file_path
stringlengths 20
202
| content
stringlengths 9
3.85M
| size
int64 9
3.85M
| lang
stringclasses 9
values | avg_line_length
float64 3.33
100
| max_line_length
int64 8
993
| alphanum_fraction
float64 0.26
0.93
|
---|---|---|---|---|---|---|
cadop/HumanGenerator/exts/siborg.create.human/config/extension.toml | [package]
# Semantic Versionning is used: https://semver.org/
version = "0.0.2"
preview_image = "data/preview.png"
# Icon is shown in Extensions window, it is recommended to be square, of size 256x256.
icon = "data/icon.png"
# The title and description fields are primarily for displaying extension info in UI
title = "HumanGenerator"
description="Human Generator for Omniverse. Create and customize humans in your Omniverse scenes."
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# URL of the extension source repository.
repository = ""
# One of categories for UI.
category = "Services"
feature = true
# Keywords for the extension
keywords = ["kit", "makehuman","human","character","generator","person"]
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
"omni.usd" = {}
"omni.anim.skelJoint" = {}
"omni.kit.browser.core" = {}
"omni.kit.browser.folder.core" = {}
# Main python module this extension provides, it will be publicly available as "import omni.hello.world".
[[python.module]]
name = "siborg.create.human"
[settings]
exts."siborg.create.human.browser.asset".instanceable = []
exts."siborg.create.human.browser.asset".timeout = 10
[python.pipapi]
use_online_index = true
# Use this to specify a list of additional repositories if your pip package is hosted somewhere other
# than the default repo(s) configured in pip. Will pass these to pip with "--extra-index-url" argument
repositories = ["https://test.pypi.org/simple/"]
requirements = ["makehuman==1.2.2"] | 1,558 | TOML | 28.980769 | 105 | 0.734275 |
cadop/HumanGenerator/exts/siborg.create.human/docs/README.md | # Overview
HumanGenerator generates parametric, rigged, outfitted humans in NVIDIA Omniverse.
This project relies on the Makehuman project from https://github.com/makehumancommunity/makehuman.
# Getting Started
The easiest way to get started is using Omniverse Create. Navigate to the Extensions window and click on "Community". Search for `HumanGenerator` and you should see our extension show up.
The extension may take a few minutes to install as it will download makehuman and install it in the Omniverse's local Python instance.
For use, check out the walkthrough video on Github.
## License
*Our license restrictions are due to the AGPL of MakeHuman. In line with the statements from MakeHuman, the targets and resulting characters are CC0, meaning you can use whatever you create for free, without restrictions. It is only the codebase that is AGPL.
| 871 | Markdown | 44.894734 | 259 | 0.797933 |
cadop/crowds/README.md |
![preview](https://user-images.githubusercontent.com/11399119/226725400-fa9054e3-a13f-4a9f-8294-d08cbee51519.PNG)
This repository is for the omniverse extension for crowd simulation. If you are looking for a project that can be run without omniverse, checkout [Python-only crowd simulation](https://github.com/cadop/warpcrowd)
A crowd simulator API with a default demo scene. The main python API can be used in a few ways. There is an examples folder showing a few use-cases. Users can also switch between social forces and PAM as the crowds algorithm.
The extension will load an populate some demo configuration. It will create an Xform called CrowdGoals. To add a goal for the crowd. Create an xform under the "CrowdGoals". We automatically check for those prims as the method of determing crowd goals. For every additional xform under CrowdGoals, we evenly split the crowd to assign those goals.
There are two options for the crowd objects. The default uses geompoints, which is faster and runs its own integration of the forces for position and velocity. It does not interact with any physics in the scene. Alternatively the "Rigid Body" can be used, which creates physical spheres that interact with the scene.
Press Play to see the crowd.
The default number of demo agents is a 3x3 grid (9 agents). The current simulator in python may struggle above 25 agents, depending on CPU configuration.
We plan to support more methods in the future, as well as more crowd simulators. Contributions are welcome.
| 1,525 | Markdown | 88.764701 | 348 | 0.796066 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/simulator.py | import numpy as np
from numpy import random
from omni.physx import get_physx_interface
import omni
import carb
from pxr import UsdGeom, Gf, Sdf, UsdShade
import warp as wp
import copy
import usdrt
from siborg.simulate.crowd.crowds import CrowdConfig
from siborg.simulate.crowd.models import socialforces
from siborg.simulate.crowd.models import pam
wp.init()
from siborg.simulate.crowd.models import socialforces_warp as crowd_force
class Simulator(CrowdConfig):
def __init__(self, world=None):
super().__init__()
self.world = world
# a default dt that is surely overwritten later
self._dt = 1/60.0
# set radius
self.radius = 0.7
self.radius_min = 0.5
self.radius_max = 1.0
# A subscription to the physics simulation, used when this class
# is asked to manage the updates
self._simulation_event = None
# Will use a physics scene
self.rigidbody = False
self.use_pam = False
self.on_gpu = False
self.use_instancer = False
self.add_jane = False
self.use_heading = False
# Tracks if user wants to update agent position on each sim step
self.update_agents_sim = False
self.update_viz = False
self.instancer_paths = ["/World/PointInstancer_Bob", "/World/PointInstancer_Jane"]
self.point_instancer_sets = []
self.agent_instance_path_bob = '/World/Scope/CrowdBob'
self.agent_instance_path_jane = '/World/Scope/CrowdJane'
self.instance_forward_vec = (1.0,0.0,0.0) # TODO get from instance object
self.instance_up_vec = (0.0,1.0,0.0) # TODO Fix to be flexible later
self.vel_epsilon = 0.05
self._get_world_up()
def _get_world_up(self):
stage = omni.usd.get_context().get_stage()
up = UsdGeom.GetStageUpAxis(stage)
if up =='X': self.world_up = 0
if up =='Y': self.world_up = 1
if up =='Z': self.world_up = 2
return
def register_simulation(self):
self._callbacks()
# we need to update the agents, otherwise won't see these results
self.update_agents_sim = True
self.update_viz = True
def _callbacks(self):
self._simulation_event = get_physx_interface(
).subscribe_physics_step_events(
self._on_simulation_update)
def _unregister(self):
try:
self._simulation_event.unsubscribe()
except:
self._simulation_event = None
def _on_simulation_update(self, dt):
if self.agent_bodies is None:
return
self._dt = dt
self.run()
def set_xform_goal(self, p):
'''set the goal based on a subscribed xform
Example of usage
watcher = omni.usd.get_watcher()
self._goal_subscriber = watcher.subscribe_to_change_info_path(
Sdf.Path('/World/Goal.xformOp:translate'),
self.Sim.set_xform_goal)
Parameters
----------
p : str(prim path)
a subscribed path
'''
stage = omni.usd.get_context().get_stage()
prim = stage.GetPrimAtPath(str(p).split('.')[0])
goal_point = omni.usd.utils.get_world_transform_matrix(prim).ExtractTranslation()
# Set agent destination
self.goals = np.asarray([goal_point for x in range(self.nagents)])
def integrate(self, x, v, f, dt):
''' take position, velocity, force, and dt to compute updated position and velocity '''
v1 = v + ( (f * 1.0) * dt ) # new velocity
x1 = x + (v1 * dt) # new position
return x1, v1
def update_goals(self, new_goal):
'''update the goals of agents
Parameters
----------
new_goal : ndarray([x,y,z])
can either be one goal that is applied to all agents, or a list of
the same size as number of agents
'''
if len(new_goal) == 1:
self.goals = np.asarray([new_goal for x in range(self.nagents)])
else:
self.goals = new_goal
def compute_step(self, agent):
# Set the model to PAM if asked
if self.use_pam: model = pam
else: model = socialforces
# Get the neighbors of this agent to use in computing forces
pn = model.get_neighbors(self.agents_pos[agent],
self.agents_pos,
self.agents_percept[agent])[1]
_force = model.compute_force(self.agents_pos[agent],
self.agents_radi[agent],
self.agents_vel[agent],
self.agents_mass[agent],
self.goals[agent],
self.agents_pos[pn],
self.agents_vel[pn],
self.agents_radi[pn],
self._dt)
return _force
def run(self):
'''Runs the simulation for one step
Updates agent positions and velocities if instance flag is true
Returns
-------
ndarray[x,y,z] forces
'''
self.force_list = []
for agent in range(self.nagents):
_force = self.compute_step(agent)
# remove world (up) forces
_force[self.world_up] = 0
# Store all forces to be applied to agents
self.force_list.append(_force)
self.step_processing()
def step_processing(self):
'''Process the computed step for simulation
Returns
-------
_type_
_description_
'''
# only update agent positions if user requests, otherwise they might want to
# update using forces themselves
if self.update_agents_sim:
# If using rigid body, apply forces to agents
if self.rigidbody:
self.apply_force(self.force_list)
else:
self.internal_integration()
if self.use_instancer:
self.set_instance_agents()
else:
self.set_geompoints()
def internal_integration(self):
# Integrate for new position
for i in range(self.nagents):
self.agents_pos[i], self.agents_vel[i] = self.integrate(self.agents_pos[i],
self.agents_vel[i],
self.force_list[i],
self._dt)
def apply_force(self, force_list):
'''Used for when rigidbody agents are used
Parameters
----------
force_list : List[x,y,z]
list of forces in order of the agents
'''
# Apply forces to simulation
# with Sdf.ChangeBlock():
# for idx, force in enumerate(force_list):
# self._add_force(force, self.agent_bodies[idx], self.agent_bodies[idx].position)
self._add_force3(force_list, self.agent_bodies)
# Update positions and velocities
for i in range(self.nagents):
self.agents_pos[i] = self.agent_bodies[i].position
self.agents_vel[i] = self.agent_bodies[i].velocity
def _add_force(self, force, rigid_body, position):
force = carb.Float3(force)
position = carb.Float3(position)
get_physx_interface().apply_force_at_pos(rigid_body.skinMeshPath, force, position)
def _add_force2(self, force, rigid_body, position):
# force = Gf.Vec3d(force)
_ = force[0]
force = Gf.Vec3d(float(force[0]), float(force[1]),float(force[2]))
rigid_body.forceAttr.Set(force) #position
def _add_force3(self, force_list, rigid_body):
# force = Gf.Vec3d(force)
# stage = usdrt.Usd.Stage.Attach(omni.usd.get_context().get_stage_id())
# # prim = stage.GetPrimAtPath("/World/boxActor")
# attr = prim.CreateAttribute("_worldForce", usdrt.Sdf.ValueTypeNames.Float3, True)
# if attr:
# attr.Set(usdrt.Gf.Vec3f(50000.0, 0.0, 0.0))
# prefixes = set(prefix for path in paths for prefix in path.GetPrefixes())
# with Sdf.ChangeBlock():
# for path in prefixes:
# prim_spec = Sdf.CreatePrimInLayer(layer, path)
# prim_spec.specifier = Sdf.SpecifierDef
# prim_spec.typeName = UsdGeom.Xform.__name__
for idx, body in enumerate(rigid_body):
force = force_list[idx]
force = usdrt.Gf.Vec3d(float(force[0]), float(force[1]),float(force[2]))
# body.forceAttr.Set(force) #position
if body.world_force_attr:
body.world_force_attr.Set(force)
def create_geompoints(self, stage_path=None, color=None):
'''create and manage geompoints representing agents
Parameters
----------
stage_path : str, optional
if not set, will use /World/Points, by default None
color : (r,g,b), optional
if not set, will make color red, by default None
'''
if stage_path: stage_loc = stage_path
else: stage_loc = "/World/Points"
self.stage = omni.usd.get_context().get_stage()
self.agent_point_prim = UsdGeom.Points.Define(self.stage, stage_loc)
self.agent_point_prim.CreatePointsAttr()
width_attr = self.agent_point_prim.CreateWidthsAttr()
width_attr.Set(self.agents_radi)
# width_attr.Set([1 for x in range(self.nagents)])
self.agent_point_prim.CreateDisplayColorAttr()
# For RTX renderers, this only works for UsdGeom.Tokens.constant
color_primvar = self.agent_point_prim.CreateDisplayColorPrimvar(UsdGeom.Tokens.constant)
if color: point_color = color
else: point_color = (1,0,0)
color_primvar.Set([point_color])
def set_geompoints(self):
# Set the position with an offset based on the radius
# Since it is a sphere, we
render_pos = np.copy(self.agents_pos)
render_pos[:,1] += (self.agents_radi/2)
self.agent_point_prim.GetPointsAttr().Set(render_pos)
def create_instance_agents(self):
if self.add_jane:
bob_size = int(self.nagents/2)
bob_pos = self.agents_pos[:bob_size]
point_instancer = self._single_agent_instance(bob_pos, bob_size, self.agent_instance_path_bob, self.instancer_paths[0])
self.point_instancer_sets.append(point_instancer)
# TODO find way to split colors of instances
jane_size = int(self.nagents/2)
jane_pos = self.agents_pos[bob_size:]
point_instancer = self._single_agent_instance(jane_pos, jane_size , self.agent_instance_path_jane, self.instancer_paths[1])
self.point_instancer_sets.append(point_instancer)
else:
point_instancer = self._single_agent_instance(self.agents_pos, self.nagents, self.agent_instance_path_bob, self.instancer_paths[0])
self.point_instancer_sets.append(point_instancer)
def _single_agent_instance(self, agent_pos, nagents, agent_instance_path, instance_path):
stage = omni.usd.get_context().get_stage()
point_instancer = UsdGeom.PointInstancer.Get(stage, instance_path)
if not point_instancer:
point_instancer = UsdGeom.PointInstancer(stage.DefinePrim(instance_path, "PointInstancer"))
point_instancer.CreatePrototypesRel().SetTargets([agent_instance_path])
self.proto_indices_attr = point_instancer.CreateProtoIndicesAttr()
self.proto_indices_attr.Set([0] * nagents)
## max radius is scale of 1
agent_scales = self.agents_radi/self.radius_max
self.agent_instancer_scales = [(x,x,x) for x in agent_scales] # change to numpy
# Set scale
point_instancer.GetScalesAttr().Set(self.agent_instancer_scales)
point_instancer.GetPositionsAttr().Set(agent_pos)
# Set orientation
rot = Gf.Rotation()
rot.SetRotateInto(self.instance_forward_vec, self.instance_forward_vec)
self.agent_headings = [Gf.Quath(rot.GetQuat()) for x in range(nagents)]
point_instancer.GetOrientationsAttr().Set(self.agent_headings)
return point_instancer
def set_instance_agents(self):
# update the points
# self.point_instancer.CreatePrototypesRel().SetTargets([self.agent_instance_path])
# self.proto_indices_attr = self.point_instancer.CreateProtoIndicesAttr()
# self.proto_indices_attr.Set([0] * self.nagents)
for idx, point_instancer in enumerate(self.point_instancer_sets):
if len(self.point_instancer_sets) == 1:
agents_pos = self.agents_pos
else:
_slice = int(self.nagents/2)
if idx == 0:
# Positions for this instance
agents_pos = self.agents_pos[:_slice]
else:
# Positions for this instance
agents_pos = self.agents_pos[_slice:]
# Set position
point_instancer.GetPositionsAttr().Set(agents_pos)
if not self.use_heading: continue
self.set_heading()
def set_heading(self):
for idx, point_instancer in enumerate(self.point_instancer_sets):
if len(self.point_instancer_sets) == 1:
agents_vel = self.agents_vel
nagents = self.nagents
else:
_slice = int(self.nagents/2)
nagents = _slice
if idx == 0:
# Velocities for this instance
agents_vel = self.agents_vel[:_slice]
else:
# Velocities for this instance
agents_vel = self.agents_vel[_slice:]
# Create array of agent headings based on velocity
normalize_vel = agents_vel
rot = Gf.Rotation()
self.agent_headings = []
cur_orient = point_instancer.GetOrientationsAttr().Get()
for i in range(0, nagents):
if np.sqrt(normalize_vel[i].dot(normalize_vel[i])) < self.vel_epsilon:
tovec = cur_orient[i]
self.agent_headings.append(cur_orient[i])
else:
tovec = Gf.Vec3d(tuple(normalize_vel[i]))
rot.SetRotateInto(self.instance_forward_vec, tovec)
self.agent_headings.append(Gf.Quath(rot.GetQuat()))
# Set orientation
point_instancer.GetOrientationsAttr().Set(self.agent_headings)
return
#### Change colors
stage = omni.usd.get_context().get_stage()
# get path of material
mat_path = '/CrowdBob/Looks/Linen_Blue'
linen_mat = Sdf.Path(f'/World/Scope{mat_path}')
mat_prim = stage.GetPrimAtPath(linen_mat)
# print(mat_prim)
# shader_path = '/Shader.inputs:diffuse_tint'
# tint_shader = f'/World{mat_path}{shader_path}'
shader = omni.usd.get_shader_from_material(mat_prim)
# print(shader)
#inp = shader.GetInput('diffuse_tint').Get()
inp = shader.GetInput('diffuse_tint').Set((0.5,0.5,1.0))
class WarpCrowd(Simulator):
'''A class to manage the warp-based version of crowd simulation
'''
def __init__(self, world=None):
super().__init__(world)
self.device = 'cuda:0'
# generate n number of agents
self.nagents = 9
# set radius
self.radius = 0.7
self.radius_min = 0.5
self.radius_max = 1.0
self.hash_radius = 0.7 # Radius to use for hashgrid
# set mass
self.mass = 20
# set pereption radius
self.perception_radius = 6
# self.dt = 1.0/30.0
self.goal = [0.0,0.0,0.0]
self.generation_origin = [10,10.0,0.0]
self.inv_up = wp.vec3(1.0,1.0,1.0) # z-up
self.inv_up[self.world_up] = 0.0
self.on_gpu = True
def demo_agents(self, s=1.6, m=50, n=50):
o = self.generation_origin
# Initialize agents in a grid for testing
self.agents_pos = np.asarray([
np.array([(s/2) + (x * s) +(o[0]/2) ,
(s/2) + (y * s) +(o[1]/2),
0
], dtype=np.double)
for x in range(m)
for y in range(n)
])
self.nagents = len(self.agents_pos)
self.configure_params()
def configure_params(self):
'''Convert all parameters to warp
'''
self.agents_pos = np.asarray(self.agents_pos)
# self.agents_pos = np.asarray([np.array([0,0,0], dtype=float) for x in range(self.nagents)])
self.agents_vel = np.asarray([np.array([0,0,0], dtype=float) for x in range(self.nagents)])
# # Set a quath for heading
# rot = Gf.Rotation()
# rot.SetRotateInto(self.instance_forward_vec, self.instance_forward_vec) # from, to
# _hquat = Gf.Quath(rot.GetQuat())
# # Get rotation between agent forward direction
self.agents_hdir = np.asarray([np.array([0,0,0,1], dtype=float) for x in range(self.nagents)])
self.force_list = np.asarray([np.array([0,0,0], dtype=float) for x in range(self.nagents)])
self.agents_radi = np.random.uniform(self.radius_min, self.radius_max, self.nagents)
self.agents_mass = [self.mass for x in range(self.nagents)]
self.agents_percept = np.asarray([self.perception_radius for x in range(self.nagents)])
self.agents_goal = np.asarray([np.array(self.goal, dtype=float) for x in range(self.nagents)])
self.agent_force_wp = wp.zeros(shape=self.nagents,device=self.device, dtype=wp.vec3)
self.agents_pos_wp = wp.array(self.agents_pos, device=self.device, dtype=wp.vec3)
self.agents_vel_wp = wp.array(self.agents_vel, device=self.device, dtype=wp.vec3)
self.agents_hdir_wp = wp.array(self.agents_hdir, device=self.device, dtype=wp.vec4)
self.agents_goal_wp = wp.array(self.agents_goal, device=self.device, dtype=wp.vec3)
self.agents_radi_wp = wp.array(self.agents_radi, device=self.device, dtype=float)
self.agents_mass_wp = wp.array(self.agents_mass, device=self.device, dtype=float)
self.agents_percept_wp = wp.array(self.agents_percept, device=self.device, dtype=float)
self.xnew_wp = wp.zeros_like(wp.array(self.agents_pos, device=self.device, dtype=wp.vec3))
self.vnew_wp = wp.zeros_like(wp.array(self.agents_pos, device=self.device, dtype=wp.vec3))
self.hdir_wp = wp.zeros_like(wp.array(self.agents_hdir, device=self.device, dtype=wp.vec4))
def config_hasgrid(self, nagents=None):
'''Create a hash grid based on the number of agents
Currently assumes z up
Parameters
----------
nagents : int, optional
_description_, by default None
'''
if nagents is None: nagents = self.nagents
self.grid = wp.HashGrid(dim_x=200, dim_y=200, dim_z=1, device=self.device)
# self.grid = wp.HashGrid(dim_x=nagents, dim_y=nagents, dim_z=1, device=self.device)
def config_mesh(self, points, faces):
'''Create a warp mesh object from points and faces
Parameters
----------
points : List[[x,y,z]]
A list of floating point xyz vertices of a mesh
faces : List[int]
A list of integers corresponding to vertices. Must be triangle-based
'''
# fake some points and faces if empty list was passed
if len(points) == 0:
points = [(0,0,0), (0,0,0), (0,0,0)]
faces = [[1, 2, 3]]
# print(points)
# print(faces)
# Init mesh for environment collision
self.mesh = wp.Mesh( points=wp.array(points, dtype=wp.vec3, device=self.device),
indices=wp.array(faces, dtype=int ,device=self.device)
)
def update_goals(self, new_goal):
if len(new_goal) == 1:
self.goals = np.asarray([new_goal for x in range(self.nagents)])
else:
self.goals = new_goal
self.agents_goal_wp = wp.array(self.goals, device=self.device, dtype=wp.vec3)
def run(self):
# Rebuild hashgrid given new positions
self.grid.build(points=self.agents_pos_wp, radius=self.hash_radius)
# launch kernel
wp.launch(kernel=crowd_force.get_forces,
dim=self.nagents,
inputs=[self.agents_pos_wp, self.agents_vel_wp, self.agents_goal_wp, self.agents_radi_wp,
self.agents_mass_wp, self._dt, self.agents_percept_wp, self.grid.id, self.mesh.id,
self.inv_up],
outputs=[self.agent_force_wp],
device=self.device
)
self.force_list = self.agent_force_wp.numpy()
self.step_processing()
self.agents_pos_wp = wp.array(self.agents_pos, device=self.device, dtype=wp.vec3)
self.agents_vel_wp = wp.array(self.agents_vel, device=self.device, dtype=wp.vec3)
return self.agent_force_wp
def internal_integration(self):
# Given the forces, integrate for pos and vel
wp.launch(kernel=crowd_force.integrate,
dim=self.nagents,
inputs=[self.agents_pos_wp, self.agents_vel_wp, self.agent_force_wp, self._dt],
outputs=[self.xnew_wp, self.vnew_wp],
device=self.device
)
self.agents_pos_wp = self.xnew_wp
self.agents_vel_wp = self.vnew_wp
self.agents_pos = self.agents_pos_wp.numpy()
self.agents_vel = self.agents_vel_wp.numpy()
def set_heading(self):
up = wp.vec3(0.0,1.0,0.0)
forward = wp.vec3(1.0,0.0,0.0)
wp.launch(kernel=crowd_force.heading,
dim=self.nagents,
inputs=[self.agents_vel_wp, up, forward],
outputs=[self.hdir_wp],
device=self.device
)
self.agents_hdir_wp = self.hdir_wp
self.agents_hdir = self.agents_hdir_wp.numpy()
for idx, point_instancer in enumerate(self.point_instancer_sets):
if len(self.point_instancer_sets) == 1:
agent_headings = self.agents_hdir
else:
_slice = int(self.nagents/2)
if idx == 0:
agent_headings = self.agents_hdir[:_slice]
else:
agent_headings = self.agents_hdir[_slice:]
# Set orientation
point_instancer.GetOrientationsAttr().Set(agent_headings)
| 23,588 | Python | 37.231767 | 143 | 0.558632 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/usd_utils.py | import numpy as np
from pxr import UsdGeom, Gf, Usd
import omni
def get_mesh(usd_stage, objs):
points, faces = [],[]
for obj in objs:
f_offset = len(points)
# f, p = convert_to_mesh(obj)#usd_stage.GetPrimAtPath(obj))
f, p = meshconvert(obj)#usd_stage.GetPrimAtPath(obj))
points.extend(p)
faces.extend(f+f_offset)
return points, faces
def get_all_stage_mesh(stage, start_prim):
found_meshes = []
# Traverse the scene graph and print the paths of prims, including instance proxies
for x in Usd.PrimRange(start_prim, Usd.TraverseInstanceProxies()):
if x.IsA(UsdGeom.Mesh):
found_meshes.append(x)
points, faces = get_mesh(stage, found_meshes)
return points, faces
def convert_to_mesh(prim):
''' convert a prim to BVH '''
# Get mesh name (prim name)
m = UsdGeom.Mesh(prim)
# Get verts and triangles
tris = m.GetFaceVertexIndicesAttr().Get()
tris_cnt = m.GetFaceVertexCountsAttr().Get()
verts = m.GetPointsAttr().Get()
tri_list = np.array(tris)
vert_list = np.array(verts)
xform = UsdGeom.Xformable(prim)
time = Usd.TimeCode.Default() # The time at which we compute the bounding box
world_transform: Gf.Matrix4d = xform.ComputeLocalToWorldTransform(time)
translation: Gf.Vec3d = world_transform.ExtractTranslation()
rotation: Gf.Rotation = world_transform.ExtractRotationMatrix()
# rotation: Gf.Rotation = world_transform.ExtractRotation()
scale: Gf.Vec3d = Gf.Vec3d(*(v.GetLength() for v in world_transform.ExtractRotationMatrix()))
rotation = rotation.GetOrthonormalized()
# New vertices
vert_list = np.dot((vert_list * scale ), rotation) + translation
# vert_scaled = vert_list
# vert_list[:,0] *= scale[0]
# vert_list[:,1] *= scale[1]
# vert_list[:,2] *= scale[2]
# vert_rotated = np.dot(vert_scaled, rotation) # Rotate points
# vert_translated = vert_rotated + translation
# vert_list = vert_translated
# Check if the face counts are 4, if so, reshape and turn to triangles
if tris_cnt[0] == 4:
quad_list = tri_list.reshape(-1,4)
tri_list = quad_to_tri(quad_list)
tri_list = tri_list.flatten()
return tri_list, vert_list
def quad_to_tri(a):
idx = np.flatnonzero(a[:,-1] == 0)
out0 = np.empty((a.shape[0],2,3),dtype=a.dtype)
out0[:,0,1:] = a[:,1:-1]
out0[:,1,1:] = a[:,2:]
out0[...,0] = a[:,0,None]
out0.shape = (-1,3)
mask = np.ones(out0.shape[0],dtype=bool)
mask[idx*2+1] = 0
return out0[mask]
def selected_as_mesh():
# Get the current active selection of the stage
stage = omni.usd.get_context().get_stage()
# Get the selections from the stage
_usd_context = omni.usd.get_context()
_selection = _usd_context.get_selection()
selected_paths = _selection.get_selected_prim_paths()
# Expects a list, so take first selection
prims = [stage.GetPrimAtPath(x) for x in selected_paths]
points, faces = get_mesh(stage, selected_paths)
return points, faces
def children_as_mesh(stage, parent_prim):
children = parent_prim.GetAllChildren()
children = [child.GetPrimPath() for child in children]
points, faces = get_mesh(stage, children)
return points, faces
def meshconvert(prim):
# Create an XformCache object to efficiently compute world transforms
xform_cache = UsdGeom.XformCache()
# Get the mesh schema
mesh = UsdGeom.Mesh(prim)
# Get verts and triangles
tris = mesh.GetFaceVertexIndicesAttr().Get()
if not tris:
return [], []
tris_cnt = mesh.GetFaceVertexCountsAttr().Get()
# Get the vertices in local space
points_attr = mesh.GetPointsAttr()
local_points = points_attr.Get()
# Convert the VtVec3fArray to a NumPy array
points_np = np.array(local_points, dtype=np.float64)
# Add a fourth component (with value 1.0) to make the points homogeneous
num_points = len(local_points)
ones = np.ones((num_points, 1), dtype=np.float64)
points_np = np.hstack((points_np, ones))
# Compute the world transform for this prim
world_transform = xform_cache.GetLocalToWorldTransform(prim)
# Convert the GfMatrix to a NumPy array
matrix_np = np.array(world_transform, dtype=np.float64).reshape((4, 4))
# Transform all vertices to world space using matrix multiplication
world_points = np.dot(points_np, matrix_np)
tri_list = convert_to_triangle_mesh(tris, tris_cnt)
tri_list = tri_list.flatten()
world_points = world_points[:,:3]
return tri_list, world_points
def convert_to_triangle_mesh(FaceVertexIndices, FaceVertexCounts):
"""
Convert a list of vertices and a list of faces into a triangle mesh.
