.co/datasets/microsoft/wiki_qa#licensing-information
task_categories:
- question-answering
language:
- en
- fr
- de
- it
- es
- pt
pretty_name: mWikiQA
size_categories:
- 100K<n<1M
configs:
- config_name: default
data_files:
- split: train_en
path: eng_train.jsonl
- split: train_de
path: deu_train.jsonl
- split: train_fr
path: fra_train.jsonl
- split: train_it
path: ita_train.jsonl
- split: train_po
path: por_train.jsonl
- split: train_sp
path: spa_train.jsonl
- split: validation_en
path: eng_dev.jsonl
- split: validation_de
path: deu_dev.jsonl
- split: validation_fr
path: fra_dev.jsonl
- split: validation_it
path: ita_dev.jsonl
- split: validation_po
path: por_dev.jsonl
- split: validation_sp
path: spa_dev.jsonl
- split: test_en
path: eng_test.jsonl
- split: test_de
path: deu_test.jsonl
- split: test_fr
path: fra_test.jsonl
- split: test_it
path: ita_test.jsonl
- split: test_po
path: por_test.jsonl
- split: test_sp
path: spa_test.jsonl
- config_name: clean
data_files:
- split: train_en
path: eng_train.jsonl
- split: train_de
path: deu_train.jsonl
- split: train_fr
path: fra_train.jsonl
- split: train_it
path: ita_train.jsonl
- split: train_po
path: por_train.jsonl
- split: train_sp
path: spa_train.jsonl
- split: validation_clean_en
path: eng_dev_clean.jsonl
- split: validation_clean_de
path: deu_dev_clean.jsonl
- split: validation_clean_fr
path: fra_dev_clean.jsonl
- split: validation_clean_it
path: ita_dev_clean.jsonl
- split: validation_clean_po
path: por_dev_clean.jsonl
- split: validation_clean_sp
path: spa_dev_clean.jsonl
- split: test_clean_en
path: eng_test_clean.jsonl
- split: test_clean_de
path: deu_test_clean.jsonl
- split: test_clean_fr
path: fra_test_clean.jsonl
- split: test_clean_it
path: ita_test_clean.jsonl
- split: test_clean_po
path: por_test_clean.jsonl
- split: test_clean_sp
path: spa_test_clean.jsonl
- config_name: noneg
data_files:
- split: train_en
path: eng_train.jsonl
- split: train_de
path: deu_train.jsonl
- split: train_fr
path: fra_train.jsonl
- split: train_it
path: ita_train.jsonl
- split: train_po
path: por_train.jsonl
- split: train_sp
path: spa_train.jsonl
- split: validation_noneg_en
path: eng_dev_no_allneg.jsonl
- split: validation_noneg_de
path: deu_dev_no_allneg.jsonl
- split: validation_noneg_fr
path: fra_dev_no_allneg.jsonl
- split: validation_noneg_it
path: ita_dev_no_allneg.jsonl
- split: validation_noneg_po
path: por_dev_no_allneg.jsonl
- split: validation_noneg_sp
path: spa_dev_no_allneg.jsonl
- split: test_noneg_en
path: eng_test_no_allneg.jsonl
- split: test_noneg_de
path: deu_test_no_allneg.jsonl
- split: test_noneg_fr
path: fra_test_no_allneg.jsonl
- split: test_noneg_it
path: ita_test_no_allneg.jsonl
- split: test_noneg_po
path: por_test_no_allneg.jsonl
- split: test_noneg_sp
path: spa_test_no_allneg.jsonl
- config_name: en
data_files:
- split: train
path: eng_train.jsonl
- split: validation
path: eng_dev.jsonl
- split: test
path: eng_test.jsonl
- config_name: de
data_files:
- split: train
path: deu_train.jsonl
- split: validation
path: deu_dev.jsonl
- split: test
path: deu_test.jsonl
- config_name: fr
data_files:
- split: train
path: fra_train.jsonl
- split: validation
path: fra_dev.jsonl
- split: test
path: fra_test.jsonl
- config_name: it
data_files:
- split: train
path: ita_train.jsonl
- split: validation
path: ita_dev.jsonl
- split: test
path: ita_test.jsonl
- config_name: po
data_files:
- split: train
path: por_train.jsonl
- split: validation
path: por_dev.jsonl
- split: test
path: por_test.jsonl
- config_name: sp
data_files:
- split: train
path: spa_train.jsonl
- split: validation
path: spa_dev.jsonl
- split: test
path: spa_test.jsonl
- config_name: en_noneg
data_files:
- split: train
path: eng_train.jsonl
- split: validation
path: eng_dev_no_allneg.jsonl
- split: test
path: eng_test_no_allneg.jsonl
- config_name: de_noneg
data_files:
- split: train
path: deu_train.jsonl
- split: validation
path: deu_dev_no_allneg.jsonl
- split: test
path: deu_test_no_allneg.jsonl
- config_name: fr_noneg
data_files:
- split: train
path: fra_train.jsonl
- split: validation
path: fra_dev_no_allneg.jsonl
- split: test
path: fra_test_no_allneg.jsonl
- config_name: it_noneg
data_files:
- split: train
path: ita_train.jsonl
- split: validation
path: ita_dev_no_allneg.jsonl
- split: test
