Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
source
stringlengths
4.8k
15.8k
file_name
stringlengths
9
9
cwe
sequencelengths
1
1
""" Implementation of the SHA1 hash function and gives utilities to find hash of string or hash of text from a file. Also contains a Test class to verify that the generated hash matches what is returned by the hashlib library Usage: python sha1.py --string "Hello World!!" python sha1.py --file "hello_world.txt" When run without any arguments, it prints the hash of the string "Hello World!! Welcome to Cryptography" SHA1 hash or SHA1 sum of a string is a cryptographic function, which means it is easy to calculate forwards but extremely difficult to calculate backwards. What this means is you can easily calculate the hash of a string, but it is extremely difficult to know the original string if you have its hash. This property is useful for communicating securely, send encrypted messages and is very useful in payment systems, blockchain and cryptocurrency etc. The algorithm as described in the reference: First we start with a message. The message is padded and the length of the message is added to the end. It is then split into blocks of 512 bits or 64 bytes. The blocks are then processed one at a time. Each block must be expanded and compressed. The value after each compression is added to a 160-bit buffer called the current hash state. After the last block is processed, the current hash state is returned as the final hash. Reference: https://deadhacker.com/2006/02/21/sha-1-illustrated/ """ import argparse import hashlib # hashlib is only used inside the Test class import struct class SHA1Hash: """ Class to contain the entire pipeline for SHA1 hashing algorithm >>> SHA1Hash(bytes('Allan', 'utf-8')).final_hash() '872af2d8ac3d8695387e7c804bf0e02c18df9e6e' """ def __init__(self, data): """ Initiates the variables data and h. h is a list of 5 8-digit hexadecimal numbers corresponding to (1732584193, 4023233417, 2562383102, 271733878, 3285377520) respectively. We will start with this as a message digest. 0x is how you write hexadecimal numbers in Python """ self.data = data self.h = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0] @staticmethod def rotate(n, b): """ Static method to be used inside other methods. Left rotates n by b. >>> SHA1Hash('').rotate(12,2) 48 """ return ((n << b) | (n >> (32 - b))) & 0xFFFFFFFF def padding(self): """ Pads the input message with zeros so that padded_data has 64 bytes or 512 bits """ padding = b"\x80" + b"\x00" * (63 - (len(self.data) + 8) % 64) padded_data = self.data + padding + struct.pack(">Q", 8 * len(self.data)) return padded_data def split_blocks(self): """ Returns a list of bytestrings each of length 64 """ return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data), 64) ] # @staticmethod def expand_block(self, block): """ Takes a bytestring-block of length 64, unpacks it to a list of integers and returns a list of 80 integers after some bit operations """ w = list(struct.unpack(">16L", block)) + [0] * 64 for i in range(16, 80): w[i] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1) return w def final_hash(self): """ Calls all the other methods to process the input. Pads the data, then splits into blocks and then does a series of operations for each block (including expansion). For each block, the variable h that was initialized is copied to a,b,c,d,e and these 5 variables a,b,c,d,e undergo several changes. After all the blocks are processed, these 5 variables are pairwise added to h ie a to h[0], b to h[1] and so on. This h becomes our final hash which is returned. """ self.padded_data = self.padding() self.blocks = self.split_blocks() for block in self.blocks: expanded_block = self.expand_block(block) a, b, c, d, e = self.h for i in range(80): if 0 <= i < 20: f = (b & c) | ((~b) & d) k = 0x5A827999 elif 20 <= i < 40: f = b ^ c ^ d k = 0x6ED9EBA1 elif 40 <= i < 60: f = (b & c) | (b & d) | (c & d) k = 0x8F1BBCDC elif 60 <= i < 80: f = b ^ c ^ d k = 0xCA62C1D6 a, b, c, d, e = ( self.rotate(a, 5) + f + e + k + expanded_block[i] & 0xFFFFFFFF, a, self.rotate(b, 30), c, d, ) self.h = ( self.h[0] + a & 0xFFFFFFFF, self.h[1] + b & 0xFFFFFFFF, self.h[2] + c & 0xFFFFFFFF, self.h[3] + d & 0xFFFFFFFF, self.h[4] + e & 0xFFFFFFFF, ) return ("{:08x}" * 5).format(*self.h) def test_sha1_hash(): msg = b"Test String" assert SHA1Hash(msg).final_hash() == hashlib.sha1(msg).hexdigest() # noqa: S324 def main(): """ Provides option 'string' or 'file' to take input and prints the calculated SHA1 hash. unittest.main() has been commented out because we probably don't want to run the test each time. """ # unittest.main() parser = argparse.ArgumentParser(description="Process some strings or files") parser.add_argument( "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument("--file", dest="input_file", help="Hash contents of a file") args = parser.parse_args() input_string = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file, "rb") as f: hash_input = f.read() else: hash_input = bytes(input_string, "utf-8") print(SHA1Hash(hash_input).final_hash()) if __name__ == "__main__": main() import doctest doctest.testmod()
916728.py
[ "CWE-327: Use of a Broken or Risky Cryptographic Algorithm" ]
import os import gc import time import numpy as np import torch import torchvision from PIL import Image from einops import rearrange, repeat from omegaconf import OmegaConf import safetensors.torch from ldm.models.diffusion.ddim import DDIMSampler from ldm.util import instantiate_from_config, ismap from modules import shared, sd_hijack, devices cached_ldsr_model: torch.nn.Module = None # Create LDSR Class class LDSR: def load_model_from_config(self, half_attention): global cached_ldsr_model if shared.opts.ldsr_cached and cached_ldsr_model is not None: print("Loading model from cache") model: torch.nn.Module = cached_ldsr_model else: print(f"Loading model from {self.modelPath}") _, extension = os.path.splitext(self.modelPath) if extension.lower() == ".safetensors": pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu") else: pl_sd = torch.load(self.modelPath, map_location="cpu") sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd config = OmegaConf.load(self.yamlPath) config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1" model: torch.nn.Module = instantiate_from_config(config.model) model.load_state_dict(sd, strict=False) model = model.to(shared.device) if half_attention: model = model.half() if shared.cmd_opts.opt_channelslast: model = model.to(memory_format=torch.channels_last) sd_hijack.model_hijack.hijack(model) # apply optimization model.eval() if shared.opts.ldsr_cached: cached_ldsr_model = model return {"model": model} def __init__(self, model_path, yaml_path): self.modelPath = model_path self.yamlPath = yaml_path @staticmethod def run(model, selected_path, custom_steps, eta): example = get_cond(selected_path) n_runs = 1 guider = None ckwargs = None ddim_use_x0_pred = False temperature = 1. eta = eta custom_shape = None height, width = example["image"].shape[1:3] split_input = height >= 128 and width >= 128 if split_input: ks = 128 stride = 64 vqf = 4 # model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), "vqf": vqf, "patch_distributed_vq": True, "tie_braker": False, "clip_max_weight": 0.5, "clip_min_weight": 0.01, "clip_max_tie_weight": 0.5, "clip_min_tie_weight": 0.01} else: if hasattr(model, "split_input_params"): delattr(model, "split_input_params") x_t = None logs = None for _ in range(n_runs): if custom_shape is not None: x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) logs = make_convolutional_sample(example, model, custom_steps=custom_steps, eta=eta, quantize_x0=False, custom_shape=custom_shape, temperature=temperature, noise_dropout=0., corrector=guider, corrector_kwargs=ckwargs, x_T=x_t, ddim_use_x0_pred=ddim_use_x0_pred ) return logs def super_resolution(self, image, steps=100, target_scale=2, half_attention=False): model = self.load_model_from_config(half_attention) # Run settings diffusion_steps = int(steps) eta = 1.0 gc.collect() devices.torch_gc() im_og = image width_og, height_og = im_og.size # If we can adjust the max upscale size, then the 4 below should be our variable down_sample_rate = target_scale / 4 wd = width_og * down_sample_rate hd = height_og * down_sample_rate width_downsampled_pre = int(np.ceil(wd)) height_downsampled_pre = int(np.ceil(hd)) if down_sample_rate != 1: print( f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]') im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) else: print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") # pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) logs = self.run(model["model"], im_padded, diffusion_steps, eta) sample = logs["sample"] sample = sample.detach().cpu() sample = torch.clamp(sample, -1., 1.) sample = (sample + 1.) / 2. * 255 sample = sample.numpy().astype(np.uint8) sample = np.transpose(sample, (0, 2, 3, 1)) a = Image.fromarray(sample[0]) # remove padding a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4)) del model gc.collect() devices.torch_gc() return a def get_cond(selected_path): example = {} up_f = 4 c = selected_path.convert('RGB') c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True) c_up = rearrange(c_up, '1 c h w -> 1 h w c') c = rearrange(c, '1 c h w -> 1 h w c') c = 2. * c - 1. c = c.to(shared.device) example["LR_image"] = c example["image"] = c_up return example @torch.no_grad() def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None, corrector_kwargs=None, x_t=None ): ddim = DDIMSampler(model) bs = shape[0] shape = shape[1:] print(f"Sampling with eta = {eta}; steps: {steps}") samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, mask=mask, x0=x0, temperature=temperature, verbose=False, score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, x_t=x_t) return samples, intermediates @torch.no_grad() def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): log = {} z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, return_first_stage_outputs=True, force_c_encode=not (hasattr(model, 'split_input_params') and model.cond_stage_key == 'coordinates_bbox'), return_original_cond=True) if custom_shape is not None: z = torch.randn(custom_shape) print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") z0 = None log["input"] = x log["reconstruction"] = xrec if ismap(xc): log["original_conditioning"] = model.to_rgb(xc) if hasattr(model, 'cond_stage_key'): log[model.cond_stage_key] = model.to_rgb(xc) else: log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) if model.cond_stage_model: log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) if model.cond_stage_key == 'class_label': log[model.cond_stage_key] = xc[model.cond_stage_key] with model.ema_scope("Plotting"): t0 = time.time() sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, eta=eta, quantize_x0=quantize_x0, mask=None, x0=z0, temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs, x_t=x_T) t1 = time.time() if ddim_use_x0_pred: sample = intermediates['pred_x0'][-1] x_sample = model.decode_first_stage(sample) try: x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) log["sample_noquant"] = x_sample_noquant log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) except Exception: pass log["sample"] = x_sample log["time"] = t1 - t0 return log
177699.py
[ "CWE-502: Deserialization of Untrusted Data" ]
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo # The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo # As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder import numpy as np import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager from torch.optim.lr_scheduler import LambdaLR from ldm.modules.ema import LitEma from vqvae_quantize import VectorQuantizer2 as VectorQuantizer from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.util import instantiate_from_config import ldm.models.autoencoder from packaging import version class VQModel(pl.LightningModule): def __init__(self, ddconfig, lossconfig, n_embed, embed_dim, ckpt_path=None, ignore_keys=None, image_key="image", colorize_nlabels=None, monitor=None, batch_resize_range=None, scheduler_config=None, lr_g_factor=1.0, remap=None, sane_index_shape=False, # tell vector quantizer to return indices as bhw use_ema=False ): super().__init__() self.embed_dim = embed_dim self.n_embed = n_embed self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = instantiate_from_config(lossconfig) self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape) self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) if colorize_nlabels is not None: assert type(colorize_nlabels)==int self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) if monitor is not None: self.monitor = monitor self.batch_resize_range = batch_resize_range if self.batch_resize_range is not None: print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.") self.use_ema = use_ema if self.use_ema: self.model_ema = LitEma(self) print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or []) self.scheduler_config = scheduler_config self.lr_g_factor = lr_g_factor @contextmanager def ema_scope(self, context=None): if self.use_ema: self.model_ema.store(self.parameters()) self.model_ema.copy_to(self) if context is not None: print(f"{context}: Switched to EMA weights") try: yield None finally: if self.use_ema: self.model_ema.restore(self.parameters()) if context is not None: print(f"{context}: Restored training weights") def init_from_ckpt(self, path, ignore_keys=None): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if missing: print(f"Missing Keys: {missing}") if unexpected: print(f"Unexpected Keys: {unexpected}") def on_train_batch_end(self, *args, **kwargs): if self.use_ema: self.model_ema(self) def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) quant, emb_loss, info = self.quantize(h) return quant, emb_loss, info def encode_to_prequant(self, x): h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, quant): quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec def decode_code(self, code_b): quant_b = self.quantize.embed_code(code_b) dec = self.decode(quant_b) return dec def forward(self, input, return_pred_indices=False): quant, diff, (_,_,ind) = self.encode(input) dec = self.decode(quant) if return_pred_indices: return dec, diff, ind return dec, diff def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() if self.batch_resize_range is not None: lower_size = self.batch_resize_range[0] upper_size = self.batch_resize_range[1] if self.global_step <= 4: # do the first few batches with max size to avoid later oom new_resize = upper_size else: new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16)) if new_resize != x.shape[2]: x = F.interpolate(x, size=new_resize, mode="bicubic") x = x.detach() return x def training_step(self, batch, batch_idx, optimizer_idx): # https://github.com/pytorch/pytorch/issues/37142 # try not to fool the heuristics x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) if optimizer_idx == 0: # autoencode aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train", predicted_indices=ind) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) return aeloss if optimizer_idx == 1: # discriminator discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) return discloss def validation_step(self, batch, batch_idx): log_dict = self._validation_step(batch, batch_idx) with self.ema_scope(): self._validation_step(batch, batch_idx, suffix="_ema") return log_dict def _validation_step(self, batch, batch_idx, suffix=""): x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step, last_layer=self.get_last_layer(), split="val"+suffix, predicted_indices=ind ) discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step, last_layer=self.get_last_layer(), split="val"+suffix, predicted_indices=ind ) rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] self.log(f"val{suffix}/rec_loss", rec_loss, prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) self.log(f"val{suffix}/aeloss", aeloss, prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) if version.parse(pl.__version__) >= version.parse('1.4.0'): del log_dict_ae[f"val{suffix}/rec_loss"] self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def configure_optimizers(self): lr_d = self.learning_rate lr_g = self.lr_g_factor*self.learning_rate print("lr_d", lr_d) print("lr_g", lr_g) opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ list(self.decoder.parameters())+ list(self.quantize.parameters())+ list(self.quant_conv.parameters())+ list(self.post_quant_conv.parameters()), lr=lr_g, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9)) if self.scheduler_config is not None: scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }, { 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }, ] return [opt_ae, opt_disc], scheduler return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): log = {} x = self.get_input(batch, self.image_key) x = x.to(self.device) if only_inputs: log["inputs"] = x return log xrec, _ = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log["inputs"] = x log["reconstructions"] = xrec if plot_ema: with self.ema_scope(): xrec_ema, _ = self(x) if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) log["reconstructions_ema"] = xrec_ema return log def to_rgb(self, x): assert self.image_key == "segmentation" if not hasattr(self, "colorize"): self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) x = F.conv2d(x, weight=self.colorize) x = 2.*(x-x.min())/(x.max()-x.min()) - 1. return x class VQModelInterface(VQModel): def __init__(self, embed_dim, *args, **kwargs): super().__init__(*args, embed_dim=embed_dim, **kwargs) self.embed_dim = embed_dim def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) return h def decode(self, h, force_not_quantize=False): # also go through quantization layer if not force_not_quantize: quant, emb_loss, info = self.quantize(h) else: quant = h quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec ldm.models.autoencoder.VQModel = VQModel ldm.models.autoencoder.VQModelInterface = VQModelInterface
932523.py
[ "CWE-502: Deserialization of Untrusted Data" ]