A list of triangle faces, where each face is a list of indices of the vertices that form the face.
"""
# Parse the face vertex indices into individual face lists based on the face vertex counts.
faces = []
start = 0
for count in FaceVertexCounts:
end = start + count
face = FaceVertexIndices[start:end]
faces.append(face)
start = end
# Convert all faces to triangles
triangle_faces = []
for face in faces:
if len(face) < 3:
newface = [] # Invalid face
elif len(face) == 3:
newface = [face] # Already a triangle
else:
# Fan triangulation: pick the first vertex and connect it to all other vertices
v0 = face[0]
newface = [[v0, face[i], face[i + 1]] for i in range(1, len(face) - 1)]
triangle_faces.extend(newface)
return np.array(triangle_faces)
# from pxr import UsdGeom, Sdf, Usd
# import os
# def add_ext_reference(prim: Usd.Prim, ref_asset_path: str, ref_target_path: Sdf.Path) -> None:
# references: Usd.References = prim.GetReferences()
# references.AddReference(
# assetPath=ref_asset_path,
# primPath=ref_target_path # OPTIONAL: Reference a specific target prim. Otherwise, uses the referenced layer's defaultPrim.
# )
# class makescope:
# def __init__(self):
# self.stage = omni.usd.get_context().get_stage()
# scope = UsdGeom.Scope.Define(self.stage, Sdf.Path('/World/Scope'))
# ref_prim = UsdGeom.Xform.Define(self.stage, Sdf.Path('/World/Scope/CrowdJane')).GetPrim()
# dir_path = os.path.join('G:/ProjectRepos/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/data/', 'CrowdBob.usda')
# add_ext_reference(ref_prim, dir_path, Sdf.Path("<Default Prim>"))
# ms = makescope()
| 6,666 | Python | 30.154205 | 132 | 0.645665 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/extension.py | import numpy as np
import omni.ext
import omni.ui as ui
import omni.usd
from omni.physx import get_physx_interface
try:
from omni.usd import get_world_transform_matrix
except:
from omni.usd.utils import get_world_transform_matrix
from . import window
from . import simulator
from .env import Environment
from . import usd_utils
class SFsim(omni.ext.IExt):
# ext_id is current extension id. It can be used with extension manager to query
# additional information, like where this extension is located on filesystem.
def on_startup(self, ext_id):
print("[siborg.simulate.crowd] Social Forces Sim startup")
self.goal_prim_path = '/World/CrowdGoals'
self.obstacle_prim_path = '/World/Obstacles'
self.grid_size = 3
self.rigid_flag = False
self.pam_flag = False
self.gpu_flag = False
self.instancer_flag = False
self.jane_flag = False
self.heading_flag = False
self.init_scene()
self.show()
self.goal_prim_dict = {} # {Prim path, subscriber}
self._on_update_sub = None
def show(self):
self._window = ui.Window("Social Forces Demo Settings", width=500, height=250)
gui_window = window.make_window_elements(self, self._window, self.Sim)
def init_goal_prim(self, prim_path):
omni.kit.commands.execute('CreatePrimWithDefaultXform',
prim_type='Xform',
prim_path=prim_path,
attributes={},
select_new_prim=True)
def modify_goals(self, _new_goals):
if len(_new_goals) == 0: return
if self.Sim.nagents == 0: return
# Assign goals based on number of goals available
if len(_new_goals)>self.Sim.nagents:
_new_goals = _new_goals[self.Sim.nagents:]
# Get strides
self.Sim.goals = np.asarray(self.Sim.goals, dtype=object)
goal_cast = np.array_split(self.Sim.goals, len(_new_goals))
# Reassign the split arrays their new goals
for idx in range(len(goal_cast)):
goal_cast[idx][:] = _new_goals[idx]
# Reshape into xyz vector
goal_cast = np.vstack(goal_cast)
goal_cast = np.asarray(goal_cast, dtype=np.float)
# Update the simulations goals
self.Sim.update_goals(goal_cast)
def init_scene(self):
self.World = Environment()
if self.gpu_flag: self.Sim = simulator.WarpCrowd()
else: self.Sim = simulator.Simulator()
# Create the goal hierarchy
self.init_goal_prim(self.goal_prim_path)
self.init_goal_prim(self.obstacle_prim_path)
def _on_update_event(self, dt):
# Check the Goals xform path and see if there are any changes needed to the goal watchers
self.stage = omni.usd.get_context().get_stage()
parent_prim = self.stage.GetPrimAtPath(self.goal_prim_path)
children = parent_prim.GetAllChildren()
# Check if any children are gone from our dict, if so, unsubscribe their watcher
dead_kids = [kid for kid in self.goal_prim_dict.keys() if kid not in children]
for kid in dead_kids:
try: self.goal_prim_dict[kid].unsubscribe()
except: self.goal_prim_dict[kid] = None
self.goal_prim_dict.pop(kid)
# Check if there are any new children not in our dict, if so, add them as a goal and update watcher
babies = [child for child in children if child not in self.goal_prim_dict.keys()]
for baby in babies:
self.goal_prim_dict[baby] = None
# Update the goals
new_goals = []
for x in self.goal_prim_dict.keys():
_prim = x
try:
t = omni.usd.get_world_transform_matrix(_prim).ExtractTranslation()
except:
t = omni.usd.utils.get_world_transform_matrix(_prim).ExtractTranslation()
new_goals.append(t)
if len(new_goals) == 0:
return
self.modify_goals(new_goals)
def assign_meshes(self):
self.stage = omni.usd.get_context().get_stage()
# Use the meshes that are
parent_prim = self.stage.GetPrimAtPath(self.obstacle_prim_path)
# points, faces = usd_utils.children_as_mesh(self.stage, parent_prim)
points, faces = usd_utils.get_all_stage_mesh(self.stage,parent_prim)
self.Sim.config_mesh(points, faces)
def api_example(self):
self.Sim._unregister()
if self.gpu_flag:
self.Sim = simulator.WarpCrowd(self.World)
self.Sim.config_hasgrid()
self.assign_meshes()
else:
self.Sim = simulator.Simulator(self.World)
self.demo_api_call(self.Sim)
def demo_api_call(self, Sim):
# Use the builtin function for demo agents
Sim.rigidbody = self.rigid_flag
# Set origin for spawning agents
self.stage = omni.usd.get_context().get_stage()
parent_prim = self.stage.GetPrimAtPath('/World/GenerationOrigin')
Sim.generation_origin = [0,0,0]
if parent_prim:
Sim.generation_origin = get_world_transform_matrix(parent_prim).ExtractTranslation()
Sim.generation_origin[2] = Sim.generation_origin[1]
Sim.init_demo_agents(m=self.grid_size,n=self.grid_size,s=1.6)
if self.pam_flag:
Sim.use_pam = True
if self.gpu_flag:
Sim.configure_params()
if not Sim.rigidbody:
if self.jane_flag: # TODO make this work for all sim types
Sim.add_jane = True
else:
Sim.add_jane = False
if self.instancer_flag:
Sim.point_instancer_sets = []
Sim.use_instancer = True
if self.heading_flag:
Sim.use_heading = True
Sim.create_instance_agents() # Create a usdgeom point instance for easy visualization
Sim.set_instance_agents() # update the usdgeom points for visualization
else:
Sim.use_instancer = False
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
Sim.set_geompoints() # update the usdgeom points for visualization
# tell simulator to update positions after each run
Sim.update_agents_sim = True
# tell simulator to handle the update visualization
Sim.update_viz = True
# Register the simulation to updates, and the Sim will handle it from here
Sim.register_simulation()
if not self._on_update_sub:
self._on_update_sub = get_physx_interface().subscribe_physics_step_events(self._on_update_event)
def on_shutdown(self):
print("[siborg.simulate.crowd] Crowd Sim shutdown")
try: self.Sim._unregister()
except: pass
try: self._goal_subscriber.unsubscribe()
except: self._goal_subscriber = None
try: self._on_update_sub.unsubscribe()
except: self._on_update_sub = None
self.Sim._simulation_event = None
self._window = None
self.Sim = None | 7,277 | Python | 35.39 | 108 | 0.601896 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/crowds.py | import numpy as np
from siborg.simulate.crowd.agent import Agent
class CrowdConfig:
def __init__(self):
self._goal = [0,0,0]
self.goals = None
self.agent_bodies = None
self.nagents = 1
# set pereption radius
self.perception_radius = 1.5
# set radius
self.radius = .5
# set mass
self.mass = 2
# Will use a physics scene
self.rigidbody = False
# Assume z-up world
self.world_up = 2
def create_agents(self, num=None, goals=None, pos=None):
'''Creates a set of agents and goals
Uses the class instance defaults for radius, mass, perception, etc.
Parameters
----------
num : int, optional
number of agents to create (if not defined in init), by default None
goals : ndarray([x,y,z]), optional
either 1 or size equal to number of agents, by default None
pos : ndarray([x,y,z]), optional
must be same size as number of agents (otherwise will set all to origin, which is bad),
because they will explode, by default None
'''
# generate n number of agents
if num:
self.nagents = num
# Check we can assign goals to agents
if not goals:
goals = [self._goal]
if len(goals) != 1:
if len(goals) != self.nagents:
raise ValueError('If goals is not 1, must be same size as number of agents')
elif len(goals) == 1:
self.goals = np.asarray([goals[0] for x in range(self.nagents)], dtype=np.double)
else:
self.goals = goals
# Set the agent positions
if pos is not None:
self.agents_pos = np.asarray(pos, dtype=np.double)
else:
self.agents_pos = np.asarray([np.array(0,0,0, dtype=np.double) for x in range(self.nagents)])
# only create an agent instance if user wants physics-based spheres
if self.rigidbody:
self.agent_bodies = [Agent() for x in range(self.nagents)]
# move agents to their positions
for i in range(len(self.agent_bodies)):
x,y,z = self.agents_pos[i]
self.agent_bodies[i].translate(x,y,z)
else:
self.agent_bodies = [None for x in range(self.nagents)]
# set initial velocities to 0
self.agents_vel = np.asarray([np.array([0,0,0], dtype=np.double) for x in range(self.nagents)])
self.set_radius()
self.set_mass()
self.set_perception_radius()
def set_radius(self,v=None):
'''sets agents radius
Parameters
----------
v : List[float], float, optional
set the radius of the agents, if None, all agents get same radius, by default None
'''
if v:
if type(v) is float:
self.agents_radi = np.asarray([v for x in range(self.nagents)])
elif len(v) != self.nagents:
raise ValueError('Radius array must be same size as number of agents')
else:
self.agents_radi = v
else:
self.agents_radi = np.asarray([self.radius for x in range(self.nagents)])
def set_mass(self,v=None):
'''sets agents mass
Parameters
----------
v : List[float], optional
set the mass of the agents, if None, all agents get same mass, by default None
Raises
------
ValueError
if size of mass array does not match number of agents
'''
if v:
if type(v) is float:
self.agents_mass = np.asarray([v for x in range(self.nagents)])
elif len(v) != self.nagents:
raise ValueError('mass array must be same size as number of agents')
else:
self.agents_mass = v
else:
self.agents_mass = np.asarray([self.mass for x in range(self.nagents)])
def set_perception_radius(self, v=None):
'''sets agents perception radius
Parameters
----------
v : List[float], optional
set the percept radius of the agents, if None, all agents get same raidus, by default None
Raises
------
ValueError
if size of perception array does not match number of agents
'''
if v:
if type(v) is float:
self.agents_percept = np.asarray([v for x in range(self.nagents)])
elif len(v) != self.nagents:
raise ValueError('perception radius array must be same size as number of agents')
else:
self.agents_percept = v
else:
self.agents_percept = np.asarray([self.perception_radius for x in range(self.nagents)])
def init_demo_agents(self, m=5, n=5, s=1, o=[0,0,0]):
'''Create a set of demo agents
Parameters
----------
m : int, optional
number of agents in row, by default 5
n : int, optional
number of agents in col, by default 5
s : int, optional
spacing between agents, by default 1
'''
o = self.generation_origin
# Initialize agents in a grid for testing
self.agents_pos = np.asarray([
np.array([(s/2) + (x * s) +(o[0]/2) ,
(s/2) + (y * s) +(o[1]/2),
0],
dtype=np.double)
for x in range(m)
for y in range(n)
])
# # Initialize agents in a grid for testing
# self.agents_pos = np.asarray([
# np.array([(s/2) + (x * s), (s/2) + (y * s), 0], dtype=np.double)
# for x in range(m)
# for y in range(n)
# ])
self.agents_pos[:, [2, self.world_up]] = self.agents_pos[:, [self.world_up, 2]]
self.nagents = len(self.agents_pos)
####
if self.rigidbody:
self.agent_bodies = [Agent() for x in range(self.nagents)]
for i in range(len(self.agent_bodies)):
x,y,z = self.agents_pos[i]
self.agent_bodies[i].translate(x,y,z)
else:
self.agent_bodies = [None for x in range(self.nagents)]
self.goals = np.asarray([self._goal for x in range(self.nagents)], dtype=np.double)
self.agents_vel = np.asarray([np.array([0,0,0],dtype=np.double) for x in range(self.nagents)])
self.set_radius()
self.set_mass()
self.set_perception_radius()
| 6,938 | Python | 34.584615 | 105 | 0.511098 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/env.py | import omni
import omni.kit.commands
from pxr import Usd, Gf
from pxr import UsdGeom
from pxr import UsdPhysics, PhysxSchema
class Environment:
def __init__(self):
print('Initializing Environment')
self._stage = omni.usd.get_context().get_stage()
self.set_scene(self._stage)
def set_scene(self, stage):
print(f'Setting up {stage}')
self._stage = stage
self.defaultPrimPath = str(self._stage.GetDefaultPrim().GetPath())
# Physics scene
# UsdGeom.SetStageUpAxis(stage, UsdGeom.Tokens.z)
UsdGeom.SetStageMetersPerUnit(stage, 1.0)
self.scene = UsdPhysics.Scene.Define(stage, self.defaultPrimPath + "/physicsScene")
stage_axis = UsdGeom.GetStageUpAxis(stage)
gravity_dir = Gf.Vec3f(0.0, 0.0, 0)
if stage_axis is 'X': gravity_dir[0] = -1.0
if stage_axis is 'Y': gravity_dir[1] = -1.0
if stage_axis is 'Z': gravity_dir[2] = -1.0
self.scene.CreateGravityDirectionAttr().Set(gravity_dir)
self.scene.CreateGravityMagnitudeAttr().Set(9.81)
physxSceneAPI = PhysxSchema.PhysxSceneAPI.Apply(self.scene.GetPrim())
physxSceneAPI.CreateEnableCCDAttr().Set(True)
# Check if there is a physics groundplane in the scene
plane_path = self.defaultPrimPath+"/GroundPlane"
if self._stage.GetPrimAtPath(plane_path).IsValid():
pass
else:
# If not, make one
omni.kit.commands.execute('AddGroundPlaneCommand',
stage=self._stage,
planePath='/GroundPlane',
axis=UsdGeom.GetStageUpAxis(stage),
size=1.0,
position=Gf.Vec3f(0.0, 0.0, 0.0),
color=Gf.Vec3f(0.5, 0.5, 0.5))
| 1,923 | Python | 34.629629 | 91 | 0.566823 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/agent.py |
import omni
from omni.physx.scripts import physicsUtils
from pxr import Gf, UsdPhysics, PhysxSchema, UsdGeom, UsdShade
import usdrt
class Agent:
def __init__(self):
stage = omni.usd.get_context().get_stage()
# Create a sphere representing the agent
self.skin_mesh , self.skinMeshPath = self.sphere(stage)
# Set a rigid body material and collider
self.set_material(stage, self.skinMeshPath)
