Datasets:

Modalities:
Text
Libraries:
Datasets
File size: 5,358 Bytes
2d472e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e73606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d472e1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
A dataset for benchmarking keyphrase extraction and generation techniques from long document English scientific papers. For more details about the dataset please refer the original paper - []().

Data source - []()

## Dataset Summary
 

## Dataset Structure


### Data Fields

- **id**: unique identifier of the document.
- **sections**: list of all the sections present in the document.
- **sec_text**: list of white space separated list of words present in each section.
- **sec_bio_tags**: list of BIO tags of white space separated list of words present in each section.
- **extractive_keyphrases**: List of all the present keyphrases.
- **abstractive_keyphrase**: List of all the absent keyphrases.


### Data Splits

|Split| #datapoints  |
|--|--|
| Train-Small | 20,000 |
| Train-Medium | 50,000 |
| Train-Large | 1,296,613 |
| Test | 10,000 |
| Validation | 10,000 |

## Usage

### Small Dataset

```python
from datasets import load_dataset

# get small dataset
dataset = load_dataset("midas/ldkp10k", "small")

def order_sections(sample):
  """
  corrects the order in which different sections appear in the document.
  resulting order is: title, abstract, other sections in the body
  """
  
  sections = []
  sec_text = []
  sec_bio_tags = []

  if "title" in sample["sections"]:
    title_idx = sample["sections"].index("title")
    sections.append(sample["sections"].pop(title_idx))
    sec_text.append(sample["sec_text"].pop(title_idx))
    sec_bio_tags.append(sample["sec_bio_tags"].pop(title_idx))

  if "abstract" in sample["sections"]:
    abstract_idx = sample["sections"].index("abstract")
    sections.append(sample["sections"].pop(abstract_idx))
    sec_text.append(sample["sec_text"].pop(abstract_idx))
    sec_bio_tags.append(sample["sec_bio_tags"].pop(abstract_idx))

  sections += sample["sections"]
  sec_text += sample["sec_text"]
  sec_bio_tags += sample["sec_bio_tags"]

  return sections, sec_text, sec_bio_tags


# sample from the train split
print("Sample from train data split")
train_sample = dataset["train"][0]

sections, sec_text, sec_bio_tags = order_sections(train_sample)
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")

# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]

sections, sec_text, sec_bio_tags = order_sections(validation_sample)
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")

# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]

sections, sec_text, sec_bio_tags = order_sections(test_sample)
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")

```

**Output**
```bash

```

### Medium Dataset

```python
from datasets import load_dataset

# get medium dataset
dataset = load_dataset("midas/ldkp10k", "medium")
```

### Large Dataset

```python
from datasets import load_dataset

# get large dataset
dataset = load_dataset("midas/ldkp10k", "large")
```

## Citation Information
Please cite the works below if you use this dataset in your work.

```
@article{mahata2022ldkp,
  title={LDKP: A Dataset for Identifying Keyphrases from Long Scientific Documents},
  author={Mahata, Debanjan and Agarwal, Naveen and Gautam, Dibya and Kumar, Amardeep and Parekh, Swapnil and Singla, Yaman Kumar and Acharya, Anish and Shah, Rajiv Ratn},
  journal={arXiv preprint arXiv:2203.15349},
  year={2022}
}
```
```
@article{lo2019s2orc,
  title={S2ORC: The semantic scholar open research corpus},
  author={Lo, Kyle and Wang, Lucy Lu and Neumann, Mark and Kinney, Rodney and Weld, Dan S},
  journal={arXiv preprint arXiv:1911.02782},
  year={2019}
}
```
```
@inproceedings{ccano2019keyphrase,
  title={Keyphrase generation: A multi-aspect survey},
  author={{\c{C}}ano, Erion and Bojar, Ond{\v{r}}ej},
  booktitle={2019 25th Conference of Open Innovations Association (FRUCT)},
  pages={85--94},
  year={2019},
  organization={IEEE}
}
```
```
@article{meng2017deep,
  title={Deep keyphrase generation},
  author={Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu},
  journal={arXiv preprint arXiv:1704.06879},
  year={2017}
}
```

## Contributions
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax), [@UmaGunturi](https://github.com/UmaGunturi) and [@ad6398](https://github.com/ad6398) for adding this dataset