# Vendored from https://raw.githubusercontent.com/CompVis/taming-transformers/24268930bf1dce879235a7fddd0b2355b84d7ea6/taming/modules/vqvae/quantize.py, # where the license is as follows: # # Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE./ import torch import torch.nn as nn import numpy as np from einops import rearrange class VectorQuantizer2(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices.") else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z, temp=None, rescale_logits=False, return_logits=False): assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" assert rescale_logits is False, "Only for interface compatible with Gumbel" assert return_logits is False, "Only for interface compatible with Gumbel" # reshape z -> (batch, height, width, channel) and flatten z = rearrange(z, 'b c h w -> b h w c').contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \ torch.mean((z_q - z.detach()) ** 2) else: loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \ torch.mean((z_q - z.detach()) ** 2) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape( z_q.shape[0], z_q.shape[2], z_q.shape[3]) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def get_codebook_entry(self, indices, shape): # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q
570756.py
[ "Unknown" ]
#!/usr/bin/python3 import argparse import ctypes import functools import shutil import subprocess import sys import tempfile import threading import traceback import os.path sys.path.insert(0, os.path.dirname(os.path.dirname((os.path.abspath(__file__))))) from youtube_dl.compat import ( compat_input, compat_http_server, compat_str, compat_urlparse, ) # These are not used outside of buildserver.py thus not in compat.py try: import winreg as compat_winreg except ImportError: # Python 2 import _winreg as compat_winreg try: import socketserver as compat_socketserver except ImportError: # Python 2 import SocketServer as compat_socketserver class BuildHTTPServer(compat_socketserver.ThreadingMixIn, compat_http_server.HTTPServer): allow_reuse_address = True advapi32 = ctypes.windll.advapi32 SC_MANAGER_ALL_ACCESS = 0xf003f SC_MANAGER_CREATE_SERVICE = 0x02 SERVICE_WIN32_OWN_PROCESS = 0x10 SERVICE_AUTO_START = 0x2 SERVICE_ERROR_NORMAL = 0x1 DELETE = 0x00010000 SERVICE_STATUS_START_PENDING = 0x00000002 SERVICE_STATUS_RUNNING = 0x00000004 SERVICE_ACCEPT_STOP = 0x1 SVCNAME = 'youtubedl_builder' LPTSTR = ctypes.c_wchar_p START_CALLBACK = ctypes.WINFUNCTYPE(None, ctypes.c_int, ctypes.POINTER(LPTSTR)) class SERVICE_TABLE_ENTRY(ctypes.Structure): _fields_ = [ ('lpServiceName', LPTSTR), ('lpServiceProc', START_CALLBACK) ] HandlerEx = ctypes.WINFUNCTYPE( ctypes.c_int, # return ctypes.c_int, # dwControl ctypes.c_int, # dwEventType ctypes.c_void_p, # lpEventData, ctypes.c_void_p, # lpContext, ) def _ctypes_array(c_type, py_array): ar = (c_type * len(py_array))() ar[:] = py_array return ar def win_OpenSCManager(): res = advapi32.OpenSCManagerW(None, None, SC_MANAGER_ALL_ACCESS) if not res: raise Exception('Opening service manager failed - ' 'are you running this as administrator?') return res def win_install_service(service_name, cmdline): manager = win_OpenSCManager() try: h = advapi32.CreateServiceW( manager, service_name, None, SC_MANAGER_CREATE_SERVICE, SERVICE_WIN32_OWN_PROCESS, SERVICE_AUTO_START, SERVICE_ERROR_NORMAL, cmdline, None, None, None, None, None) if not h: raise OSError('Service creation failed: %s' % ctypes.FormatError()) advapi32.CloseServiceHandle(h) finally: advapi32.CloseServiceHandle(manager) def win_uninstall_service(service_name): manager = win_OpenSCManager() try: h = advapi32.OpenServiceW(manager, service_name, DELETE) if not h: raise OSError('Could not find service %s: %s' % ( service_name, ctypes.FormatError())) try: if not advapi32.DeleteService(h): raise OSError('Deletion failed: %s' % ctypes.FormatError()) finally: advapi32.CloseServiceHandle(h) finally: advapi32.CloseServiceHandle(manager) def win_service_report_event(service_name, msg, is_error=True): with open('C:/sshkeys/log', 'a', encoding='utf-8') as f: f.write(msg + '\n') event_log = advapi32.RegisterEventSourceW(None, service_name) if not event_log: raise OSError('Could not report event: %s' % ctypes.FormatError()) try: type_id = 0x0001 if is_error else 0x0004 event_id = 0xc0000000 if is_error else 0x40000000 lines = _ctypes_array(LPTSTR, [msg]) if not advapi32.ReportEventW( event_log, type_id, 0, event_id, None, len(lines), 0, lines, None): raise OSError('Event reporting failed: %s' % ctypes.FormatError()) finally: advapi32.DeregisterEventSource(event_log) def win_service_handler(stop_event, *args): try: raise ValueError('Handler called with args ' + repr(args)) TODO except Exception as e: tb = traceback.format_exc() msg = str(e) + '\n' + tb win_service_report_event(service_name, msg, is_error=True) raise def win_service_set_status(handle, status_code): svcStatus = SERVICE_STATUS() svcStatus.dwServiceType = SERVICE_WIN32_OWN_PROCESS svcStatus.dwCurrentState = status_code svcStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP svcStatus.dwServiceSpecificExitCode = 0 if not advapi32.SetServiceStatus(handle, ctypes.byref(svcStatus)): raise OSError('SetServiceStatus failed: %r' % ctypes.FormatError()) def win_service_main(service_name, real_main, argc, argv_raw): try: # args = [argv_raw[i].value for i in range(argc)] stop_event = threading.Event() handler = HandlerEx(functools.partial(stop_event, win_service_handler)) h = advapi32.RegisterServiceCtrlHandlerExW(service_name, handler, None) if not h: raise OSError('Handler registration failed: %s' % ctypes.FormatError()) TODO except Exception as e: tb = traceback.format_exc() msg = str(e) + '\n' + tb win_service_report_event(service_name, msg, is_error=True) raise def win_service_start(service_name, real_main): try: cb = START_CALLBACK( functools.partial(win_service_main, service_name, real_main)) dispatch_table = _ctypes_array(SERVICE_TABLE_ENTRY, [ SERVICE_TABLE_ENTRY( service_name, cb ), SERVICE_TABLE_ENTRY(None, ctypes.cast(None, START_CALLBACK)) ]) if not advapi32.StartServiceCtrlDispatcherW(dispatch_table): raise OSError('ctypes start failed: %s' % ctypes.FormatError()) except Exception as e: tb = traceback.format_exc() msg = str(e) + '\n' + tb win_service_report_event(service_name, msg, is_error=True) raise def main(args=None): parser = argparse.ArgumentParser() parser.add_argument('-i', '--install', action='store_const', dest='action', const='install', help='Launch at Windows startup') parser.add_argument('-u', '--uninstall', action='store_const', dest='action', const='uninstall', help='Remove Windows service') parser.add_argument('-s', '--service', action='store_const', dest='action', const='service', help='Run as a Windows service') parser.add_argument('-b', '--bind', metavar='<host:port>', action='store', default='0.0.0.0:8142', help='Bind to host:port (default %default)') options = parser.parse_args(args=args) if options.action == 'install': fn = os.path.abspath(__file__).replace('v:', '\\\\vboxsrv\\vbox') cmdline = '%s %s -s -b %s' % (sys.executable, fn, options.bind) win_install_service(SVCNAME, cmdline) return if options.action == 'uninstall': win_uninstall_service(SVCNAME) return if options.action == 'service': win_service_start(SVCNAME, main) return host, port_str = options.bind.split(':') port = int(port_str) print('Listening on %s:%d' % (host, port)) srv = BuildHTTPServer((host, port), BuildHTTPRequestHandler) thr = threading.Thread(target=srv.serve_forever) thr.start() compat_input('Press ENTER to shut down') srv.shutdown() thr.join() def rmtree(path): for name in os.listdir(path): fname = os.path.join(path, name) if os.path.isdir(fname): rmtree(fname) else: os.chmod(fname, 0o666) os.remove(fname) os.rmdir(path) class BuildError(Exception): def __init__(self, output, code=500): self.output = output self.code = code def __str__(self): return self.output class HTTPError(BuildError): pass class PythonBuilder(object): def __init__(self, **kwargs): python_version = kwargs.pop('python', '3.4') python_path = None for node in ('Wow6432Node\\', ''): try: key = compat_winreg.OpenKey( compat_winreg.HKEY_LOCAL_MACHINE, r'SOFTWARE\%sPython\PythonCore\%s\InstallPath' % (node, python_version)) try: python_path, _ = compat_winreg.QueryValueEx(key, '') finally: compat_winreg.CloseKey(key) break except Exception: pass if not python_path: raise BuildError('No such Python version: %s' % python_version) self.pythonPath = python_path super(PythonBuilder, self).__init__(**kwargs) class GITInfoBuilder(object): def __init__(self, **kwargs): try: self.user, self.repoName = kwargs['path'][:2] self.rev = kwargs.pop('rev') except ValueError: raise BuildError('Invalid path') except KeyError as e: raise BuildError('Missing mandatory parameter "%s"' % e.args[0]) path = os.path.join(os.environ['APPDATA'], 'Build archive', self.repoName, self.user) if not os.path.exists(path): os.makedirs(path) self.basePath = tempfile.mkdtemp(dir=path) self.buildPath = os.path.join(self.basePath, 'build') super(GITInfoBuilder, self).__init__(**kwargs) class GITBuilder(GITInfoBuilder): def build(self): try: subprocess.check_output(['git', 'clone', 'git://github.com/%s/%s.git' % (self.user, self.repoName), self.buildPath]) subprocess.check_output(['git', 'checkout', self.rev], cwd=self.buildPath) except subprocess.CalledProcessError as e: raise BuildError(e.output) super(GITBuilder, self).build() class YoutubeDLBuilder(object): authorizedUsers = ['fraca7', 'phihag', 'rg3', 'FiloSottile', 'ytdl-org'] def __init__(self, **kwargs): if self.repoName != 'youtube-dl': raise BuildError('Invalid repository "%s"' % self.repoName) if self.user not in self.authorizedUsers: raise HTTPError('Unauthorized user "%s"' % self.user, 401) super(YoutubeDLBuilder, self).__init__(**kwargs) def build(self): try: proc = subprocess.Popen([os.path.join(self.pythonPath, 'python.exe'), 'setup.py', 'py2exe'], stdin=subprocess.PIPE, cwd=self.buildPath) proc.wait() #subprocess.check_output([os.path.join(self.pythonPath, 'python.exe'), 'setup.py', 'py2exe'], # cwd=self.buildPath) except subprocess.CalledProcessError as e: raise BuildError(e.output) super(YoutubeDLBuilder, self).build() class DownloadBuilder(object): def __init__(self, **kwargs): self.handler = kwargs.pop('handler') self.srcPath = os.path.join(self.buildPath, *tuple(kwargs['path'][2:])) self.srcPath = os.path.abspath(os.path.normpath(self.srcPath)) if not self.srcPath.startswith(self.buildPath): raise HTTPError(self.srcPath, 401) super(DownloadBuilder, self).__init__(**kwargs) def build(self): if not os.path.exists(self.srcPath): raise HTTPError('No such file', 404) if os.path.isdir(self.srcPath): raise HTTPError('Is a directory: %s' % self.srcPath, 401) self.handler.send_response(200) self.handler.send_header('Content-Type', 'application/octet-stream') self.handler.send_header('Content-Disposition', 'attachment; filename=%s' % os.path.split(self.srcPath)[-1]) self.handler.send_header('Content-Length', str(os.stat(self.srcPath).st_size)) self.handler.end_headers() with open(self.srcPath, 'rb') as src: shutil.copyfileobj(src, self.handler.wfile) super(DownloadBuilder, self).build() class CleanupTempDir(object): def build(self): try: rmtree(self.basePath) except Exception as e: print('WARNING deleting "%s": %s' % (self.basePath, e)) super(CleanupTempDir, self).build() class Null(object): def __init__(self, **kwargs): pass def start(self): pass def close(self): pass def build(self): pass class Builder(PythonBuilder, GITBuilder, YoutubeDLBuilder, DownloadBuilder, CleanupTempDir, Null): pass class BuildHTTPRequestHandler(compat_http_server.BaseHTTPRequestHandler): actionDict = {'build': Builder, 'download': Builder} # They're the same, no more caching. def do_GET(self): path = compat_urlparse.urlparse(self.path) paramDict = dict([(key, value[0]) for key, value in compat_urlparse.parse_qs(path.query).items()]) action, _, path = path.path.strip('/').partition('/') if path: path = path.split('/') if action in self.actionDict: try: builder = self.actionDict[action](path=path, handler=self, **paramDict) builder.start() try: builder.build() finally: builder.close() except BuildError as e: self.send_response(e.code) msg = compat_str(e).encode('UTF-8') self.send_header('Content-Type', 'text/plain; charset=UTF-8') self.send_header('Content-Length', len(msg)) self.end_headers() self.wfile.write(msg) else: self.send_response(500, 'Unknown build method "%s"' % action) else: self.send_response(500, 'Malformed URL') if __name__ == '__main__': main()
093118.py
[ "CWE-276: Incorrect Default Permissions" ]
from __future__ import unicode_literals import errno import hashlib import json import os.path import re import ssl import sys import types import unittest import youtube_dl.extractor from youtube_dl import YoutubeDL from youtube_dl.compat import ( compat_open as open, compat_os_name, compat_str, ) from youtube_dl.utils import ( IDENTITY, preferredencoding, write_string, ) def get_params(override=None): PARAMETERS_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "parameters.json") LOCAL_PARAMETERS_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "local_parameters.json") with open(PARAMETERS_FILE, encoding='utf-8') as pf: parameters = json.load(pf) if os.path.exists(LOCAL_PARAMETERS_FILE): with open(LOCAL_PARAMETERS_FILE, encoding='utf-8') as pf: parameters.update(json.load(pf)) if override: parameters.update(override) return parameters def try_rm(filename): """ Remove a file if it exists """ try: os.remove(filename) except OSError as ose: if ose.errno != errno.ENOENT: raise def report_warning(message): ''' Print the message to stderr, it will be prefixed with 'WARNING:' If stderr is a tty file the 'WARNING:' will be colored ''' if sys.stderr.isatty() and compat_os_name != 'nt': _msg_header = '\033[0;33mWARNING:\033[0m' else: _msg_header = 'WARNING:' output = '%s %s\n' % (_msg_header, message) if 'b' in getattr(sys.stderr, 'mode', '') or sys.version_info[0] < 3: output = output.encode(preferredencoding()) sys.stderr.write(output) class FakeYDL(YoutubeDL): def __init__(self, override=None): # Different instances of the downloader can't share the same dictionary # some test set the "sublang" parameter, which would break the md5 checks. params = get_params(override=override) super(FakeYDL, self).__init__(params, auto_init=False) self.result = [] def to_screen(self, s, skip_eol=None): print(s) def trouble(self, *args, **kwargs): s = args[0] if len(args) > 0 else kwargs.get('message', 'Missing message') raise Exception(s) def download(self, x): self.result.append(x) def expect_warning(self, regex): # Silence an expected warning matching a regex old_report_warning = self.report_warning def report_warning(self, message): if re.match(regex, message): return old_report_warning(message) self.report_warning = types.MethodType(report_warning, self) class FakeLogger(object): def debug(self, msg): pass def warning(self, msg): pass def error(self, msg): pass def gettestcases(include_onlymatching=False): for ie in youtube_dl.extractor.gen_extractors(): for tc in ie.get_testcases(include_onlymatching): yield tc md5 = lambda s: hashlib.md5(s.encode('utf-8')).hexdigest() def expect_value(self, got, expected, field): if isinstance(expected, compat_str) and expected.startswith('re:'): match_str = expected[len('re:'):] match_rex = re.compile(match_str) self.assertTrue( isinstance(got, compat_str), 'Expected a %s object, but got %s for field %s' % ( compat_str.__name__, type(got).__name__, field)) self.assertTrue( match_rex.match(got), 'field %s (value: %r) should match %r' % (field, got, match_str)) elif isinstance(expected, compat_str) and expected.startswith('startswith:'): start_str = expected[len('startswith:'):] self.assertTrue( isinstance(got, compat_str), 'Expected a %s object, but got %s for field %s' % ( compat_str.__name__, type(got).__name__, field)) self.assertTrue( got.startswith(start_str), 'field %s (value: %r) should start with %r' % (field, got, start_str)) elif isinstance(expected, compat_str) and expected.startswith('contains:'): contains_str = expected[len('contains:'):] self.assertTrue( isinstance(got, compat_str), 'Expected a %s object, but got %s for field %s' % ( compat_str.__name__, type(got).__name__, field)) self.assertTrue( contains_str in got, 'field %s (value: %r) should contain %r' % (field, got, contains_str)) elif isinstance(expected, compat_str) and re.match(r'lambda \w+:', expected): fn = eval(expected) suite = expected.split(':', 1)[1].strip() self.assertTrue( fn(got), 'Expected field %s to meet condition %s, but value %r failed ' % (field, suite, got)) elif isinstance(expected, type): self.assertTrue( isinstance(got, expected), 'Expected type %r for field %s, but got value %r of type %r' % (expected, field, got, type(got))) elif isinstance(expected, dict) and isinstance(got, dict): expect_dict(self, got, expected) elif isinstance(expected, list) and isinstance(got, list): self.assertEqual( len(expected), len(got), 'Expected a list of length %d, but got a list of length %d for field %s' % ( len(expected), len(got), field)) for index, (item_got, item_expected) in enumerate(zip(got, expected)): type_got = type(item_got) type_expected = type(item_expected) self.assertEqual( type_expected, type_got, 'Type mismatch for list item at index %d for field %s, expected %r, got %r' % ( index, field, type_expected, type_got)) expect_value(self, item_got, item_expected, field) else: if isinstance(expected, compat_str) and expected.startswith('md5:'): self.assertTrue( isinstance(got, compat_str), 'Expected field %s to be a unicode object, but got value %r of type %r' % (field, got, type(got))) got = 'md5:' + md5(got) elif isinstance(expected, compat_str) and re.match(r'^(?:min|max)?count:\d+', expected): self.assertTrue( isinstance(got, (list, dict)), 'Expected field %s to be a list or a dict, but it is of type %s' % ( field, type(got).__name__)) op, _, expected_num = expected.partition(':') expected_num = int(expected_num) if op == 'mincount': assert_func = self.assertGreaterEqual msg_tmpl = 'Expected %d items in field %s, but only got %d' elif op == 'maxcount': assert_func = self.assertLessEqual msg_tmpl = 'Expected maximum %d items in field %s, but got %d' elif op == 'count': assert_func = self.assertEqual msg_tmpl = 'Expected exactly %d items in field %s, but got %d' else: assert False assert_func( len(got), expected_num, msg_tmpl % (expected_num, field, len(got))) return self.assertEqual( expected, got, 'Invalid value for field %s, expected %r, got %r' % (field, expected, got)) def expect_dict(self, got_dict, expected_dict): for info_field, expected in expected_dict.items(): got = got_dict.get(info_field) expect_value(self, got, expected, info_field) def expect_info_dict(self, got_dict, expected_dict): expect_dict(self, got_dict, expected_dict) # Check for the presence of mandatory fields if got_dict.get('_type') not in ('playlist', 'multi_video'): for key in ('id', 'url', 'title', 'ext'): self.assertTrue(got_dict.get(key), 'Missing mandatory field %s' % key) # Check for mandatory fields that are automatically set by YoutubeDL for key in ['webpage_url', 'extractor', 'extractor_key']: self.assertTrue(got_dict.get(key), 'Missing field: %s' % key) # Are checkable fields missing from the test case definition? test_info_dict = dict((key, value if not isinstance(value, compat_str) or len(value) < 250 else 'md5:' + md5(value)) for key, value in got_dict.items() if value and key in ('id', 'title', 'description', 'uploader', 'upload_date', 'timestamp', 'uploader_id', 'location', 'age_limit')) missing_keys = set(test_info_dict.keys()) - set(expected_dict.keys()) if missing_keys: def _repr(v): if isinstance(v, compat_str): return "'%s'" % v.replace('\\', '\\\\').replace("'", "\\'").replace('\n', '\\n') else: return repr(v) info_dict_str = '' if len(missing_keys) != len(expected_dict): info_dict_str += ''.join( ' %s: %s,\n' % (_repr(k), _repr(v)) for k, v in test_info_dict.items() if k not in missing_keys) if info_dict_str: info_dict_str += '\n' info_dict_str += ''.join( ' %s: %s,\n' % (_repr(k), _repr(test_info_dict[k])) for k in missing_keys) write_string( '\n\'info_dict\': {\n' + info_dict_str + '},\n', out=sys.stderr) self.assertFalse( missing_keys, 'Missing keys in test definition: %s' % ( ', '.join(sorted(missing_keys)))) def assertRegexpMatches(self, text, regexp, msg=None): if hasattr(self, 'assertRegexp'): return self.assertRegexp(text, regexp, msg) else: m = re.match(regexp, text) if not m: note = 'Regexp didn\'t match: %r not found' % (regexp) if len(text) < 1000: note += ' in %r' % text if msg is None: msg = note else: msg = note + ', ' + msg self.assertTrue(m, msg) def expect_warnings(ydl, warnings_re): real_warning = ydl.report_warning def _report_warning(w): if not any(re.search(w_re, w) for w_re in warnings_re): real_warning(w) ydl.report_warning = _report_warning def http_server_port(httpd): if os.name == 'java' and isinstance(httpd.socket, ssl.SSLSocket): # In Jython SSLSocket is not a subclass of socket.socket sock = httpd.socket.sock else: sock = httpd.socket return sock.getsockname()[1] def expectedFailureIf(cond): return unittest.expectedFailure if cond else IDENTITY