# Add a translation operator and set it to zero position
# Since we changed to create this object with an xform, don't need to add, just get it.
# self.translateOp = self.skin_mesh.AddTranslateOp()
self.translateOp = UsdGeom.XformOp(self.skin_mesh.GetPrim().GetAttribute("xformOp:translate"))
self.translateOp.Set(Gf.Vec3f(0.0, 0.0, 0.0))
def sphere(self, stage):
# Create sphere representing agent
_, skinMeshPath = omni.kit.commands.execute("CreateMeshPrimWithDefaultXform",
prim_type="Sphere",
prim_path='/World/Agents/Sphere',
prepend_default_prim=True)
skin_mesh = UsdGeom.Mesh.Get(stage, skinMeshPath)
prim = skin_mesh.GetPrim()
# setup physics - rigid body
self.rigidBodyAPI = UsdPhysics.RigidBodyAPI.Apply(prim)
linVelocity = Gf.Vec3f(0.0, 0.0, 0.0)
angularVelocity = Gf.Vec3f(0.0, 0.0, 0.0)
# apply initial velocities
self.rigidBodyAPI.CreateVelocityAttr().Set(linVelocity)
self.rigidBodyAPI.CreateAngularVelocityAttr().Set(angularVelocity)
self.massAPI = UsdPhysics.MassAPI.Apply(prim)
self.massAPI.CreateMassAttr(2)
self.massAPI.CreateCenterOfMassAttr().Set(Gf.Vec3f(0.0, 0.0, 0.0))
# Add a force attribute
# shuttleForcePath = skinMeshPath + "/shuttleForce"
# xform = UsdGeom.Xform.Define(stage, shuttleForcePath)
# self.forceApi = PhysxSchema.PhysxForceAPI.Apply(xform.GetPrim())
#
# self.forceApi = PhysxSchema.PhysxForceAPI.Apply(prim)
# self.forceAttr = self.forceApi.GetForceAttr()
self.usdrt_stage = usdrt.Usd.Stage.Attach(omni.usd.get_context().get_stage_id())
prim = self.usdrt_stage.GetPrimAtPath(skinMeshPath)
self.world_force_attr = prim.CreateAttribute("_worldForce", usdrt.Sdf.ValueTypeNames.Float3, True)
return skin_mesh, skinMeshPath
def translate(self, x=0, y=0, z=0):
self.translateOp.Set(self.translateOp.Get() + Gf.Vec3d( x, y, z))
@property
def position(self):
return self.translateOp.Get()
@property
def velocity(self):
return self.rigidBodyAPI.GetVelocityAttr().Get()
def set_material(self, stage, skinMeshPath):
defaultPrimPath = str(stage.GetDefaultPrim().GetPath())
# Floor Material
path = defaultPrimPath + "/rigidMaterial"
prim_path = stage.GetPrimAtPath(skinMeshPath)
# Set it as a rigid body
rigidBodyAPI = UsdPhysics.RigidBodyAPI.Apply(prim_path)
# Add a collider (defaults to mesh triangulation)
UsdPhysics.CollisionAPI.Apply(prim_path)
# Apply a specific mass parameter
UsdPhysics.MassAPI.Apply(prim_path)
#Get the rigidbody parameter to set values on
physxRbAPI = PhysxSchema.PhysxRigidBodyAPI.Apply(prim_path)
#Enable CCD for this object
physxRbAPI.CreateEnableCCDAttr().Set(True)
# Create a (separate) physics material that gets added to the object
path = defaultPrimPath + "/highdensitymaterial"
UsdShade.Material.Define(stage, path)
material = UsdPhysics.MaterialAPI.Apply(stage.GetPrimAtPath(path))
material.CreateStaticFrictionAttr().Set(0)
material.CreateDynamicFrictionAttr().Set(0)
material.CreateRestitutionAttr().Set(.2)
material.CreateDensityAttr().Set(0.01)
# Add material
physicsUtils.add_physics_material_to_prim(stage, prim_path, path)
| 4,141 | Python | 38.075471 | 107 | 0.642357 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/window.py | from .models.socialforces import Parameters
import omni.ui as ui
combo_sub = None
def make_window_elements(self, _window, Sim):
with _window.frame:
with ui.VStack():
with ui.HStack():
ui.Label('Max Speed')
max_speed = ui.FloatField(height=20)
max_speed.model.add_value_changed_fn(lambda m : setattr(Parameters, 'max_speed', m.get_value_as_float()))
max_speed.model.set_value(Parameters.max_speed)
with ui.HStack():
ui.Label('Desired Speed')
v_desired = ui.FloatField(height=20)
v_desired.model.add_value_changed_fn(lambda m : setattr(Parameters, 'v_desired', m.get_value_as_float()))
v_desired.model.set_value(Parameters.v_desired)
with ui.HStack():
ui.Label('A')
A = ui.FloatField(height=20)
A.model.add_value_changed_fn(lambda m : setattr(Parameters, 'A', m.get_value_as_float()))
A.model.set_value(Parameters.A)
with ui.HStack():
ui.Label('B')
B = ui.FloatField(height=20)
B.model.add_value_changed_fn(lambda m : setattr(Parameters, 'B', m.get_value_as_float()))
B.model.set_value(Parameters.B)
with ui.HStack():
ui.Label('kn')
kn = ui.FloatField(height=20)
kn.model.add_value_changed_fn(lambda m : setattr(Parameters, 'kn', m.get_value_as_float()))
kn.model.set_value(Parameters.kn)
with ui.HStack():
ui.Label('kt')
kt = ui.FloatField(height=20)
kt.model.add_value_changed_fn(lambda m : setattr(Parameters, 'kt', m.get_value_as_float()))
kt.model.set_value(Parameters.kt)
with ui.HStack():
ui.Label('Agent grid (nxn)')
agent_grid = ui.IntField(height=20)
agent_grid.model.add_value_changed_fn(lambda m : setattr(self, 'grid_size', m.get_value_as_int()))
agent_grid.model.set_value(3)
# with ui.HStack():
# ui.Label('Agent Mass')
# kt = ui.FloatField(height=20)
# kt.model.add_value_changed_fn(lambda m : setattr(Sim, 'mass', m.get_value_as_float()))
# kt.model.set_value(Sim.mass)
# with ui.HStack():
# ui.Label('Agent Radius')
# kt = ui.FloatField(height=20)
# kt.model.add_value_changed_fn(lambda m : Sim.set_radius(m.get_value_as_float()))
# kt.model.set_value(Sim.radius)
# with ui.HStack():
# ui.Label('Agent Perception Radius')
# kt = ui.FloatField(height=20)
# kt.model.add_value_changed_fn(lambda m : setattr(Sim, 'perception_radius', m.get_value_as_float()))
# kt.model.set_value(Sim.perception_radius)
# with ui.HStack(height=20):
# ui.Button("Gen Agents", clicked_fn=Sim.create_agents)
# nagents = ui.IntField(height=5)
# nagents.model.set_value(Sim.nagents)
# nagents.model.add_value_changed_fn(lambda m : setattr(Sim, 'nagents', m.get_value_as_int()))
with ui.HStack(height=20):
ui.Label('GPU', width=20)
WarpModel = ui.CheckBox(width=30)
WarpModel.model.add_value_changed_fn(lambda m : setattr(self, 'gpu_flag', m.get_value_as_bool()))
WarpModel.model.set_value(True)
ui.Label('Use Instances', width=20)
SFModel = ui.CheckBox(width=30)
SFModel.model.add_value_changed_fn(lambda m : setattr(self, 'instancer_flag', m.get_value_as_bool()))
SFModel.model.set_value(True)
ui.Label('Add Jane', width=5)
RigidBody = ui.CheckBox(width=30)
RigidBody.model.add_value_changed_fn(lambda m : setattr(self, 'jane_flag', m.get_value_as_bool()))
RigidBody.model.set_value(False)
ui.Label('Use Direction', width=5)
RigidBody = ui.CheckBox(width=30)
RigidBody.model.add_value_changed_fn(lambda m : setattr(self, 'heading_flag', m.get_value_as_bool()))
RigidBody.model.set_value(True)
ui.Label('Rigid Body', width=5)
RigidBody = ui.CheckBox(width=30)
RigidBody.model.add_value_changed_fn(lambda m : setattr(self, 'rigid_flag', m.get_value_as_bool()))
RigidBody.model.set_value(False)
ui.Label('PAM', width=20)
SFModel = ui.CheckBox(width=30)
SFModel.model.add_value_changed_fn(lambda m : setattr(self, 'pam_flag', m.get_value_as_bool()))
SFModel.model.set_value(False)
# options = ["GeomPoints", "RigidBody"]
# combo_model: ui.AbstractItemModel = ui.ComboBox(0, *options).model
# def combo_changed(item_model: ui.AbstractItemModel, item: ui.AbstractItem):
# value_model = item_model.get_item_value_model(item)
# current_index = value_model.as_int
# option = options[current_index]
# print(f"Selected '{option}' at index {current_index}.")
# combo_sub = combo_model.subscribe_item_changed_fn(combo_changed)
# def clicked():
# value_model = combo_model.get_item_value_model()
# current_index = value_model.as_int
# option = options[current_index]
# print(f"Button Clicked! Selected '{option}' at index {current_index}.")
# self.api_example(current_index)
# ui.Button("Set Selected Meshes", width=5, clicked_fn=self.assign_meshes)
ui.Button("Start Demo", width=5, clicked_fn=self.api_example)
with ui.HStack(height=10):
pass | 6,133 | Python | 45.1203 | 121 | 0.536768 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex4.py | '''_summary_
'''
from siborg.simulate.crowd.simulator import Simulator
def example_4():
# Example of using API
Sim = Simulator()
Sim.rigidbody = True # use rigid bodies
Sim.init_demo_agents(m=3, n=5, s=1.1)
# Register the simulation to updates, and the Sim will handle it from here
Sim.register_simulation()
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# tell simulator to handle the update visualization
Sim.update_viz = True
example_4() | 558 | Python | 26.949999 | 92 | 0.691756 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex3.py | '''_summary_
'''
import time
from omni.physx import get_physx_interface
from siborg.simulate.crowd.simulator import Simulator
Sim = Simulator()
start_time = time.time()
_simulation_event = None
def example_3():
# Example of using API
# Use a builtin helper function to generate a grid of agents
Sim.init_demo_agents(m=3, n=5, s=1.1)
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
Sim.set_geompoints() # update the usdgeom points for visualization
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# don't have the simulator update the geompoints, we do it ourselves
Sim.update_viz = False
# Register to our own physx update
sim_subscriber()
def sim_subscriber():
# This would need to get cleaned up
_simulation_event = get_physx_interface().subscribe_physics_step_events(_on_update)
def _on_update(dt):
# Run one step of simulation
# don't need to use forces since we told simulator to update
forces = Sim.run()
Sim.set_geompoints() # update the usdgeom points for visualization
# For this demo we will unsubscribe after a few seconds
if time.time() - start_time > 100 :
print('ending')
_simulation_event.unsubscribe()
example_3()
| 1,338 | Python | 28.755555 | 92 | 0.701046 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex2.py | '''Example for Simulator handling update and using GeomPoints.
Uses a helper function for initializing agents
'''
from siborg.simulate.crowd.simulator import Simulator
def example_2():
Sim = Simulator()
# Use a builtin helper function to generate a grid of agents
Sim.init_demo_agents(m=3,n=5,s=1.1)
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# don't have the simulator update the geompoints, we do it ourselves
Sim.update_viz = True
Sim.register_simulation()
example_2() | 669 | Python | 32.499998 | 92 | 0.730942 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/examples/ex1.py | '''Example for Simulator handling update and using GeomPoints
'''
from siborg.simulate.crowd.simulator import Simulator
import numpy as np
from math import sqrt
def example_1():
# Example of using API
Sim = Simulator()
nagents = 10
# Some trickery to make a grid of agents and get the cloest number of agents to an even grid
pos = np.asarray([
np.array([(1/2) + (x), (1/2) + (y), 0], dtype=np.double)
for x in range(int(sqrt(nagents)))
for y in range(int(sqrt(nagents)))
])
pos[:, [2, Sim.world_up]] = pos[:, [Sim.world_up, 2]]
nagents = len(pos)
Sim.create_agents(num=nagents, goals=[[10,10,0]], pos=pos) # initialize a set of agents
Sim.create_geompoints() # Create a usdgeom point instance for easy visualization
# tell simulator to update positions after each run, if not need to call Sim.integrate()
Sim.update_agents_sim = True
# don't have the simulator update the geompoints, we do it ourselves
Sim.update_viz = True
Sim.register_simulation()
example_1() | 1,119 | Python | 35.129031 | 96 | 0.626452 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/models/pam.py | ''' Python implementation of the Predictive Avoidance Model (PAM)
from
A Predictive Collision Avoidance Model for Pedestrian Simulation,
I. Karamouzas, P. Heil, P. van Beek, M. H. Overmars
Motion in Games (MIG 2009), Lecture Notes in Computer Science (LNCS), Vol. 5884, 2009
'''
from dataclasses import dataclass
import numpy as np
from scipy.spatial import distance
@dataclass
class Parameters:
# The agents field of view
field_of_view = 200.0
# The agents radius ? Used here in this implementation or in sim?
agent_radius = 0.5
# Minimum agent distance
min_agent_dist = 0.1
# the mid distance parameters in peicewise personal space function predictive force dist
dmid = 4.0
# KSI
ksi = 0.5
# Nearest Neighbour distance ? Used here in this implementation or in sim?
neighbor_dist = 10.0
# Maximum neighbours to consider ? Used here in this implementation or in sim?
max_neighbors = 3
# Maximum acceleration ? Used here in this implementation or in sim/physics?
max_accel = 20.0
# Maximum speed
max_speed = 7
# Preferred Speed
preferred_vel = 2.5
# Goal acquired radius
goal_radius = 1.0
# Time Horizon
time_horizon = 4.0
# Agent Distance
agent_dist = 0.1
# Wall Distance
wall_dist = 0.1
# Wall Steepnes
wall_steepness = 2.0
# Agent Strength
agent_strength = 1.0
# wFactor, factor to progressively scale down forces in when in a non-collision state
w_factor = 0.8
# Noise flag (should noise be added to the movement action)
noise = False
force_clamp = 40.0
# *private* Ideal wall distance
_ideal_wall_dist = agent_radius + wall_dist
# *private* Squared ideal wall distance
_SAFE = _ideal_wall_dist * _ideal_wall_dist
# *private* Agent Personal space
_agent_personal_space = agent_radius + min_agent_dist
# *private* the min distance parameters in peicewise personal space function
_dmin = agent_radius + _agent_personal_space
# *private* the max distance parameters in peicewise personal space function
_dmax = time_horizon * max_speed
# *private* FOV cosine
_cosFOV = np.cos((0.5 * np.pi * field_of_view) / 180.0)
def ray_intersects_disc(pi, pj, v, r):
# calc ray disc est. time to collision
t = 0.0
w = pj - pi
a = np.dot(v, v)
b = np.dot(w, v)
c = np.dot(w, w) - (r * r)
discr = (b * b) - (a * c)
if discr > 0.0:
t = (b - np.sqrt(discr)) / a
if t < 0.0:
t = 999999.0
else:
t = 999999.0
return t
def mag(v):
# calc magnitude of vector
v_mag = np.sqrt(v.dot(v))
return v_mag
def norm(v):
# normalize a vector
v_norm = np.array([0, 0, 0], dtype='float64')
magnitude = mag(v)
if magnitude > 0.0:
v_norm = v / magnitude
return v_norm
def get_neighbors(cur, agents, pn_r):
dist = distance.cdist([cur], agents)
pn = dist < pn_r
# Index to remove is when its zero
pn_self = dist == 0
pn_self = np.nonzero(pn_self)
pn[pn_self] = False
pn = np.nonzero(pn)
return pn
def wall_force(obstacles, rr_i, closest_point, SAFE, add_force):
for i in range(len(obstacles)):
# Step 1: get closest point on obstacle to agent
# [[ Need python code for this in simulation ]]
n_w = rr_i - closest_point
d_w = mag(n_w) * mag(n_w)
if (d_w < SAFE):
d_w = np.sqrt(d_w)
if (d_w > 0):
n_w /= d_w
if ((d_w - Parameters.agent_radius) < 0.001):
dist_min_radius = 0.001
else:
d_w - Parameters.agent_radius
obstacle_force = (Parameters._ideal_wall_dist - d_w) / np.pow(dist_min_radius, Parameters.wall_steepness) * n_w
add_force(obstacle_force)
def calc_goal_force(goal, rr_i, vv_i):
# Preferred velocity is preferred speed in direction of goal
preferred_vel = Parameters.preferred_vel * norm(goal - rr_i)
# Goal force, is always added
goal_force = (preferred_vel - vv_i) / Parameters.ksi
return goal_force
def collision_param(rr_i, vv_i, desired_vel, pn_rr, pn_vv, pn_r):
# Keep track of if we ever enter a collision state
agent_collision = False
t_pairs = []
# Handle agents tc values for predictive forces among neighbours
for j, rr_j in enumerate(pn_rr):
# Get position and velocity of neighbor agent
vv_j = pn_vv[j]
# Get radii of neighbor agent
rj = pn_r[j]
combined_radius = Parameters._agent_personal_space + rj
w = rr_j - rr_i
if (mag(w) < combined_radius):
agent_collision = True
t_pairs.append((0.0, j))
else:
rel_dir = norm(w)
if np.dot(rel_dir, norm(vv_i)) < Parameters._cosFOV:
continue
tc = ray_intersects_disc(rr_i, rr_j, desired_vel - vv_j, combined_radius)
if tc < Parameters.time_horizon:
if len(t_pairs) < Parameters.max_neighbors:
t_pairs.append((tc, j))
elif tc < t_pairs[0][0]:
t_pairs.pop()
t_pairs.append((tc, j))
return t_pairs, agent_collision
def predictive_force(rr_i, desired_vel, desired_speed, pn_rr, pn_vv, pn_r, vv_i):
# Handle predictive forces// Predictive forces
# Setup collision parameters
t_pairs, agent_collision = collision_param(rr_i, vv_i, desired_vel, pn_rr, pn_vv, pn_r)
# This will be all the other forces, added in a particular way
steering_force = np.array([0, 0, 0], dtype='float64')
# will store a list of tuples, each tuple is (tc, agent)
force_count = 0
for t_pair in t_pairs:
# Nice variables from the t_pair tuples
t = t_pair[0]
agent_idx = t_pair[1]
force_dir = rr_i + (desired_vel * t) - pn_rr[agent_idx] - (pn_vv[agent_idx] * t)
force_dist = mag(force_dir)
if force_dist > 0:
force_dir /= force_dist
collision_dist = np.maximum(force_dist - Parameters.agent_radius - pn_r[agent_idx], 0.0)
#D = input to evasive force magnitude piecewise function
D = np.maximum( (desired_speed * t) + collision_dist, 0.001)
force_mag = 0.0
if D < Parameters._dmin:
force_mag = Parameters.agent_strength * Parameters._dmin / D
elif D < Parameters.dmid:
force_mag = Parameters.agent_strength
elif D < Parameters._dmax:
force_mag = Parameters.agent_strength * (Parameters._dmax - D) / (Parameters._dmax - Parameters.dmid)
else:
continue
force_mag *= np.power( (1.0 if agent_collision else Parameters.w_factor), force_count)
force_count += 1
steering_force = force_mag * force_dir
return steering_force
def add_noise(steering_force):
angle = np.random.uniform(0.0, 1.0) * 2.0 * np.pi
dist = np.random.uniform(0.0, 1.0) * 0.001
steering_force += dist * np.array([np.cos(angle),np.sin(angle),0], dtype='float64')
return steering_force
def compute_force(rr_i, ri, vv_i, mass, goal, pn_rr, pn_vv, pn_r, dt):
# Get the goal force
goal_force = calc_goal_force(goal, rr_i, vv_i)
# Desired values if all was going well in an empty world
desired_vel = vv_i + goal_force * dt
desired_speed = mag(desired_vel)
# Get obstacle (wall) forces
obstacle_force = np.array([0, 0, 0], dtype='float64')
#@TODO
# obstacle_force = wall_force()
# Get predictive steering forces
steering_force = predictive_force(rr_i, desired_vel, desired_speed, pn_rr, pn_vv, pn_r, vv_i)
# Add noise for reducing deadlocks adding naturalness
if Parameters.noise:
steering_force = add_noise(steering_force)
# Clamp driving force
if mag(steering_force) > Parameters.force_clamp:
steering_force = norm(steering_force) * Parameters.force_clamp
return goal_force + obstacle_force + steering_force | 8,170 | Python | 32.080972 | 123 | 0.599143 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/models/socialforces.py | from dataclasses import dataclass
import numpy as np
from scipy.spatial import distance
# zero_vec = np.array([0,0,0], dtype='float64')
@dataclass
class Parameters:
# names from https://www.sciencedirect.com/science/article/pii/S0378437120306853
Tau = 0.5 #(s)
A = 2000.0
B = 0.08
kn = 1.2 * 100_000 # Kgs^-2
kt = 2.4 * 100_000 # Kg m^-1 s^-1
max_speed = 10
v_desired = 3.5
def calc_wall_force():
# TODO add wall and geometry recognition
force = np.array([0,0,0], dtype='float64')
return force
def calc_agent_force(rr_i, ri, vv_i, pn_rr, pn_vv, pn_r):
# Sum the forces of neighboring agents
force = np.array([0,0,0], dtype='float64')
# Set the total force of the other agents to zero
ff_ij = np.array([0,0,0], dtype='float64')
rr_j =np.array([0,0,0], dtype='float64')
# Iterate through the neighbors and sum (f_ij)
for j, rr_j in enumerate(pn_rr):
# Get position and velocity of neighbor agent
vv_j = pn_vv[j]
# Get radii of neighbor agent
rj = pn_r[j]
# Pass agent position to AgentForce calculation
ff_ij = neighbor_force(rr_i, ri, vv_i, rr_j, rj, vv_j)
# Sum Forces
force += ff_ij
return force
def neighbor_force(rr_i, ri, vv_i, rr_j, rj, vv_j):
# Calculate the force exerted by another agent
# Take in this agent (i) and a neighbors (j) position and radius
# Sum of radii
rij = ri + rj
# distance between center of mass
d_ij = mag(rr_i - rr_j)
