Search is not available for this dataset
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    CastError
Message:      Couldn't cast
collection_uuid: string
uuid: string
embedding: list<element: double>
  child 0, element: double
document: string
id: string
metadata: string
to
{'uuid': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None), 'metadata': Value(dtype='string', id=None)}
because column names don't match
Traceback:    Traceback (most recent call last):
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 428, in query
                  pa_table = pa.concat_tables(
                File "pyarrow/table.pxi", line 5245, in pyarrow.lib.concat_tables
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              uuid: string
              name: string
              metadata: string
              vs
              uuid: string
              metadata: string
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 105, in get_rows_content
                  pa_table = rows_index.query(offset=0, length=rows_max_number)
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 577, in query
                  return self.parquet_index.query(offset=offset, length=length)
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 435, in query
                  raise SchemaMismatchError("Parquet files have different schema.", err)
              libcommon.parquet_utils.SchemaMismatchError: ('Parquet files have different schema.', ArrowInvalid('Schema at index 1 was different: \nuuid: string\nname: string\nmetadata: string\nvs\nuuid: string\nmetadata: string'))
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 328, in compute
                  compute_first_rows_from_parquet_response(
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 119, in compute_first_rows_from_parquet_response
                  return create_first_rows_response(
                File "/src/libs/libcommon/src/libcommon/viewer_utils/rows.py", line 134, in create_first_rows_response
                  rows_content = get_rows_content(rows_max_number)
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 114, in get_rows_content
                  raise SplitParquetSchemaMismatchError(
              libcommon.exceptions.SplitParquetSchemaMismatchError: Split parquet files being processed have different schemas. Ensure all files have identical column names.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 126, in get_rows_or_raise
                  return get_rows(
                File "/src/services/worker/src/worker/utils.py", line 64, in decorator
                  return func(*args, **kwargs)
                File "/src/services/worker/src/worker/utils.py", line 103, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1388, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 282, in __iter__
                  for key, pa_table in self.generate_tables_fn(**self.kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 96, in _generate_tables
                  yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 74, in _cast_table
                  pa_table = table_cast(pa_table, self.info.features.arrow_schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2194, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              collection_uuid: string
              uuid: string
              embedding: list<element: double>
                child 0, element: double
              document: string
              id: string
              metadata: string
              to
              {'uuid': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None), 'metadata': Value(dtype='string', id=None)}
              because column names don't match

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset Card for hlm-paraphrase-multilingual-mpnet-base-v2

Dataset Summary

Chromadb vectorstore for 红楼梦, created with

import os
from langchain.document_loaders import TextLoader
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma

model_name = 'paraphrase-multilingual-mpnet-base-v2'
embedding = SentenceTransformerEmbeddings(model_name=model_name)

url = 'https://raw.githubusercontent.com/ffreemt/multilingual-dokugpt/master/docs/hlm.txt'
os.system(f'wget -c {url}')
doc = TextLoader('hlm.txt').load()

text_splitter = RecursiveCharacterTextSplitter(
    separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
    chunk_size=620,
    chunk_overlap=60,
    length_function=len
)

doc_chunks = text_splitter.split_documents(doc)
client_settings = Settings(chroma_db_impl="duckdb+parquet", anonymized_telemetry=False, persist_directory='db')

# takes 8-20 minutes on CPU
vectorstore = Chroma.from_documents(
    documents=doc_chunks,
    embedding=embedding,
    persist_directory='db',
    client_settings=client_settings,
)
vectorstore.persist()

How to use

Download the hlm directory to a local directory, e.g., db, for example

from huggingface_hub import snapshot_download

snapshot_download(
  repo_id="mikeee/chroma-paraphrase-multilingual-mpnet-base-v2",
  repo_type="dataset",
  allow_patterns="hlm/*",
  local_dir="db",
  resume_download=True,
)

Load the vectorestore:

from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from chromadb.config import Settings

model_name = 'paraphrase-multilingual-mpnet-base-v2'
embedding = SentenceTransformerEmbeddings(model_name=model_name)

client_settings = Settings(
  chroma_db_impl="duckdb+parquet",
  anonymized_telemetry=False,
  persist_directory='db/hlm'
)

db = Chroma(
    # persist_directory='docs',
    embedding_function=embedding,
    client_settings=client_settings,
)

res = db.search("红楼梦主线", search_type="similarity", k=2)
print(res)
# [Document(page_content='通灵宝玉正面图式\u3000通灵宝玉反面图式\n\n\n\n玉宝灵通\u3000\u3000\u3000\u3000\u3000三二一\n\n仙莫\u3000\u3000\u3000\u3000\u3000\u3000知疗除\n\n寿失\u3000\u3000\u3000\u3000\u3000\u3000祸冤邪\n\n恒莫\u3000\u3000\u3000\u3000\u3000\u3000福疾崇\n\n昌忘\n\n\n\n宝钗看毕,【甲戌双行。。。
Downloads last month
6