717170.py
[ "CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')" ]
# coding: utf-8 from __future__ import unicode_literals import json import re from .common import InfoExtractor from ..utils import ( clean_html, int_or_none, try_get, unified_strdate, unified_timestamp, ) class AmericasTestKitchenIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?(?:americastestkitchen|cooks(?:country|illustrated))\.com/(?:cooks(?:country|illustrated)/)?(?P<resource_type>episode|videos)/(?P<id>\d+)' _TESTS = [{ 'url': 'https://www.americastestkitchen.com/episode/582-weeknight-japanese-suppers', 'md5': 'b861c3e365ac38ad319cfd509c30577f', 'info_dict': { 'id': '5b400b9ee338f922cb06450c', 'title': 'Japanese Suppers', 'ext': 'mp4', 'display_id': 'weeknight-japanese-suppers', 'description': 'md5:64e606bfee910627efc4b5f050de92b3', 'timestamp': 1523304000, 'upload_date': '20180409', 'release_date': '20180409', 'series': "America's Test Kitchen", 'season': 'Season 18', 'season_number': 18, 'episode': 'Japanese Suppers', 'episode_number': 15, 'duration': 1376, 'thumbnail': r're:^https?://', 'average_rating': 0, 'view_count': int, }, 'params': { 'skip_download': True, }, }, { # Metadata parsing behaves differently for newer episodes (705) as opposed to older episodes (582 above) 'url': 'https://www.americastestkitchen.com/episode/705-simple-chicken-dinner', 'md5': '06451608c57651e985a498e69cec17e5', 'info_dict': { 'id': '5fbe8c61bda2010001c6763b', 'title': 'Simple Chicken Dinner', 'ext': 'mp4', 'display_id': 'atktv_2103_simple-chicken-dinner_full-episode_web-mp4', 'description': 'md5:eb68737cc2fd4c26ca7db30139d109e7', 'timestamp': 1610737200, 'upload_date': '20210115', 'release_date': '20210115', 'series': "America's Test Kitchen", 'season': 'Season 21', 'season_number': 21, 'episode': 'Simple Chicken Dinner', 'episode_number': 3, 'duration': 1397, 'thumbnail': r're:^https?://', 'view_count': int, 'average_rating': 0, }, 'params': { 'skip_download': True, }, }, { 'url': 'https://www.americastestkitchen.com/videos/3420-pan-seared-salmon', 'only_matching': True, }, { 'url': 'https://www.americastestkitchen.com/cookscountry/episode/564-when-only-chocolate-will-do', 'only_matching': True, }, { 'url': 'https://www.americastestkitchen.com/cooksillustrated/videos/4478-beef-wellington', 'only_matching': True, }, { 'url': 'https://www.cookscountry.com/episode/564-when-only-chocolate-will-do', 'only_matching': True, }, { 'url': 'https://www.cooksillustrated.com/videos/4478-beef-wellington', 'only_matching': True, }] def _real_extract(self, url): resource_type, video_id = re.match(self._VALID_URL, url).groups() is_episode = resource_type == 'episode' if is_episode: resource_type = 'episodes' resource = self._download_json( 'https://www.americastestkitchen.com/api/v6/%s/%s' % (resource_type, video_id), video_id) video = resource['video'] if is_episode else resource episode = resource if is_episode else resource.get('episode') or {} return { '_type': 'url_transparent', 'url': 'https://player.zype.com/embed/%s.js?api_key=jZ9GUhRmxcPvX7M3SlfejB6Hle9jyHTdk2jVxG7wOHPLODgncEKVdPYBhuz9iWXQ' % video['zypeId'], 'ie_key': 'Zype', 'description': clean_html(video.get('description')), 'timestamp': unified_timestamp(video.get('publishDate')), 'release_date': unified_strdate(video.get('publishDate')), 'episode_number': int_or_none(episode.get('number')), 'season_number': int_or_none(episode.get('season')), 'series': try_get(episode, lambda x: x['show']['title']), 'episode': episode.get('title'), } class AmericasTestKitchenSeasonIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?(?P<show>americastestkitchen|(?P<cooks>cooks(?:country|illustrated)))\.com(?:(?:/(?P<show2>cooks(?:country|illustrated)))?(?:/?$|(?<!ated)(?<!ated\.com)/episodes/browse/season_(?P<season>\d+)))' _TESTS = [{ # ATK Season 'url': 'https://www.americastestkitchen.com/episodes/browse/season_1', 'info_dict': { 'id': 'season_1', 'title': 'Season 1', }, 'playlist_count': 13, }, { # Cooks Country Season 'url': 'https://www.americastestkitchen.com/cookscountry/episodes/browse/season_12', 'info_dict': { 'id': 'season_12', 'title': 'Season 12', }, 'playlist_count': 13, }, { # America's Test Kitchen Series 'url': 'https://www.americastestkitchen.com/', 'info_dict': { 'id': 'americastestkitchen', 'title': 'America\'s Test Kitchen', }, 'playlist_count': 558, }, { # Cooks Country Series 'url': 'https://www.americastestkitchen.com/cookscountry', 'info_dict': { 'id': 'cookscountry', 'title': 'Cook\'s Country', }, 'playlist_count': 199, }, { 'url': 'https://www.americastestkitchen.com/cookscountry/', 'only_matching': True, }, { 'url': 'https://www.cookscountry.com/episodes/browse/season_12', 'only_matching': True, }, { 'url': 'https://www.cookscountry.com', 'only_matching': True, }, { 'url': 'https://www.americastestkitchen.com/cooksillustrated/', 'only_matching': True, }, { 'url': 'https://www.cooksillustrated.com', 'only_matching': True, }] def _real_extract(self, url): match = re.match(self._VALID_URL, url).groupdict() show = match.get('show2') show_path = ('/' + show) if show else '' show = show or match['show'] season_number = int_or_none(match.get('season')) slug, title = { 'americastestkitchen': ('atk', 'America\'s Test Kitchen'), 'cookscountry': ('cco', 'Cook\'s Country'), 'cooksillustrated': ('cio', 'Cook\'s Illustrated'), }[show] facet_filters = [ 'search_document_klass:episode', 'search_show_slug:' + slug, ] if season_number: playlist_id = 'season_%d' % season_number playlist_title = 'Season %d' % season_number facet_filters.append('search_season_list:' + playlist_title) else: playlist_id = show playlist_title = title season_search = self._download_json( 'https://y1fnzxui30-dsn.algolia.net/1/indexes/everest_search_%s_season_desc_production' % slug, playlist_id, headers={ 'Origin': 'https://www.americastestkitchen.com', 'X-Algolia-API-Key': '8d504d0099ed27c1b73708d22871d805', 'X-Algolia-Application-Id': 'Y1FNZXUI30', }, query={ 'facetFilters': json.dumps(facet_filters), 'attributesToRetrieve': 'description,search_%s_episode_number,search_document_date,search_url,title,search_atk_episode_season' % slug, 'attributesToHighlight': '', 'hitsPerPage': 1000, }) def entries(): for episode in (season_search.get('hits') or []): search_url = episode.get('search_url') # always formatted like '/episode/123-title-of-episode' if not search_url: continue yield { '_type': 'url', 'url': 'https://www.americastestkitchen.com%s%s' % (show_path, search_url), 'id': try_get(episode, lambda e: e['objectID'].rsplit('_', 1)[-1]), 'title': episode.get('title'), 'description': episode.get('description'), 'timestamp': unified_timestamp(episode.get('search_document_date')), 'season_number': season_number, 'episode_number': int_or_none(episode.get('search_%s_episode_number' % slug)), 'ie_key': AmericasTestKitchenIE.ie_key(), } return self.playlist_result( entries(), playlist_id, playlist_title)
773378.py
[ "CWE-798: Use of Hard-coded Credentials" ]
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from utils import ( Seq2SeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) logger = getLogger(__name__) def eval_data_dir( data_dir, save_dir: str, model_name: str, bs: int = 8, max_source_length: int = 1024, type_path="val", n_obs=None, fp16=False, task="summarization", local_rank=None, num_return_sequences=1, dataset_kwargs: Dict = None, prefix="", **generate_kwargs, ) -> Dict: """Run evaluation on part of the data for one gpu and save to {save_dir}/rank_{rank}_output.json""" model_name = str(model_name) assert local_rank is not None torch.distributed.init_process_group(backend="nccl", rank=local_rank) save_dir = Path(save_dir) save_path = save_dir.joinpath(f"rank_{local_rank}_output.json") torch.cuda.set_device(local_rank) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).cuda() if fp16: model = model.half() # determine if we need to increase num_beams use_task_specific_params(model, task) # update config with task specific params num_beams = generate_kwargs.pop("num_beams", model.config.num_beams) # AttributeError risk? if num_return_sequences > num_beams: num_beams = num_return_sequences tokenizer = AutoTokenizer.from_pretrained(model_name) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type. if max_source_length is None: max_source_length = tokenizer.model_max_length if prefix is None: prefix = prefix or getattr(model.config, "prefix", "") or "" ds = Seq2SeqDataset( tokenizer, data_dir, max_source_length, max_target_length=1024, type_path=type_path, n_obs=n_obs, prefix=prefix, **dataset_kwargs, ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. sampler = ds.make_sortish_sampler(bs, distributed=True, add_extra_examples=False, shuffle=True) data_loader = DataLoader(ds, sampler=sampler, batch_size=bs, collate_fn=ds.collate_fn) results = [] for batch in tqdm(data_loader): summaries = model.generate( input_ids=batch["input_ids"].to(model.device), attention_mask=batch["attention_mask"].to(model.device), num_return_sequences=num_return_sequences, num_beams=num_beams, **generate_kwargs, ) preds = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) ids = batch["ids"] if num_return_sequences > 1: preds = chunks(preds, num_return_sequences) # batch size chunks, each of size num_return_seq for i, pred in enumerate(preds): results.append({"pred": pred, "id": ids[i].item()}) save_json(results, save_path) return results, sampler.num_replicas def run_generate(): parser = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir", type=str, help="like cnn_dm/test.source") parser.add_argument( "--model_name", type=str, help="like facebook/bart-large-cnn,google-t5/t5-base, etc.", default="sshleifer/distilbart-xsum-12-3", ) parser.add_argument("--save_dir", type=str, help="where to save", default="tmp_gen") parser.add_argument("--max_source_length", type=int, default=None) parser.add_argument( "--type_path", type=str, default="test", help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics") parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") parser.add_argument( "--local_rank", type=int, default=-1, required=False, help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs", type=int, default=None, required=False, help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences", type=int, default=1, required=False, help="How many sequences to return" ) parser.add_argument( "--sync_timeout", type=int, default=600, required=False, help="How long should master process wait for other processes to finish.", ) parser.add_argument("--src_lang", type=str, default=None, required=False) parser.add_argument("--tgt_lang", type=str, default=None, required=False) parser.add_argument( "--prefix", type=str, required=False, default=None, help="will be added to the beginning of src examples" ) parser.add_argument("--fp16", action="store_true") parser.add_argument("--debug", action="store_true") start_time = time.time() args, rest = parser.parse_known_args() generate_kwargs = parse_numeric_n_bool_cl_kwargs(rest) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}") json_save_dir = Path(args.save_dir + "_tmp") Path(json_save_dir).mkdir(exist_ok=True) # this handles locking. intermediate_files = list(json_save_dir.glob("rank_*.json")) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them.") # In theory, a node could finish and save before another node hits this. If this happens, we can address later. dataset_kwargs = {} if args.src_lang is not None: dataset_kwargs["src_lang"] = args.src_lang if args.tgt_lang is not None: dataset_kwargs["tgt_lang"] = args.tgt_lang Path(args.save_dir).mkdir(exist_ok=True) results, num_replicas = eval_data_dir( args.data_dir, json_save_dir, args.model_name, type_path=args.type_path, bs=args.bs, fp16=args.fp16, task=args.task, local_rank=args.local_rank, n_obs=args.n_obs, max_source_length=args.max_source_length, num_return_sequences=args.num_return_sequences, prefix=args.prefix, dataset_kwargs=dataset_kwargs, **generate_kwargs, ) if args.local_rank <= 0: save_dir = Path(args.save_dir) save_dir.mkdir(exist_ok=True) partial_results = gather_results_from_each_node(num_replicas, json_save_dir, args.sync_timeout) preds = combine_partial_results(partial_results) if args.num_return_sequences > 1: save_path = save_dir.joinpath("pseudolabel_results.json") print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/") save_json(preds, save_path) return tgt_file = Path(args.data_dir).joinpath(args.type_path + ".target") with open(tgt_file) as f: labels = [x.rstrip() for x in f.readlines()][: len(preds)] # Calculate metrics, save metrics, and save _generations.txt calc_bleu = "translation" in args.task score_fn = calculate_bleu if calc_bleu else calculate_rouge metric_name = "bleu" if calc_bleu else "rouge" metrics: Dict = score_fn(preds, labels) metrics["n_obs"] = len(preds) runtime = time.time() - start_time metrics["seconds_per_sample"] = round(runtime / metrics["n_obs"], 4) metrics["n_gpus"] = num_replicas # TODO(@stas00): add whatever metadata to metrics metrics_save_path = save_dir.joinpath(f"{args.type_path}_{metric_name}.json") save_json(metrics, metrics_save_path, indent=None) print(metrics) write_txt_file(preds, save_dir.joinpath(f"{args.type_path}_generations.txt")) if args.debug: write_txt_file(labels, save_dir.joinpath(f"{args.type_path}.target")) else: shutil.rmtree(json_save_dir) def combine_partial_results(partial_results) -> List: """Concatenate partial results into one file, then sort it by id.""" records = [] for partial_result in partial_results: records.extend(partial_result) records = sorted(records, key=lambda x: x["id"]) preds = [x["pred"] for x in records] return preds def gather_results_from_each_node(num_replicas, save_dir, timeout) -> List[Dict[str, List]]: # WAIT FOR lots of .json files start_wait = time.time() logger.info("waiting for all nodes to finish") json_data = None while (time.time() - start_wait) < timeout: json_files = list(save_dir.glob("rank_*.json")) if len(json_files) < num_replicas: continue try: # make sure all json files are fully saved json_data = lmap(load_json, json_files) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes") # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
627547.py
[ "CWE-676: Use of Potentially Dangerous Function" ]
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BertExtAbs's checkpoints. The script looks like it is doing something trivial but it is not. The "weights" proposed by the authors are actually the entire model pickled. We need to load the model within the original codebase to be able to only save its `state_dict`. """ import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) SAMPLE_TEXT = "Hello world! cécé herlolip" BertAbsConfig = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def convert_bertabs_checkpoints(path_to_checkpoints, dump_path): """Copy/paste and tweak the pre-trained weights provided by the creators of BertAbs for the internal architecture. """ # Instantiate the authors' model with the pre-trained weights config = BertAbsConfig( temp_dir=".", finetune_bert=False, large=False, share_emb=True, use_bert_emb=False, encoder="bert", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, ) checkpoints = torch.load(path_to_checkpoints, lambda storage, loc: storage) original = AbsSummarizer(config, torch.device("cpu"), checkpoints) original.eval() new_model = BertAbsSummarizer(config, torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") # prepare the model inputs encoder_input_ids = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(encoder_input_ids))) encoder_input_ids = torch.tensor(encoder_input_ids).unsqueeze(0) decoder_input_ids = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(decoder_input_ids))) decoder_input_ids = torch.tensor(decoder_input_ids).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass src = encoder_input_ids tgt = decoder_input_ids segs = token_type_ids = None clss = None mask_src = encoder_attention_mask = None mask_tgt = decoder_attention_mask = None mask_cls = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical output_original_model = original(src, tgt, segs, clss, mask_src, mask_tgt, mask_cls)[0] output_original_generator = original.generator(output_original_model) output_converted_model = new_model( encoder_input_ids, decoder_input_ids, token_type_ids, encoder_attention_mask, decoder_attention_mask )[0] output_converted_generator = new_model.generator(output_converted_model) maximum_absolute_difference = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference)) maximum_absolute_difference = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference)) are_identical = torch.allclose(output_converted_model, output_original_model, atol=1e-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) args = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