# "n_ij is the normalized vector points from pedestrian j to i"
n_ij = norm(rr_i - rr_j) # Normalized vector pointing from j to i
# t_ij "Vector of tangential relative velocity pointing from i to j."
# A sliding force is applied on agent i in this direction to reduce the relative velocity.
t_ij = np.cross(vv_j - vv_i, [0,0,1] )
dv_ji = np.dot(vv_j - vv_i, t_ij)
# Calculate f_ij
force = repulsion(rij, d_ij, n_ij) + proximity(rij, d_ij, n_ij) + sliding(rij, d_ij, dv_ji, t_ij)
return force
def calc_goal_force(goal, pos, vel, mass, v_desired, dt):
ee_i = norm(goal - pos)
force = mass * ( ( (v_desired * ee_i) - vel ) / Parameters.Tau )
return force
def G(r_ij, d_ij):
# g(x) is a function that returns zero if pedestrians touch
# otherwise is equal to the argument x
if (d_ij > r_ij): return 0.0
return r_ij - d_ij;
def repulsion(r_ij, d_ij, n_ij):
force = Parameters.A * np.exp( (r_ij - d_ij) / Parameters.B) * n_ij
return force
def proximity(r_ij, d_ij, n_ij):
force = Parameters.kn * G(r_ij, d_ij) * n_ij
return force
def sliding(r_ij, d_ij, dv_ji, t_ij):
force = Parameters.kt * G(r_ij, d_ij) * (dv_ji * t_ij)
return force
def mag(v):
# calc magnitude of vector
v_mag = np.sqrt(v.dot(v))
return v_mag
def norm(v):
# normalize a vector
v_norm = v / mag(v)
return v_norm
def get_neighbors(cur, agents, pn_r):
dist = distance.cdist([cur], agents)
pn = dist < pn_r
# Index to remove is when its zero
pn_self = dist == 0
pn_self = np.nonzero(pn_self)
pn[pn_self] = False
pn = np.nonzero(pn)
return pn
def compute_force(rr_i, ri, vv_i, mass, goal, pn_rr, pn_vv, pn_r, dt):
# Get the force for this agent to the goal
goal = calc_goal_force(goal, rr_i, vv_i, mass, Parameters.v_desired, dt)
agent = calc_agent_force(rr_i, ri, vv_i, pn_rr, pn_vv, pn_r)
wall = calc_wall_force()
force = goal + agent + wall
force = norm(force) * min(mag(force), Parameters.max_speed)
return force
| 3,633 | Python | 26.323308 | 102 | 0.603909 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/models/socialforces_warp.py | import warp as wp
Tau = wp.constant(0.5) # s (acceleration)
A = wp.constant(2000.0) # N
B = wp.constant(0.08) # m
kn = wp.constant(1.2 * 100000) # kg/s^-2
kt = wp.constant(2.4 * 100000) # kg/m^-1 s^-2
max_speed = wp.constant(10.0) # m/s
v_desired = wp.constant(2.5) # m/s
@wp.kernel
def get_forces(positions: wp.array(dtype=wp.vec3),
velocities: wp.array(dtype=wp.vec3),
goals: wp.array(dtype=wp.vec3),
radius: wp.array(dtype=float),
mass: wp.array(dtype=float),
dt: float,
percept : wp.array(dtype=float),
grid : wp.uint64,
mesh: wp.uint64,
inv_up: wp.vec3,
forces: wp.array(dtype=wp.vec3),
):
# thread index
tid = wp.tid()
cur_pos = positions[tid]
cur_rad = radius[tid]
cur_vel = velocities[tid]
cur_mass = mass[tid]
goal = goals[tid]
pn = percept[tid]
_force = compute_force(cur_pos,
cur_rad,
cur_vel,
cur_mass,
goal,
positions,
velocities,
radius,
dt,
pn,
grid,
mesh)
# Clear any vertical forces with Element-wise mul
_force = wp.cw_mul(_force, inv_up)
# compute distance of each point from origin
forces[tid] = _force
@wp.kernel
def integrate(x : wp.array(dtype=wp.vec3),
v : wp.array(dtype=wp.vec3),
f : wp.array(dtype=wp.vec3),
dt: float,
xnew: wp.array(dtype=wp.vec3),
vnew: wp.array(dtype=wp.vec3),
):
tid = wp.tid()
x0 = x[tid]
v0 = v[tid]
f0 = f[tid]
v1 = v0 + (f0*1.0) * dt
x1 = x0 + v1 * dt
xnew[tid] = x1
vnew[tid] = v1
@wp.kernel
def heading(v : wp.array(dtype=wp.vec3),
up : wp.vec3,
forward : wp.vec3,
hdir: wp.array(dtype=wp.vec4),
):
tid = wp.tid()
v0 = v[tid]
vnorm = wp.normalize(v0)
hdir[tid] = velocity_to_quaternion(up, forward, vnorm)
@wp.func
def velocity_to_quaternion(up : wp.vec3,
forward : wp.vec3,
velocity: wp.vec3):
# Construct a quaternion that rotates the agent's forward direction to align with the velocity vector
if wp.length(forward) > 0: forward = wp.normalize(forward)
if wp.length(velocity) > 0: velocity = wp.normalize(velocity)
else:
velocity = forward
dot = wp.dot(forward, velocity) # Clip the dot product to avoid numerical instability
if dot == 1.0:
# If the forward and velocity vectors are already aligned, return the identity quaternion
return wp.vec4(0.0, 0.0, 0.0, 1.0)
else:
axis = wp.cross(forward, velocity)
axis = up * wp.sign(wp.dot(axis, up)) # Project the axis onto the up plane
if wp.length(axis) > 0.0: axis = wp.normalize(axis) # Normalize the axis of rotation
else:axis = up # Use a default axis of rotation if the iwput is a zero vector
angle = wp.acos(dot) # Calculate the angle of rotation with clipping
qw = wp.cos(angle/2.0) # Calculate the scalar component of the quaternion
qx = wp.sin(angle/2.0) * axis[0] # Calculate the vector component of the quaternion
qy = wp.sin(angle/2.0) * axis[1] # Calculate the vector component of the quaternion
qz = wp.sin(angle/2.0) * axis[2] # Calculate the vector component of the quaternion
return wp.vec4(qx, qy, qz, qw)
@wp.func
def calc_goal_force(goal: wp.vec3,
pos: wp.vec3,
vel: wp.vec3,
mass: float,
v_desired: float,
dt: float):
ee_i = wp.normalize(goal - pos)
force = mass * ( ( (v_desired * ee_i) - vel ) / (Tau) )
return force
@wp.func
def calc_wall_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
mesh: wp.uint64):
'''
rr_i : position
ri : radius
vv_i : velocity
Computes: (A * exp[(ri-diw)/B] + kn*g(ri-diw))*niw - kt * g(ri-diw)(vi * tiw)tiw
'''
face_index = int(0)
face_u = float(0.0)
face_v = float(0.0)
sign = float(0.0)
force = wp.vec3(0.0,0.0,0.0)
# Define the up direction
up_dir = wp.vec3(0.0, 0.0, 1.0)
max_dist = float(ri * 5.0)
has_point = wp.mesh_query_point(mesh, rr_i, max_dist, sign, face_index, face_u, face_v)
if (not has_point):
return wp.vec3(0.0, 0.0, 0.0)
p = wp.mesh_eval_position(mesh, face_index, face_u, face_v)
# d_iw = distance to wall W
d_iw = wp.length(p - rr_i)
# vector of the wall to the agent
nn_iw = wp.normalize(rr_i - p)
# perpendicular vector of the agent-wall (tangent force)
tt_iw = wp.cross(up_dir, nn_iw)
if wp.dot(vv_i, tt_iw) < 0.0:
tt_iw = -1.0 * tt_iw
# Compute force
# f_iW = { A * exp[(ri-diw)/B] + kn*g(ri-diw) } * niw
# - kt * g(ri-diw)(vi * tiw)tiw
f_rep = ( A * wp.exp((ri-d_iw)/B) + kn * G(ri, d_iw) ) * nn_iw
f_tan = kt * G(ri,d_iw) * wp.dot(vv_i, tt_iw) * tt_iw
force = f_rep - f_tan
return force
@wp.func
def calc_agent_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
pn_rr: wp.array(dtype=wp.vec3),
pn_vv: wp.array(dtype=wp.vec3),
pn_r: wp.array(dtype=float),
pn: float,
grid : wp.uint64,
):
'''Sum the forces of neighboring agents'''
# Set the total force of the other agents to zero
force = wp.vec3(0.0, 0.0, 0.0)
ff_ij = wp.vec3(0.0, 0.0, 0.0)
rr_j = wp.vec3(0.0, 0.0, 0.0)
# create grid query around point
query = wp.hash_grid_query(grid, rr_i, pn)
index = int(0)
# Iterate through the neighbors and sum (f_ij)
while(wp.hash_grid_query_next(query, index)):
j = index
neighbor = pn_rr[j]
# compute distance to neighbor point
dist = wp.length(rr_i-neighbor)
if (dist <= pn):
# Get position and velocity of neighbor agent
rr_j = pn_rr[j]
vv_j = pn_vv[j]
# Get radii of neighbor agent
rj = pn_r[j]
# Pass agent position to AgentForce calculation
ff_ij = neighbor_force(rr_i, ri, vv_i, rr_j, rj, vv_j)
# Sum Forces
force += ff_ij
return force
@wp.func
def neighbor_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
rr_j: wp.vec3,
rj: float,
vv_j: wp.vec3):
'''Calculate the force exerted by another agent.
Take in this agent (i) and a neighbors (j) position and radius'''
# Sum of radii
rij = ri + rj
# distance between center of mass
d_ij = wp.length(rr_i - rr_j)
# "n_ij is the normalized vector points from pedestrian j to i"
n_ij = wp.normalize(rr_i - rr_j) # Normalized vector pointing from j to i
# t_ij "Vector of tangential relative velocity pointing from i to j."
# A sliding force is applied on agent i in this direction to reduce the relative velocity.
t_ij = vv_j - vv_i
dv_ji = wp.dot(vv_j - vv_i, t_ij)
# Calculate f_ij
force = repulsion(rij, d_ij, n_ij) + proximity(rij, d_ij, n_ij) + sliding(rij, d_ij, dv_ji, t_ij)
return force
@wp.func
def G(r_ij: float,
d_ij: float
):
# g(x) is a function that returns zero if pedestrians touch
# otherwise is equal to the argument x
if (d_ij > r_ij): return 0.0
return r_ij - d_ij
@wp.func
def repulsion(r_ij: float,
d_ij: float,
n_ij: wp.vec3):
force = A * wp.exp( (r_ij - d_ij) / B) * n_ij
return force
@wp.func
def proximity(r_ij: float,
d_ij: float,
n_ij: wp.vec3):
force = (kn * G(r_ij, d_ij)) * n_ij # body force
return force
@wp.func
def sliding(r_ij: float,
d_ij: float,
dv_ji: float,
t_ij: wp.vec3):
force = kt * G(r_ij, d_ij) * (dv_ji * t_ij)
return force
@wp.func
def compute_force(rr_i: wp.vec3,
ri: float,
vv_i: wp.vec3,
mass:float,
goal:wp.vec3,
pn_rr: wp.array(dtype=wp.vec3),
pn_vv: wp.array(dtype=wp.vec3),
pn_r: wp.array(dtype=float),
dt: float,
pn: float,
grid : wp.uint64,
mesh: wp.uint64
):
'''
rr_i : position
ri : radius
vv_i : velocity
pn_rr : List[perceived neighbor positions]
pn_vv : List[perceived neighbor velocities]
pn_r : List[perceived neighbor radius]
'''
# Get the force for this agent to the goal
goal = calc_goal_force(goal, rr_i, vv_i, mass, v_desired, dt)
agent = calc_agent_force(rr_i, ri, vv_i, pn_rr, pn_vv, pn_r, pn, grid)
wall = calc_wall_force(rr_i, ri, vv_i, mesh)
# Sum of forces
force = goal + agent + wall
force = wp.normalize(force) * wp.min(wp.length(force), max_speed)
return force
| 9,633 | Python | 29.200627 | 105 | 0.508876 |
cadop/crowds/exts/siborg.simulate.crowd/siborg/simulate/crowd/tests/__init__.py | from .test_hello_world import * | 31 | Python | 30.999969 | 31 | 0.774194 |
cadop/crowds/exts/siborg.simulate.crowd/config/extension.toml | [package]
# Semantic Versioning is used: https://semver.org/
version = "0.0.3-alpha"
# The title and description fields are primarily for displaying extension info in UI
title = "Crowd Simulation"
description="An implementation of the Social Forces crowd simulation (it may or may not be correct). There is currently no environment detection. The current implementation is in PhysX. We plan to support more methods in the future, as well as more crowd simulators. Contributions are welcome."
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# URL of the extension source repository.
repository = ""
# One of categories for UI.
category = "Create"
# Keywords for the extension
keywords = ["kit", "example", "crowds", "simulation"]
# Icon to show in the extension manager
icon = "data/icon.png"
# Preview to show in the extension manager
preview_image = "data/preview.png"
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
# Main python module this extension provides, it will be publicly available as "import siborg.simulate.crowd".
[[python.module]]
name = "siborg.simulate.crowd"
[[test]]
# Extra dependencies only to be used during test run
dependencies = [
"omni.kit.ui_test" # UI testing extension
]
[python.pipapi]
use_online_index = true
requirements = ["scipy"] | 1,357 | TOML | 29.177777 | 295 | 0.744289 |
cadop/crowds/exts/siborg.simulate.crowd/docs/CHANGELOG.md | # Changelog
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
## [1.0.0] - 2021-04-26
- Initial version of extension UI template with a window
| 178 | Markdown | 18.888887 | 80 | 0.702247 |
cadop/arduverse/puppet_handle_1.py | from omni.kit.scripting import BehaviorScript
import socket
import numpy as np
import math
from pxr import Gf
import numpy as np
import math
class Puppet2(BehaviorScript):
def on_init(self):
print(f"{__class__.__name__}.on_init()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8881
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
print("Waiting for data...")
def on_destroy(self):
print(f"{__class__.__name__}.on_destroy()->{self.prim_path}")
self.sock = None
rot = [0, 0, 0]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def on_play(self):
print(f"{__class__.__name__}.on_play()->{self.prim_path}")
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT = 8881
# Create a UDP socket
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((UDP_IP, UDP_PORT))
self.sock.setblocking(0)
# Time interval between sensor readings in seconds
self.dt = 0.02
def on_pause(self):
print(f"{__class__.__name__}.on_pause()->{self.prim_path}")
def on_stop(self):
print(f"{__class__.__name__}.on_stop()->{self.prim_path}")
self.on_destroy()
def on_update(self, current_time: float, delta_time: float):
self.get_data()
def get_data(self):
# # Receive data from the Arduino
data = self.clear_socket_buffer()
if data is None: return
# Decode the data and split it into Pitch and Roll
data = data.decode()
device, pitch, roll, yaw = data.split(",")
x,y,z = float(roll), float(yaw), 180-float(pitch)
rot = [x, y, z]
self.prim.GetAttribute('xformOp:rotateXYZ').Set(Gf.Vec3d(rot))
def clear_socket_buffer(self):
# Function to clear the socket's buffer
latest_data = None
while True:
try:
# Try to read data from the socket in a non-blocking way
latest_data, addr = self.sock.recvfrom(1024)
except BlockingIOError:
# No more data to read (buffer is empty)
return latest_data | 2,384 | Python | 30.8 | 72 | 0.575084 |
cadop/arduverse/README.md | # arduverse
Project files and source code for making a real-time streaming from arduino to omniverse
Clone/download the repo. You should be able to just open the usda file in *PuppetScene* folder.
To use:
- Upload the *UDP_FilteredAngle.ino* file to an arduino (RP2040 is what I used).
- Make sure to change the wifi network credentials to your own
- Try to run the *udp.py* file to make sure the arduino is connecting and sending data
- If the udp to python connection is working, you should be able to get the scene running.
- To use the base file, in omniverse create a python behavior script on any xform, and attach the script (e.g. *puppet_handle_1.py*)
Open an issue if you have problems. Also if you want to contribute go for it.
![Featured Puppet Image](https://github.com/cadop/arduverse/blob/main/FeaturedImg.png?raw=true)
| 842 | Markdown | 51.687497 | 132 | 0.764846 |
cadop/arduverse/udp.py | import socket
# Set up the server address and port
UDP_IP = "0.0.0.0"
UDP_PORT1 = 8881
UDP_PORT2 = 8882
# Create a UDP socket
sock1 = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock2 = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock1.bind((UDP_IP, UDP_PORT1))
sock2.bind((UDP_IP, UDP_PORT2))
sock1.setblocking(0)
sock2.setblocking(0)
print("Waiting for data...")
while True:
# Receive data from the Arduino
try:
data, addr = sock1.recvfrom(1024)
print("Received message 1:", data.decode())
except: pass
try:
data, addr = sock2.recvfrom(1024)
print("Received message 2:", data.decode())
except: pass | 667 | Python | 22.857142 | 56 | 0.668666 |
jshrake-nvidia/kit-cv-video-example/README.md | # kit-cv-video-example
Example Omniverse Kit extension that demonstrates how to stream video (webcam, RTSP, mp4, mov, ) to a dynamic texture using [OpenCV VideoCapture](https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html) and [omni.ui.DynamicTextureProvider](https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#byteimageprovider).
![demo](./images/demo.gif)
For a basic example of how to use `omni.ui.DynamicTextureProvider`, please see <https://github.com/jshrake-nvidia/kit-dynamic-texture-example>.
**WARNING**: This is a prototype and is not necessarily ready for production use. The performance of this example may not meet your performance requirements and is not optimized. This example is a temporary solution until a more mature and optimized streaming solution becomes available in the platform. This example currently only scales to a very limited number of low resolution streams.
## Getting Started
- Requires Kit 104.1 >=
- Tested in Create 2022.3.1, 2022.3.3
```
./link_app.bat --app create
./app/omni.create.bat --/rtx/ecoMode/enabled=false --ext-folder exts --enable omni.cv-video.example
```
Make sure that eco mode is disabled under Render Settings > Raytracing.
From the extension UI window, update the URI and click the Create button. A plane prim will be created at (0, 0, 0) with an OmniPBR material containing a dynamic video stream for the albedo texture. The extension should support whatever the OpenCV VideoCapture API supports.
Here are a few URIs you can use to test:
- Your own web camera: `0`
- HLS: `https://test-streams.mux.dev/x36xhzz/x36xhzz.m3u8`
- RTSP: `rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mp4`
| 1,730 | Markdown | 54.838708 | 390 | 0.773988 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/config/extension.toml | [package]
# Semantic Versionning is used: https://semver.org/
version = "1.0.0"
# The title and description fields are primarily for displaying extension info in UI
title = "Omni RTSP Dyanmic Texture Example"
description = "An example that demonstrates how to stream RTSP feeds using OpenCV and omni.ui.DynamicTextureProvider"
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# Path (relative to the root) of changelog
changelog = "docs/CHANGELOG.md"
# URL of the extension source repository.
repository = "https://github.com/NVIDIA-Omniverse/kit-extension-template"
# One of categories for UI.
category = "Example"
# Keywords for the extension
keywords = ["kit", "example"]
# Icon to show in the extension manager
icon = "data/icon.png"
# Preview to show in the extension manager
preview_image = "data/preview.png"
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
"omni.kit.pipapi" = {}
"omni.warp" = {}
[python.pipapi]
requirements = [
"opencv-python"
]
use_online_index = true
[[python.module]]
name = "omni.cv-video.example"
[[test]]
# Extra dependencies only to be used during test run
dependencies = [
"omni.kit.ui_test" # UI testing extension
]
| 1,245 | TOML | 23.431372 | 117 | 0.728514 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/omni/cv-video/example/extension.py | """
Omniverse Kit example extension that demonstrates how to stream video (such as RTSP) to a dynamic texture using [OpenCV VideoCapture](https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html)
and [omni.ui.DynamicTextureProvider](https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#byteimageprovider).
TODO:
- [x] Investigate how to perform the color space conversion and texture updates in a separate thread
- [ ] Investigate how to avoid the color space conversion and instead use the native format of the frame provided by OpenCV
"""
import asyncio
import threading
import time
from typing import List
import carb
import carb.profiler
import cv2 as cv
import numpy as np
import omni.ext
import omni.kit.app
import omni.ui
from pxr import Kind, Sdf, Usd, UsdGeom, UsdShade
DEFAULT_STREAM_URI = "rtsp://wowzaec2demo.streamlock.net/vod/mp4:BigBuckBunny_115k.mp4"
#DEFAULT_STREAM_URI = "C:/Users/jshrake/Downloads/1080p.mp4"
def create_textured_plane_prim(
stage: Usd.Stage, prim_path: str, texture_name: str, width: float, height: float
) -> Usd.Prim:
"""
Creates a plane prim and an OmniPBR material with a dynamic texture for the albedo map
"""
hw = width / 2
hh = height / 2
# This code is mostly copy pasted from https://graphics.pixar.com/usd/release/tut_simple_shading.html
billboard: UsdGeom.Mesh = UsdGeom.Mesh.Define(stage, f"{prim_path}/Mesh")
billboard.CreatePointsAttr([(-hw, -hh, 0), (hw, -hh, 0), (hw, hh, 0), (-hw, hh, 0)])
billboard.CreateFaceVertexCountsAttr([4])
billboard.CreateFaceVertexIndicesAttr([0, 1, 2, 3])
billboard.CreateExtentAttr([(-430, -145, 0), (430, 145, 0)])
texCoords = UsdGeom.PrimvarsAPI(billboard).CreatePrimvar(
"st", Sdf.ValueTypeNames.TexCoord2fArray, UsdGeom.Tokens.varying
)
texCoords.Set([(0, 0), (1, 0), (1, 1), (0, 1)])
material_path = f"{prim_path}/Material"
material: UsdShade.Material = UsdShade.Material.Define(stage, material_path)
shader: UsdShade.Shader = UsdShade.Shader.Define(stage, f"{material_path}/Shader")
shader.SetSourceAsset("OmniPBR.mdl", "mdl")
shader.SetSourceAssetSubIdentifier("OmniPBR", "mdl")
shader.CreateIdAttr("OmniPBR")
shader.CreateInput("diffuse_texture", Sdf.ValueTypeNames.Asset).Set(f"dynamic://{texture_name}")
material.CreateSurfaceOutput().ConnectToSource(shader.ConnectableAPI(), "surface")
billboard.GetPrim().ApplyAPI(UsdShade.MaterialBindingAPI)
UsdShade.MaterialBindingAPI(billboard).Bind(material)
return billboard
class OpenCvVideoStream:
"""
A small abstraction around OpenCV VideoCapture and omni.ui.DynamicTextureProvider,
making a one-to-one mapping between the two
Resources:
- https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html
- https://docs.opencv.org/3.4/dd/d43/tutorial_py_video_display.html
- https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#omni.ui.ByteImageProvider.set_bytes_data_from_gpu
"""
def __init__(self, name: str, stream_uri: str):
self.name = name
self.uri = stream_uri
self.texture_array = None
try:
# Attempt to treat the uri as an int
# https://docs.opencv.org/3.4/d8/dfe/classcv_1_1VideoCapture.html#a5d5f5dacb77bbebdcbfb341e3d4355c1
stream_uri_as_int = int(stream_uri)
self._video_capture = cv.VideoCapture(stream_uri_as_int)
except:
# Otherwise treat the uri as a str
self._video_capture = cv.VideoCapture(stream_uri)
self.fps: float = self._video_capture.get(cv.CAP_PROP_FPS)
self.width: int = self._video_capture.get(cv.CAP_PROP_FRAME_WIDTH)
self.height: int = self._video_capture.get(cv.CAP_PROP_FRAME_HEIGHT)
self._dynamic_texture = omni.ui.DynamicTextureProvider(name)
self._last_read = time.time()
self.is_ok = self._video_capture.isOpened()
# If this FPS is 0, set it to something sensible
if self.fps == 0:
self.fps = 24
@carb.profiler.profile
def update_texture(self):
# Rate limit frame reads to the underlying FPS of the capture stream
now = time.time()
time_delta = now - self._last_read
if time_delta < 1.0 / self.fps:
return
self._last_read = now
# Read the frame
carb.profiler.begin(0, "read")
ret, frame = self._video_capture.read()
carb.profiler.end(0)
# The video may be at the end, loop by setting the frame position back to 0
if not ret:
self._video_capture.set(cv.CAP_PROP_POS_FRAMES, 0)
self._last_read = time.time()
return
# By default, OpenCV converts the frame to BGR
# We need to convert the frame to a texture format suitable for RTX
# In this case, we convert to BGRA, but the full list of texture formats can be found at
# # kit\source\extensions\omni.gpu_foundation\bindings\python\omni.gpu_foundation_factory\GpuFoundationFactoryBindingsPython.cpp
frame: np.ndarray
carb.profiler.begin(0, "color space conversion")
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGBA)
carb.profiler.end(0)
height, width, channels = frame.shape
carb.profiler.begin(0, "set_bytes_data")
self._dynamic_texture.set_data_array(frame, [width, height, channels])
carb.profiler.end(0)
class OmniRtspExample(omni.ext.IExt):
def on_startup(self, ext_id):
# stream = omni.kit.app.get_app().get_update_event_stream()
# self._sub = stream.create_subscription_to_pop(self._update_streams, name="update")
self._streams: List[OpenCvVideoStream] = []
self._stream_threads: List[threading.Thread] = []
self._stream_uri_model = omni.ui.SimpleStringModel(DEFAULT_STREAM_URI)
self._window = omni.ui.Window("OpenCV Video Streaming Example", width=800, height=200)
with self._window.frame:
with omni.ui.VStack():
omni.ui.StringField(model=self._stream_uri_model)
omni.ui.Button("Create", clicked_fn=self._on_click_create)
@carb.profiler.profile
def _update_stream(self, i):
async def loop():
while self._running:
await asyncio.sleep(0.001)
self._streams[i].update_texture()
asyncio.run(loop())
def _on_click_create(self):
name = f"Video{len(self._streams)}"
image_name = name
usd_context = omni.usd.get_context()
stage: Usd.Stage = usd_context.get_stage()
prim_path = f"/World/{name}"
# If the prim already exists, remove it so we can create it again
try:
stage.RemovePrim(prim_path)
self._streams = [stream for stream in self._streams if stream.name != image_name]
except:
pass
# Create the stream
stream_uri = self._stream_uri_model.get_value_as_string()
video_stream = OpenCvVideoStream(image_name, stream_uri)
if not video_stream.is_ok:
carb.log_error(f"Error opening stream: {stream_uri}")
return
self._streams.append(video_stream)
carb.log_info(f"Creating video steam {stream_uri} {video_stream.width}x{video_stream.height}")
# Create the mesh + material + shader
model_root = UsdGeom.Xform.Define(stage, prim_path)
Usd.ModelAPI(model_root).SetKind(Kind.Tokens.component)
create_textured_plane_prim(stage, prim_path, image_name, video_stream.width, video_stream.height)
# Clear the string model
# self._stream_uri_model.set_value("")
# Create the thread to pump the video stream
self._running = True
i = len(self._streams) - 1
thread = threading.Thread(target=self._update_stream, args=(i, ))
thread.daemon = True
thread.start()
self._stream_threads.append(thread)
def on_shutdown(self):
# self._sub.unsubscribe()
self._running = False
for thread in self._stream_threads:
thread.join()
self._stream_threads = []
self._streams = []
| 8,262 | Python | 43.187166 | 201 | 0.657105 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/omni/cv-video/example/__init__.py | # TODO: Work around OM-108110
# by explicitly adding the python3.dll directory to the DLL search path list.
# cv2.dll fails to load because it can't load the python3.dll dependency
try:
import os
import pathlib
import sys
# The python3.dll lives in the python directory adjacent to the kit executable
# Get the path to the current kit process
exe_path = sys.executable
exe_dir = pathlib.Path(exe_path).parent
python_dir = exe_dir / "python"
print(f"Adding {python_dir} to DLL search path list")
os.add_dll_directory(python_dir)
except Exception as e:
print(f"Error adding python directory to DLL search path list {e}")
from .extension import *
| 690 | Python | 33.549998 | 82 | 0.718841 |
jshrake-nvidia/kit-cv-video-example/exts/omni.cv-video.example/docs/README.md | # Simple UI Extension Template
The simplest python extension example. Use it as a starting point for your extensions.
| 119 | Markdown | 28.999993 | 86 | 0.806723 |
jshrake-nvidia/kit-dynamic-texture-example/README.md | # Dynamic Texture Provider Example
Demonstrates how to programmatically generate a textured quad using the [omni.ui.DynamicTextureProvider](https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html) API.
