optdigits / optdigits.py
mstz's picture
Upload 3 files
4f20cc8
"""Optdigits Dataset"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ENCODING_DICS = {}
_BASE_FEATURE_NAMES = [
"att1",
"att2",
"att3",
"att4",
"att5",
"att6",
"att7",
"att8",
"att9",
"att10",
"att11",
"att12",
"att13",
"att14",
"att15",
"att16",
"att17",
"att18",
"att19",
"att20",
"att21",
"att22",
"att23",
"att24",
"att25",
"att26",
"att27",
"att28",
"att29",
"att30",
"att31",
"att32",
"att33",
"att34",
"att35",
"att36",
"att37",
"att38",
"att39",
"att40",
"att41",
"att42",
"att43",
"att44",
"att45",
"att46",
"att47",
"att48",
"att49",
"att50",
"att51",
"att52",
"att53",
"att54",
"att55",
"att56",
"att57",
"att58",
"att59",
"att60",
"att61",
"att62",
"att63",
"att64",
"class",
]
DESCRIPTION = "Optdigits dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits")
_CITATION = """
@misc{misc_optical_recognition_of_handwritten_digits_80,
author = {Alpaydin,E. & Kaynak,C.},
title = {{Optical Recognition of Handwritten Digits}},
year = {1998},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C50P49}}
}
"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/optdigits/resolve/main/optdigits.data"
}
features_types_per_config = {
"optdigits": {
"att1": datasets.Value("int64"),
"att2": datasets.Value("int64"),
"att3": datasets.Value("int64"),
"att4": datasets.Value("int64"),
"att5": datasets.Value("int64"),
"att6": datasets.Value("int64"),
"att7": datasets.Value("int64"),
"att8": datasets.Value("int64"),
"att9": datasets.Value("int64"),
"att10": datasets.Value("int64"),
"att11": datasets.Value("int64"),
"att12": datasets.Value("int64"),
"att13": datasets.Value("int64"),
"att14": datasets.Value("int64"),
"att15": datasets.Value("int64"),
"att16": datasets.Value("int64"),
"att17": datasets.Value("int64"),
"att18": datasets.Value("int64"),
"att19": datasets.Value("int64"),
"att20": datasets.Value("int64"),
"att21": datasets.Value("int64"),
"att22": datasets.Value("int64"),
"att23": datasets.Value("int64"),
"att24": datasets.Value("int64"),
"att25": datasets.Value("int64"),
"att26": datasets.Value("int64"),
"att27": datasets.Value("int64"),
"att28": datasets.Value("int64"),
"att29": datasets.Value("int64"),
"att30": datasets.Value("int64"),
"att31": datasets.Value("int64"),
"att32": datasets.Value("int64"),
"att33": datasets.Value("int64"),
"att34": datasets.Value("int64"),
"att35": datasets.Value("int64"),
"att36": datasets.Value("int64"),
"att37": datasets.Value("int64"),
"att38": datasets.Value("int64"),
"att39": datasets.Value("int64"),
"att40": datasets.Value("int64"),
"att41": datasets.Value("int64"),
"att42": datasets.Value("int64"),
"att43": datasets.Value("int64"),
"att44": datasets.Value("int64"),
"att45": datasets.Value("int64"),
"att46": datasets.Value("int64"),
"att47": datasets.Value("int64"),
"att48": datasets.Value("int64"),
"att49": datasets.Value("int64"),
"att50": datasets.Value("int64"),
"att51": datasets.Value("int64"),
"att52": datasets.Value("int64"),
"att53": datasets.Value("int64"),
"att54": datasets.Value("int64"),
"att55": datasets.Value("int64"),
"att56": datasets.Value("int64"),
"att57": datasets.Value("int64"),
"att58": datasets.Value("int64"),
"att59": datasets.Value("int64"),
"att60": datasets.Value("int64"),
"att61": datasets.Value("int64"),
"att62": datasets.Value("int64"),
"att63": datasets.Value("int64"),
"att64": datasets.Value("int64"),
"class": datasets.ClassLabel(num_classes=10)
}
}
for i in range(10):
features_types_per_config[str(i)] = {
"att1": datasets.Value("int64"),
"att2": datasets.Value("int64"),
"att3": datasets.Value("int64"),
"att4": datasets.Value("int64"),
"att5": datasets.Value("int64"),
"att6": datasets.Value("int64"),
"att7": datasets.Value("int64"),
"att8": datasets.Value("int64"),
"att9": datasets.Value("int64"),
"att10": datasets.Value("int64"),
"att11": datasets.Value("int64"),
"att12": datasets.Value("int64"),
"att13": datasets.Value("int64"),
"att14": datasets.Value("int64"),
"att15": datasets.Value("int64"),
"att16": datasets.Value("int64"),
"att17": datasets.Value("int64"),
"att18": datasets.Value("int64"),
