File size: 20,627 Bytes
7e260bd c35b09a 87308e5 c35b09a 7e260bd 87308e5 7e260bd 057d9fc 7e260bd 057d9fc 7e260bd 87308e5 7e260bd 057d9fc b8f650e b07d24d 87308e5 b07d24d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
---
license: apache-2.0
language:
- en
tags:
- NASA
- Earth
- Satellite
- Knowledge Graph
- Machine Learning
---
# NASA Knowledge Graph Dataset
## Dataset Summary
The **NASA Knowledge Graph Dataset** is an expansive graph-based dataset designed to integrate and interconnect information about satellite datasets, scientific publications, instruments, platforms, projects, data centers, and science keywords. This knowledge graph is particularly focused on datasets managed by NASA's Distributed Active Archive Centers (DAACs), which are NASA's data repositories responsible for archiving and distributing scientific data. In addition to NASA DAACs, the graph includes datasets from 184 data providers worldwide, including various government agencies and academic institutions.
The primary goal of the NASA Knowledge Graph is to bridge scientific publications with the datasets they reference, facilitating deeper insights and research opportunities within NASA's scientific and data ecosystem. By organizing these interconnections within a graph structure, this dataset enables advanced analyses, such as discovering influential datasets, understanding research trends, and exploring scientific collaborations.
## Data Integrity
Each file in the dataset has a SHA-256 checksum to verify its integrity:
| File Name | SHA-256 Checksum |
|----------------------------|---------------------------------------------------------------------------|
| `graph.cypher` | `d78f7b166a86be3ceec16db75a1575dac95249af188b1d2e2adab7388a8e654a` |
| `graph.graphml` | `a781e358b338a181db5081a50127325febab67dcb283cb4124c877bf06de439e` |
| `graph.json` | `4794fd070953b3544ba3c841f13155f1cf8a1ca9abd1b240bbfaf482ce2cde32` |
### Verification
To verify the integrity of each file, calculate its SHA-256 checksum and compare it with the hashes provided above.
You can use the following Python code to calculate the SHA-256 checksum:
```python
import hashlib
def calculate_sha256(filepath):
sha256_hash = hashlib.sha256()
with open(filepath, "rb") as f:
for byte_block in iter(lambda: f.read(4096), b""):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()
```
## Dataset Structure
### Nodes and Properties
The knowledge graph consists of seven main node types, each representing a different entity within NASA's ecosystem:
#### 1. Dataset
- **Description**: Represents satellite datasets, particularly those managed by NASA DAACs, along with datasets from other governmental and academic data providers. These nodes contain metadata and attributes specific to each dataset.
- **Properties**:
- `globalId` (String): Unique identifier for the dataset.
- `doi` (String): Digital Object Identifier.
- `shortName` (String): Abbreviated name of the dataset.
- `longName` (String): Full name of the dataset.
- `abstract` (String): Brief summary of the dataset.
- `cmrId` (String): Common Metadata Repository ID.
- `daac` (String): Distributed Active Archive Center associated with the dataset.
- `temporalFrequency` (String): Frequency of data collection (e.g., daily, monthly).
- `temporalExtentStart` (Date): Start date of the dataset's temporal coverage.
- `temporalExtentEnd` (Date): End date of the dataset's temporal coverage.
- `nwCorner` (Geo-Coordinate): Northwest corner coordinate of spatial coverage.
- `seCorner` (Geo-Coordinate): Southeast corner coordinate of spatial coverage.
- `landingPageUrl` (URL): Webpage link to the dataset.
- `pagerank_global` (Float): PageRank score calculated using the natural graph direction.
- `fastrp_embedding_with_labels` (List<Float>): FastRP embedding vector considering node labels.
#### 2. Publication
- **Description**: This node type captures publications that reference or use datasets, particularly those from NASA DAACs and other included data providers. By linking datasets and publications, this node type enables analysis of scientific impact and research usage of NASA’s datasets.
- **Properties**:
- `globalId` (String): Unique identifier for the publication.
- `DOI` (String): Digital Object Identifier.
- `title` (String): Title of the publication.
- `abstract` (String): Summary of the publication's content.
- `authors` (List<String>): List of authors.
- `year` (Integer): Year of publication.
- `pagerank_global` (Float): PageRank score.
- `fastrp_embedding_with_labels` (List<Float>): FastRP embedding vector.
#### 3. ScienceKeyword
- **Description**: Represents scientific keywords used to classify datasets and publications. Keywords provide topical context and aid in identifying research trends and related areas.
- **Properties**:
- `globalId` (String): Unique identifier.
- `name` (String): Name of the science keyword.
- `pagerank_global` (Float): PageRank score.