624453.py
[ "CWE-502: Deserialization of Untrusted Data" ]
#! /usr/bin/python3 import argparse import logging import os import sys from collections import namedtuple import torch from modeling_bertabs import BertAbs, build_predictor from torch.utils.data import DataLoader, SequentialSampler from tqdm import tqdm from transformers import BertTokenizer from .utils_summarization import ( CNNDMDataset, build_mask, compute_token_type_ids, encode_for_summarization, truncate_or_pad, ) logger = logging.getLogger(__name__) logging.basicConfig(stream=sys.stdout, level=logging.INFO) Batch = namedtuple("Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"]) def evaluate(args): tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased", do_lower_case=True) model = BertAbs.from_pretrained("remi/bertabs-finetuned-extractive-abstractive-summarization") model.to(args.device) model.eval() symbols = { "BOS": tokenizer.vocab["[unused0]"], "EOS": tokenizer.vocab["[unused1]"], "PAD": tokenizer.vocab["[PAD]"], } if args.compute_rouge: reference_summaries = [] generated_summaries = [] import nltk import rouge nltk.download("punkt") rouge_evaluator = rouge.Rouge( metrics=["rouge-n", "rouge-l"], max_n=2, limit_length=True, length_limit=args.beam_size, length_limit_type="words", apply_avg=True, apply_best=False, alpha=0.5, # Default F1_score weight_factor=1.2, stemming=True, ) # these (unused) arguments are defined to keep the compatibility # with the legacy code and will be deleted in a next iteration. args.result_path = "" args.temp_dir = "" data_iterator = build_data_iterator(args, tokenizer) predictor = build_predictor(args, tokenizer, symbols, model) logger.info("***** Running evaluation *****") logger.info(" Number examples = %d", len(data_iterator.dataset)) logger.info(" Batch size = %d", args.batch_size) logger.info("") logger.info("***** Beam Search parameters *****") logger.info(" Beam size = %d", args.beam_size) logger.info(" Minimum length = %d", args.min_length) logger.info(" Maximum length = %d", args.max_length) logger.info(" Alpha (length penalty) = %.2f", args.alpha) logger.info(" Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT")) for batch in tqdm(data_iterator): batch_data = predictor.translate_batch(batch) translations = predictor.from_batch(batch_data) summaries = [format_summary(t) for t in translations] save_summaries(summaries, args.summaries_output_dir, batch.document_names) if args.compute_rouge: reference_summaries += batch.tgt_str generated_summaries += summaries if args.compute_rouge: scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries) str_scores = format_rouge_scores(scores) save_rouge_scores(str_scores) print(str_scores) def save_summaries(summaries, path, original_document_name): """Write the summaries in fies that are prefixed by the original files' name with the `_summary` appended. Attributes: original_document_names: List[string] Name of the document that was summarized. path: string Path were the summaries will be written summaries: List[string] The summaries that we produced. """ for summary, document_name in zip(summaries, original_document_name): # Prepare the summary file's name if "." in document_name: bare_document_name = ".".join(document_name.split(".")[:-1]) extension = document_name.split(".")[-1] name = bare_document_name + "_summary." + extension else: name = document_name + "_summary" file_path = os.path.join(path, name) with open(file_path, "w") as output: output.write(summary) def format_summary(translation): """Transforms the output of the `from_batch` function into nicely formatted summaries. """ raw_summary, _, _ = translation summary = ( raw_summary.replace("[unused0]", "") .replace("[unused3]", "") .replace("[PAD]", "") .replace("[unused1]", "") .replace(r" +", " ") .replace(" [unused2] ", ". ") .replace("[unused2]", "") .strip() ) return summary def format_rouge_scores(scores): return """\n ****** ROUGE SCORES ****** ** ROUGE 1 F1 >> {:.3f} Precision >> {:.3f} Recall >> {:.3f} ** ROUGE 2 F1 >> {:.3f} Precision >> {:.3f} Recall >> {:.3f} ** ROUGE L F1 >> {:.3f} Precision >> {:.3f} Recall >> {:.3f}""".format( scores["rouge-1"]["f"], scores["rouge-1"]["p"], scores["rouge-1"]["r"], scores["rouge-2"]["f"], scores["rouge-2"]["p"], scores["rouge-2"]["r"], scores["rouge-l"]["f"], scores["rouge-l"]["p"], scores["rouge-l"]["r"], ) def save_rouge_scores(str_scores): with open("rouge_scores.txt", "w") as output: output.write(str_scores) # # LOAD the dataset # def build_data_iterator(args, tokenizer): dataset = load_and_cache_examples(args, tokenizer) sampler = SequentialSampler(dataset) def collate_fn(data): return collate(data, tokenizer, block_size=512, device=args.device) iterator = DataLoader( dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate_fn, ) return iterator def load_and_cache_examples(args, tokenizer): dataset = CNNDMDataset(args.documents_dir) return dataset def collate(data, tokenizer, block_size, device): """Collate formats the data passed to the data loader. In particular we tokenize the data batch after batch to avoid keeping them all in memory. We output the data as a namedtuple to fit the original BertAbs's API. """ data = [x for x in data if not len(x[1]) == 0] # remove empty_files names = [name for name, _, _ in data] summaries = [" ".join(summary_list) for _, _, summary_list in data] encoded_text = [encode_for_summarization(story, summary, tokenizer) for _, story, summary in data] encoded_stories = torch.tensor( [truncate_or_pad(story, block_size, tokenizer.pad_token_id) for story, _ in encoded_text] ) encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id) encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id) batch = Batch( document_names=names, batch_size=len(encoded_stories), src=encoded_stories.to(device), segs=encoder_token_type_ids.to(device), mask_src=encoder_mask.to(device), tgt_str=summaries, ) return batch def decode_summary(summary_tokens, tokenizer): """Decode the summary and return it in a format suitable for evaluation. """ summary_tokens = summary_tokens.to("cpu").numpy() summary = tokenizer.decode(summary_tokens) sentences = summary.split(".") sentences = [s + "." for s in sentences] return sentences def main(): """The main function defines the interface with the users.""" parser = argparse.ArgumentParser() parser.add_argument( "--documents_dir", default=None, type=str, required=True, help="The folder where the documents to summarize are located.", ) parser.add_argument( "--summaries_output_dir", default=None, type=str, required=False, help="The folder in wich the summaries should be written. Defaults to the folder where the documents are", ) parser.add_argument( "--compute_rouge", default=False, type=bool, required=False, help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.", ) # EVALUATION options parser.add_argument( "--no_cuda", default=False, type=bool, help="Whether to force the execution on CPU.", ) parser.add_argument( "--batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.", ) # BEAM SEARCH arguments parser.add_argument( "--min_length", default=50, type=int, help="Minimum number of tokens for the summaries.", ) parser.add_argument( "--max_length", default=200, type=int, help="Maixmum number of tokens for the summaries.", ) parser.add_argument( "--beam_size", default=5, type=int, help="The number of beams to start with for each example.", ) parser.add_argument( "--alpha", default=0.95, type=float, help="The value of alpha for the length penalty in the beam search.", ) parser.add_argument( "--block_trigram", default=True, type=bool, help="Whether to block the existence of repeating trigrams in the text generated by beam search.", ) args = parser.parse_args() # Select device (distibuted not available) args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") # Check the existence of directories if not args.summaries_output_dir: args.summaries_output_dir = args.documents_dir if not documents_dir_is_valid(args.documents_dir): raise FileNotFoundError( "We could not find the directory you specified for the documents to summarize, or it was empty. Please" " specify a valid path." ) os.makedirs(args.summaries_output_dir, exist_ok=True) evaluate(args) def documents_dir_is_valid(path): if not os.path.exists(path): return False file_list = os.listdir(path) if len(file_list) == 0: return False return True if __name__ == "__main__": main()
884804.py
[ "CWE-676: Use of Potentially Dangerous Function" ]
#!/usr/bin/env python3 import os import shutil import sys from pathlib import Path from subprocess import check_call from tempfile import TemporaryDirectory from typing import Optional SCRIPT_DIR = Path(__file__).parent REPO_DIR = SCRIPT_DIR.parent.parent def read_triton_pin(device: str = "cuda") -> str: triton_file = "triton.txt" if device == "rocm": triton_file = "triton-rocm.txt" elif device == "xpu": triton_file = "triton-xpu.txt" with open(REPO_DIR / ".ci" / "docker" / "ci_commit_pins" / triton_file) as f: return f.read().strip() def read_triton_version() -> str: with open(REPO_DIR / ".ci" / "docker" / "triton_version.txt") as f: return f.read().strip() def check_and_replace(inp: str, src: str, dst: str) -> str: """Checks that `src` can be found in `input` and replaces it with `dst`""" if src not in inp: raise RuntimeError(f"Can't find ${src} in the input") return inp.replace(src, dst) def patch_init_py( path: Path, *, version: str, expected_version: Optional[str] = None ) -> None: if not expected_version: expected_version = read_triton_version() with open(path) as f: orig = f.read() # Replace version orig = check_and_replace( orig, f"__version__ = '{expected_version}'", f'__version__ = "{version}"' ) with open(path, "w") as f: f.write(orig) # TODO: remove patch_setup_py() once we have a proper fix for https://github.com/triton-lang/triton/issues/4527 def patch_setup_py(path: Path) -> None: with open(path) as f: orig = f.read() orig = check_and_replace( orig, "https://tritonlang.blob.core.windows.net/llvm-builds/", "https://oaitriton.blob.core.windows.net/public/llvm-builds/", ) with open(path, "w") as f: f.write(orig) def build_triton( *, version: str, commit_hash: str, build_conda: bool = False, device: str = "cuda", py_version: Optional[str] = None, release: bool = False, ) -> Path: env = os.environ.copy() if "MAX_JOBS" not in env: max_jobs = os.cpu_count() or 1 env["MAX_JOBS"] = str(max_jobs) version_suffix = "" if not release: # Nightly binaries include the triton commit hash, i.e. 2.1.0+e6216047b8 # while release build should only include the version, i.e. 2.1.0 version_suffix = f"+{commit_hash[:10]}" version += version_suffix with TemporaryDirectory() as tmpdir: triton_basedir = Path(tmpdir) / "triton" triton_pythondir = triton_basedir / "python" triton_repo = "https://github.com/openai/triton" if device == "rocm": triton_pkg_name = "pytorch-triton-rocm" elif device == "xpu": triton_pkg_name = "pytorch-triton-xpu" triton_repo = "https://github.com/intel/intel-xpu-backend-for-triton" else: triton_pkg_name = "pytorch-triton" check_call(["git", "clone", triton_repo, "triton"], cwd=tmpdir) if release: ver, rev, patch = version.split(".") check_call( ["git", "checkout", f"release/{ver}.{rev}.x"], cwd=triton_basedir ) else: check_call(["git", "checkout", commit_hash], cwd=triton_basedir) # TODO: remove this and patch_setup_py() once we have a proper fix for https://github.com/triton-lang/triton/issues/4527 patch_setup_py(triton_pythondir / "setup.py") if build_conda: with open(triton_basedir / "meta.yaml", "w") as meta: print( f"package:\n name: torchtriton\n version: {version}\n", file=meta, ) print("source:\n path: .\n", file=meta) print( "build:\n string: py{{py}}\n number: 1\n script: cd python; " "python setup.py install --record=record.txt\n", " script_env:\n - MAX_JOBS\n", file=meta, ) print( "requirements:\n host:\n - python\n - setuptools\n run:\n - python\n" " - filelock\n - pytorch\n", file=meta, ) print( "about:\n home: https://github.com/openai/triton\n license: MIT\n summary:" " 'A language and compiler for custom Deep Learning operation'", file=meta, ) patch_init_py( triton_pythondir / "triton" / "__init__.py", version=f"{version}", ) if py_version is None: py_version = f"{sys.version_info.major}.{sys.version_info.minor}" check_call( [ "conda", "build", "--python", py_version, "-c", "pytorch-nightly", "--output-folder", tmpdir, ".", ], cwd=triton_basedir, env=env, ) conda_path = next(iter(Path(tmpdir).glob("linux-64/torchtriton*.bz2"))) shutil.copy(conda_path, Path.cwd()) return Path.cwd() / conda_path.name # change built wheel name and version env["TRITON_WHEEL_NAME"] = triton_pkg_name env["TRITON_WHEEL_VERSION_SUFFIX"] = version_suffix patch_init_py( triton_pythondir / "triton" / "__init__.py", version=f"{version}", expected_version=None, ) if device == "rocm": check_call( [f"{SCRIPT_DIR}/amd/package_triton_wheel.sh"], cwd=triton_basedir, shell=True, ) print("ROCm libraries setup for triton installation...") check_call( [sys.executable, "setup.py", "bdist_wheel"], cwd=triton_pythondir, env=env ) whl_path = next(iter((triton_pythondir / "dist").glob("*.whl"))) shutil.copy(whl_path, Path.cwd()) if device == "rocm": check_call( [f"{SCRIPT_DIR}/amd/patch_triton_wheel.sh", Path.cwd()], cwd=triton_basedir, ) return Path.cwd() / whl_path.name def main() -> None: from argparse import ArgumentParser parser = ArgumentParser("Build Triton binaries") parser.add_argument("--release", action="store_true") parser.add_argument("--build-conda", action="store_true") parser.add_argument( "--device", type=str, default="cuda", choices=["cuda", "rocm", "xpu"] ) parser.add_argument("--py-version", type=str) parser.add_argument("--commit-hash", type=str) parser.add_argument("--triton-version", type=str, default=read_triton_version()) args = parser.parse_args() build_triton( device=args.device, commit_hash=args.commit_hash if args.commit_hash else read_triton_pin(args.device), version=args.triton_version, build_conda=args.build_conda, py_version=args.py_version, release=args.release, ) if __name__ == "__main__": main()
879024.py
[ "CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')" ]
#!/usr/bin/env python3 import os import sys from dataclasses import asdict, dataclass, field from pathlib import Path from typing import Dict, Iterable, List, Literal, Set from typing_extensions import TypedDict # Python 3.11+ import generate_binary_build_matrix # type: ignore[import] import jinja2 Arch = Literal["windows", "linux", "macos"] GITHUB_DIR = Path(__file__).resolve().parent.parent LABEL_CIFLOW_TRUNK = "ciflow/trunk" LABEL_CIFLOW_UNSTABLE = "ciflow/unstable" LABEL_CIFLOW_BINARIES = "ciflow/binaries" LABEL_CIFLOW_PERIODIC = "ciflow/periodic" LABEL_CIFLOW_BINARIES_LIBTORCH = "ciflow/binaries_libtorch" LABEL_CIFLOW_BINARIES_CONDA = "ciflow/binaries_conda" LABEL_CIFLOW_BINARIES_WHEEL = "ciflow/binaries_wheel" @dataclass class CIFlowConfig: # For use to enable workflows to run on pytorch/pytorch-canary run_on_canary: bool = False labels: Set[str] = field(default_factory=set) # Certain jobs might not want to be part of the ciflow/[all,trunk] workflow isolated_workflow: bool = False unstable: bool = False def __post_init__(self) -> None: if not self.isolated_workflow: if LABEL_CIFLOW_PERIODIC not in self.labels: self.labels.add( LABEL_CIFLOW_TRUNK if not self.unstable else LABEL_CIFLOW_UNSTABLE ) class Config(TypedDict): num_shards: int runner: str @dataclass class BinaryBuildWorkflow: os: str build_configs: List[Dict[str, str]] package_type: str # Optional fields build_environment: str = "" abi_version: str = "" ciflow_config: CIFlowConfig = field(default_factory=CIFlowConfig) is_scheduled: str = "" branches: str = "nightly" # Mainly for macos cross_compile_arm64: bool = False macos_runner: str = "macos-14-xlarge" def __post_init__(self) -> None: if self.abi_version: self.build_environment = ( f"{self.os}-binary-{self.package_type}-{self.abi_version}" ) else: self.build_environment = f"{self.os}-binary-{self.package_type}" def generate_workflow_file(self, workflow_template: jinja2.Template) -> None: output_file_path = ( GITHUB_DIR / f"workflows/generated-{self.build_environment}-{self.branches}.yml" ) with open(output_file_path, "w") as output_file: GENERATED = "generated" # Note that please keep the variable GENERATED otherwise phabricator will hide the whole file output_file.writelines([f"# @{GENERATED} DO NOT EDIT MANUALLY\n"]) try: content = workflow_template.render(asdict(self)) except Exception as e: print(f"Failed on template: {workflow_template}", file=sys.stderr) raise e output_file.write(content) if content[-1] != "\n": output_file.write("\n") print(output_file_path) class OperatingSystem: LINUX = "linux" WINDOWS = "windows" MACOS = "macos" MACOS_ARM64 = "macos-arm64" LINUX_AARCH64 = "linux-aarch64" LINUX_S390X = "linux-s390x" LINUX_BINARY_BUILD_WORFKLOWS = [ BinaryBuildWorkflow( os=OperatingSystem.LINUX, package_type="manywheel", build_configs=generate_binary_build_matrix.generate_wheels_matrix( OperatingSystem.LINUX ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_WHEEL}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.LINUX, package_type="conda", build_configs=generate_binary_build_matrix.generate_conda_matrix( OperatingSystem.LINUX ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_CONDA}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.LINUX, package_type="libtorch", abi_version=generate_binary_build_matrix.CXX11_ABI, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.LINUX, generate_binary_build_matrix.CXX11_ABI, libtorch_variants=["shared-with-deps"], ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_LIBTORCH}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.LINUX, package_type="libtorch", abi_version=generate_binary_build_matrix.PRE_CXX11_ABI, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.LINUX, generate_binary_build_matrix.PRE_CXX11_ABI, libtorch_variants=["shared-with-deps"], ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_LIBTORCH}, isolated_workflow=True, ), ), ] LINUX_BINARY_SMOKE_WORKFLOWS = [ BinaryBuildWorkflow( os=OperatingSystem.LINUX, package_type="manywheel", build_configs=generate_binary_build_matrix.generate_wheels_matrix( OperatingSystem.LINUX, arches=["11.8", "12.1", "12.4"], python_versions=["3.9"], ), branches="main", ), BinaryBuildWorkflow( os=OperatingSystem.LINUX, package_type="libtorch", abi_version=generate_binary_build_matrix.CXX11_ABI, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.LINUX, generate_binary_build_matrix.CXX11_ABI, arches=["cpu"], libtorch_variants=["shared-with-deps"], ), branches="main", ), BinaryBuildWorkflow( os=OperatingSystem.LINUX, package_type="libtorch", abi_version=generate_binary_build_matrix.PRE_CXX11_ABI, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.LINUX, generate_binary_build_matrix.PRE_CXX11_ABI, arches=["cpu"], libtorch_variants=["shared-with-deps"], ), branches="main", ), ] WINDOWS_BINARY_BUILD_WORKFLOWS = [ BinaryBuildWorkflow( os=OperatingSystem.WINDOWS, package_type="wheel", build_configs=generate_binary_build_matrix.generate_wheels_matrix( OperatingSystem.WINDOWS ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_WHEEL}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.WINDOWS, package_type="conda", build_configs=generate_binary_build_matrix.generate_conda_matrix( OperatingSystem.WINDOWS ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_CONDA}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.WINDOWS, package_type="libtorch", abi_version=generate_binary_build_matrix.RELEASE, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.WINDOWS, generate_binary_build_matrix.RELEASE, libtorch_variants=["shared-with-deps"], ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_LIBTORCH}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.WINDOWS, package_type="libtorch", abi_version=generate_binary_build_matrix.DEBUG, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.WINDOWS, generate_binary_build_matrix.DEBUG, libtorch_variants=["shared-with-deps"], ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_LIBTORCH}, isolated_workflow=True, ), ), ] WINDOWS_BINARY_SMOKE_WORKFLOWS = [ BinaryBuildWorkflow( os=OperatingSystem.WINDOWS, package_type="libtorch", abi_version=generate_binary_build_matrix.RELEASE, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.WINDOWS, generate_binary_build_matrix.RELEASE, arches=["cpu"], libtorch_variants=["shared-with-deps"], ), branches="main", ciflow_config=CIFlowConfig( isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.WINDOWS, package_type="libtorch", abi_version=generate_binary_build_matrix.DEBUG, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.WINDOWS, generate_binary_build_matrix.DEBUG, arches=["cpu"], libtorch_variants=["shared-with-deps"], ), branches="main", ciflow_config=CIFlowConfig( isolated_workflow=True, ), ), ] MACOS_BINARY_BUILD_WORKFLOWS = [ BinaryBuildWorkflow( os=OperatingSystem.MACOS_ARM64, package_type="libtorch", abi_version=generate_binary_build_matrix.CXX11_ABI, build_configs=generate_binary_build_matrix.generate_libtorch_matrix( OperatingSystem.MACOS, generate_binary_build_matrix.CXX11_ABI, libtorch_variants=["shared-with-deps"], ), cross_compile_arm64=False, macos_runner="macos-14-xlarge", ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_LIBTORCH}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.MACOS_ARM64, package_type="wheel", build_configs=generate_binary_build_matrix.generate_wheels_matrix( OperatingSystem.MACOS_ARM64 ), cross_compile_arm64=False, macos_runner="macos-14-xlarge", ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_WHEEL}, isolated_workflow=True, ), ), BinaryBuildWorkflow( os=OperatingSystem.MACOS_ARM64, package_type="conda", cross_compile_arm64=False, macos_runner="macos-14-xlarge", build_configs=generate_binary_build_matrix.generate_conda_matrix( OperatingSystem.MACOS_ARM64 ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_CONDA}, isolated_workflow=True, ), ), ] AARCH64_BINARY_BUILD_WORKFLOWS = [ BinaryBuildWorkflow( os=OperatingSystem.LINUX_AARCH64, package_type="manywheel", build_configs=generate_binary_build_matrix.generate_wheels_matrix( OperatingSystem.LINUX_AARCH64 ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_WHEEL}, isolated_workflow=True, ), ), ] S390X_BINARY_BUILD_WORKFLOWS = [ BinaryBuildWorkflow( os=OperatingSystem.LINUX_S390X, package_type="manywheel", build_configs=generate_binary_build_matrix.generate_wheels_matrix( OperatingSystem.LINUX_S390X ), ciflow_config=CIFlowConfig( labels={LABEL_CIFLOW_BINARIES, LABEL_CIFLOW_BINARIES_WHEEL}, isolated_workflow=True, ), ), ] def main() -> None: jinja_env = jinja2.Environment( variable_start_string="!{{", loader=jinja2.FileSystemLoader(str(GITHUB_DIR.joinpath("templates"))), undefined=jinja2.StrictUndefined, ) # not ported yet template_and_workflows = [ ( jinja_env.get_template("linux_binary_build_workflow.yml.j2"), LINUX_BINARY_BUILD_WORFKLOWS, ), ( jinja_env.get_template("linux_binary_build_workflow.yml.j2"), AARCH64_BINARY_BUILD_WORKFLOWS, ), ( jinja_env.get_template("linux_binary_build_workflow.yml.j2"), S390X_BINARY_BUILD_WORKFLOWS, ), ( jinja_env.get_template("linux_binary_build_workflow.yml.j2"), LINUX_BINARY_SMOKE_WORKFLOWS, ), ( jinja_env.get_template("windows_binary_build_workflow.yml.j2"), WINDOWS_BINARY_BUILD_WORKFLOWS, ), ( jinja_env.get_template("windows_binary_build_workflow.yml.j2"), WINDOWS_BINARY_SMOKE_WORKFLOWS, ), ( jinja_env.get_template("macos_binary_build_workflow.yml.j2"), MACOS_BINARY_BUILD_WORKFLOWS, ), ] # Delete the existing generated files first, this should align with .gitattributes file description. existing_workflows = GITHUB_DIR.glob("workflows/generated-*") for w in existing_workflows: try: os.remove(w) except Exception as e: print(f"Error occurred when deleting file {w}: {e}") for template, workflows in template_and_workflows: # added Iterable check to appease the mypy gods if not isinstance(workflows, Iterable): raise Exception( # noqa: TRY002 f"How is workflows not iterable? {workflows}" ) # noqa: TRY002 for workflow in workflows: workflow.generate_workflow_file(workflow_template=template) if __name__ == "__main__": main()
938702.py
[ "CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')" ]
# Helper to get the id of the currently running job in a GitHub Actions # workflow. GitHub does not provide this information to workflow runs, so we # need to figure it out based on what they *do* provide. import argparse import json import operator import os import re import sys import time import urllib import urllib.parse from typing import Any, Callable, Dict, List, Optional, Tuple from urllib.request import Request, urlopen def parse_json_and_links(conn: Any) -> Tuple[Any, Dict[str, Dict[str, str]]]: links = {} # Extract links which GH uses for pagination # see https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Link if "Link" in conn.headers: for elem in re.split(", *<", conn.headers["Link"]): try: url, params_ = elem.split(";", 1) except ValueError: continue url = urllib.parse.unquote(url.strip("<> ")) qparams = urllib.parse.parse_qs(params_.strip(), separator=";") params = { k: v[0].strip('"') for k, v in qparams.items() if type(v) is list and len(v) > 0 } params["url"] = url if "rel" in params: links[params["rel"]] = params return json.load(conn), links def fetch_url( url: str, *, headers: Optional[Dict[str, str]] = None, reader: Callable[[Any], Any] = lambda x: x.read(), retries: Optional[int] = 3, backoff_timeout: float = 0.5, ) -> Any: if headers is None: headers = {} try: with urlopen(Request(url, headers=headers)) as conn: return reader(conn) except urllib.error.HTTPError as err: if isinstance(retries, (int, float)) and retries > 0: time.sleep(backoff_timeout) return fetch_url( url, headers=headers, reader=reader, retries=retries - 1, backoff_timeout=backoff_timeout, ) exception_message = ( "Is github alright?", f"Recieved status code '{err.code}' when attempting to retrieve {url}:\n", f"{err.reason}\n\nheaders={err.headers}", ) raise RuntimeError(exception_message) from err def parse_args() -> Any: parser = argparse.ArgumentParser() parser.add_argument( "workflow_run_id", help="The id of the workflow run, should be GITHUB_RUN_ID" ) parser.add_argument( "runner_name", help="The name of the runner to retrieve the job id, should be RUNNER_NAME", ) return parser.parse_args() def fetch_jobs(url: str, headers: Dict[str, str]) -> List[Dict[str, str]]: response, links = fetch_url(url, headers=headers, reader=parse_json_and_links) jobs = response["jobs"] assert type(jobs) is list while "next" in links.keys(): response, links = fetch_url( links["next"]["url"], headers=headers, reader=parse_json_and_links ) jobs.extend(response["jobs"]) return jobs # Our strategy is to retrieve the parent workflow run, then filter its jobs on # RUNNER_NAME to figure out which job we're currently running. # # Why RUNNER_NAME? Because it's the only thing that uniquely identifies a job within a workflow. # GITHUB_JOB doesn't work, as it corresponds to the job yaml id # (https://bit.ly/37e78oI), which has two problems: # 1. It's not present in the workflow job JSON object, so we can't use it as a filter. # 2. It isn't unique; for matrix jobs the job yaml id is the same for all jobs in the matrix. # # RUNNER_NAME on the other hand is unique across the pool of runners. Also, # since only one job can be scheduled on a runner at a time, we know that # looking for RUNNER_NAME will uniquely identify the job we're currently # running. def find_job_id_name(args: Any) -> Tuple[str, str]: # From https://docs.github.com/en/actions/learn-github-actions/environment-variables PYTORCH_REPO = os.environ.get("GITHUB_REPOSITORY", "pytorch/pytorch") PYTORCH_GITHUB_API = f"https://api.github.com/repos/{PYTORCH_REPO}" GITHUB_TOKEN = os.environ["GITHUB_TOKEN"] REQUEST_HEADERS = { "Accept": "application/vnd.github.v3+json", "Authorization": "token " + GITHUB_TOKEN, } url = f"{PYTORCH_GITHUB_API}/actions/runs/{args.workflow_run_id}/jobs?per_page=100" jobs = fetch_jobs(url, REQUEST_HEADERS) # Sort the jobs list by start time, in descending order. We want to get the most # recently scheduled job on the runner. jobs.sort(key=operator.itemgetter("started_at"), reverse=True) for job in jobs: if job["runner_name"] == args.runner_name: return (job["id"], job["name"]) raise RuntimeError(f"Can't find job id for runner {args.runner_name}") def set_output(name: str, val: Any) -> None: if os.getenv("GITHUB_OUTPUT"): with open(str(os.getenv("GITHUB_OUTPUT")), "a") as env: print(f"{name}={val}", file=env) print(f"setting {name}={val}") else: print(f"::set-output name={name}::{val}") def main() -> None: args = parse_args() try: # Get both the job ID and job name because we have already spent a request # here to get the job info job_id, job_name = find_job_id_name(args) set_output("job-id", job_id) set_output("job-name", job_name) except Exception as e: print(repr(e), file=sys.stderr) print(f"workflow-{args.workflow_run_id}") if __name__ == "__main__": main()
948858.py
[ "CWE-939: Improper Authorization in Handler for Custom URL Scheme" ]
import hashlib import time import urllib import uuid from .common import InfoExtractor from .openload import PhantomJSwrapper from ..utils import ( ExtractorError, UserNotLive, determine_ext, int_or_none, js_to_json, parse_resolution, str_or_none, traverse_obj, unescapeHTML, url_or_none, urlencode_postdata, urljoin, ) class DouyuBaseIE(InfoExtractor): def _download_cryptojs_md5(self, video_id): for url in [ # XXX: Do NOT use cdn.bootcdn.net; ref: https://sansec.io/research/polyfill-supply-chain-attack 'https://cdnjs.cloudflare.com/ajax/libs/crypto-js/3.1.2/rollups/md5.js', 'https://unpkg.com/[email protected]/rollups/md5.js', ]: js_code = self._download_webpage( url, video_id, note='Downloading signing dependency', fatal=False) if js_code: self.cache.store('douyu', 'crypto-js-md5', js_code) return js_code raise ExtractorError('Unable to download JS dependency (crypto-js/md5)') def _get_cryptojs_md5(self, video_id): return self.cache.load( 'douyu', 'crypto-js-md5', min_ver='2024.07.04') or self._download_cryptojs_md5(video_id) def _calc_sign(self, sign_func, video_id, a): b = uuid.uuid4().hex c = round(time.time()) js_script = f'{self._get_cryptojs_md5(video_id)};{sign_func};console.log(ub98484234("{a}","{b}","{c}"))' phantom = PhantomJSwrapper(self) result = phantom.execute(js_script, video_id, note='Executing JS signing script').strip() return {i: v[0] for i, v in urllib.parse.parse_qs(result).items()} def _search_js_sign_func(self, webpage, fatal=True): # The greedy look-behind ensures last possible script tag is matched return self._search_regex( r'(?:<script.*)?<script[^>]*>(.*?ub98484234.*?)</script>', webpage, 'JS sign func', fatal=fatal) class DouyuTVIE(DouyuBaseIE): IE_DESC = '斗鱼直播' _VALID_URL = r'https?://(?:www\.)?douyu(?:tv)?\.com/(topic/\w+\?rid=|(?:[^/]+/))*(?P<id>[A-Za-z0-9]+)' _TESTS = [{ 'url': 'https://www.douyu.com/pigff', 'info_dict': { 'id': '24422', 'display_id': 'pigff', 'ext': 'mp4', 'title': 're:^【PIGFF】.* [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': r'≥15级牌子看鱼吧置顶帖进粉丝vx群', 'thumbnail': str, 'uploader': 'pigff', 'is_live': True, 'live_status': 'is_live', }, 'params': { 'skip_download': True, }, }, { 'url': 'http://www.douyutv.com/85982', 'info_dict': { 'id': '85982', 'display_id': '85982', 'ext': 'flv', 'title': 're:^小漠从零单排记!——CSOL2躲猫猫 [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': 'md5:746a2f7a253966a06755a912f0acc0d2', 'thumbnail': r're:^https?://.*\.png', 'uploader': 'douyu小漠', 'is_live': True, }, 'params': { 'skip_download': True, }, 'skip': 'Room not found', }, { 'url': 'http://www.douyutv.com/17732', 'info_dict': { 'id': '17732', 'display_id': '17732', 'ext': 'flv', 'title': 're:^清晨醒脑!根本停不下来! [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': r're:.*m7show@163\.com.*', 'thumbnail': r're:^https?://.*\.png', 'uploader': '7师傅', 'is_live': True, }, 'params': { 'skip_download': True, }, }, { 'url': 'https://www.douyu.com/topic/ydxc?rid=6560603', 'info_dict': { 'id': '6560603', 'display_id': '6560603', 'ext': 'flv', 'title': 're:^阿余:新年快乐恭喜发财! [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': 're:.*直播时间.*', 'thumbnail': r're:^https?://.*\.png', 'uploader': '阿涛皎月Carry', 'live_status': 'is_live', }, 'params': { 'skip_download': True, }, }, { 'url': 'http://www.douyu.com/xiaocang', 'only_matching': True, }, { # \"room_id\" 'url': 'http://www.douyu.com/t/lpl', 'only_matching': True, }] def _get_sign_func(self, room_id, video_id): return self._download_json( f'https://www.douyu.com/swf_api/homeH5Enc?rids={room_id}', video_id, note='Getting signing script')['data'][f'room{room_id}'] def _extract_stream_formats(self, stream_formats): formats = [] for stream_info in traverse_obj(stream_formats, (..., 'data')): stream_url = urljoin( traverse_obj(stream_info, 'rtmp_url'), traverse_obj(stream_info, 'rtmp_live')) if stream_url: rate_id = traverse_obj(stream_info, ('rate', {int_or_none})) rate_info = traverse_obj(stream_info, ('multirates', lambda _, v: v['rate'] == rate_id), get_all=False) ext = determine_ext(stream_url) formats.append({ 'url': stream_url, 'format_id': str_or_none(rate_id), 'ext': 'mp4' if ext == 'm3u8' else ext, 'protocol': 'm3u8_native' if ext == 'm3u8' else 'https', 'quality': rate_id % -10000 if rate_id is not None else None, **traverse_obj(rate_info, { 'format': ('name', {str_or_none}), 'tbr': ('bit', {int_or_none}), }), }) return formats def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) room_id = self._search_regex(r'\$ROOM\.room_id\s*=\s*(\d+)', webpage, 'room id') if self._search_regex(r'"videoLoop"\s*:\s*(\d+)', webpage, 'loop', default='') == '1': raise UserNotLive('The channel is auto-playing VODs', video_id=video_id) if self._search_regex(r'\$ROOM\.show_status\s*=\s*(\d+)', webpage, 'status', default='') == '2': raise UserNotLive(video_id=video_id) # Grab metadata from API params = { 'aid': 'wp', 'client_sys': 'wp', 'time': int(time.time()), } params['auth'] = hashlib.md5( f'room/{room_id}?{urllib.parse.urlencode(params)}zNzMV1y4EMxOHS6I5WKm'.encode()).hexdigest() room = traverse_obj(self._download_json( f'http://www.douyutv.com/api/v1/room/{room_id}', video_id, note='Downloading room info', query=params, fatal=False), 'data') # 1 = live, 2 = offline if traverse_obj(room, 'show_status') == '2': raise UserNotLive(video_id=video_id) js_sign_func = self._search_js_sign_func(webpage, fatal=False) or self._get_sign_func(room_id, video_id) form_data = { 'rate': 0, **self._calc_sign(js_sign_func, video_id, room_id), } stream_formats = [self._download_json( f'https://www.douyu.com/lapi/live/getH5Play/{room_id}', video_id, note='Downloading livestream format', data=urlencode_postdata(form_data))] for rate_id in traverse_obj(stream_formats[0], ('data', 'multirates', ..., 'rate')): if rate_id != traverse_obj(stream_formats[0], ('data', 'rate')): form_data['rate'] = rate_id stream_formats.append(self._download_json( f'https://www.douyu.com/lapi/live/getH5Play/{room_id}', video_id, note=f'Downloading livestream format {rate_id}', data=urlencode_postdata(form_data))) return { 'id': room_id, 'formats': self._extract_stream_formats(stream_formats), 'is_live': True, **traverse_obj(room, { 'display_id': ('url', {str}, {lambda i: i[1:]}), 'title': ('room_name', {unescapeHTML}), 'description': ('show_details', {str}), 'uploader': ('nickname', {str}), 'thumbnail': ('room_src', {url_or_none}), }), } class DouyuShowIE(DouyuBaseIE): _VALID_URL = r'https?://v(?:mobile)?\.douyu\.com/show/(?P<id>[0-9a-zA-Z]+)' _TESTS = [{ 'url': 'https://v.douyu.com/show/mPyq7oVNe5Yv1gLY', 'info_dict': { 'id': 'mPyq7oVNe5Yv1gLY', 'ext': 'mp4', 'title': '四川人小时候的味道“蒜苗回锅肉”,传统菜不能丢,要常做来吃', 'duration': 633, 'thumbnail': str, 'uploader': '美食作家王刚V', 'uploader_id': 'OVAO4NVx1m7Q', 'timestamp': 1661850002, 'upload_date': '20220830', 'view_count': int, 'tags': ['美食', '美食综合'], }, }, { 'url': 'https://vmobile.douyu.com/show/rjNBdvnVXNzvE2yw', 'only_matching': True, }] _FORMATS = { 'super': '原画', 'high': '超清', 'normal': '高清', } _QUALITIES = { 'super': -1, 'high': -2, 'normal': -3, } _RESOLUTIONS = { 'super': '1920x1080', 'high': '1280x720', 'normal': '852x480', } def _real_extract(self, url): url = url.replace('vmobile.', 'v.') video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) video_info = self._search_json( r'<script>\s*window\.\$DATA\s*=', webpage, 'video info', video_id, transform_source=js_to_json) js_sign_func = self._search_js_sign_func(webpage) form_data = { 'vid': video_id, **self._calc_sign(js_sign_func, video_id, video_info['ROOM']['point_id']), } url_info = self._download_json( 'https://v.douyu.com/api/stream/getStreamUrl', video_id, data=urlencode_postdata(form_data), note='Downloading video formats') formats = [] for name, url in traverse_obj(url_info, ('data', 'thumb_video', {dict.items}, ...)): video_url = traverse_obj(url, ('url', {url_or_none})) if video_url: ext = determine_ext(video_url) formats.append({ 'format': self._FORMATS.get(name), 'format_id': name, 'url': video_url, 'quality': self._QUALITIES.get(name), 'ext': 'mp4' if ext == 'm3u8' else ext, 'protocol': 'm3u8_native' if ext == 'm3u8' else 'https', **parse_resolution(self._RESOLUTIONS.get(name)), }) else: self.to_screen( f'"{self._FORMATS.get(name, name)}" format may require logging in. {self._login_hint()}') return { 'id': video_id, 'formats': formats, **traverse_obj(video_info, ('DATA', { 'title': ('content', 'title', {str}), 'uploader': ('content', 'author', {str}), 'uploader_id': ('content', 'up_id', {str_or_none}), 'duration': ('content', 'video_duration', {int_or_none}), 'thumbnail': ('content', 'video_pic', {url_or_none}), 'timestamp': ('content', 'create_time', {int_or_none}), 'view_count': ('content', 'view_num', {int_or_none}), 'tags': ('videoTag', ..., 'tagName', {str}), })), }
