File size: 5,358 Bytes
2d472e1 5e73606 2d472e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
A dataset for benchmarking keyphrase extraction and generation techniques from long document English scientific papers. For more details about the dataset please refer the original paper - []().
Data source - []()
## Dataset Summary
## Dataset Structure
### Data Fields
- **id**: unique identifier of the document.
- **sections**: list of all the sections present in the document.
- **sec_text**: list of white space separated list of words present in each section.
- **sec_bio_tags**: list of BIO tags of white space separated list of words present in each section.
- **extractive_keyphrases**: List of all the present keyphrases.
- **abstractive_keyphrase**: List of all the absent keyphrases.
### Data Splits
|Split| #datapoints |
|--|--|
| Train-Small | 20,000 |
| Train-Medium | 50,000 |
| Train-Large | 1,296,613 |
| Test | 10,000 |
| Validation | 10,000 |
## Usage
### Small Dataset
```python
from datasets import load_dataset
# get small dataset
dataset = load_dataset("midas/ldkp10k", "small")
def order_sections(sample):
"""
corrects the order in which different sections appear in the document.
resulting order is: title, abstract, other sections in the body
"""
sections = []
sec_text = []
sec_bio_tags = []
if "title" in sample["sections"]:
title_idx = sample["sections"].index("title")
sections.append(sample["sections"].pop(title_idx))
sec_text.append(sample["sec_text"].pop(title_idx))
sec_bio_tags.append(sample["sec_bio_tags"].pop(title_idx))
if "abstract" in sample["sections"]:
abstract_idx = sample["sections"].index("abstract")
sections.append(sample["sections"].pop(abstract_idx))
sec_text.append(sample["sec_text"].pop(abstract_idx))
sec_bio_tags.append(sample["sec_bio_tags"].pop(abstract_idx))
sections += sample["sections"]
sec_text += sample["sec_text"]
sec_bio_tags += sample["sec_bio_tags"]
return sections, sec_text, sec_bio_tags
# sample from the train split
print("Sample from train data split")
train_sample = dataset["train"][0]
sections, sec_text, sec_bio_tags = order_sections(train_sample)
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
sections, sec_text, sec_bio_tags = order_sections(validation_sample)
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
sections, sec_text, sec_bio_tags = order_sections(test_sample)
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Section names: ", sections)
print("Tokenized Document: ", sec_text)
print("Document BIO Tags: ", sec_bio_tags)
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
```
**Output**
```bash
```
### Medium Dataset
```python
from datasets import load_dataset
# get medium dataset
dataset = load_dataset("midas/ldkp10k", "medium")
```
### Large Dataset
```python
from datasets import load_dataset
# get large dataset
dataset = load_dataset("midas/ldkp10k", "large")
```
## Citation Information
Please cite the works below if you use this dataset in your work.
```
@article{mahata2022ldkp,
title={LDKP: A Dataset for Identifying Keyphrases from Long Scientific Documents},
author={Mahata, Debanjan and Agarwal, Naveen and Gautam, Dibya and Kumar, Amardeep and Parekh, Swapnil and Singla, Yaman Kumar and Acharya, Anish and Shah, Rajiv Ratn},
journal={arXiv preprint arXiv:2203.15349},
year={2022}
}
```
```
@article{lo2019s2orc,
title={S2ORC: The semantic scholar open research corpus},
author={Lo, Kyle and Wang, Lucy Lu and Neumann, Mark and Kinney, Rodney and Weld, Dan S},
journal={arXiv preprint arXiv:1911.02782},
year={2019}
}
```
```
@inproceedings{ccano2019keyphrase,
title={Keyphrase generation: A multi-aspect survey},
author={{\c{C}}ano, Erion and Bojar, Ond{\v{r}}ej},
booktitle={2019 25th Conference of Open Innovations Association (FRUCT)},
pages={85--94},
year={2019},
organization={IEEE}
}
```
```
@article{meng2017deep,
title={Deep keyphrase generation},
author={Meng, Rui and Zhao, Sanqiang and Han, Shuguang and He, Daqing and Brusilovsky, Peter and Chi, Yu},
journal={arXiv preprint arXiv:1704.06879},
year={2017}
}
```
## Contributions
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax), [@UmaGunturi](https://github.com/UmaGunturi) and [@ad6398](https://github.com/ad6398) for adding this dataset
|