Tested against Create 2022.3.1.
```console
.\link_app.bat --path C:\Users\jshrake\AppData\Local\ov\pkg\prod-create-2022.3.1
.\app\omni.create.bat --ext-folder exts --enable omni.dynamic_texture_example
```
![demo](./demo.gif)
## *Omniverse Kit* Extensions Project Template
This project is a template for developing extensions for *Omniverse Kit*.
# Getting Started
## Install Omniverse and some Apps
1. Install *Omniverse Launcher*: [download](https://www.nvidia.com/en-us/omniverse/download)
2. Install and launch one of *Omniverse* apps in the Launcher. For instance: *Code*.
## Add a new extension to your *Omniverse App*
1. Fork and clone this repo, for example in `C:\projects\kit-extension-template`
2. In the *Omniverse App* open extension manager: *Window* → *Extensions*.
3. In the *Extension Manager Window* open a settings page, with a small gear button in the top left bar.
4. In the settings page there is a list of *Extension Search Paths*. Add cloned repo `exts` subfolder there as another search path: `C:\projects\kit-extension-template\exts`
![Extension Manager Window](/images/add-ext-search-path.png)
5. Now you can find `omni.hello.world` extension in the top left search bar. Select and enable it.
6. "My Window" window will pop up. *Extension Manager* watches for any file changes. You can try changing some code in this extension and see them applied immediately with a hotreload.
### Few tips
* Now that `exts` folder was added to the search you can add new extensions to this folder and they will be automatically found by the *App*.
* Look at the *Console* window for warnings and errors. It also has a small button to open current log file.
* All the same commands work on linux. Replace `.bat` with `.sh` and `\` with `/`.
* Extension name is a folder name in `exts` folder, in this example: `omni.hello.world`.
* Most important thing extension has is a config file: `extension.toml`, take a peek.
## Next Steps: Alternative way to add a new extension
To get a better understanding and learn a few other things, we recommend following next steps:
1. Remove search path added in the previous section.
1. Open this cloned repo using Visual Studio Code: `code C:\projects\kit-extension-template`. It will suggest installing a few extensions to improve python experience.
2. In the terminal (CTRL + \`) run `link_app.bat` (more in [Linking with an *Omniverse* app](#linking-with-an-omniverse-app) section).
3. Run this app with `exts` folder added as an extensions search path and new extension enabled:
```bash
> app\omni.code.bat --ext-folder exts --enable omni.hello.world
```
- `--ext-folder [path]` - adds new folder to the search path
- `--enable [extension]` - enables an extension on startup.
Use `-h` for help:
```bash
> app\omni.code.bat -h
```
4. After the *App* started you should see:
* new "My Window" window popup.
* extension search paths in *Extensions* window as in the previous section.
* extension enabled in the list of extensions.
5. If you look inside `omni.code.bat` or any other *Omniverse App*, they all run *Omniverse Kit* (`kit.exe`). *Omniverse Kit* is the Omniverse Application runtime that powers *Apps* build out of extensions.
Think of it as `python.exe`. It is a small runtime, that enables all the basics, like settings, python, logging and searches for extensions. **Everything else is an extension.** You can run only this new extension without running any big *App* like *Code*:
```bash
> app\kit\kit.exe --ext-folder exts --enable omni.hello.world
```
It starts much faster and will only have extensions enabled that are required for this new extension (look at `[dependencies]` section of `extension.toml`). You can enable more extensions: try adding `--enable omni.kit.window.extensions` to have extensions window enabled (yes, extension window is an extension too!):
```bash
> app\kit\kit.exe --ext-folder exts --enable omni.hello.world --enable omni.kit.window.extensions
```
You should see a menu in the top left. From here you can enable more extensions from the UI.
### Few tips
* In the *Extensions* window, press *Bread* button near the search bar and select *Show Extension Graph*. It will show how the current *App* comes to be: all extensions and dependencies.
* Extensions system documentation: http://omniverse-docs.s3-website-us-east-1.amazonaws.com/kit-sdk/104.0/docs/guide/extensions.html
# Running Tests
To run tests we run a new process where only the tested extension (and it's dependencies) is enabled. Like in example above + testing system (`omni.kit.test` extension). There are 2 ways to run extension tests:
1. Run: `app\kit\test_ext.bat omni.hello.world --ext-folder exts`
That will run a test process with all tests and exit. For development mode pass `--dev`: that will open test selection window. As everywhere, hotreload also works in this mode, give it a try by changing some code!
2. Alternatively, in *Extension Manager* (*Window → Extensions*) find your extension, click on *TESTS* tab, click *Run Test*
For more information about testing refer to: [testing doc](http://omniverse-docs.s3-website-us-east-1.amazonaws.com/kit-sdk/104.0/docs/guide/ext_testing.html).
# Linking with an *Omniverse* app
For a better developer experience, it is recommended to create a folder link named `app` to the *Omniverse Kit* app installed from *Omniverse Launcher*. A convenience script to use is included.
Run:
```bash
> link_app.bat
```
If successful you should see `app` folder link in the root of this repo.
If multiple Omniverse apps is installed script will select recommended one. Or you can explicitly pass an app:
```bash
> link_app.bat --app create
```
You can also just pass a path to create link to:
```bash
> link_app.bat --path "C:/Users/bob/AppData/Local/ov/pkg/create-2021.3.4"
```
# Adding a new extension
Adding a new extension is as simple as copying and renaming existing one:
1. copy `exts/omni.hello.world` to `exts/[new extension name]`
2. rename python module (namespace) in `exts/[new extension name]/omni/hello/world` to `exts/[new extension name]/[new python module]`
3. update `exts/[new extension name]/config/extension.toml`, most importantly specify new python module to load:
```toml
[[python.module]]
name = "[new python module]"
```
No restart is needed, you should be able to find and enable `[new extension name]` in extension manager.
# Sharing extensions
To make extension available to other users use [Github Releases](https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository).
1. Make sure the repo has [omniverse-kit-extension](https://github.com/topics/omniverse-kit-extension) topic set for auto discovery.
2. For each new release increment extension version (in `extension.toml`) and update the changelog (in `docs/CHANGELOG.md`). [Semantic versionning](https://semver.org/) must be used to express severity of API changes.
# Contributing
The source code for this repository is provided as-is and we are not accepting outside contributions. | 7,339 | Markdown | 46.662337 | 318 | 0.751329 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/config/extension.toml | [package]
# Semantic Versionning is used: https://semver.org/
version = "1.0.0"
# The title and description fields are primarily for displaying extension info in UI
title = "Dynamic Texture Example"
description = "Demonstrates how to programmatically generate a textured quad using the omni.ui.DynamicTextureProvider API"
# Path (relative to the root) or content of readme markdown file for UI.
readme = "docs/README.md"
# Path (relative to the root) of changelog
changelog = "docs/CHANGELOG.md"
# URL of the extension source repository.
repository = "https://github.com/NVIDIA-Omniverse/kit-extension-template"
# One of categories for UI.
category = "Example"
# Keywords for the extension
keywords = ["kit", "example"]
# Icon to show in the extension manager
icon = "data/icon.png"
# Preview to show in the extension manager
preview_image = "data/preview.png"
# Use omni.ui to build simple UI
[dependencies]
"omni.kit.uiapp" = {}
"omni.kit.pipapi" = {}
[python.pipapi]
requirements = [
"pillow"
]
use_online_index = true
# Main python module this extension provides, it will be publicly available as "import omni.hello.world".
[[python.module]]
name = "omni.dynamic_texture_example"
[[test]]
# Extra dependencies only to be used during test run
dependencies = [
"omni.kit.ui_test" # UI testing extension
]
| 1,329 | TOML | 25.078431 | 122 | 0.738901 |
jshrake-nvidia/kit-dynamic-texture-example/exts/omni.dynamic_texture_example/omni/dynamic_texture_example/extension.py | '''
Demonstrates how to programmatically generate a textured quad using the omni.ui.DynamicTextureProvider API.
This is contrived example that reads the image from the local filesystem (cat.jpg). You can imagine
sourcing the image bytes from a network request instead.
Resources:
- https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html
- See the full list of omni.ui.TextureFormat variants at .\app\kit\extscore\omni.gpu_foundation\omni\gpu_foundation_factory\_gpu_foundation_factory.pyi
TODO(jshrake):
- [ ] Currently the dynamic texture name only works with the OmniPBR.mdl material. Need to understand why it doesn't work
with other materials, such as UsdPreviewSurface.
- [ ] Test instantiating and using the DynamicTextureProvider in a separate thread
'''
from typing import Tuple, Union
import pathlib
import omni
import omni.ui as ui
from PIL import Image
from pxr import Kind, Sdf, Usd, UsdGeom, UsdShade
def create_textured_plane_prim(stage: Usd.Stage, prim_path: str, texture_name: str) -> Usd.Prim:
# This code is mostly copy pasted from https://graphics.pixar.com/usd/release/tut_simple_shading.html
billboard: UsdGeom.Mesh = UsdGeom.Mesh.Define(stage, f"{prim_path}/Mesh")
billboard.CreatePointsAttr([(-430, -145, 0), (430, -145, 0), (430, 145, 0), (-430, 145, 0)])
billboard.CreateFaceVertexCountsAttr([4])
billboard.CreateFaceVertexIndicesAttr([0,1,2,3])
billboard.CreateExtentAttr([(-430, -145, 0), (430, 145, 0)])
texCoords = UsdGeom.PrimvarsAPI(billboard).CreatePrimvar("st",
Sdf.ValueTypeNames.TexCoord2fArray,
UsdGeom.Tokens.varying)
texCoords.Set([(0, 0), (1, 0), (1,1), (0, 1)])
material_path = f"{prim_path}/Material"
material = UsdShade.Material.Define(stage, material_path)
shader: UsdShade.Shader = UsdShade.Shader.Define(stage, f"{material_path}/Shader")
shader.SetSourceAsset("OmniPBR.mdl", "mdl")
shader.SetSourceAssetSubIdentifier("OmniPBR", "mdl")
shader.CreateIdAttr("OmniPBR")
shader.CreateInput("diffuse_texture", Sdf.ValueTypeNames.Asset).Set(f"dynamic://{texture_name}")
material.CreateSurfaceOutput().ConnectToSource(shader.ConnectableAPI(), "surface")
billboard.GetPrim().ApplyAPI(UsdShade.MaterialBindingAPI)
UsdShade.MaterialBindingAPI(billboard).Bind(material)
return billboard
def create_dynamic_texture(texture_name: str, bytes: bytes, resolution: Tuple[int, int], format: ui.TextureFormat) -> ui.DynamicTextureProvider:
# See https://docs.omniverse.nvidia.com/kit/docs/omni.ui/latest/omni.ui/omni.ui.ByteImageProvider.html#omni.ui.ByteImageProvider.set_bytes_data_from_gpu
bytes_list = list(bytes)
dtp = ui.DynamicTextureProvider(texture_name)
dtp.set_bytes_data(bytes_list, list(resolution), format)
return dtp
class DynamicTextureProviderExample(omni.ext.IExt):
def on_startup(self, ext_id):
self._texture: Union[None, ui.DynamicTextureProvider] = None
self._window = ui.Window("Create Dynamic Texture Provider Example", width=300, height=300)
with self._window.frame:
ui.Button("Create", clicked_fn=self._on_click_create)
def _on_click_create(self):
usd_context = omni.usd.get_context()
stage: Usd.Stage = usd_context.get_stage()
name = f"TexturePlane"
image_name = name
prim_path = f"/World/{name}"
# If the prim already exists, remove it so we can create it again
try:
stage.RemovePrim(prim_path)
self._texture = None
except:
pass
# Create the prim root
model_root = UsdGeom.Xform.Define(stage, prim_path)
Usd.ModelAPI(model_root).SetKind(Kind.Tokens.component)
# Create the mesh + material + shader
create_textured_plane_prim(stage, prim_path, image_name)
# Open the adjacent cat.jpg file and create the texture
dir = pathlib.Path(__file__).parent.resolve()
image_path = dir.joinpath("cat.jpg")
image: Image.Image = Image.open(image_path, mode='r')
# Ensure the image format is RGBA
image = image.convert('RGBA')
image_bytes = image.tobytes()
image_resolution = (image.width, image.height)
image_format = ui.TextureFormat.RGBA8_UNORM
self._texture = create_dynamic_texture(image_name, image_bytes, image_resolution, image_format)
def on_shutdown(self):
self._texture = None
| 4,533 | Python | 48.282608 | 156 | 0.692698 |
renanmb/Omniverse_legged_robotics/README.md | The idea of this repo is to start converting open source models of robots into Omniverse Isaac-Sim friendly format.
# URDF Descriptions
The URDFs found in this repository have been forked/modified/linked from the following projects:
## Quadrupeds
- [kodlab_gazebo - Ghost Robotics](https://github.com/KodlabPenn/kodlab_gazebo)
- [ANYbotics](https://github.com/ANYbotics)
- [ANYbotics' ANYmal B](https://github.com/ANYbotics/anymal_b_simple_description)
- [ANYbotics' ANYmal B - Modified for CHAMP](https://github.com/chvmp/anymal_b_simple_description)
- [ANYbotics' ANYmal C](https://github.com/ANYbotics/anymal_c_simple_description)
- [ANYbotics' ANYmal B - Modified for CHAMP](https://github.com/chvmp/anymal_c_simple_description)
- Boston Dynamic's Little Dog
- [Boston Dynamic's Little Dog - by RobotLocomotion](https://github.com/RobotLocomotion/LittleDog)
- [Boston Dynamic's Little Dog - Modified for CHAMP](https://github.com/chvmp/littledog_description)
- Boston Dynamic's Spot
- [Boston Dynamic's Spot - by heuristicus](https://github.com/heuristicus/spot_ros)
- [Boston Dynamic's Spot - Modified for CHAMP](https://github.com/chvmp/spot_ros)
- [Dream Walker](https://github.com/Ohaginia/dream_walker)
- [MIT Mini Cheetah - Original](https://github.com/HitSZwang/mini-cheetah-gazebo-urdf)
- [MIT Mini Cheetah - Modified for CHAMP](https://github.com/chvmp/mini-cheetah-gazebo-urdf)
- [OpenDog V2 - Original](https://github.com/XRobots/openDogV2)
- [OpenDog V2 - Modified for CHAMP](https://github.com/chvmp/opendog_description)
- Open Quadruped
- [Open Quadruped](https://github.com/moribots/spot_mini_mini)
- [SpotMicroAI - Gitlab](https://gitlab.com/custom_robots/spotmicroai)
- [Spot Micro](https://github.com/chvmp/spotmicro_description)
- [Unitree Robotics All](https://github.com/unitreerobotics/unitree_ros)
- [Unitree Robotics All - Modified for CHAMP](https://github.com/chvmp/unitree_ros)
- [Unitree Robotics' A1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/a1_description)
- [Unitree Robotics' AliengoZ1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/aliengoZ1_description)
- [Unitree Robotics'Aliengo](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/aliengo_description)
- [Unitree Robotics' B1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/b1_description)
- [Unitree Robotics' Go1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/go1_description)
- [Unitree Robotics' Laikago](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/laikago_description)
- [Unitree Robotics' Z1](https://github.com/unitreerobotics/unitree_ros/tree/master/robots/z1_description)
- [Stochlab's Stochlite](https://stochlab.github.io/)
- [Stochlab's Stochlite - Modified by aditya-shirwatkar](https://github.com/aditya-shirwatkar/stochlite_description)
- Mini Pupper
- [MangDang's Mini Pupper](https://github.com/mangdangroboticsclub/QuadrupedRobot)
- [simplified robot description of the MangDang's Mini Pupper](https://github.com/nisshan-x/mini_pupper_description)
- [Stanford pupper - Original](https://stanfordstudentrobotics.org/pupper)
- [Stanford pupper - Modified by Chandykunju Alex](https://github.com/chandyalex/stanford_pupper_description.git)
## Bipedal
- [Agility Robotics' Cassie - UMich-BipedLab](https://github.com/UMich-BipedLab/cassie_description)
- [Agility Robotics' Digit - DigitRobot.jl](https://github.com/adubredu/DigitRobot.jl)
- [NJIT - TOCABI](https://github.com/cadop/tocabi)
## Manipulation
- [GoogleAI ROBEL D'Kitty](https://github.com/google-research/robel-scenes)
- [GoogleAI ROBEL D'Kitty - Modified for CHAMP](https://github.com/chvmp/dkitty_description)
- [The Shadow Robot Company](https://github.com/shadow-robot)
- [Shadow Hand - archived](https://github.com/AndrejOrsula/shadow_hand_ign)
#
## Cassie_description
This repository contains the .urdf model of the CASSIE robot from Agility Robotics. It also includes a way to visualize the robot using ROS and rviz.
https://github.com/UMich-BipedLab/cassie_description
## a1 robot simulation - Python version
This repository contains all the files and code needed to simulate the a1 quadrupedal robot using Gazebo and ROS. The software runs on ROS noetic and Ubuntu 20.04.
https://github.com/lnotspotl/a1_sim_py
## Here are the ROS simulation packages for Unitree robots
https://github.com/unitreerobotics/unitree_ros
## Zoo from CHAMP
This repository contains configuration packages of various quadrupedal robots generated by CHAMP's setup assistant.
The URDFs found in this repository have been forked/modified/linked from the following projects:
https://github.com/chvmp/robots
| 4,799 | Markdown | 66.605633 | 163 | 0.761617 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/z1_description/config/robot_control.yaml | z1_gazebo:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 1000
Joint01_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint1
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint02_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint2
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint03_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint3
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint04_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint4
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint05_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint5
pid: {p: 300.0, i: 0.0, d: 5.0}
Joint06_controller:
type: unitree_legged_control/UnitreeJointController
joint: joint6
pid: {p: 300.0, i: 0.0, d: 5.0}
gripper_controller:
type: unitree_legged_control/UnitreeJointController
joint: jointGripper
pid: {p: 300.0, i: 0.0, d: 5.0} | 1,227 | YAML | 29.699999 | 66 | 0.594947 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/laikago_description/config/robot_control.yaml | laikago_gazebo:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 1000
# FL Controllers ---------------------------------------
FL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# FR Controllers ---------------------------------------
FR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
FR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
FR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: FR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RL Controllers ---------------------------------------
RL_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RL_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RL_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RL_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
# RR Controllers ---------------------------------------
RR_hip_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_hip_joint
pid: {p: 100.0, i: 0.0, d: 5.0}
RR_thigh_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_thigh_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
RR_calf_controller:
type: unitree_legged_control/UnitreeJointController
joint: RR_calf_joint
pid: {p: 300.0, i: 0.0, d: 8.0}
| 2,291 | YAML | 31.28169 | 66 | 0.553907 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/README.md | # Introduction
Here are the ROS simulation packages for Unitree robots, You can load robots and joint controllers in Gazebo, so you can perform low-level control (control the torque, position and angular velocity) of the robot joints. Please be aware that the Gazebo simulation cannot do high-level control, namely walking. Aside from these simulation functions, you can also control your real robots in ROS with the [unitree_ros_to_real](https://github.com/unitreerobotics/unitree_ros_to_real) packages. For real robots, you can do high-level and low-level control using our ROS packages.
## Packages:
Robot description: `go1_description`, `a1_description`, `aliengo_description`, `laikago_description`
Robot and joints controller: `unitree_controller`
Simulation related: `unitree_gazebo`, `unitree_legged_control`
# Dependencies
* [ROS](https://www.ros.org/) Melodic or ROS Kinetic (has not been tested)
* [Gazebo8](http://gazebosim.org/)
* [unitree_legged_msgs](https://github.com/unitreerobotics/unitree_ros_to_real): `unitree_legged_msgs` is a package under [unitree_ros_to_real](https://github.com/unitreerobotics/unitree_ros_to_real).