- `fastrp_embedding_with_labels` (List<Float>): FastRP embedding vector.
#### 4. Instrument
- **Description**: Instruments used in data collection, often mounted on platforms like satellites. Instruments are linked to the datasets they help generate.
- **Properties**:
- `globalId` (String): Unique identifier.
- `shortName` (String): Abbreviated name.
- `longName` (String): Full name.
- `pagerank_global` (Float): PageRank score.
- `fastrp_embedding_with_labels` (List<Float>): FastRP embedding vector.
#### 5. Platform
- **Description**: Platforms, such as satellites or airborne vehicles, that host instruments for data collection.
- **Properties**:
- `globalId` (String): Unique identifier.
- `shortName` (String): Abbreviated name.
- `longName` (String): Full name.
- `Type` (String): Type of platform.
- `pagerank_global` (Float): PageRank score.
- `fastrp_embedding_with_labels` (List<Float>): FastRP embedding vector.
#### 6. Project
- **Description**: NASA projects associated with datasets, often indicating a funding source or collaborative initiative for data collection and research.
- **Properties**:
- `globalId` (String): Unique identifier.
- `shortName` (String): Abbreviated name.
- `longName` (String): Full name.
- `pagerank_global` (Float): PageRank score.
- `fastrp_embedding_with_labels` (List<Float>): FastRP embedding vector.
#### 7. DataCenter
- **Description**: Represents data centers, primarily NASA DAACs, as well as other data providers in academia and government who manage and distribute datasets.
- **Properties**:
- `globalId` (String): Unique identifier.
- `shortName` (String): Abbreviated name.
- `longName` (String): Full name.
- `url` (URL): Website of the data center.
- `pagerank_global` (Float): PageRank score.
- `fastrp_embedding_with_labels` (List<Float>): FastRP embedding vector.
### Relationships
The knowledge graph includes several relationship types that define how nodes are interconnected.
#### 1. HAS_DATASET
- **Description**: Connects a `DataCenter` to its `Dataset(s)`.
- **Properties**: None.
#### 2. OF_PROJECT
- **Description**: Links a `Dataset` to a `Project`.
- **Properties**: None.
#### 3. HAS_PLATFORM
- **Description**: Associates a `Dataset` with a `Platform`.
- **Properties**: None.
#### 4. HAS_INSTRUMENT
- **Description**: Connects a `Platform` to an `Instrument`.
- **Properties**: None.
#### 5. HAS_SCIENCEKEYWORD
- **Description**: Links a `Dataset` to a `ScienceKeyword`.
- **Properties**: None.
#### 6. HAS_SUBCATEGORY
- **Description**: Defines hierarchical relationships between `ScienceKeyword` nodes.
- **Properties**: None.
#### 7. CITES
- **Description**: Represents citation relationships between `Publication` nodes, indicating how research builds on previous work.
- **Properties**: None.
#### 8. HAS_APPLIED_RESEARCH_AREA
- **Description**: Associates a `Publication` with a `ScienceKeyword`.
- **Properties**: None.
## Statistics
# Data Statistics
## Total Counts
| Type | Count |
|----------------------|---------|
| **Total Nodes** | 135,764 |
| **Total Relationships** | 365,857 |
## Node Label Counts
| Node Label | Count |
|-------------------|----------|
| Dataset | 6,390 |
| DataCenter | 184 |
| Project | 333 |
| Platform | 442 |
| Instrument | 867 |
| ScienceKeyword | 1,609 |
| Publication | 125,939 |
## Relationship Label Counts
| Relationship Label | Count |
|---------------------------|-----------|
| HAS_DATASET | 9,017 |
| OF_PROJECT | 6,049 |
| HAS_PLATFORM | 9,884 |
| HAS_INSTRUMENT | 2,469 |
| HAS_SUBCATEGORY | 1,823 |
| HAS_SCIENCEKEYWORD | 20,436 |
| CITES | 208,670 |
| HAS_APPLIED_RESEARCH_AREA| 89,039 |
| USES_DATASET | 18,470 |
## Data Formats
The Knowledge Graph Dataset is available in three formats:
### 1. JSON
- **File**: `graph.json`
- **Description**: A hierarchical data format representing nodes and relationships. Each node includes its properties, such as `globalId`, `doi`, and `pagerank_global`.
- **Usage**: Suitable for web applications and APIs, and for use cases where hierarchical data structures are preferred.