758317.py
[ "CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')" ]
import functools import hashlib import json import time import urllib.parse from .common import InfoExtractor from ..utils import ( ExtractorError, OnDemandPagedList, int_or_none, jwt_decode_hs256, mimetype2ext, qualities, traverse_obj, try_call, unified_timestamp, ) class IwaraBaseIE(InfoExtractor): _NETRC_MACHINE = 'iwara' _USERTOKEN = None _MEDIATOKEN = None def _is_token_expired(self, token, token_type): # User token TTL == ~3 weeks, Media token TTL == ~1 hour if (try_call(lambda: jwt_decode_hs256(token)['exp']) or 0) <= int(time.time() - 120): self.to_screen(f'{token_type} token has expired') return True def _get_user_token(self): username, password = self._get_login_info() if not username or not password: return user_token = IwaraBaseIE._USERTOKEN or self.cache.load(self._NETRC_MACHINE, username) if not user_token or self._is_token_expired(user_token, 'User'): response = self._download_json( 'https://api.iwara.tv/user/login', None, note='Logging in', headers={'Content-Type': 'application/json'}, data=json.dumps({ 'email': username, 'password': password, }).encode(), expected_status=lambda x: True) user_token = traverse_obj(response, ('token', {str})) if not user_token: error = traverse_obj(response, ('message', {str})) if 'invalidLogin' in error: raise ExtractorError('Invalid login credentials', expected=True) else: raise ExtractorError(f'Iwara API said: {error or "nothing"}') self.cache.store(self._NETRC_MACHINE, username, user_token) IwaraBaseIE._USERTOKEN = user_token def _get_media_token(self): self._get_user_token() if not IwaraBaseIE._USERTOKEN: return # user has not passed credentials if not IwaraBaseIE._MEDIATOKEN or self._is_token_expired(IwaraBaseIE._MEDIATOKEN, 'Media'): IwaraBaseIE._MEDIATOKEN = self._download_json( 'https://api.iwara.tv/user/token', None, note='Fetching media token', data=b'', headers={ 'Authorization': f'Bearer {IwaraBaseIE._USERTOKEN}', 'Content-Type': 'application/json', })['accessToken'] return {'Authorization': f'Bearer {IwaraBaseIE._MEDIATOKEN}'} def _perform_login(self, username, password): self._get_media_token() class IwaraIE(IwaraBaseIE): IE_NAME = 'iwara' _VALID_URL = r'https?://(?:www\.|ecchi\.)?iwara\.tv/videos?/(?P<id>[a-zA-Z0-9]+)' _TESTS = [{ 'url': 'https://www.iwara.tv/video/k2ayoueezfkx6gvq', 'info_dict': { 'id': 'k2ayoueezfkx6gvq', 'ext': 'mp4', 'age_limit': 18, 'title': 'Defeat of Irybelda - アイリベルダの敗北', 'description': 'md5:70278abebe706647a8b4cb04cf23e0d3', 'uploader': 'Inwerwm', 'uploader_id': 'inwerwm', 'tags': 'count:1', 'like_count': 6133, 'view_count': 1050343, 'comment_count': 1, 'timestamp': 1677843869, 'modified_timestamp': 1679056362, }, 'skip': 'this video cannot be played because of migration', }, { 'url': 'https://iwara.tv/video/1ywe1sbkqwumpdxz5/', 'md5': '7645f966f069b8ec9210efd9130c9aad', 'info_dict': { 'id': '1ywe1sbkqwumpdxz5', 'ext': 'mp4', 'age_limit': 18, 'title': 'Aponia アポニア SEX Party Tonight 手の脱衣 巨乳 ', 'description': 'md5:3f60016fff22060eef1ef26d430b1f67', 'uploader': 'Lyu ya', 'uploader_id': 'user792540', 'tags': [ 'uncategorized', ], 'like_count': int, 'view_count': int, 'comment_count': int, 'timestamp': 1678732213, 'modified_timestamp': int, 'thumbnail': 'https://files.iwara.tv/image/thumbnail/581d12b5-46f4-4f15-beb2-cfe2cde5d13d/thumbnail-00.jpg', 'modified_date': '20230614', 'upload_date': '20230313', }, }, { 'url': 'https://iwara.tv/video/blggmfno8ghl725bg', 'info_dict': { 'id': 'blggmfno8ghl725bg', 'ext': 'mp4', 'age_limit': 18, 'title': 'お外でおしっこしちゃう猫耳ロリメイド', 'description': 'md5:0342ba9bf6db09edbbb28729657c3611', 'uploader': 'Fe_Kurosabi', 'uploader_id': 'fekurosabi', 'tags': [ 'pee', ], 'like_count': int, 'view_count': int, 'comment_count': int, 'timestamp': 1598880567, 'modified_timestamp': int, 'upload_date': '20200831', 'modified_date': '20230605', 'thumbnail': 'https://files.iwara.tv/image/thumbnail/7693e881-d302-42a4-a780-f16d66b5dadd/thumbnail-00.jpg', # 'availability': 'needs_auth', }, }] def _extract_formats(self, video_id, fileurl): up = urllib.parse.urlparse(fileurl) q = urllib.parse.parse_qs(up.query) paths = up.path.rstrip('/').split('/') # https://github.com/yt-dlp/yt-dlp/issues/6549#issuecomment-1473771047 x_version = hashlib.sha1('_'.join((paths[-1], q['expires'][0], '5nFp9kmbNnHdAFhaqMvt')).encode()).hexdigest() preference = qualities(['preview', '360', '540', 'Source']) files = self._download_json(fileurl, video_id, headers={'X-Version': x_version}) for fmt in files: yield traverse_obj(fmt, { 'format_id': 'name', 'url': ('src', ('view', 'download'), {self._proto_relative_url}), 'ext': ('type', {mimetype2ext}), 'quality': ('name', {preference}), 'height': ('name', {int_or_none}), }, get_all=False) def _real_extract(self, url): video_id = self._match_id(url) username, _ = self._get_login_info() video_data = self._download_json( f'https://api.iwara.tv/video/{video_id}', video_id, expected_status=lambda x: True, headers=self._get_media_token()) errmsg = video_data.get('message') # at this point we can actually get uploaded user info, but do we need it? if errmsg == 'errors.privateVideo': self.raise_login_required('Private video. Login if you have permissions to watch', method='password') elif errmsg == 'errors.notFound' and not username: self.raise_login_required('Video may need login to view', method='password') elif errmsg: # None if success raise ExtractorError(f'Iwara says: {errmsg}') if not video_data.get('fileUrl'): if video_data.get('embedUrl'): return self.url_result(video_data.get('embedUrl')) raise ExtractorError('This video is unplayable', expected=True) return { 'id': video_id, 'age_limit': 18 if video_data.get('rating') == 'ecchi' else 0, # ecchi is 'sexy' in Japanese **traverse_obj(video_data, { 'title': 'title', 'description': 'body', 'uploader': ('user', 'name'), 'uploader_id': ('user', 'username'), 'tags': ('tags', ..., 'id'), 'like_count': 'numLikes', 'view_count': 'numViews', 'comment_count': 'numComments', 'timestamp': ('createdAt', {unified_timestamp}), 'modified_timestamp': ('updatedAt', {unified_timestamp}), 'thumbnail': ('file', 'id', {str}, { lambda x: f'https://files.iwara.tv/image/thumbnail/{x}/thumbnail-00.jpg'}), }), 'formats': list(self._extract_formats(video_id, video_data.get('fileUrl'))), } class IwaraUserIE(IwaraBaseIE): _VALID_URL = r'https?://(?:www\.)?iwara\.tv/profile/(?P<id>[^/?#&]+)' IE_NAME = 'iwara:user' _PER_PAGE = 32 _TESTS = [{ 'url': 'https://iwara.tv/profile/user792540/videos', 'info_dict': { 'id': 'user792540', 'title': 'Lyu ya', }, 'playlist_mincount': 70, }, { 'url': 'https://iwara.tv/profile/theblackbirdcalls/videos', 'info_dict': { 'id': 'theblackbirdcalls', 'title': 'TheBlackbirdCalls', }, 'playlist_mincount': 723, }, { 'url': 'https://iwara.tv/profile/user792540', 'only_matching': True, }, { 'url': 'https://iwara.tv/profile/theblackbirdcalls', 'only_matching': True, }, { 'url': 'https://www.iwara.tv/profile/lumymmd', 'info_dict': { 'id': 'lumymmd', 'title': 'Lumy MMD', }, 'playlist_mincount': 1, }] def _entries(self, playlist_id, user_id, page): videos = self._download_json( 'https://api.iwara.tv/videos', playlist_id, note=f'Downloading page {page}', query={ 'page': page, 'sort': 'date', 'user': user_id, 'limit': self._PER_PAGE, }, headers=self._get_media_token()) for x in traverse_obj(videos, ('results', ..., 'id')): yield self.url_result(f'https://iwara.tv/video/{x}') def _real_extract(self, url): playlist_id = self._match_id(url) user_info = self._download_json( f'https://api.iwara.tv/profile/{playlist_id}', playlist_id, note='Requesting user info') user_id = traverse_obj(user_info, ('user', 'id')) return self.playlist_result( OnDemandPagedList( functools.partial(self._entries, playlist_id, user_id), self._PER_PAGE), playlist_id, traverse_obj(user_info, ('user', 'name'))) class IwaraPlaylistIE(IwaraBaseIE): _VALID_URL = r'https?://(?:www\.)?iwara\.tv/playlist/(?P<id>[0-9a-f-]+)' IE_NAME = 'iwara:playlist' _PER_PAGE = 32 _TESTS = [{ 'url': 'https://iwara.tv/playlist/458e5486-36a4-4ac0-b233-7e9eef01025f', 'info_dict': { 'id': '458e5486-36a4-4ac0-b233-7e9eef01025f', }, 'playlist_mincount': 3, }] def _entries(self, playlist_id, first_page, page): videos = self._download_json( 'https://api.iwara.tv/videos', playlist_id, f'Downloading page {page}', query={'page': page, 'limit': self._PER_PAGE}, headers=self._get_media_token()) if page else first_page for x in traverse_obj(videos, ('results', ..., 'id')): yield self.url_result(f'https://iwara.tv/video/{x}') def _real_extract(self, url): playlist_id = self._match_id(url) page_0 = self._download_json( f'https://api.iwara.tv/playlist/{playlist_id}?page=0&limit={self._PER_PAGE}', playlist_id, note='Requesting playlist info', headers=self._get_media_token()) return self.playlist_result( OnDemandPagedList( functools.partial(self._entries, playlist_id, page_0), self._PER_PAGE), playlist_id, traverse_obj(page_0, ('title', 'name')))
837764.py
[ "CWE-327: Use of a Broken or Risky Cryptographic Algorithm" ]
import hashlib import random from .common import InfoExtractor from ..utils import ( clean_html, int_or_none, try_get, ) class JamendoIE(InfoExtractor): _VALID_URL = r'''(?x) https?:// (?: licensing\.jamendo\.com/[^/]+| (?:www\.)?jamendo\.com ) /track/(?P<id>[0-9]+)(?:/(?P<display_id>[^/?#&]+))? ''' _TESTS = [{ 'url': 'https://www.jamendo.com/track/196219/stories-from-emona-i', 'md5': '6e9e82ed6db98678f171c25a8ed09ffd', 'info_dict': { 'id': '196219', 'display_id': 'stories-from-emona-i', 'ext': 'flac', # 'title': 'Maya Filipič - Stories from Emona I', 'title': 'Stories from Emona I', 'artist': 'Maya Filipič', 'album': 'Between two worlds', 'track': 'Stories from Emona I', 'duration': 210, 'thumbnail': 'https://usercontent.jamendo.com?type=album&id=29279&width=300&trackid=196219', 'timestamp': 1217438117, 'upload_date': '20080730', 'license': 'by-nc-nd', 'view_count': int, 'like_count': int, 'average_rating': int, 'tags': ['piano', 'peaceful', 'newage', 'strings', 'upbeat'], }, }, { 'url': 'https://licensing.jamendo.com/en/track/1496667/energetic-rock', 'only_matching': True, }] def _call_api(self, resource, resource_id, fatal=True): path = f'/api/{resource}s' rand = str(random.random()) return self._download_json( 'https://www.jamendo.com' + path, resource_id, fatal=fatal, query={ 'id[]': resource_id, }, headers={ 'X-Jam-Call': f'${hashlib.sha1((path + rand).encode()).hexdigest()}*{rand}~', })[0] def _real_extract(self, url): track_id, display_id = self._match_valid_url(url).groups() # webpage = self._download_webpage( # 'https://www.jamendo.com/track/' + track_id, track_id) # models = self._parse_json(self._html_search_regex( # r"data-bundled-models='([^']+)", # webpage, 'bundled models'), track_id) # track = models['track']['models'][0] track = self._call_api('track', track_id) title = track_name = track['name'] # get_model = lambda x: try_get(models, lambda y: y[x]['models'][0], dict) or {} # artist = get_model('artist') # artist_name = artist.get('name') # if artist_name: # title = '%s - %s' % (artist_name, title) # album = get_model('album') artist = self._call_api('artist', track.get('artistId'), fatal=False) album = self._call_api('album', track.get('albumId'), fatal=False) formats = [{ 'url': f'https://{sub_domain}.jamendo.com/?trackid={track_id}&format={format_id}&from=app-97dab294', 'format_id': format_id, 'ext': ext, 'quality': quality, } for quality, (format_id, sub_domain, ext) in enumerate(( ('mp31', 'mp3l', 'mp3'), ('mp32', 'mp3d', 'mp3'), ('ogg1', 'ogg', 'ogg'), ('flac', 'flac', 'flac'), ))] urls = [] thumbnails = [] for covers in (track.get('cover') or {}).values(): for cover_id, cover_url in covers.items(): if not cover_url or cover_url in urls: continue urls.append(cover_url) size = int_or_none(cover_id.lstrip('size')) thumbnails.append({ 'id': cover_id, 'url': cover_url, 'width': size, 'height': size, }) tags = [] for tag in (track.get('tags') or []): tag_name = tag.get('name') if not tag_name: continue tags.append(tag_name) stats = track.get('stats') or {} video_license = track.get('licenseCC') or [] return { 'id': track_id, 'display_id': display_id, 'thumbnails': thumbnails, 'title': title, 'description': track.get('description'), 'duration': int_or_none(track.get('duration')), 'artist': artist.get('name'), 'track': track_name, 'album': album.get('name'), 'formats': formats, 'license': '-'.join(video_license) if video_license else None, 'timestamp': int_or_none(track.get('dateCreated')), 'view_count': int_or_none(stats.get('listenedAll')), 'like_count': int_or_none(stats.get('favorited')), 'average_rating': int_or_none(stats.get('averageNote')), 'tags': tags, } class JamendoAlbumIE(JamendoIE): # XXX: Do not subclass from concrete IE _VALID_URL = r'https?://(?:www\.)?jamendo\.com/album/(?P<id>[0-9]+)' _TESTS = [{ 'url': 'https://www.jamendo.com/album/121486/duck-on-cover', 'info_dict': { 'id': '121486', 'title': 'Duck On Cover', 'description': 'md5:c2920eaeef07d7af5b96d7c64daf1239', }, 'playlist': [{ 'md5': 'e1a2fcb42bda30dfac990212924149a8', 'info_dict': { 'id': '1032333', 'ext': 'flac', 'title': 'Warmachine', 'artist': 'Shearer', 'track': 'Warmachine', 'timestamp': 1368089771, 'upload_date': '20130509', 'view_count': int, 'thumbnail': 'https://usercontent.jamendo.com?type=album&id=121486&width=300&trackid=1032333', 'duration': 190, 'license': 'by', 'album': 'Duck On Cover', 'average_rating': 4, 'tags': ['rock', 'drums', 'bass', 'world', 'punk', 'neutral'], 'like_count': int, }, }, { 'md5': '1f358d7b2f98edfe90fd55dac0799d50', 'info_dict': { 'id': '1032330', 'ext': 'flac', 'title': 'Without Your Ghost', 'artist': 'Shearer', 'track': 'Without Your Ghost', 'timestamp': 1368089771, 'upload_date': '20130509', 'duration': 192, 'tags': ['rock', 'drums', 'bass', 'world', 'punk'], 'album': 'Duck On Cover', 'thumbnail': 'https://usercontent.jamendo.com?type=album&id=121486&width=300&trackid=1032330', 'view_count': int, 'average_rating': 4, 'license': 'by', 'like_count': int, }, }], 'params': { 'playlistend': 2, }, }] def _real_extract(self, url): album_id = self._match_id(url) album = self._call_api('album', album_id) album_name = album.get('name') entries = [] for track in (album.get('tracks') or []): track_id = track.get('id') if not track_id: continue track_id = str(track_id) entries.append({ '_type': 'url_transparent', 'url': 'https://www.jamendo.com/track/' + track_id, 'ie_key': JamendoIE.ie_key(), 'id': track_id, 'album': album_name, }) return self.playlist_result( entries, album_id, album_name, clean_html(try_get(album, lambda x: x['description']['en'], str)))
530858.py
[ "CWE-327: Use of a Broken or Risky Cryptographic Algorithm" ]
""" Settings and configuration for Django. Read values from the module specified by the DJANGO_SETTINGS_MODULE environment variable, and then from django.conf.global_settings; see the global_settings.py for a list of all possible variables. """ import importlib import os import time import traceback import warnings from pathlib import Path import django from django.conf import global_settings from django.core.exceptions import ImproperlyConfigured from django.utils.deprecation import RemovedInDjango60Warning from django.utils.functional import LazyObject, empty ENVIRONMENT_VARIABLE = "DJANGO_SETTINGS_MODULE" DEFAULT_STORAGE_ALIAS = "default" STATICFILES_STORAGE_ALIAS = "staticfiles" # RemovedInDjango60Warning. FORMS_URLFIELD_ASSUME_HTTPS_DEPRECATED_MSG = ( "The FORMS_URLFIELD_ASSUME_HTTPS transitional setting is deprecated." ) class SettingsReference(str): """ String subclass which references a current settings value. It's treated as the value in memory but serializes to a settings.NAME attribute reference. """ def __new__(self, value, setting_name): return str.__new__(self, value) def __init__(self, value, setting_name): self.setting_name = setting_name class LazySettings(LazyObject): """ A lazy proxy for either global Django settings or a custom settings object. The user can manually configure settings prior to using them. Otherwise, Django uses the settings module pointed to by DJANGO_SETTINGS_MODULE. """ def _setup(self, name=None): """ Load the settings module pointed to by the environment variable. This is used the first time settings are needed, if the user hasn't configured settings manually. """ settings_module = os.environ.get(ENVIRONMENT_VARIABLE) if not settings_module: desc = ("setting %s" % name) if name else "settings" raise ImproperlyConfigured( "Requested %s, but settings are not configured. " "You must either define the environment variable %s " "or call settings.configure() before accessing settings." % (desc, ENVIRONMENT_VARIABLE) ) self._wrapped = Settings(settings_module) def __repr__(self): # Hardcode the class name as otherwise it yields 'Settings'. if self._wrapped is empty: return "<LazySettings [Unevaluated]>" return '<LazySettings "%(settings_module)s">' % { "settings_module": self._wrapped.SETTINGS_MODULE, } def __getattr__(self, name): """Return the value of a setting and cache it in self.__dict__.""" if (_wrapped := self._wrapped) is empty: self._setup(name) _wrapped = self._wrapped val = getattr(_wrapped, name) # Special case some settings which require further modification. # This is done here for performance reasons so the modified value is cached. if name in {"MEDIA_URL", "STATIC_URL"} and val is not None: val = self._add_script_prefix(val) elif name == "SECRET_KEY" and not val: raise ImproperlyConfigured("The SECRET_KEY setting must not be empty.") self.__dict__[name] = val return val def __setattr__(self, name, value): """ Set the value of setting. Clear all cached values if _wrapped changes (@override_settings does this) or clear single values when set. """ if name == "_wrapped": self.