# Build
<!-- If you would like to fully compile the `unitree_ros`, please run the following command to install relative packages. -->
For ROS Melodic:
```
sudo apt-get install ros-melodic-controller-interface ros-melodic-gazebo-ros-control ros-melodic-joint-state-controller ros-melodic-effort-controllers ros-melodic-joint-trajectory-controller
```
For ROS Kinetic:
```
sudo apt-get install ros-kinetic-controller-manager ros-kinetic-ros-control ros-kinetic-ros-controllers ros-kinetic-joint-state-controller ros-kinetic-effort-controllers ros-kinetic-velocity-controllers ros-kinetic-position-controllers ros-kinetic-robot-controllers ros-kinetic-robot-state-publisher ros-kinetic-gazebo8-ros ros-kinetic-gazebo8-ros-control ros-kinetic-gazebo8-ros-pkgs ros-kinetic-gazebo8-ros-dev
```
And open the file `unitree_gazebo/worlds/stairs.world`. At the end of the file:
```
<include>
<uri>model:///home/unitree/catkin_ws/src/unitree_ros/unitree_gazebo/worlds/building_editor_models/stairs</uri>
</include>
```
Please change the path of `building_editor_models/stairs` to the real path on your PC.
Then you can use catkin_make to build:
```
cd ~/catkin_ws
catkin_make
```
If you face a dependency problem, you can just run `catkin_make` again.
# Detail of Packages
## unitree_legged_control:
It contains the joints controllers for Gazebo simulation, which allows users to control joints with position, velocity and torque. Refer to "[unitree_ros/unitree_controller/src/servo.cpp](https://github.com/unitreerobotics/unitree_ros/blob/master/unitree_controller/src/servo.cpp)" for joint control examples in different modes.
## The description of robots:
Namely the description of Go1, A1, Aliengo and Laikago. Each package includes mesh, urdf and xacro files of robot. Take Laikago for example, you can check the model in Rviz by:
```
roslaunch laikago_description laikago_rviz.launch
```
## unitree_gazebo & unitree_controller:
You can launch the Gazebo simulation with the following command:
```
roslaunch unitree_gazebo normal.launch rname:=a1 wname:=stairs
```
Where the `rname` means robot name, which can be `laikago`, `aliengo`, `a1` or `go1`. The `wname` means world name, which can be `earth`, `space` or `stairs`. And the default value of `rname` is `laikago`, while the default value of `wname` is `earth`. In Gazebo, the robot should be lying on the ground with joints not activated.
### Stand controller
After launching the gazebo simulation, you can start to control the robot:
```
rosrun unitree_controller unitree_servo
```
And you can add external disturbances, like a push or a kick:
```
rosrun unitree_controller unitree_external_force
```
### Position and pose publisher
Here we demonstrated how to control the position and pose of robot without a controller, which should be useful in SLAM or visual development.
Then run the position and pose publisher in another terminal:
```
rosrun unitree_controller unitree_move_kinetic
```
The robot will turn around the origin, which is the movement under the world coordinate frame. And inside of the source file [move_publisher.cpp](https://github.com/unitreerobotics/unitree_ros/blob/master/unitree_controller/src/move_publisher.cpp), we also provide the method to move using the robot coordinate frame. You can change the value of `def_frame` to `coord::ROBOT` and run the catkin_make again, then the `unitree_move_publisher` will move robot under its own coordinate frame.
| 4,596 | Markdown | 57.935897 | 574 | 0.779373 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_gazebo/plugin/foot_contact_plugin.cc | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include <string>
#include <gazebo/common/Events.hh>
#include <ros/ros.h>
#include <ros/advertise_options.h>
#include <gazebo/gazebo.hh>
#include <gazebo/sensors/sensors.hh>
#include <geometry_msgs/WrenchStamped.h>
namespace gazebo
{
class UnitreeFootContactPlugin : public SensorPlugin
{
public:
UnitreeFootContactPlugin() : SensorPlugin(){}
~UnitreeFootContactPlugin(){}
void Load(sensors::SensorPtr _sensor, sdf::ElementPtr _sdf)
{
this->parentSensor = std::dynamic_pointer_cast<sensors::ContactSensor>(_sensor); // Make sure the parent sensor is valid.
if (!this->parentSensor){
gzerr << "UnitreeFootContactPlugin requires a ContactSensor.\n";
return;
}
this->contact_namespace = "contact/";
this->rosnode = new ros::NodeHandle(this->contact_namespace);
// add "visual" is for the same name of draw node
this->force_pub = this->rosnode->advertise<geometry_msgs::WrenchStamped>("/visual/"+_sensor->Name()+"/the_force", 100);
// Connect to the sensor update event.
this->update_connection = this->parentSensor->ConnectUpdated(std::bind(&UnitreeFootContactPlugin::OnUpdate, this));
this->parentSensor->SetActive(true); // Make sure the parent sensor is active.
count = 0;
Fx = 0;
Fy = 0;
Fz = 0;
ROS_INFO("Load %s plugin.", _sensor->Name().c_str());
}
private:
void OnUpdate()
{
msgs::Contacts contacts;
contacts = this->parentSensor->Contacts();
count = contacts.contact_size();
// std::cout << count <<"\n";
for (unsigned int i = 0; i < count; ++i){
if(contacts.contact(i).position_size() != 1){
ROS_ERROR("Contact count isn't correct!!!!");
}
for (unsigned int j = 0; j < contacts.contact(i).position_size(); ++j){
// std::cout << i <<" "<< contacts.contact(i).position_size() <<" Force:"
// << contacts.contact(i).wrench(j).body_1_wrench().force().x() << " "
// << contacts.contact(i).wrench(j).body_1_wrench().force().y() << " "
// << contacts.contact(i).wrench(j).body_1_wrench().force().z() << "\n";
Fx += contacts.contact(i).wrench(0).body_1_wrench().force().x(); // Notice: the force is in local coordinate, not in world or base coordnate.
Fy += contacts.contact(i).wrench(0).body_1_wrench().force().y();
Fz += contacts.contact(i).wrench(0).body_1_wrench().force().z();
}
}
if(count != 0){
force.wrench.force.x = Fx/double(count);
force.wrench.force.y = Fy/double(count);
force.wrench.force.z = Fz/double(count);
count = 0;
Fx = 0;
Fy = 0;
Fz = 0;
}
else{
force.wrench.force.x = 0;
force.wrench.force.y = 0;
force.wrench.force.z = 0;
}
this->force_pub.publish(force);
}
private:
ros::NodeHandle* rosnode;
ros::Publisher force_pub;
event::ConnectionPtr update_connection;
std::string contact_namespace;
sensors::ContactSensorPtr parentSensor;
geometry_msgs::WrenchStamped force;
int count = 0;
double Fx=0, Fy=0, Fz=0;
};
GZ_REGISTER_SENSOR_PLUGIN(UnitreeFootContactPlugin)
}
| 4,092 | C++ | 42.542553 | 161 | 0.503666 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_gazebo/plugin/draw_force_plugin.cc | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include <ignition/math/Color.hh>
#include <gazebo/common/Events.hh>
#include <gazebo/msgs/msgs.hh>
#include <gazebo/transport/Node.hh>
#include <gazebo/common/Plugin.hh>
#include <ros/ros.h>
#include "gazebo/rendering/DynamicLines.hh"
#include "gazebo/rendering/RenderTypes.hh"
#include "gazebo/rendering/Visual.hh"
#include "gazebo/rendering/Scene.hh"
#include <ros/ros.h>
#include <boost/bind.hpp>
#include <geometry_msgs/WrenchStamped.h>
namespace gazebo
{
class UnitreeDrawForcePlugin : public VisualPlugin
{
public:
UnitreeDrawForcePlugin():line(NULL){}
~UnitreeDrawForcePlugin(){
this->visual->DeleteDynamicLine(this->line);
}
void Load(rendering::VisualPtr _parent, sdf::ElementPtr _sdf )
{
this->visual = _parent;
this->visual_namespace = "visual/";
if (!_sdf->HasElement("topicName")){
ROS_INFO("Force draw plugin missing <topicName>, defaults to /default_force_draw");
this->topic_name = "/default_force_draw";
} else{
this->topic_name = _sdf->Get<std::string>("topicName");
}
if (!ros::isInitialized()){
int argc = 0;
char** argv = NULL;
ros::init(argc,argv,"gazebo_visual",ros::init_options::NoSigintHandler|ros::init_options::AnonymousName);
}
this->line = this->visual->CreateDynamicLine(rendering::RENDERING_LINE_STRIP);
this->line->AddPoint(ignition::math::Vector3d(0, 0, 0), common::Color(0, 1, 0, 1.0));
this->line->AddPoint(ignition::math::Vector3d(1, 1, 1), common::Color(0, 1, 0, 1.0));
this->line->setMaterial("Gazebo/Purple");
this->line->setVisibilityFlags(GZ_VISIBILITY_GUI);
this->visual->SetVisible(true);
this->rosnode = new ros::NodeHandle(this->visual_namespace);
this->force_sub = this->rosnode->subscribe(this->topic_name+"/"+"the_force", 30, &UnitreeDrawForcePlugin::GetForceCallback, this);
this->update_connection = event::Events::ConnectPreRender(boost::bind(&UnitreeDrawForcePlugin::OnUpdate, this));
ROS_INFO("Load %s Draw Force plugin.", this->topic_name.c_str());
}
void OnUpdate()
{
this->line->SetPoint(1, ignition::math::Vector3d(Fx, Fy, Fz));
}
void GetForceCallback(const geometry_msgs::WrenchStamped & msg)
{
Fx = msg.wrench.force.x/20.0;
Fy = msg.wrench.force.y/20.0;
Fz = msg.wrench.force.z/20.0;
// Fx = msg.wrench.force.x;
// Fy = msg.wrench.force.y;
// Fz = msg.wrench.force.z;
}
private:
ros::NodeHandle* rosnode;
std::string topic_name;
rendering::VisualPtr visual;
rendering::DynamicLines *line;
std::string visual_namespace;
ros::Subscriber force_sub;
double Fx=0, Fy=0, Fz=0;
event::ConnectionPtr update_connection;
};
GZ_REGISTER_VISUAL_PLUGIN(UnitreeDrawForcePlugin)
}
| 3,448 | C++ | 39.104651 | 142 | 0.571056 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/move_publisher.cpp | #include <ros/ros.h>
#include <gazebo_msgs/ModelState.h>
#include <gazebo_msgs/SetModelState.h>
#include <string>
#include <stdio.h>
#include <tf/transform_datatypes.h>
// #include <std_msgs/Float64.h>
#include <math.h>
#include <iostream>
int main(int argc, char **argv)
{
enum coord
{
WORLD,
ROBOT
};
coord def_frame = coord::WORLD;
ros::init(argc, argv, "move_publisher");
ros::NodeHandle nh;
ros::Publisher move_publisher = nh.advertise<gazebo_msgs::ModelState>("/gazebo/set_model_state", 1000);
gazebo_msgs::ModelState model_state_pub;
std::string robot_name;
ros::param::get("/robot_name", robot_name);
std::cout << "robot_name: " << robot_name << std::endl;
model_state_pub.model_name = robot_name + "_gazebo";
ros::Rate loop_rate(1000);
if(def_frame == coord::WORLD)
{
model_state_pub.pose.position.x = 0.0;
model_state_pub.pose.position.y = 0.0;
model_state_pub.pose.position.z = 0.5;
model_state_pub.pose.orientation.x = 0.0;
model_state_pub.pose.orientation.y = 0.0;
model_state_pub.pose.orientation.z = 0.0;
model_state_pub.pose.orientation.w = 1.0;
model_state_pub.reference_frame = "world";
long long time_ms = 0; //time, ms
const double period = 5000; //ms
const double radius = 1.5; //m
tf::Quaternion q;
while(ros::ok())
{
model_state_pub.pose.position.x = radius * sin(2*M_PI*(double)time_ms/period);
model_state_pub.pose.position.y = radius * cos(2*M_PI*(double)time_ms/period);
model_state_pub.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(0, 0, - 2*M_PI*(double)time_ms/period);
move_publisher.publish(model_state_pub);
loop_rate.sleep();
time_ms += 1;
}
}
else if(def_frame == coord::ROBOT)
{
model_state_pub.twist.linear.x= 0.02; //0.02: 2cm/sec
model_state_pub.twist.linear.y= 0.0;
model_state_pub.twist.linear.z= 0.08;
model_state_pub.twist.angular.x= 0.0;
model_state_pub.twist.angular.y= 0.0;
model_state_pub.twist.angular.z= 0.0;
model_state_pub.reference_frame = "base";
while(ros::ok())
{
move_publisher.publish(model_state_pub);
loop_rate.sleep();
}
}
} | 2,425 | C++ | 29.325 | 126 | 0.585567 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/external_force.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include <ros/ros.h>
#include <geometry_msgs/Wrench.h>
#include <signal.h>
#include <termios.h>
#include <stdio.h>
#define KEYCODE_UP 0x41
#define KEYCODE_DOWN 0x42
#define KEYCODE_LEFT 0x44
#define KEYCODE_RIGHT 0x43
#define KEYCODE_SPACE 0x20
int mode = 1; // pulsed mode or continuous mode
class teleForceCmd
{
public:
teleForceCmd();
void keyLoop();
void pubForce(double x, double y, double z);
private:
double Fx, Fy, Fz;
ros::NodeHandle n;
ros::Publisher force_pub;
geometry_msgs::Wrench Force;
};
teleForceCmd::teleForceCmd()
{
Fx = 0;
Fy = 0;
Fz = 0;
force_pub = n.advertise<geometry_msgs::Wrench>("/apply_force/trunk", 20);
sleep(1);
pubForce(Fx, Fy, Fz);
}
int kfd = 0;
struct termios cooked, raw;
void quit(int sig)
{
tcsetattr(kfd, TCSANOW, &cooked);
ros::shutdown();
exit(0);
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "external_force");
teleForceCmd remote;
signal(SIGINT,quit);
remote.keyLoop();
return(0);
}
void teleForceCmd::pubForce(double x, double y, double z)
{
Force.force.x = Fx;
Force.force.y = Fy;
Force.force.z = Fz;
force_pub.publish(Force);
ros::spinOnce();
}
void teleForceCmd::keyLoop()
{
char c;
bool dirty=false;
// get the console in raw mode
tcgetattr(kfd, &cooked);
memcpy(&raw, &cooked, sizeof(struct termios));
raw.c_lflag &=~ (ICANON | ECHO);
// Setting a new line, then end of file
raw.c_cc[VEOL] = 1;
raw.c_cc[VEOF] = 2;
tcsetattr(kfd, TCSANOW, &raw);
puts("Reading from keyboard");
puts("---------------------------");
puts("Use 'Space' to change mode, default is Pulsed mode:");
puts("Use 'Up/Down/Left/Right' to change direction");
for(;;){
// get the next event from the keyboard
if(read(kfd, &c, 1) < 0){
perror("read():");
exit(-1);
}
ROS_DEBUG("value: 0x%02X\n", c);
switch(c){
case KEYCODE_UP:
if(mode > 0) {
Fx = 60;
} else {
Fx += 16;
if(Fx > 220) Fx = 220;
if(Fx < -220) Fx = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_DOWN:
if(mode > 0) {
Fx = -60;
} else {
Fx -= 16;
if(Fx > 220) Fx = 220;
if(Fx < -220) Fx = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_LEFT:
if(mode > 0) {
Fy = 30;
} else {
Fy += 8;
if(Fy > 220) Fy = 220;
if(Fy < -220) Fy = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_RIGHT:
if(mode > 0) {
Fy = -30;
} else {
Fy -= 8;
if(Fy > 220) Fy = 220;
if(Fy < -220) Fy = -220;
}
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
case KEYCODE_SPACE:
mode = mode*(-1);
if(mode > 0){
ROS_INFO("Change to Pulsed mode.");
} else {
ROS_INFO("Change to Continuous mode.");
}
Fx = 0;
Fy = 0;
Fz = 0;
ROS_INFO("Fx:%3d Fy:%3d Fz:%3d", (int)Fx, (int)Fy, (int)Fz);
dirty = true;
break;
}
if(dirty == true){
pubForce(Fx, Fy, Fz);
if(mode > 0){
usleep(100000); // 100 ms
Fx = 0;
Fy = 0;
Fz = 0;
pubForce(Fx, Fy, Fz);
}
dirty=false;
}
}
return;
}
| 4,382 | C++ | 25.245509 | 77 | 0.446143 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/body.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include "body.h"
namespace unitree_model {
ros::Publisher servo_pub[12];
unitree_legged_msgs::LowCmd lowCmd;
unitree_legged_msgs::LowState lowState;
// These parameters are only for reference.
// Actual patameters need to be debugged if you want to run on real robot.
void paramInit()
{
for(int i=0; i<4; i++){
lowCmd.motorCmd[i*3+0].mode = 0x0A;
lowCmd.motorCmd[i*3+0].Kp = 70;
lowCmd.motorCmd[i*3+0].dq = 0;
lowCmd.motorCmd[i*3+0].Kd = 3;
lowCmd.motorCmd[i*3+0].tau = 0;
lowCmd.motorCmd[i*3+1].mode = 0x0A;
lowCmd.motorCmd[i*3+1].Kp = 180;
lowCmd.motorCmd[i*3+1].dq = 0;
lowCmd.motorCmd[i*3+1].Kd = 8;
lowCmd.motorCmd[i*3+1].tau = 0;
lowCmd.motorCmd[i*3+2].mode = 0x0A;
lowCmd.motorCmd[i*3+2].Kp = 300;
lowCmd.motorCmd[i*3+2].dq = 0;
lowCmd.motorCmd[i*3+2].Kd = 15;
lowCmd.motorCmd[i*3+2].tau = 0;
}
for(int i=0; i<12; i++){
lowCmd.motorCmd[i].q = lowState.motorState[i].q;
}
}
void stand()
{
double pos[12] = {0.0, 0.67, -1.3, -0.0, 0.67, -1.3,
0.0, 0.67, -1.3, -0.0, 0.67, -1.3};
moveAllPosition(pos, 2*1000);
}
void motion_init()
{
paramInit();
stand();
}
void sendServoCmd()
{
for(int m=0; m<12; m++){
servo_pub[m].publish(lowCmd.motorCmd[m]);
}
ros::spinOnce();
usleep(1000);
}
void moveAllPosition(double* targetPos, double duration)
{
double pos[12] ,lastPos[12], percent;
for(int j=0; j<12; j++) lastPos[j] = lowState.motorState[j].q;
for(int i=1; i<=duration; i++){
if(!ros::ok()) break;
percent = (double)i/duration;
for(int j=0; j<12; j++){
lowCmd.motorCmd[j].q = lastPos[j]*(1-percent) + targetPos[j]*percent;
}
sendServoCmd();
}
}
}
| 2,130 | C++ | 26.320512 | 82 | 0.532394 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/src/servo.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#include "ros/ros.h"
#include <stdio.h>
#include <stdlib.h>
#include "unitree_legged_msgs/LowCmd.h"
#include "unitree_legged_msgs/LowState.h"
#include "unitree_legged_msgs/MotorCmd.h"
#include "unitree_legged_msgs/MotorState.h"
#include <geometry_msgs/WrenchStamped.h>
#include <sensor_msgs/Imu.h>
#include <std_msgs/Bool.h>
#include <vector>
#include <string>
#include <math.h>
#include <nav_msgs/Odometry.h>
#include "body.h"
using namespace std;
using namespace unitree_model;
bool start_up = true;
class multiThread
{
public:
multiThread(string rname){
robot_name = rname;
imu_sub = nm.subscribe("/trunk_imu", 1, &multiThread::imuCallback, this);
footForce_sub[0] = nm.subscribe("/visual/FR_foot_contact/the_force", 1, &multiThread::FRfootCallback, this);
footForce_sub[1] = nm.subscribe("/visual/FL_foot_contact/the_force", 1, &multiThread::FLfootCallback, this);
footForce_sub[2] = nm.subscribe("/visual/RR_foot_contact/the_force", 1, &multiThread::RRfootCallback, this);
footForce_sub[3] = nm.subscribe("/visual/RL_foot_contact/the_force", 1, &multiThread::RLfootCallback, this);
servo_sub[0] = nm.subscribe("/" + robot_name + "_gazebo/FR_hip_controller/state", 1, &multiThread::FRhipCallback, this);
servo_sub[1] = nm.subscribe("/" + robot_name + "_gazebo/FR_thigh_controller/state", 1, &multiThread::FRthighCallback, this);
servo_sub[2] = nm.subscribe("/" + robot_name + "_gazebo/FR_calf_controller/state", 1, &multiThread::FRcalfCallback, this);
servo_sub[3] = nm.subscribe("/" + robot_name + "_gazebo/FL_hip_controller/state", 1, &multiThread::FLhipCallback, this);
servo_sub[4] = nm.subscribe("/" + robot_name + "_gazebo/FL_thigh_controller/state", 1, &multiThread::FLthighCallback, this);
servo_sub[5] = nm.subscribe("/" + robot_name + "_gazebo/FL_calf_controller/state", 1, &multiThread::FLcalfCallback, this);
servo_sub[6] = nm.subscribe("/" + robot_name + "_gazebo/RR_hip_controller/state", 1, &multiThread::RRhipCallback, this);
servo_sub[7] = nm.subscribe("/" + robot_name + "_gazebo/RR_thigh_controller/state", 1, &multiThread::RRthighCallback, this);
servo_sub[8] = nm.subscribe("/" + robot_name + "_gazebo/RR_calf_controller/state", 1, &multiThread::RRcalfCallback, this);
servo_sub[9] = nm.subscribe("/" + robot_name + "_gazebo/RL_hip_controller/state", 1, &multiThread::RLhipCallback, this);
servo_sub[10] = nm.subscribe("/" + robot_name + "_gazebo/RL_thigh_controller/state", 1, &multiThread::RLthighCallback, this);
servo_sub[11] = nm.subscribe("/" + robot_name + "_gazebo/RL_calf_controller/state", 1, &multiThread::RLcalfCallback, this);
}
void imuCallback(const sensor_msgs::Imu & msg)
{
lowState.imu.quaternion[0] = msg.orientation.w;
lowState.imu.quaternion[1] = msg.orientation.x;
lowState.imu.quaternion[2] = msg.orientation.y;
lowState.imu.quaternion[3] = msg.orientation.z;
lowState.imu.gyroscope[0] = msg.angular_velocity.x;
lowState.imu.gyroscope[1] = msg.angular_velocity.y;
lowState.imu.gyroscope[2] = msg.angular_velocity.z;
lowState.imu.accelerometer[0] = msg.linear_acceleration.x;
lowState.imu.accelerometer[1] = msg.linear_acceleration.y;
lowState.imu.accelerometer[2] = msg.linear_acceleration.z;
}
void FRhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[0].mode = msg.mode;
lowState.motorState[0].q = msg.q;
lowState.motorState[0].dq = msg.dq;
lowState.motorState[0].tauEst = msg.tauEst;
}
void FRthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[1].mode = msg.mode;
lowState.motorState[1].q = msg.q;
lowState.motorState[1].dq = msg.dq;
lowState.motorState[1].tauEst = msg.tauEst;
}
void FRcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[2].mode = msg.mode;
lowState.motorState[2].q = msg.q;
lowState.motorState[2].dq = msg.dq;
lowState.motorState[2].tauEst = msg.tauEst;
}
void FLhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[3].mode = msg.mode;
lowState.motorState[3].q = msg.q;
lowState.motorState[3].dq = msg.dq;
lowState.motorState[3].tauEst = msg.tauEst;
}
void FLthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[4].mode = msg.mode;
lowState.motorState[4].q = msg.q;
lowState.motorState[4].dq = msg.dq;
lowState.motorState[4].tauEst = msg.tauEst;
}
void FLcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[5].mode = msg.mode;
lowState.motorState[5].q = msg.q;
lowState.motorState[5].dq = msg.dq;
lowState.motorState[5].tauEst = msg.tauEst;
}
void RRhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[6].mode = msg.mode;
lowState.motorState[6].q = msg.q;
lowState.motorState[6].dq = msg.dq;
lowState.motorState[6].tauEst = msg.tauEst;
}
void RRthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[7].mode = msg.mode;
lowState.motorState[7].q = msg.q;
lowState.motorState[7].dq = msg.dq;
lowState.motorState[7].tauEst = msg.tauEst;
}
void RRcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[8].mode = msg.mode;
lowState.motorState[8].q = msg.q;
lowState.motorState[8].dq = msg.dq;
lowState.motorState[8].tauEst = msg.tauEst;
}
void RLhipCallback(const unitree_legged_msgs::MotorState& msg)
{
start_up = false;
lowState.motorState[9].mode = msg.mode;
lowState.motorState[9].q = msg.q;
lowState.motorState[9].dq = msg.dq;
lowState.motorState[9].tauEst = msg.tauEst;
}
void RLthighCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[10].mode = msg.mode;
lowState.motorState[10].q = msg.q;
lowState.motorState[10].dq = msg.dq;
lowState.motorState[10].tauEst = msg.tauEst;
}
void RLcalfCallback(const unitree_legged_msgs::MotorState& msg)
{
lowState.motorState[11].mode = msg.mode;
lowState.motorState[11].q = msg.q;
lowState.motorState[11].dq = msg.dq;
lowState.motorState[11].tauEst = msg.tauEst;
}
void FRfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[0].x = msg.wrench.force.x;
lowState.eeForce[0].y = msg.wrench.force.y;
lowState.eeForce[0].z = msg.wrench.force.z;
lowState.footForce[0] = msg.wrench.force.z;
}
void FLfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[1].x = msg.wrench.force.x;
lowState.eeForce[1].y = msg.wrench.force.y;
lowState.eeForce[1].z = msg.wrench.force.z;
lowState.footForce[1] = msg.wrench.force.z;
}
void RRfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[2].x = msg.wrench.force.x;
lowState.eeForce[2].y = msg.wrench.force.y;
lowState.eeForce[2].z = msg.wrench.force.z;
lowState.footForce[2] = msg.wrench.force.z;
}
void RLfootCallback(const geometry_msgs::WrenchStamped& msg)
{
lowState.eeForce[3].x = msg.wrench.force.x;
lowState.eeForce[3].y = msg.wrench.force.y;
lowState.eeForce[3].z = msg.wrench.force.z;
lowState.footForce[3] = msg.wrench.force.z;
}
private:
ros::NodeHandle nm;
ros::Subscriber servo_sub[12], footForce_sub[4], imu_sub;
string robot_name;
};
int main(int argc, char **argv)
{
ros::init(argc, argv, "unitree_gazebo_servo");
string robot_name;
ros::param::get("/robot_name", robot_name);
cout << "robot_name: " << robot_name << endl;
multiThread listen_publish_obj(robot_name);
ros::AsyncSpinner spinner(1); // one threads
spinner.start();
usleep(300000); // must wait 300ms, to get first state
ros::NodeHandle n;
ros::Publisher lowState_pub; //for rviz visualization
// ros::Rate loop_rate(1000);
// the following nodes have been initialized by "gazebo.launch"
lowState_pub = n.advertise<unitree_legged_msgs::LowState>("/" + robot_name + "_gazebo/lowState/state", 1);
servo_pub[0] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FR_hip_controller/command", 1);
servo_pub[1] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FR_thigh_controller/command", 1);
servo_pub[2] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FR_calf_controller/command", 1);
servo_pub[3] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FL_hip_controller/command", 1);
servo_pub[4] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FL_thigh_controller/command", 1);
servo_pub[5] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/FL_calf_controller/command", 1);
servo_pub[6] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RR_hip_controller/command", 1);
servo_pub[7] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RR_thigh_controller/command", 1);
servo_pub[8] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RR_calf_controller/command", 1);
servo_pub[9] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RL_hip_controller/command", 1);
servo_pub[10] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RL_thigh_controller/command", 1);
servo_pub[11] = n.advertise<unitree_legged_msgs::MotorCmd>("/" + robot_name + "_gazebo/RL_calf_controller/command", 1);
motion_init();
while (ros::ok()){
/*
control logic
*/
lowState_pub.publish(lowState);
sendServoCmd();
}
return 0;
}
| 10,620 | C++ | 41.654618 | 133 | 0.638606 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_controller/include/body.h | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#ifndef __BODY_H__
#define __BODY_H__
#include "ros/ros.h"
#include "unitree_legged_msgs/LowCmd.h"
#include "unitree_legged_msgs/LowState.h"
#include "unitree_legged_msgs/HighState.h"
#define PosStopF (2.146E+9f)
#define VelStopF (16000.f)
namespace unitree_model {
extern ros::Publisher servo_pub[12];
extern ros::Publisher highState_pub;
extern unitree_legged_msgs::LowCmd lowCmd;
extern unitree_legged_msgs::LowState lowState;
void stand();
void motion_init();
void sendServoCmd();
void moveAllPosition(double* jointPositions, double duration);
}
#endif
| 855 | C | 27.533332 | 73 | 0.626901 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/unitree_controller_plugins.xml | <library path="lib/libunitree_legged_control">
<class name="unitree_legged_control/UnitreeJointController"
type="unitree_legged_control::UnitreeJointController"
base_class_type="controller_interface::ControllerBase"/>
<description>
The unitree joint controller.