#### Loading the JSON Format
To load the JSON file into a graph database using Python and multiprocessing you can using the following script:
```python
import json
from tqdm import tqdm
from collections import defaultdict
from multiprocessing import Pool, cpu_count
from neo4j import GraphDatabase
# Batch size for processing
BATCH_SIZE = 100
# Neo4j credentials (replace with environment variables or placeholders)
NEO4J_URI = "bolt://<your-neo4j-host>:<port>" # e.g., "bolt://localhost:7687"
NEO4J_USER = "<your-username>"
NEO4J_PASSWORD = "<your-password>"
def ingest_data(file_path):
# Initialize counters and label trackers
node_label_counts = defaultdict(int)
relationship_label_counts = defaultdict(int)
node_count = 0
relationship_count = 0
with open(file_path, "r") as f:
nodes = []
relationships = []
# Read and categorize nodes and relationships, and count labels
for line in tqdm(f, desc="Reading JSON Lines"):
obj = json.loads(line.strip())
if obj["type"] == "node":
nodes.append(obj)
node_count += 1
for label in obj["labels"]:
node_label_counts[label] += 1
elif obj["type"] == "relationship":
relationships.append(obj)
relationship_count += 1
relationship_label_counts[obj["label"]] += 1
# Print statistics
print("\n=== Data Statistics ===")
print(f"Total Nodes: {node_count}")
print(f"Total Relationships: {relationship_count}")
print("\nNode Label Counts:")
for label, count in node_label_counts.items():
print(f" {label}: {count}")
print("\nRelationship Label Counts:")
for label, count in relationship_label_counts.items():
print(f" {label}: {count}")
print("=======================")
# Multiprocess node ingestion
print("Starting Node Ingestion...")
node_batches = [nodes[i : i + BATCH_SIZE] for i in range(0, len(nodes), BATCH_SIZE)]
with Pool(processes=cpu_count()) as pool:
list(
tqdm(
pool.imap(ingest_nodes_batch, node_batches),
total=len(node_batches),
desc="Ingesting Nodes",
)
)
# Multiprocess relationship ingestion
print("Starting Relationship Ingestion...")
relationship_batches = [
relationships[i : i + BATCH_SIZE]
for i in range(0, len(relationships), BATCH_SIZE)
]
with Pool(processes=cpu_count()) as pool:
list(
tqdm(
pool.imap(ingest_relationships_batch, relationship_batches),
total=len(relationship_batches),
desc="Ingesting Relationships",
)
)
def ingest_nodes_batch(batch):
with GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD)) as driver:
with driver.session() as session:
for node in batch:
try:
label = node["labels"][0] # Assumes a single label per node
query = f"""
MERGE (n:{label} {{globalId: $globalId}})
SET n += $properties
"""
session.run(
query,
globalId=node["properties"]["globalId"],
properties=node["properties"],
)
except Exception as e:
print(
f"Error ingesting node with globalId {node['properties']['globalId']}: {e}"
)
def ingest_relationships_batch(batch):
with GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD)) as driver:
with driver.session() as session:
for relationship in batch:
try:
rel_type = relationship[
"label"
] # Use the label for the relationship
query = f"""
MATCH (start {{globalId: $start_globalId}})
MATCH (end {{globalId: $end_globalId}})
MERGE (start)-[r:{rel_type}]->(end)
"""
session.run(
query,
start_globalId=relationship["start"]["properties"]["globalId"],
end_globalId=relationship["end"]["properties"]["globalId"],
)
except Exception as e:
print(
f"Error ingesting relationship with label {relationship['label']}: {e}"
)
if __name__ == "__main__":
# Path to the JSON file
JSON_FILE_PATH = "<path-to-your-graph.json>"
# Run the ingestion process
ingest_data(JSON_FILE_PATH)
```
### 2. GraphML
- **File**: `graph.graphml`
- **Description**: An XML-based format well-suited for complex graph structures and metadata-rich representations.
- **Usage**: Compatible with graph visualization and analysis tools, including Gephi, Cytoscape, and databases that support GraphML import.
#### Loading the GraphML Format
To import the GraphML file into a graph database with APOC support, use the following command:
```cypher
CALL apoc.import.graphml("path/to/graph.graphml", {readLabels: true})
```
### 3. Cypher
- **File**: `graph.cypher`
- **Description**: A series of Cypher commands to recreate the knowledge graph structure.
- **Usage**: Useful for recreating the graph in any Cypher-compatible graph database.
#### Loading the Cypher Format
To load the Cypher script, execute it directly using a command-line interface for your graph database:
```bash
neo4j-shell -file path/to/graph.cypher
```
### 4. Loading the Knowledge Graph into PyTorch Geometric (PyG)
This knowledge graph can be loaded into PyG (PyTorch Geometric) for further processing, analysis, or model training. Below is an example script that shows how to load the JSON data into a PyG-compatible `HeteroData` object.