__dict__.clear() else: self.__dict__.pop(name, None) super().__setattr__(name, value) def __delattr__(self, name): """Delete a setting and clear it from cache if needed.""" super().__delattr__(name) self.__dict__.pop(name, None) def configure(self, default_settings=global_settings, **options): """ Called to manually configure the settings. The 'default_settings' parameter sets where to retrieve any unspecified values from (its argument must support attribute access (__getattr__)). """ if self._wrapped is not empty: raise RuntimeError("Settings already configured.") holder = UserSettingsHolder(default_settings) for name, value in options.items(): if not name.isupper(): raise TypeError("Setting %r must be uppercase." % name) setattr(holder, name, value) self._wrapped = holder @staticmethod def _add_script_prefix(value): """ Add SCRIPT_NAME prefix to relative paths. Useful when the app is being served at a subpath and manually prefixing subpath to STATIC_URL and MEDIA_URL in settings is inconvenient. """ # Don't apply prefix to absolute paths and URLs. if value.startswith(("http://", "https://", "/")): return value from django.urls import get_script_prefix return "%s%s" % (get_script_prefix(), value) @property def configured(self): """Return True if the settings have already been configured.""" return self._wrapped is not empty def _show_deprecation_warning(self, message, category): stack = traceback.extract_stack() # Show a warning if the setting is used outside of Django. # Stack index: -1 this line, -2 the property, -3 the # LazyObject __getattribute__(), -4 the caller. filename, _, _, _ = stack[-4] if not filename.startswith(os.path.dirname(django.__file__)): warnings.warn(message, category, stacklevel=2) class Settings: def __init__(self, settings_module): # update this dict from global settings (but only for ALL_CAPS settings) for setting in dir(global_settings): if setting.isupper(): setattr(self, setting, getattr(global_settings, setting)) # store the settings module in case someone later cares self.SETTINGS_MODULE = settings_module mod = importlib.import_module(self.SETTINGS_MODULE) tuple_settings = ( "ALLOWED_HOSTS", "INSTALLED_APPS", "TEMPLATE_DIRS", "LOCALE_PATHS", "SECRET_KEY_FALLBACKS", ) self._explicit_settings = set() for setting in dir(mod): if setting.isupper(): setting_value = getattr(mod, setting) if setting in tuple_settings and not isinstance( setting_value, (list, tuple) ): raise ImproperlyConfigured( "The %s setting must be a list or a tuple." % setting ) setattr(self, setting, setting_value) self._explicit_settings.add(setting) if self.is_overridden("FORMS_URLFIELD_ASSUME_HTTPS"): warnings.warn( FORMS_URLFIELD_ASSUME_HTTPS_DEPRECATED_MSG, RemovedInDjango60Warning, ) if hasattr(time, "tzset") and self.TIME_ZONE: # When we can, attempt to validate the timezone. If we can't find # this file, no check happens and it's harmless. zoneinfo_root = Path("/usr/share/zoneinfo") zone_info_file = zoneinfo_root.joinpath(*self.TIME_ZONE.split("/")) if zoneinfo_root.exists() and not zone_info_file.exists(): raise ValueError("Incorrect timezone setting: %s" % self.TIME_ZONE) # Move the time zone info into os.environ. See ticket #2315 for why # we don't do this unconditionally (breaks Windows). os.environ["TZ"] = self.TIME_ZONE time.tzset() def is_overridden(self, setting): return setting in self._explicit_settings def __repr__(self): return '<%(cls)s "%(settings_module)s">' % { "cls": self.__class__.__name__, "settings_module": self.SETTINGS_MODULE, } class UserSettingsHolder: """Holder for user configured settings.""" # SETTINGS_MODULE doesn't make much sense in the manually configured # (standalone) case. SETTINGS_MODULE = None def __init__(self, default_settings): """ Requests for configuration variables not in this class are satisfied from the module specified in default_settings (if possible). """ self.__dict__["_deleted"] = set() self.default_settings = default_settings def __getattr__(self, name): if not name.isupper() or name in self._deleted: raise AttributeError return getattr(self.default_settings, name) def __setattr__(self, name, value): self._deleted.discard(name) if name == "FORMS_URLFIELD_ASSUME_HTTPS": warnings.warn( FORMS_URLFIELD_ASSUME_HTTPS_DEPRECATED_MSG, RemovedInDjango60Warning, ) super().__setattr__(name, value) def __delattr__(self, name): self._deleted.add(name) if hasattr(self, name): super().__delattr__(name) def __dir__(self): return sorted( s for s in [*self.__dict__, *dir(self.default_settings)] if s not in self._deleted ) def is_overridden(self, setting): deleted = setting in self._deleted set_locally = setting in self.__dict__ set_on_default = getattr( self.default_settings, "is_overridden", lambda s: False )(setting) return deleted or set_locally or set_on_default def __repr__(self): return "<%(cls)s>" % { "cls": self.__class__.__name__, } settings = LazySettings()
359100.py
[ "CWE-706: Use of Incorrectly-Resolved Name or Reference" ]
"Misc. utility functions/classes for admin documentation generator." import re from email.errors import HeaderParseError from email.parser import HeaderParser from inspect import cleandoc from django.urls import reverse from django.utils.regex_helper import _lazy_re_compile from django.utils.safestring import mark_safe try: import docutils.core import docutils.nodes import docutils.parsers.rst.roles except ImportError: docutils_is_available = False else: docutils_is_available = True def get_view_name(view_func): if hasattr(view_func, "view_class"): klass = view_func.view_class return f"{klass.__module__}.{klass.__qualname__}" mod_name = view_func.__module__ view_name = getattr(view_func, "__qualname__", view_func.__class__.__name__) return mod_name + "." + view_name def parse_docstring(docstring): """ Parse out the parts of a docstring. Return (title, body, metadata). """ if not docstring: return "", "", {} docstring = cleandoc(docstring) parts = re.split(r"\n{2,}", docstring) title = parts[0] if len(parts) == 1: body = "" metadata = {} else: parser = HeaderParser() try: metadata = parser.parsestr(parts[-1]) except HeaderParseError: metadata = {} body = "\n\n".join(parts[1:]) else: metadata = dict(metadata.items()) if metadata: body = "\n\n".join(parts[1:-1]) else: body = "\n\n".join(parts[1:]) return title, body, metadata def parse_rst(text, default_reference_context, thing_being_parsed=None): """ Convert the string from reST to an XHTML fragment. """ overrides = { "doctitle_xform": True, "initial_header_level": 3, "default_reference_context": default_reference_context, "link_base": reverse("django-admindocs-docroot").rstrip("/"), "raw_enabled": False, "file_insertion_enabled": False, } thing_being_parsed = thing_being_parsed and "<%s>" % thing_being_parsed # Wrap ``text`` in some reST that sets the default role to ``cmsreference``, # then restores it. source = """ .. default-role:: cmsreference %s .. default-role:: """ parts = docutils.core.publish_parts( source % text, source_path=thing_being_parsed, destination_path=None, writer_name="html", settings_overrides=overrides, ) return mark_safe(parts["fragment"]) # # reST roles # ROLES = { "model": "%s/models/%s/", "view": "%s/views/%s/", "template": "%s/templates/%s/", "filter": "%s/filters/#%s", "tag": "%s/tags/#%s", } def create_reference_role(rolename, urlbase): # Views and template names are case-sensitive. is_case_sensitive = rolename in ["template", "view"] def _role(name, rawtext, text, lineno, inliner, options=None, content=None): if options is None: options = {} node = docutils.nodes.reference( rawtext, text, refuri=( urlbase % ( inliner.document.settings.link_base, text if is_case_sensitive else text.lower(), ) ), **options, ) return [node], [] docutils.parsers.rst.roles.register_canonical_role(rolename, _role) def default_reference_role( name, rawtext, text, lineno, inliner, options=None, content=None ): if options is None: options = {} context = inliner.document.settings.default_reference_context node = docutils.nodes.reference( rawtext, text, refuri=( ROLES[context] % ( inliner.document.settings.link_base, text.lower(), ) ), **options, ) return [node], [] if docutils_is_available: docutils.parsers.rst.roles.register_canonical_role( "cmsreference", default_reference_role ) for name, urlbase in ROLES.items(): create_reference_role(name, urlbase) # Match the beginning of a named, unnamed, or non-capturing groups. named_group_matcher = _lazy_re_compile(r"\(\?P(<\w+>)") unnamed_group_matcher = _lazy_re_compile(r"\(") non_capturing_group_matcher = _lazy_re_compile(r"\(\?\:") def replace_metacharacters(pattern): """Remove unescaped metacharacters from the pattern.""" return re.sub( r"((?:^|(?<!\\))(?:\\\\)*)(\\?)([?*+^$]|\\[bBAZ])", lambda m: m[1] + m[3] if m[2] else m[1], pattern, ) def _get_group_start_end(start, end, pattern): # Handle nested parentheses, e.g. '^(?P<a>(x|y))/b' or '^b/((x|y)\w+)$'. unmatched_open_brackets, prev_char = 1, None for idx, val in enumerate(pattern[end:]): # Check for unescaped `(` and `)`. They mark the start and end of a # nested group. if val == "(" and prev_char != "\\": unmatched_open_brackets += 1 elif val == ")" and prev_char != "\\": unmatched_open_brackets -= 1 prev_char = val # If brackets are balanced, the end of the string for the current named # capture group pattern has been reached. if unmatched_open_brackets == 0: return start, end + idx + 1 def _find_groups(pattern, group_matcher): prev_end = None for match in group_matcher.finditer(pattern): if indices := _get_group_start_end(match.start(0), match.end(0), pattern): start, end = indices if prev_end and start > prev_end or not prev_end: yield start, end, match prev_end = end def replace_named_groups(pattern): r""" Find named groups in `pattern` and replace them with the group name. E.g., 1. ^(?P<a>\w+)/b/(\w+)$ ==> ^<a>/b/(\w+)$ 2. ^(?P<a>\w+)/b/(?P<c>\w+)/$ ==> ^<a>/b/<c>/$ 3. ^(?P<a>\w+)/b/(\w+) ==> ^<a>/b/(\w+) 4. ^(?P<a>\w+)/b/(?P<c>\w+) ==> ^<a>/b/<c> """ group_pattern_and_name = [ (pattern[start:end], match[1]) for start, end, match in _find_groups(pattern, named_group_matcher) ] for group_pattern, group_name in group_pattern_and_name: pattern = pattern.replace(group_pattern, group_name) return pattern def replace_unnamed_groups(pattern): r""" Find unnamed groups in `pattern` and replace them with '<var>'. E.g., 1. ^(?P<a>\w+)/b/(\w+)$ ==> ^(?P<a>\w+)/b/<var>$ 2. ^(?P<a>\w+)/b/((x|y)\w+)$ ==> ^(?P<a>\w+)/b/<var>$ 3. ^(?P<a>\w+)/b/(\w+) ==> ^(?P<a>\w+)/b/<var> 4. ^(?P<a>\w+)/b/((x|y)\w+) ==> ^(?P<a>\w+)/b/<var> """ final_pattern, prev_end = "", None for start, end, _ in _find_groups(pattern, unnamed_group_matcher): if prev_end: final_pattern += pattern[prev_end:start] final_pattern += pattern[:start] + "<var>" prev_end = end return final_pattern + pattern[prev_end:] def remove_non_capturing_groups(pattern): r""" Find non-capturing groups in the given `pattern` and remove them, e.g. 1. (?P<a>\w+)/b/(?:\w+)c(?:\w+) => (?P<a>\\w+)/b/c 2. ^(?:\w+(?:\w+))a => ^a 3. ^a(?:\w+)/b(?:\w+) => ^a/b """ group_start_end_indices = _find_groups(pattern, non_capturing_group_matcher) final_pattern, prev_end = "", None for start, end, _ in group_start_end_indices: final_pattern += pattern[prev_end:start] prev_end = end return final_pattern + pattern[prev_end:]
429723.py
[ "CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')" ]
""" This module contains the spatial lookup types, and the `get_geo_where_clause` routine for Oracle Spatial. Please note that WKT support is broken on the XE version, and thus this backend will not work on such platforms. Specifically, XE lacks support for an internal JVM, and Java libraries are required to use the WKT constructors. """ import re from django.contrib.gis.db import models from django.contrib.gis.db.backends.base.operations import BaseSpatialOperations from django.contrib.gis.db.backends.oracle.adapter import OracleSpatialAdapter from django.contrib.gis.db.backends.utils import SpatialOperator from django.contrib.gis.geos.geometry import GEOSGeometry, GEOSGeometryBase from django.contrib.gis.geos.prototypes.io import wkb_r from django.contrib.gis.measure import Distance from django.db.backends.oracle.operations import DatabaseOperations DEFAULT_TOLERANCE = "0.05" class SDOOperator(SpatialOperator): sql_template = "%(func)s(%(lhs)s, %(rhs)s) = 'TRUE'" class SDODWithin(SpatialOperator): sql_template = "SDO_WITHIN_DISTANCE(%(lhs)s, %(rhs)s, %%s) = 'TRUE'" class SDODisjoint(SpatialOperator): sql_template = ( "SDO_GEOM.RELATE(%%(lhs)s, 'DISJOINT', %%(rhs)s, %s) = 'DISJOINT'" % DEFAULT_TOLERANCE ) class SDORelate(SpatialOperator): sql_template = "SDO_RELATE(%(lhs)s, %(rhs)s, 'mask=%(mask)s') = 'TRUE'" def check_relate_argument(self, arg): masks = ( "TOUCH|OVERLAPBDYDISJOINT|OVERLAPBDYINTERSECT|EQUAL|INSIDE|COVEREDBY|" "CONTAINS|COVERS|ANYINTERACT|ON" ) mask_regex = re.compile(r"^(%s)(\+(%s))*$" % (masks, masks), re.I) if not isinstance(arg, str) or not mask_regex.match(arg): raise ValueError('Invalid SDO_RELATE mask: "%s"' % arg) def as_sql(self, connection, lookup, template_params, sql_params): template_params["mask"] = sql_params[-1] return super().as_sql(connection, lookup, template_params, sql_params[:-1]) class OracleOperations(BaseSpatialOperations, DatabaseOperations): name = "oracle" oracle = True disallowed_aggregates = (models.Collect, models.Extent3D, models.MakeLine) Adapter = OracleSpatialAdapter extent = "SDO_AGGR_MBR" unionagg = "SDO_AGGR_UNION" from_text = "SDO_GEOMETRY" function_names = { "Area": "SDO_GEOM.SDO_AREA", "AsGeoJSON": "SDO_UTIL.TO_GEOJSON", "AsWKB": "SDO_UTIL.TO_WKBGEOMETRY", "AsWKT": "SDO_UTIL.TO_WKTGEOMETRY", "BoundingCircle": "SDO_GEOM.SDO_MBC", "Centroid": "SDO_GEOM.SDO_CENTROID", "Difference": "SDO_GEOM.SDO_DIFFERENCE", "Distance": "SDO_GEOM.SDO_DISTANCE", "Envelope": "SDO_GEOM_MBR", "FromWKB": "SDO_UTIL.FROM_WKBGEOMETRY", "FromWKT": "SDO_UTIL.FROM_WKTGEOMETRY", "Intersection": "SDO_GEOM.SDO_INTERSECTION", "IsValid": "SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT", "Length": "SDO_GEOM.SDO_LENGTH", "NumGeometries": "SDO_UTIL.GETNUMELEM", "NumPoints": "SDO_UTIL.GETNUMVERTICES", "Perimeter": "SDO_GEOM.SDO_LENGTH", "PointOnSurface": "SDO_GEOM.SDO_POINTONSURFACE", "Reverse": "SDO_UTIL.REVERSE_LINESTRING", "SymDifference": "SDO_GEOM.SDO_XOR", "Transform": "SDO_CS.TRANSFORM", "Union": "SDO_GEOM.SDO_UNION", } # We want to get SDO Geometries as WKT because it is much easier to # instantiate GEOS proxies from WKT than SDO_GEOMETRY(...) strings. # However, this adversely affects performance (i.e., Java is called # to convert to WKT on every query). If someone wishes to write a # SDO_GEOMETRY(...) parser in Python, let me know =) select = "SDO_UTIL.TO_WKBGEOMETRY(%s)" gis_operators = { "contains": SDOOperator(func="SDO_CONTAINS"), "coveredby": SDOOperator(func="SDO_COVEREDBY"), "covers": SDOOperator(func="SDO_COVERS"), "disjoint": SDODisjoint(), "intersects": SDOOperator( func="SDO_OVERLAPBDYINTERSECT" ), # TODO: Is this really the same as ST_Intersects()? "equals": SDOOperator(func="SDO_EQUAL"), "exact": SDOOperator(func="SDO_EQUAL"), "overlaps": SDOOperator(func="SDO_OVERLAPS"), "same_as": SDOOperator(func="SDO_EQUAL"), # Oracle uses a different syntax, e.g., 'mask=inside+touch' "relate": SDORelate(), "touches": SDOOperator(func="SDO_TOUCH"), "within": SDOOperator(func="SDO_INSIDE"), "dwithin": SDODWithin(), } unsupported_functions = { "AsKML", "AsSVG", "Azimuth", "ClosestPoint", "ForcePolygonCW", "GeoHash", "GeometryDistance", "IsEmpty", "LineLocatePoint", "MakeValid", "MemSize", "Scale", "SnapToGrid", "Translate", } def geo_quote_name(self, name): return super().geo_quote_name(name).upper() def convert_extent(self, clob): if clob: # Generally, Oracle returns a polygon for the extent -- however, # it can return a single point if there's only one Point in the # table. ext_geom = GEOSGeometry(memoryview(clob.read())) gtype = str(ext_geom.geom_type) if gtype == "Polygon": # Construct the 4-tuple from the coordinates in the polygon. shell = ext_geom.shell ll, ur = shell[0][:2], shell[2][:2] elif gtype == "Point": ll = ext_geom.coords[:2] ur = ll else: raise Exception( "Unexpected geometry type returned for extent: %s" % gtype ) xmin, ymin = ll xmax, ymax = ur return (xmin, ymin, xmax, ymax) else: return None def geo_db_type(self, f): """ Return the geometry database type for Oracle. Unlike other spatial backends, no stored procedure is necessary and it's the same for all geometry types. """ return "MDSYS.SDO_GEOMETRY" def get_distance(self, f, value, lookup_type): """ Return the distance parameters given the value and the lookup type. On Oracle, geometry columns with a geodetic coordinate system behave implicitly like a geography column, and thus meters will be used as the distance parameter on them. """ if not value: return [] value = value[0] if isinstance(value, Distance): if f.geodetic(self.connection): dist_param = value.m else: dist_param = getattr( value, Distance.unit_attname(f.units_name(self.connection)) ) else: dist_param = value # dwithin lookups on Oracle require a special string parameter # that starts with "distance=". if lookup_type == "dwithin": dist_param = "distance=%s" % dist_param return [dist_param] def get_geom_placeholder(self, f, value, compiler): if value is None: return "NULL" return super().get_geom_placeholder(f, value, compiler) def spatial_aggregate_name(self, agg_name): """ Return the spatial aggregate SQL name. """ agg_name = "unionagg" if agg_name.lower() == "union" else agg_name.lower() return getattr(self, agg_name) # Routines for getting the OGC-compliant models. def geometry_columns(self): from django.contrib.gis.db.backends.oracle.models import OracleGeometryColumns return OracleGeometryColumns def spatial_ref_sys(self): from django.contrib.gis.db.backends.oracle.models import OracleSpatialRefSys return OracleSpatialRefSys def modify_insert_params(self, placeholder, params): """Drop out insert parameters for NULL placeholder. Needed for Oracle Spatial backend due to #10888. """ if placeholder == "NULL": return [] return super().modify_insert_params(placeholder, params) def get_geometry_converter(self, expression): read = wkb_r().read srid = expression.output_field.srid if srid == -1: srid = None geom_class = expression.output_field.geom_class def converter(value, expression, connection): if value is not None: geom = GEOSGeometryBase(read(memoryview(value.read())), geom_class) if srid: geom.srid = srid return geom return converter def get_area_att_for_field(self, field): return "sq_m"
783587.py
[ "CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')" ]