</description>
</library>
| 354 | XML | 38.44444 | 75 | 0.661017 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/src/joint_controller.cpp | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
// #include "unitree_legged_control/joint_controller.h"
#include "joint_controller.h"
#include <pluginlib/class_list_macros.h>
// #define rqtTune // use rqt or not
namespace unitree_legged_control
{
UnitreeJointController::UnitreeJointController(){
memset(&lastCmd, 0, sizeof(unitree_legged_msgs::MotorCmd));
memset(&lastState, 0, sizeof(unitree_legged_msgs::MotorState));
memset(&servoCmd, 0, sizeof(ServoCmd));
}
UnitreeJointController::~UnitreeJointController(){
sub_ft.shutdown();
sub_cmd.shutdown();
}
void UnitreeJointController::setTorqueCB(const geometry_msgs::WrenchStampedConstPtr& msg)
{
if(isHip) sensor_torque = msg->wrench.torque.x;
else sensor_torque = msg->wrench.torque.y;
// printf("sensor torque%f\n", sensor_torque);
}
void UnitreeJointController::setCommandCB(const unitree_legged_msgs::MotorCmdConstPtr& msg)
{
lastCmd.mode = msg->mode;
lastCmd.q = msg->q;
lastCmd.Kp = msg->Kp;
lastCmd.dq = msg->dq;
lastCmd.Kd = msg->Kd;
lastCmd.tau = msg->tau;
// the writeFromNonRT can be used in RT, if you have the guarantee that
// * no non-rt thread is calling the same function (we're not subscribing to ros callbacks)
// * there is only one single rt thread
command.writeFromNonRT(lastCmd);
}
// Controller initialization in non-realtime
bool UnitreeJointController::init(hardware_interface::EffortJointInterface *robot, ros::NodeHandle &n)
{
isHip = false;
isThigh = false;
isCalf = false;
// rqtTune = false;
sensor_torque = 0;
name_space = n.getNamespace();
if (!n.getParam("joint", joint_name)){
ROS_ERROR("No joint given in namespace: '%s')", n.getNamespace().c_str());
return false;
}
// load pid param from ymal only if rqt need
// if(rqtTune) {
#ifdef rqtTune
// Load PID Controller using gains set on parameter server
if (!pid_controller_.init(ros::NodeHandle(n, "pid")))
return false;
#endif
// }
urdf::Model urdf; // Get URDF info about joint
if (!urdf.initParamWithNodeHandle("robot_description", n)){
ROS_ERROR("Failed to parse urdf file");
return false;
}
joint_urdf = urdf.getJoint(joint_name);
if (!joint_urdf){
ROS_ERROR("Could not find joint '%s' in urdf", joint_name.c_str());
return false;
}
if(joint_name == "FR_hip_joint" || joint_name == "FL_hip_joint" || joint_name == "RR_hip_joint" || joint_name == "RL_hip_joint"){
isHip = true;
}
if(joint_name == "FR_calf_joint" || joint_name == "FL_calf_joint" || joint_name == "RR_calf_joint" || joint_name == "RL_calf_joint"){
isCalf = true;
}
joint = robot->getHandle(joint_name);
// Start command subscriber
sub_ft = n.subscribe(name_space + "/" +"joint_wrench", 1, &UnitreeJointController::setTorqueCB, this);
sub_cmd = n.subscribe("command", 20, &UnitreeJointController::setCommandCB, this);
// pub_state = n.advertise<unitree_legged_msgs::MotorState>(name_space + "/state", 20);
// Start realtime state publisher
controller_state_publisher_.reset(
new realtime_tools::RealtimePublisher<unitree_legged_msgs::MotorState>(n, name_space + "/state", 1));
return true;
}
void UnitreeJointController::setGains(const double &p, const double &i, const double &d, const double &i_max, const double &i_min, const bool &antiwindup)
{
pid_controller_.setGains(p,i,d,i_max,i_min,antiwindup);
}
void UnitreeJointController::getGains(double &p, double &i, double &d, double &i_max, double &i_min, bool &antiwindup)
{
pid_controller_.getGains(p,i,d,i_max,i_min,antiwindup);
}
void UnitreeJointController::getGains(double &p, double &i, double &d, double &i_max, double &i_min)
{
bool dummy;
pid_controller_.getGains(p,i,d,i_max,i_min,dummy);
}
// Controller startup in realtime
void UnitreeJointController::starting(const ros::Time& time)
{
// lastCmd.Kp = 0;
// lastCmd.Kd = 0;
double init_pos = joint.getPosition();
lastCmd.q = init_pos;
lastState.q = init_pos;
lastCmd.dq = 0;
lastState.dq = 0;
lastCmd.tau = 0;
lastState.tauEst = 0;
command.initRT(lastCmd);
pid_controller_.reset();
}
// Controller update loop in realtime
void UnitreeJointController::update(const ros::Time& time, const ros::Duration& period)
{
double currentPos, currentVel, calcTorque;
lastCmd = *(command.readFromRT());
// set command data
if(lastCmd.mode == PMSM) {
servoCmd.pos = lastCmd.q;
positionLimits(servoCmd.pos);
servoCmd.posStiffness = lastCmd.Kp;
if(fabs(lastCmd.q - PosStopF) < 0.00001){
servoCmd.posStiffness = 0;
}
servoCmd.vel = lastCmd.dq;
velocityLimits(servoCmd.vel);
servoCmd.velStiffness = lastCmd.Kd;
if(fabs(lastCmd.dq - VelStopF) < 0.00001){
servoCmd.velStiffness = 0;
}
servoCmd.torque = lastCmd.tau;
effortLimits(servoCmd.torque);
}
if(lastCmd.mode == BRAKE) {
servoCmd.posStiffness = 0;
servoCmd.vel = 0;
servoCmd.velStiffness = 20;
servoCmd.torque = 0;
effortLimits(servoCmd.torque);
}
// } else {
// servoCmd.posStiffness = 0;
// servoCmd.velStiffness = 5;
// servoCmd.torque = 0;
// }
// rqt set P D gains
// if(rqtTune) {
#ifdef rqtTune
double i, i_max, i_min;
getGains(servoCmd.posStiffness,i,servoCmd.velStiffness,i_max,i_min);
#endif
// }
currentPos = joint.getPosition();
currentVel = computeVel(currentPos, (double)lastState.q, (double)lastState.dq, period.toSec());
calcTorque = computeTorque(currentPos, currentVel, servoCmd);
effortLimits(calcTorque);
joint.setCommand(calcTorque);
lastState.q = currentPos;
lastState.dq = currentVel;
// lastState.tauEst = calcTorque;
// lastState.tauEst = sensor_torque;
lastState.tauEst = joint.getEffort();
// pub_state.publish(lastState);
// publish state
if (controller_state_publisher_ && controller_state_publisher_->trylock()) {
controller_state_publisher_->msg_.q = lastState.q;
controller_state_publisher_->msg_.dq = lastState.dq;
controller_state_publisher_->msg_.tauEst = lastState.tauEst;
controller_state_publisher_->unlockAndPublish();
}
// printf("sensor torque%f\n", sensor_torque);
// if(joint_name == "wrist1_joint") printf("wrist1 setp:%f getp:%f t:%f\n", servoCmd.pos, currentPos, calcTorque);
}
// Controller stopping in realtime
void UnitreeJointController::stopping(){}
void UnitreeJointController::positionLimits(double &position)
{
if (joint_urdf->type == urdf::Joint::REVOLUTE || joint_urdf->type == urdf::Joint::PRISMATIC)
clamp(position, joint_urdf->limits->lower, joint_urdf->limits->upper);
}
void UnitreeJointController::velocityLimits(double &velocity)
{
if (joint_urdf->type == urdf::Joint::REVOLUTE || joint_urdf->type == urdf::Joint::PRISMATIC)
clamp(velocity, -joint_urdf->limits->velocity, joint_urdf->limits->velocity);
}
void UnitreeJointController::effortLimits(double &effort)
{
if (joint_urdf->type == urdf::Joint::REVOLUTE || joint_urdf->type == urdf::Joint::PRISMATIC)
clamp(effort, -joint_urdf->limits->effort, joint_urdf->limits->effort);
}
} // namespace
// Register controller to pluginlib
PLUGINLIB_EXPORT_CLASS(unitree_legged_control::UnitreeJointController, controller_interface::ControllerBase);
| 8,576 | C++ | 36.291304 | 158 | 0.592001 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/include/unitree_joint_control_tool.h | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
// #ifndef _UNITREE_JOINT_CONTROL_TOOL_H_
// #define _UNITREE_JOINT_CONTROL_TOOL_H_
#ifndef _LAIKAGO_CONTROL_TOOL_H_
#define _LAIKAGO_CONTROL_TOOL_H_
#include <stdio.h>
#include <stdint.h>
#include <algorithm>
#include <math.h>
#define posStopF (2.146E+9f) // stop position control mode
#define velStopF (16000.0f) // stop velocity control mode
typedef struct
{
uint8_t mode;
double pos;
double posStiffness;
double vel;
double velStiffness;
double torque;
} ServoCmd;
double clamp(double&, double, double); // eg. clamp(1.5, -1, 1) = 1
double computeVel(double current_position, double last_position, double last_velocity, double duration); // get current velocity
double computeTorque(double current_position, double current_velocity, ServoCmd&); // get torque
#endif
| 1,099 | C | 31.35294 | 129 | 0.627843 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/unitreerobotics/unitree_ros-CHAMP/unitree_legged_control/include/joint_controller.h | /************************************************************************
Copyright (c) 2018-2019, Unitree Robotics.Co.Ltd. All rights reserved.
Use of this source code is governed by the MPL-2.0 license, see LICENSE.
************************************************************************/
#ifndef _UNITREE_ROS_JOINT_CONTROLLER_H_
#define _UNITREE_ROS_JOINT_CONTROLLER_H_
#include <ros/node_handle.h>
#include <urdf/model.h>
#include <control_toolbox/pid.h>
#include <boost/scoped_ptr.hpp>
#include <boost/thread/condition.hpp>
#include <realtime_tools/realtime_publisher.h>
#include <hardware_interface/joint_command_interface.h>
#include <controller_interface/controller.h>
#include <std_msgs/Float64.h>
#include <realtime_tools/realtime_buffer.h>
#include <controller_interface/controller.h>
#include <hardware_interface/joint_command_interface.h>
#include "unitree_legged_msgs/MotorCmd.h"
#include "unitree_legged_msgs/MotorState.h"
#include <geometry_msgs/WrenchStamped.h>
#include "unitree_joint_control_tool.h"
#define PMSM (0x0A)
#define BRAKE (0x00)
#define PosStopF (2.146E+9f)
#define VelStopF (16000.0f)
namespace unitree_legged_control
{
class UnitreeJointController: public controller_interface::Controller<hardware_interface::EffortJointInterface>
{
private:
hardware_interface::JointHandle joint;
ros::Subscriber sub_cmd, sub_ft;
// ros::Publisher pub_state;
control_toolbox::Pid pid_controller_;
boost::scoped_ptr<realtime_tools::RealtimePublisher<unitree_legged_msgs::MotorState> > controller_state_publisher_ ;
public:
// bool start_up;
std::string name_space;
std::string joint_name;
float sensor_torque;
bool isHip, isThigh, isCalf, rqtTune;
urdf::JointConstSharedPtr joint_urdf;
realtime_tools::RealtimeBuffer<unitree_legged_msgs::MotorCmd> command;
unitree_legged_msgs::MotorCmd lastCmd;
unitree_legged_msgs::MotorState lastState;
ServoCmd servoCmd;
UnitreeJointController();
~UnitreeJointController();
virtual bool init(hardware_interface::EffortJointInterface *robot, ros::NodeHandle &n);
virtual void starting(const ros::Time& time);
virtual void update(const ros::Time& time, const ros::Duration& period);
virtual void stopping();
void setTorqueCB(const geometry_msgs::WrenchStampedConstPtr& msg);
void setCommandCB(const unitree_legged_msgs::MotorCmdConstPtr& msg);
void positionLimits(double &position);
void velocityLimits(double &velocity);
void effortLimits(double &effort);
void setGains(const double &p, const double &i, const double &d, const double &i_max, const double &i_min, const bool &antiwindup = false);
void getGains(double &p, double &i, double &d, double &i_max, double &i_min, bool &antiwindup);
void getGains(double &p, double &i, double &d, double &i_max, double &i_min);
};
}
#endif
| 2,999 | C | 39.54054 | 147 | 0.674558 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/opendog_description-CHAMP/README.md | URDF and Gazebo model of [Jame's Bruton's](https://www.youtube.com/user/jamesbruton) [OpenDog V2](https://github.com/XRobots/openDogV2) project.
| 146 | Markdown | 72.499964 | 145 | 0.760274 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/README.md | # openDogV2:
CAD and Code that relates to this YouTube series:
https://www.youtube.com/playlist?list=PLpwJoq86vov9CcmrLGyM2XyyYDAYG0-Iu
Release 1: created at the end of part 6 of the YouTube series. Please note the issues stated at the end of this video.
Release 2: created at the end of part 7 of the YouTube series. Please note the issues stated during this video. Note that the remote is unchanged since release 1.
Relase 3: created for part 8 of the YouTube series. Includes the modified knee motor pulley, Python and Arduino code for the deep learning model.
# Related Community Projects:
OpenDog URDF/config for CHAMP: https://github.com/chvmp/opendog_description
'openDog 2.1' with higher belt reductions and cooling fans: https://github.com/J-DIndustries/openDog-V2.1
| 789 | Markdown | 42.888887 | 162 | 0.784537 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/Release02/Code/openDogV2_R2/MPU6050_6Axis_MotionApps20.h | // I2Cdev library collection - MPU6050 I2C device class, 6-axis MotionApps 2.0 implementation
// Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
// 5/20/2013 by Jeff Rowberg <[email protected]>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
// ... - ongoing debug release
/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/
#ifndef _MPU6050_6AXIS_MOTIONAPPS20_H_
#define _MPU6050_6AXIS_MOTIONAPPS20_H_
#include "I2Cdev.h"
#include "helper_3dmath.h"
// MotionApps 2.0 DMP implementation, built using the MPU-6050EVB evaluation board
#define MPU6050_INCLUDE_DMP_MOTIONAPPS20
#include "MPU6050.h"
// Tom Carpenter's conditional PROGMEM code
// http://forum.arduino.cc/index.php?topic=129407.0
#ifndef __arm__
#include <avr/pgmspace.h>
#else
// Teensy 3.0 library conditional PROGMEM code from Paul Stoffregen
#ifndef __PGMSPACE_H_
#define __PGMSPACE_H_ 1
#include <inttypes.h>
#define PROGMEM
#define PGM_P const char *
#define PSTR(str) (str)
#define F(x) x
typedef void prog_void;
typedef char prog_char;
typedef unsigned char prog_uchar;
typedef int8_t prog_int8_t;
typedef uint8_t prog_uint8_t;
typedef int16_t prog_int16_t;
typedef uint16_t prog_uint16_t;
typedef int32_t prog_int32_t;
typedef uint32_t prog_uint32_t;
#define strcpy_P(dest, src) strcpy((dest), (src))
#define strcat_P(dest, src) strcat((dest), (src))
#define strcmp_P(a, b) strcmp((a), (b))
#define pgm_read_byte(addr) (*(const unsigned char *)(addr))
#define pgm_read_word(addr) (*(const unsigned short *)(addr))
#define pgm_read_dword(addr) (*(const unsigned long *)(addr))
#define pgm_read_float(addr) (*(const float *)(addr))
#define pgm_read_byte_near(addr) pgm_read_byte(addr)
#define pgm_read_word_near(addr) pgm_read_word(addr)
#define pgm_read_dword_near(addr) pgm_read_dword(addr)
#define pgm_read_float_near(addr) pgm_read_float(addr)
#define pgm_read_byte_far(addr) pgm_read_byte(addr)
#define pgm_read_word_far(addr) pgm_read_word(addr)
#define pgm_read_dword_far(addr) pgm_read_dword(addr)
#define pgm_read_float_far(addr) pgm_read_float(addr)
#endif
#endif
/* Source is from the InvenSense MotionApps v2 demo code. Original source is
* unavailable, unless you happen to be amazing as decompiling binary by
* hand (in which case, please contact me, and I'm totally serious).
*
* Also, I'd like to offer many, many thanks to Noah Zerkin for all of the
* DMP reverse-engineering he did to help make this bit of wizardry
* possible.
*/
// NOTE! Enabling DEBUG adds about 3.3kB to the flash program size.
// Debug output is now working even on ATMega328P MCUs (e.g. Arduino Uno)
// after moving string constants to flash memory storage using the F()
// compiler macro (Arduino IDE 1.0+ required).