path: ita_test_no_allneg.jsonl
- config_name: po_noneg
data_files:
- split: train
path: por_train.jsonl
- split: validation
path: por_dev_no_allneg.jsonl
- split: test
path: por_test_no_allneg.jsonl
- config_name: sp_noneg
data_files:
- split: train
path: spa_train.jsonl
- split: validation
path: spa_dev_no_allneg.jsonl
- split: test
path: spa_test_no_allneg.jsonl
- config_name: en_clean
data_files:
- split: train
path: eng_train.jsonl
- split: validation
path: eng_dev_clean.jsonl
- split: test
path: eng_test_clean.jsonl
- config_name: de_clean
data_files:
- split: train
path: deu_train.jsonl
- split: validation
path: deu_dev_clean.jsonl
- split: test
path: deu_test_clean.jsonl
- config_name: fr_clean
data_files:
- split: train
path: fra_train.jsonl
- split: validation
path: fra_dev_clean.jsonl
- split: test
path: fra_test_clean.jsonl
- config_name: it_clean
data_files:
- split: train
path: ita_train.jsonl
- split: validation
path: ita_dev_clean.jsonl
- split: test
path: ita_test_clean.jsonl
- config_name: po_clean
data_files:
- split: train
path: por_train.jsonl
- split: validation
path: por_dev_clean.jsonl
- split: test
path: por_test_clean.jsonl
- config_name: sp_clean
data_files:
- split: train
path: spa_train.jsonl
- split: validation
path: spa_dev_clean.jsonl
- split: test
path: spa_test_clean.jsonl
Dataset Description
mWikiQA is a translated version of WikiQA. It contains 3,047 questions sampled from Bing query logs. The candidate answer sentences are extracted from Wikipedia and then manually labeled to assess whether they are correct answers.
The dataset has been translated into five European languages: French, German, Italian, Portuguese, and Spanish, as described in this paper: Datasets for Multilingual Answer Sentence Selection.
Splits:
For each language (English, French, German, Italian, Portuguese, and Spanish), we provide:
- train split
- validation split
- test split
In addition, the validation and the test splits are available also in the following preprocessed versions:
- noneg: without questions with only negative answer candidates
- clean: without questions with only negative and only positive answer candidates
How to load them:
To use these splits, you can use the following snippet of code replacing [LANG]
with a language identifier (en, fr, de, it, po, sp), and [VERSION]
with the version identifier (noneg, clean)
from datasets import load_dataset
# if you want the whole corpora
corpora = load_dataset("matteogabburo/mWikiQA")
# if you want the clean test and test sets
corpora = load_dataset("matteogabburo/mWikiQA", "clean")
# if you want the "no all negatives" validation and test sets
corpora = load_dataset("matteogabburo/mWikiQA", "noneg")
"""
if you want the default splits of a specific language, replace [LANG] with an identifier in: en, fr, de, it, po, sp
dataset = load_dataset("matteogabburo/mWikiQA", "[LANG]")
"""
# example:
italian_dataset = load_dataset("matteogabburo/mWikiQA", "it")
"""
if you want the processed splits ("clean" and "no all negatives" sets), replace [LANG] with a language identifier and [VERSION] with "noneg" or "clean"
dataset = load_dataset("matteogabburo/mWikiQA", "[LANG]_[VERSION]")
"""
# example:
italian_clean_dataset = load_dataset("matteogabburo/mWikiQA", "it_clean")
Format:
Each example has the following format:
{
'eid': 1214,
'qid': 141,
'cid': 0,
'label': 1,
'question': 'Was bedeutet Karma im Buddhismus?',
'candidate': 'Karma (Sanskrit, auch karman, Pali: Kamma) bedeutet "Handlung" oder "Tun"; was auch immer man tut, sagt oder denkt, ist ein Karma.'
}
Where:
- eid: is the unique id of the example (question, candidate)
- qid: is the unique id of the question
- cid: is the unique id of the answer candidate
- label: identifies whether the answer candidate
candidate
is correct for thequestion
(1 if correct, 0 otherwise) - question: the question
- candidate: the answer candidate
Citation
If you find this dataset useful, please cite the following paper:
BibTeX:
@misc{gabburo2024datasetsmultilingualanswersentence,
title={Datasets for Multilingual Answer Sentence Selection},
author={Matteo Gabburo and Stefano Campese and Federico Agostini and Alessandro Moschitti},
year={2024},
eprint={2406.10172},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.10172},
}