SOTA fine-tuning by OpenAI

OpenAI used the synth-vuln-fixes and fine-tuned a new version of gpt-4o is now the SOTA on this benchmark. More details and code is available from their repo.

graph

More details on the benchmark are available in our blog.

New Version of Static Analysis Eval (Aug 20, 2024)

We have created a new version of the benchmark with instances that are harder than the previous one. There has been a lot of progress in models over the last year as a result the previous version of the benchmark was saturated. The methodology is the same, we have also released the dataset generation script which scans the top 100 Python projects to generate the instances. You can see it here. The same eval script works as before. You do not need to login to Semgrep anymore as we only use their OSS rules for this version of the benchmark.

The highest score a model can get on this benchmark is 100%, you can see the oracle run logs here.

New Evaluation

Model Score Logs
o1-mini-2024-09-12 51.33 link
gpt-4o-mini 52.21 link
gpt-4o-mini + 3-shot prompt 53.10 link
gpt-4o-mini + rag (embedding & reranking) 58.41 link
gpt-4o-mini + fine-tuned with synth-vuln-fixes 53.98 link
Model Score Logs
gpt-4o 53.10 link
gpt-4o + 3-shot prompt 53.98 link
gpt-4o + rag (embedding & reranking) 56.64 link
gpt-4o + fine-tuned with synth-vuln-fixes 61.06 link

Mixture of Agents (MOA)

We also benchmarked gpt-4o with Patched MOA. This demostrates that an inference optimization technique like MOA can improve performance without fine-tuning.

Model Score Logs
moa-gpt-4o 53.98 link
moa-gpt-4o + 3-shot prompt 60.18 link
moa-gpt-4o + rag (embedding & reranking) 61.06 link

Static Analysis Eval Benchmark

A dataset of 76 Python programs taken from real Python open source projects (top 100 on GitHub), where each program is a file that has exactly 1 vulnerability as detected by a particular static analyzer (Semgrep).

You can run the _script_for_eval.py script to check the results.

python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python _script_for_eval.py

For all supported options, run with --help:

usage: _script_for_eval.py  [-h] [--model MODEL] [--cache] [--n_shot N_SHOT] [--use_similarity] [--oracle]

Run Static Analysis Evaluation

options:
  -h, --help        show this help message and exit
  --model MODEL     OpenAI model to use
  --cache           Enable caching of results
  --n_shot N_SHOT   Number of examples to use for few-shot learning
  --use_similarity  Use similarity for fetching dataset examples
  --oracle          Run in oracle mode (assume all vulnerabilities are fixed)

We need to use the logged in version of Semgrep to get access to more rules for vulnerability detection. So, make sure you login before running the eval script.

% semgrep login
API token already exists in /Users/user/.semgrep/settings.yml. To login with a different token logout use `semgrep logout`

After the run, the script will also create a log file which captures the stats for the run and the files that were fixed. You can see an example here. Due to the recent versions of Semgrep not detecting a few of the samples in the dataset as vulnerable anymore, the maximum score possible on the benchmark is 77.63%. You can see the oracle run log here.

Evaluation

We did some detailed evaluations recently (19/08/2024):

Model Score Logs
gpt-4o-mini 67.11 link
gpt-4o-mini + 3-shot prompt 71.05 link
gpt-4o-mini + rag (embedding & reranking) 72.37 link
gpt-4o-mini + fine-tuned with synth-vuln-fixes 77.63 link
Model Score Logs
gpt-4o 68.42 link
gpt-4o + 3-shot prompt 77.63 link
gpt-4o + rag (embedding & reranking) 77.63 link
gpt-4o + fine-tuned with synth-vuln-fixes 77.63 link

Leaderboard

The top models on the leaderboard are all fine-tuned using the same dataset that we released called synth vuln fixes. You can read about our experience with fine-tuning them on our blog. You can also explore the leaderboard with this interactive visualization. Visualization of the leaderboard

Model StaticAnalysisEval (%) Time (mins) Price (USD)
gpt-4o-mini-fine-tuned 77.63 21:0 0.21
gemini-1.5-flash-fine-tuned 73.68 18:0
Llama-3.1-8B-Instruct-fine-tuned 69.74 23:0
gpt-4o 69.74 24:0 0.12
gpt-4o-mini 68.42 20:0 0.07
gemini-1.5-flash-latest 68.42 18:2 0.07
Llama-3.1-405B-Instruct 65.78 40:12
Llama-3-70B-instruct 65.78 35:2
Llama-3-8B-instruct 65.78 31.34
gemini-1.5-pro-latest 64.47 34:40
gpt-4-1106-preview 64.47 27:56 3.04
gpt-4 63.16 26:31 6.84
claude-3-5-sonnet-20240620 59.21 23:59 0.70
moa-gpt-3.5-turbo-0125 53.95 49:26
gpt-4-0125-preview 53.94 34:40
patched-coder-7b 51.31 45.20
patched-coder-34b 46.05 33:58 0.87
patched-mix-4x7b 46.05 60:00+ 0.80
Mistral-Large 40.80 60:00+
Gemini-pro 39.47 16:09 0.23
Mistral-Medium 39.47 60:00+ 0.80
Mixtral-Small 30.26 30:09
gpt-3.5-turbo-0125 28.95 21:50
claude-3-opus-20240229 25.00 60:00+
Llama-3-8B-instruct.Q4_K_M 21.05 60:00+
Gemma-7b-it 19.73 36:40
gpt-3.5-turbo-1106 17.11 13:00 0.23
Codellama-70b-Instruct 10.53 30.32
CodeLlama-34b-Instruct 7.89 23:16

The price is calcualted by assuming 1000 input and output tokens per call as all examples in the dataset are < 512 tokens (OpenAI cl100k_base tokenizer).

Some models timed out during the run or had intermittent API errors. We try each example 3 times in such cases. This is why some runs are reported to be longer than 1 hr (60:00+ mins).

If you want to add your model to the leaderboard, you can send in a PR to this repo with the log file from the evaluation run.

Downloads last month
373

Models trained or fine-tuned on patched-codes/static-analysis-eval