The script first reads the JSON data, processes nodes and relationships, and then loads everything into a `HeteroData` object for use with PyG.
```python
import json
import torch
from torch_geometric.data import HeteroData
from collections import defaultdict
# Load JSON data from file
file_path = "path/to/graph.json" # Replace with your actual file path
graph_data = []
with open(file_path, "r") as f:
for line in f:
try:
graph_data.append(json.loads(line))
except json.JSONDecodeError as e:
print(f"Error decoding JSON line: {e}")
continue
# Initialize HeteroData object
data = HeteroData()
# Mapping for node indices per node type
node_mappings = defaultdict(dict)
# Temporary storage for properties to reduce concatenation cost
node_properties = defaultdict(lambda: defaultdict(list))
edge_indices = defaultdict(lambda: defaultdict(list))
# Process each item in the loaded JSON data
for item in graph_data:
if item['type'] == 'node':
node_type = item['labels'][0] # Assuming first label is the node type
node_id = item['id']
properties = item['properties']
# Store the node index mapping
node_index = len(node_mappings[node_type])
node_mappings[node_type][node_id] = node_index
# Store properties temporarily by type
for key, value in properties.items():
if isinstance(value, list) and all(isinstance(v, (int, float)) for v in value):
node_properties[node_type][key].append(torch.tensor(value, dtype=torch.float))
elif isinstance(value, (int, float)):
node_properties[node_type][key].append(torch.tensor([value], dtype=torch.float))
else:
node_properties[node_type][key].append(value) # non-numeric properties as lists
elif item['type'] == 'relationship':
start_type = item['start']['labels'][0]
end_type = item['end']['labels'][0]
start_id = item['start']['id']
end_id = item['end']['id']
edge_type = item['label']
# Map start and end node indices
start_idx = node_mappings[start_type][start_id]
end_idx = node_mappings[end_type][end_id]
# Append to edge list
edge_indices[(start_type, edge_type, end_type)]['start'].append(start_idx)
edge_indices[(start_type, edge_type, end_type)]['end'].append(end_idx)
# Finalize node properties by batch processing
for node_type, properties in node_properties.items():
data[node_type].num_nodes = len(node_mappings[node_type])
for key, values in properties.items():
if isinstance(values[0], torch.Tensor):
data[node_type][key] = torch.stack(values)
else:
data[node_type][key] = values # Keep non-tensor properties as lists
# Finalize edge indices in bulk
for (start_type, edge_type, end_type), indices in edge_indices.items():
edge_index = torch.tensor([indices['start'], indices['end']], dtype=torch.long)
data[start_type, edge_type, end_type].edge_index = edge_index
# Display statistics for verification
print("Nodes and Properties:")
for node_type in data.node_types:
print(f"\nNode Type: {node_type}")
print(f"Number of Nodes: {data[node_type].num_nodes}")
for key, value in data[node_type].items():
if key != 'num_nodes':
if isinstance(value, torch.Tensor):
print(f" - {key}: {value.shape}")
else:
print(f" - {key}: {len(value)} items (non-numeric)")
print("\nEdges and Types:")
for edge_type in data.edge_types:
edge_index = data[edge_type].edge_index
print(f"Edge Type: {edge_type} - Number of Edges: {edge_index.size(1)} - Shape: {edge_index.shape}")
```
---
## Citation
Please cite the dataset as follows:
**NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC).** (2024). *Knowledge Graph of NASA Earth Observations Satellite Datasets and Related Research Publications* [Data set]. DOI: [10.57967/hf/3463](https://doi.org/10.57967/hf/3463)
### BibTeX
```bibtex
@misc {nasa_goddard_earth_sciences_data_and_information_services_center__(ges-disc)_2024,
author = { {NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC)} },
title = { nasa-eo-knowledge-graph },
year = 2024,
url = { https://huggingface.co/datasets/nasa-gesdisc/nasa-eo-knowledge-graph },
doi = { 10.57967/hf/3463 },
publisher = { Hugging Face }
}
```
## References
For details on the process of collecting these publications, please refer to:
Gerasimov, I., Savtchenko, A., Alfred, J., Acker, J., Wei, J., & KC, B. (2024). *Bridging the Gap: Enhancing Prominence and Provenance of NASA Datasets in Research Publications.* Data Science Journal, 23(1). DOI: [10.5334/dsj-2024-001](https://doi.org/10.5334/dsj-2024-001)
For any questions or further information, please contact:
- Armin Mehrabian: [[email protected]](mailto:[email protected])
- Irina Gerasimov: [[email protected]](mailto:[email protected])
- Kendall Gilbert: [[email protected]](mailto:[email protected])
|