metadata
language:
- en
license: apache-2.0
tags:
- text
pretty_name: MSMARCO
size_categories:
- 100K<n<1M
source_datasets:
- MSMARCO
task_categories:
- sentence-similarity
dataset_info:
config_name: default
features:
- name: query
dtype: string
- name: pos
sequence:
- name: doc
dtype: string
- name: score
dtype: float
- name: neg
sequence:
- name: doc
dtype: string
- name: score
dtype: float
splits:
- name: train
num_bytes: 1
num_examples: 1
- name: test
num_bytes: 1
num_examples: 1
- name: dev
num_bytes: 1
num_examples: 1
train-eval-index:
- config: default
task: sentence-similarity
splits:
train_split: train
eval_split: test
configs:
- config_name: default
data_files:
- split: train
path: data/train/*
- split: test
path: data/test/*
- split: dev
path: data/dev/*
MSMARCO dataset
A dataset in a nixietune compatible format:
{
"query": ")what was the immediate impact of the success of the manhattan project?",
"pos": [
{
"doc": "The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.",
"score": 1
}
]
}
This is the original converted dataset with the following splits:
- train: 502939 queries, only positives.
- test: 43 queries, positives and negatives.
- dev: 6980 queries, only positives.
Usage
from datasets import load_dataset
data = load_dataset('nixiesearch/msmarco', split="train")
License
Apache 2.0