"att19": datasets.Value("int64"),
"att20": datasets.Value("int64"),
"att21": datasets.Value("int64"),
"att22": datasets.Value("int64"),
"att23": datasets.Value("int64"),
"att24": datasets.Value("int64"),
"att25": datasets.Value("int64"),
"att26": datasets.Value("int64"),
"att27": datasets.Value("int64"),
"att28": datasets.Value("int64"),
"att29": datasets.Value("int64"),
"att30": datasets.Value("int64"),
"att31": datasets.Value("int64"),
"att32": datasets.Value("int64"),
"att33": datasets.Value("int64"),
"att34": datasets.Value("int64"),
"att35": datasets.Value("int64"),
"att36": datasets.Value("int64"),
"att37": datasets.Value("int64"),
"att38": datasets.Value("int64"),
"att39": datasets.Value("int64"),
"att40": datasets.Value("int64"),
"att41": datasets.Value("int64"),
"att42": datasets.Value("int64"),
"att43": datasets.Value("int64"),
"att44": datasets.Value("int64"),
"att45": datasets.Value("int64"),
"att46": datasets.Value("int64"),
"att47": datasets.Value("int64"),
"att48": datasets.Value("int64"),
"att49": datasets.Value("int64"),
"att50": datasets.Value("int64"),
"att51": datasets.Value("int64"),
"att52": datasets.Value("int64"),
"att53": datasets.Value("int64"),
"att54": datasets.Value("int64"),
"att55": datasets.Value("int64"),
"att56": datasets.Value("int64"),
"att57": datasets.Value("int64"),
"att58": datasets.Value("int64"),
"att59": datasets.Value("int64"),
"att60": datasets.Value("int64"),
"att61": datasets.Value("int64"),
"att62": datasets.Value("int64"),
"att63": datasets.Value("int64"),
"att64": datasets.Value("int64"),
"class": datasets.ClassLabel(num_classes=2)
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class OptdigitsConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(OptdigitsConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Optdigits(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "optdigits"
BUILDER_CONFIGS = [
OptdigitsConfig(name="optdigits", description="Optdigits for multiclass classification."),
OptdigitsConfig(name="0", description="Optdigits for binary classification: is this a 0?."),
OptdigitsConfig(name="1", description="Optdigits for binary classification: is this a 1?."),
OptdigitsConfig(name="2", description="Optdigits for binary classification: is this a 2?."),
OptdigitsConfig(name="3", description="Optdigits for binary classification: is this a 3?."),
OptdigitsConfig(name="4", description="Optdigits for binary classification: is this a 4?."),
OptdigitsConfig(name="5", description="Optdigits for binary classification: is this a 5?."),
OptdigitsConfig(name="6", description="Optdigits for binary classification: is this a 6?."),
OptdigitsConfig(name="7", description="Optdigits for binary classification: is this a 7?."),
OptdigitsConfig(name="8", description="Optdigits for binary classification: is this a 8?."),
OptdigitsConfig(name="9", description="Optdigits for binary classification: is this a 9?.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data.columns = _BASE_FEATURE_NAMES
data = self.preprocess(data)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
if self.config.name == "0":
data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
if self.config.name == "1":
data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
if self.config.name == "2":
data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
if self.config.name == "3":
data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
if self.config.name == "4":
data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
if self.config.name == "5":
data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
if self.config.name == "6":
data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
if self.config.name == "7":
data["class"] = data["class"].apply(lambda x: 1 if x == 7 else 0)
if self.config.name == "8":
data["class"] = data["class"].apply(lambda x: 1 if x == 8 else 0)
if self.config.name == "9":
data["class"] = data["class"].apply(lambda x: 1 if x == 9 else 0)
return data[list(features_types_per_config[self.config.name].keys())]
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")