//#define DEBUG
#ifdef DEBUG
#define DEBUG_PRINT(x) Serial.print(x)
#define DEBUG_PRINTF(x, y) Serial.print(x, y)
#define DEBUG_PRINTLN(x) Serial.println(x)
#define DEBUG_PRINTLNF(x, y) Serial.println(x, y)
#else
#define DEBUG_PRINT(x)
#define DEBUG_PRINTF(x, y)
#define DEBUG_PRINTLN(x)
#define DEBUG_PRINTLNF(x, y)
#endif
#define MPU6050_DMP_CODE_SIZE 1929 // dmpMemory[]
#define MPU6050_DMP_CONFIG_SIZE 192 // dmpConfig[]
#define MPU6050_DMP_UPDATES_SIZE 47 // dmpUpdates[]
/* ================================================================================================ *
| Default MotionApps v2.0 42-byte FIFO packet structure: |
| |
| [QUAT W][ ][QUAT X][ ][QUAT Y][ ][QUAT Z][ ][GYRO X][ ][GYRO Y][ ] |
| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
| |
| [GYRO Z][ ][ACC X ][ ][ACC Y ][ ][ACC Z ][ ][ ] |
| 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
* ================================================================================================ */
// this block of memory gets written to the MPU on start-up, and it seems
// to be volatile memory, so it has to be done each time (it only takes ~1
// second though)
const unsigned char dmpMemory[MPU6050_DMP_CODE_SIZE] PROGMEM = {
// bank 0, 256 bytes
0xFB, 0x00, 0x00, 0x3E, 0x00, 0x0B, 0x00, 0x36, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x00,
0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0xFA, 0x80, 0x00, 0x0B, 0x12, 0x82, 0x00, 0x01,
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x28, 0x00, 0x00, 0xFF, 0xFF, 0x45, 0x81, 0xFF, 0xFF, 0xFA, 0x72, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x03, 0xE8, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x7F, 0xFF, 0xFF, 0xFE, 0x80, 0x01,
0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x3E, 0x03, 0x30, 0x40, 0x00, 0x00, 0x00, 0x02, 0xCA, 0xE3, 0x09, 0x3E, 0x80, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00,
0x41, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x0B, 0x2A, 0x00, 0x00, 0x16, 0x55, 0x00, 0x00, 0x21, 0x82,
0xFD, 0x87, 0x26, 0x50, 0xFD, 0x80, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x00, 0x00, 0x05, 0x80, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x6F, 0x00, 0x02, 0x65, 0x32, 0x00, 0x00, 0x5E, 0xC0,
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xFB, 0x8C, 0x6F, 0x5D, 0xFD, 0x5D, 0x08, 0xD9, 0x00, 0x7C, 0x73, 0x3B, 0x00, 0x6C, 0x12, 0xCC,
0x32, 0x00, 0x13, 0x9D, 0x32, 0x00, 0xD0, 0xD6, 0x32, 0x00, 0x08, 0x00, 0x40, 0x00, 0x01, 0xF4,
0xFF, 0xE6, 0x80, 0x79, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD0, 0xD6, 0x00, 0x00, 0x27, 0x10,
// bank 1, 256 bytes
0xFB, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFA, 0x36, 0xFF, 0xBC, 0x30, 0x8E, 0x00, 0x05, 0xFB, 0xF0, 0xFF, 0xD9, 0x5B, 0xC8,
0xFF, 0xD0, 0x9A, 0xBE, 0x00, 0x00, 0x10, 0xA9, 0xFF, 0xF4, 0x1E, 0xB2, 0x00, 0xCE, 0xBB, 0xF7,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x02, 0x00, 0x02, 0x02, 0x00, 0x00, 0x0C,
0xFF, 0xC2, 0x80, 0x00, 0x00, 0x01, 0x80, 0x00, 0x00, 0xCF, 0x80, 0x00, 0x40, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0x3F, 0x68, 0xB6, 0x79, 0x35, 0x28, 0xBC, 0xC6, 0x7E, 0xD1, 0x6C,
0x80, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0xB2, 0x6A, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3F, 0xF0, 0x00, 0x00, 0x00, 0x30,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x25, 0x4D, 0x00, 0x2F, 0x70, 0x6D, 0x00, 0x00, 0x05, 0xAE, 0x00, 0x0C, 0x02, 0xD0,
// bank 2, 256 bytes
0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x54, 0xFF, 0xEF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0xFF, 0xEF, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
0x00, 0x1B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// bank 3, 256 bytes
0xD8, 0xDC, 0xBA, 0xA2, 0xF1, 0xDE, 0xB2, 0xB8, 0xB4, 0xA8, 0x81, 0x91, 0xF7, 0x4A, 0x90, 0x7F,
0x91, 0x6A, 0xF3, 0xF9, 0xDB, 0xA8, 0xF9, 0xB0, 0xBA, 0xA0, 0x80, 0xF2, 0xCE, 0x81, 0xF3, 0xC2,
0xF1, 0xC1, 0xF2, 0xC3, 0xF3, 0xCC, 0xA2, 0xB2, 0x80, 0xF1, 0xC6, 0xD8, 0x80, 0xBA, 0xA7, 0xDF,
0xDF, 0xDF, 0xF2, 0xA7, 0xC3, 0xCB, 0xC5, 0xB6, 0xF0, 0x87, 0xA2, 0x94, 0x24, 0x48, 0x70, 0x3C,
0x95, 0x40, 0x68, 0x34, 0x58, 0x9B, 0x78, 0xA2, 0xF1, 0x83, 0x92, 0x2D, 0x55, 0x7D, 0xD8, 0xB1,
0xB4, 0xB8, 0xA1, 0xD0, 0x91, 0x80, 0xF2, 0x70, 0xF3, 0x70, 0xF2, 0x7C, 0x80, 0xA8, 0xF1, 0x01,
0xB0, 0x98, 0x87, 0xD9, 0x43, 0xD8, 0x86, 0xC9, 0x88, 0xBA, 0xA1, 0xF2, 0x0E, 0xB8, 0x97, 0x80,
0xF1, 0xA9, 0xDF, 0xDF, 0xDF, 0xAA, 0xDF, 0xDF, 0xDF, 0xF2, 0xAA, 0xC5, 0xCD, 0xC7, 0xA9, 0x0C,
0xC9, 0x2C, 0x97, 0x97, 0x97, 0x97, 0xF1, 0xA9, 0x89, 0x26, 0x46, 0x66, 0xB0, 0xB4, 0xBA, 0x80,
0xAC, 0xDE, 0xF2, 0xCA, 0xF1, 0xB2, 0x8C, 0x02, 0xA9, 0xB6, 0x98, 0x00, 0x89, 0x0E, 0x16, 0x1E,
0xB8, 0xA9, 0xB4, 0x99, 0x2C, 0x54, 0x7C, 0xB0, 0x8A, 0xA8, 0x96, 0x36, 0x56, 0x76, 0xF1, 0xB9,
0xAF, 0xB4, 0xB0, 0x83, 0xC0, 0xB8, 0xA8, 0x97, 0x11, 0xB1, 0x8F, 0x98, 0xB9, 0xAF, 0xF0, 0x24,
0x08, 0x44, 0x10, 0x64, 0x18, 0xF1, 0xA3, 0x29, 0x55, 0x7D, 0xAF, 0x83, 0xB5, 0x93, 0xAF, 0xF0,
0x00, 0x28, 0x50, 0xF1, 0xA3, 0x86, 0x9F, 0x61, 0xA6, 0xDA, 0xDE, 0xDF, 0xD9, 0xFA, 0xA3, 0x86,
0x96, 0xDB, 0x31, 0xA6, 0xD9, 0xF8, 0xDF, 0xBA, 0xA6, 0x8F, 0xC2, 0xC5, 0xC7, 0xB2, 0x8C, 0xC1,
0xB8, 0xA2, 0xDF, 0xDF, 0xDF, 0xA3, 0xDF, 0xDF, 0xDF, 0xD8, 0xD8, 0xF1, 0xB8, 0xA8, 0xB2, 0x86,
// bank 4, 256 bytes
0xB4, 0x98, 0x0D, 0x35, 0x5D, 0xB8, 0xAA, 0x98, 0xB0, 0x87, 0x2D, 0x35, 0x3D, 0xB2, 0xB6, 0xBA,
0xAF, 0x8C, 0x96, 0x19, 0x8F, 0x9F, 0xA7, 0x0E, 0x16, 0x1E, 0xB4, 0x9A, 0xB8, 0xAA, 0x87, 0x2C,
0x54, 0x7C, 0xB9, 0xA3, 0xDE, 0xDF, 0xDF, 0xA3, 0xB1, 0x80, 0xF2, 0xC4, 0xCD, 0xC9, 0xF1, 0xB8,
0xA9, 0xB4, 0x99, 0x83, 0x0D, 0x35, 0x5D, 0x89, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0xB5, 0x93, 0xA3,
0x0E, 0x16, 0x1E, 0xA9, 0x2C, 0x54, 0x7C, 0xB8, 0xB4, 0xB0, 0xF1, 0x97, 0x83, 0xA8, 0x11, 0x84,
0xA5, 0x09, 0x98, 0xA3, 0x83, 0xF0, 0xDA, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xD8, 0xF1, 0xA5,
0x29, 0x55, 0x7D, 0xA5, 0x85, 0x95, 0x02, 0x1A, 0x2E, 0x3A, 0x56, 0x5A, 0x40, 0x48, 0xF9, 0xF3,
0xA3, 0xD9, 0xF8, 0xF0, 0x98, 0x83, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0x97, 0x82, 0xA8, 0xF1,
0x11, 0xF0, 0x98, 0xA2, 0x24, 0x08, 0x44, 0x10, 0x64, 0x18, 0xDA, 0xF3, 0xDE, 0xD8, 0x83, 0xA5,
0x94, 0x01, 0xD9, 0xA3, 0x02, 0xF1, 0xA2, 0xC3, 0xC5, 0xC7, 0xD8, 0xF1, 0x84, 0x92, 0xA2, 0x4D,
0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9,
0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0x93, 0xA3, 0x4D,
0xDA, 0x2A, 0xD8, 0x48, 0x69, 0xD9, 0x2A, 0xD8, 0x68, 0x55, 0xDA, 0x32, 0xD8, 0x50, 0x71, 0xD9,
0x32, 0xD8, 0x70, 0x5D, 0xDA, 0x3A, 0xD8, 0x58, 0x79, 0xD9, 0x3A, 0xD8, 0x78, 0xA8, 0x8A, 0x9A,
0xF0, 0x28, 0x50, 0x78, 0x9E, 0xF3, 0x88, 0x18, 0xF1, 0x9F, 0x1D, 0x98, 0xA8, 0xD9, 0x08, 0xD8,
0xC8, 0x9F, 0x12, 0x9E, 0xF3, 0x15, 0xA8, 0xDA, 0x12, 0x10, 0xD8, 0xF1, 0xAF, 0xC8, 0x97, 0x87,
// bank 5, 256 bytes
0x34, 0xB5, 0xB9, 0x94, 0xA4, 0x21, 0xF3, 0xD9, 0x22, 0xD8, 0xF2, 0x2D, 0xF3, 0xD9, 0x2A, 0xD8,
0xF2, 0x35, 0xF3, 0xD9, 0x32, 0xD8, 0x81, 0xA4, 0x60, 0x60, 0x61, 0xD9, 0x61, 0xD8, 0x6C, 0x68,
0x69, 0xD9, 0x69, 0xD8, 0x74, 0x70, 0x71, 0xD9, 0x71, 0xD8, 0xB1, 0xA3, 0x84, 0x19, 0x3D, 0x5D,
0xA3, 0x83, 0x1A, 0x3E, 0x5E, 0x93, 0x10, 0x30, 0x81, 0x10, 0x11, 0xB8, 0xB0, 0xAF, 0x8F, 0x94,
0xF2, 0xDA, 0x3E, 0xD8, 0xB4, 0x9A, 0xA8, 0x87, 0x29, 0xDA, 0xF8, 0xD8, 0x87, 0x9A, 0x35, 0xDA,
0xF8, 0xD8, 0x87, 0x9A, 0x3D, 0xDA, 0xF8, 0xD8, 0xB1, 0xB9, 0xA4, 0x98, 0x85, 0x02, 0x2E, 0x56,
0xA5, 0x81, 0x00, 0x0C, 0x14, 0xA3, 0x97, 0xB0, 0x8A, 0xF1, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9,
0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x84, 0x0D, 0xDA, 0x0E, 0xD8, 0xA3, 0x29, 0x83, 0xDA,
0x2C, 0x0E, 0xD8, 0xA3, 0x84, 0x49, 0x83, 0xDA, 0x2C, 0x4C, 0x0E, 0xD8, 0xB8, 0xB0, 0xA8, 0x8A,
0x9A, 0xF5, 0x20, 0xAA, 0xDA, 0xDF, 0xD8, 0xA8, 0x40, 0xAA, 0xD0, 0xDA, 0xDE, 0xD8, 0xA8, 0x60,
0xAA, 0xDA, 0xD0, 0xDF, 0xD8, 0xF1, 0x97, 0x86, 0xA8, 0x31, 0x9B, 0x06, 0x99, 0x07, 0xAB, 0x97,
0x28, 0x88, 0x9B, 0xF0, 0x0C, 0x20, 0x14, 0x40, 0xB8, 0xB0, 0xB4, 0xA8, 0x8C, 0x9C, 0xF0, 0x04,
0x28, 0x51, 0x79, 0x1D, 0x30, 0x14, 0x38, 0xB2, 0x82, 0xAB, 0xD0, 0x98, 0x2C, 0x50, 0x50, 0x78,
0x78, 0x9B, 0xF1, 0x1A, 0xB0, 0xF0, 0x8A, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x8B, 0x29, 0x51, 0x79,
0x8A, 0x24, 0x70, 0x59, 0x8B, 0x20, 0x58, 0x71, 0x8A, 0x44, 0x69, 0x38, 0x8B, 0x39, 0x40, 0x68,
0x8A, 0x64, 0x48, 0x31, 0x8B, 0x30, 0x49, 0x60, 0xA5, 0x88, 0x20, 0x09, 0x71, 0x58, 0x44, 0x68,
// bank 6, 256 bytes
0x11, 0x39, 0x64, 0x49, 0x30, 0x19, 0xF1, 0xAC, 0x00, 0x2C, 0x54, 0x7C, 0xF0, 0x8C, 0xA8, 0x04,
0x28, 0x50, 0x78, 0xF1, 0x88, 0x97, 0x26, 0xA8, 0x59, 0x98, 0xAC, 0x8C, 0x02, 0x26, 0x46, 0x66,
0xF0, 0x89, 0x9C, 0xA8, 0x29, 0x51, 0x79, 0x24, 0x70, 0x59, 0x44, 0x69, 0x38, 0x64, 0x48, 0x31,
0xA9, 0x88, 0x09, 0x20, 0x59, 0x70, 0xAB, 0x11, 0x38, 0x40, 0x69, 0xA8, 0x19, 0x31, 0x48, 0x60,
0x8C, 0xA8, 0x3C, 0x41, 0x5C, 0x20, 0x7C, 0x00, 0xF1, 0x87, 0x98, 0x19, 0x86, 0xA8, 0x6E, 0x76,
0x7E, 0xA9, 0x99, 0x88, 0x2D, 0x55, 0x7D, 0x9E, 0xB9, 0xA3, 0x8A, 0x22, 0x8A, 0x6E, 0x8A, 0x56,
0x8A, 0x5E, 0x9F, 0xB1, 0x83, 0x06, 0x26, 0x46, 0x66, 0x0E, 0x2E, 0x4E, 0x6E, 0x9D, 0xB8, 0xAD,
0x00, 0x2C, 0x54, 0x7C, 0xF2, 0xB1, 0x8C, 0xB4, 0x99, 0xB9, 0xA3, 0x2D, 0x55, 0x7D, 0x81, 0x91,
0xAC, 0x38, 0xAD, 0x3A, 0xB5, 0x83, 0x91, 0xAC, 0x2D, 0xD9, 0x28, 0xD8, 0x4D, 0xD9, 0x48, 0xD8,
0x6D, 0xD9, 0x68, 0xD8, 0x8C, 0x9D, 0xAE, 0x29, 0xD9, 0x04, 0xAE, 0xD8, 0x51, 0xD9, 0x04, 0xAE,
0xD8, 0x79, 0xD9, 0x04, 0xD8, 0x81, 0xF3, 0x9D, 0xAD, 0x00, 0x8D, 0xAE, 0x19, 0x81, 0xAD, 0xD9,
0x01, 0xD8, 0xF2, 0xAE, 0xDA, 0x26, 0xD8, 0x8E, 0x91, 0x29, 0x83, 0xA7, 0xD9, 0xAD, 0xAD, 0xAD,
0xAD, 0xF3, 0x2A, 0xD8, 0xD8, 0xF1, 0xB0, 0xAC, 0x89, 0x91, 0x3E, 0x5E, 0x76, 0xF3, 0xAC, 0x2E,
0x2E, 0xF1, 0xB1, 0x8C, 0x5A, 0x9C, 0xAC, 0x2C, 0x28, 0x28, 0x28, 0x9C, 0xAC, 0x30, 0x18, 0xA8,
0x98, 0x81, 0x28, 0x34, 0x3C, 0x97, 0x24, 0xA7, 0x28, 0x34, 0x3C, 0x9C, 0x24, 0xF2, 0xB0, 0x89,
0xAC, 0x91, 0x2C, 0x4C, 0x6C, 0x8A, 0x9B, 0x2D, 0xD9, 0xD8, 0xD8, 0x51, 0xD9, 0xD8, 0xD8, 0x79,
// bank 7, 138 bytes (remainder)
0xD9, 0xD8, 0xD8, 0xF1, 0x9E, 0x88, 0xA3, 0x31, 0xDA, 0xD8, 0xD8, 0x91, 0x2D, 0xD9, 0x28, 0xD8,
0x4D, 0xD9, 0x48, 0xD8, 0x6D, 0xD9, 0x68, 0xD8, 0xB1, 0x83, 0x93, 0x35, 0x3D, 0x80, 0x25, 0xDA,
0xD8, 0xD8, 0x85, 0x69, 0xDA, 0xD8, 0xD8, 0xB4, 0x93, 0x81, 0xA3, 0x28, 0x34, 0x3C, 0xF3, 0xAB,
0x8B, 0xF8, 0xA3, 0x91, 0xB6, 0x09, 0xB4, 0xD9, 0xAB, 0xDE, 0xFA, 0xB0, 0x87, 0x9C, 0xB9, 0xA3,
0xDD, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x95, 0xF1, 0xA3, 0xA3, 0xA3, 0x9D, 0xF1, 0xA3, 0xA3, 0xA3,
0xA3, 0xF2, 0xA3, 0xB4, 0x90, 0x80, 0xF2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3,
0xA3, 0xB2, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xA3, 0xB0, 0x87, 0xB5, 0x99, 0xF1, 0xA3, 0xA3, 0xA3,
0x98, 0xF1, 0xA3, 0xA3, 0xA3, 0xA3, 0x97, 0xA3, 0xA3, 0xA3, 0xA3, 0xF3, 0x9B, 0xA3, 0xA3, 0xDC,
0xB9, 0xA7, 0xF1, 0x26, 0x26, 0x26, 0xD8, 0xD8, 0xFF
};
// thanks to Noah Zerkin for piecing this stuff together!
const unsigned char dmpConfig[MPU6050_DMP_CONFIG_SIZE] PROGMEM = {
// BANK OFFSET LENGTH [DATA]
0x03, 0x7B, 0x03, 0x4C, 0xCD, 0x6C, // FCFG_1 inv_set_gyro_calibration
0x03, 0xAB, 0x03, 0x36, 0x56, 0x76, // FCFG_3 inv_set_gyro_calibration
0x00, 0x68, 0x04, 0x02, 0xCB, 0x47, 0xA2, // D_0_104 inv_set_gyro_calibration
0x02, 0x18, 0x04, 0x00, 0x05, 0x8B, 0xC1, // D_0_24 inv_set_gyro_calibration
0x01, 0x0C, 0x04, 0x00, 0x00, 0x00, 0x00, // D_1_152 inv_set_accel_calibration
0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_accel_calibration
0x03, 0x89, 0x03, 0x26, 0x46, 0x66, // FCFG_7 inv_set_accel_calibration
0x00, 0x6C, 0x02, 0x20, 0x00, // D_0_108 inv_set_accel_calibration
0x02, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_00 inv_set_compass_calibration
0x02, 0x44, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_01
0x02, 0x48, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_02
0x02, 0x4C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_10
0x02, 0x50, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_11
0x02, 0x54, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_12
0x02, 0x58, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_20
0x02, 0x5C, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_21
0x02, 0xBC, 0x04, 0x00, 0x00, 0x00, 0x00, // CPASS_MTX_22
0x01, 0xEC, 0x04, 0x00, 0x00, 0x40, 0x00, // D_1_236 inv_apply_endian_accel
0x03, 0x7F, 0x06, 0x0C, 0xC9, 0x2C, 0x97, 0x97, 0x97, // FCFG_2 inv_set_mpu_sensors
0x04, 0x02, 0x03, 0x0D, 0x35, 0x5D, // CFG_MOTION_BIAS inv_turn_on_bias_from_no_motion
0x04, 0x09, 0x04, 0x87, 0x2D, 0x35, 0x3D, // FCFG_5 inv_set_bias_update
0x00, 0xA3, 0x01, 0x00, // D_0_163 inv_set_dead_zone
// SPECIAL 0x01 = enable interrupts
0x00, 0x00, 0x00, 0x01, // SET INT_ENABLE at i=22, SPECIAL INSTRUCTION
0x07, 0x86, 0x01, 0xFE, // CFG_6 inv_set_fifo_interupt
0x07, 0x41, 0x05, 0xF1, 0x20, 0x28, 0x30, 0x38, // CFG_8 inv_send_quaternion
0x07, 0x7E, 0x01, 0x30, // CFG_16 inv_set_footer
0x07, 0x46, 0x01, 0x9A, // CFG_GYRO_SOURCE inv_send_gyro
0x07, 0x47, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_9 inv_send_gyro -> inv_construct3_fifo
0x07, 0x6C, 0x04, 0xF1, 0x28, 0x30, 0x38, // CFG_12 inv_send_accel -> inv_construct3_fifo
0x02, 0x16, 0x02, 0x00, 0x09 // D_0_22 inv_set_fifo_rate
// This very last 0x01 WAS a 0x09, which drops the FIFO rate down to 20 Hz. 0x07 is 25 Hz,
// 0x01 is 100Hz. Going faster than 100Hz (0x00=200Hz) tends to result in very noisy data.
// DMP output frequency is calculated easily using this equation: (200Hz / (1 + value))
// It is important to make sure the host processor can keep up with reading and processing
// the FIFO output at the desired rate. Handling FIFO overflow cleanly is also a good idea.
};
const unsigned char dmpUpdates[MPU6050_DMP_UPDATES_SIZE] PROGMEM = {
0x01, 0xB2, 0x02, 0xFF, 0xFF,
0x01, 0x90, 0x04, 0x09, 0x23, 0xA1, 0x35,
0x01, 0x6A, 0x02, 0x06, 0x00,
0x01, 0x60, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x60, 0x04, 0x40, 0x00, 0x00, 0x00,
0x01, 0x62, 0x02, 0x00, 0x00,
0x00, 0x60, 0x04, 0x00, 0x40, 0x00, 0x00
};
uint8_t MPU6050::dmpInitialize() {
// reset device
DEBUG_PRINTLN(F("\n\nResetting MPU6050..."));
reset();
delay(30); // wait after reset
// enable sleep mode and wake cycle
/*Serial.println(F("Enabling sleep mode..."));
setSleepEnabled(true);
Serial.println(F("Enabling wake cycle..."));
setWakeCycleEnabled(true);*/
// disable sleep mode
DEBUG_PRINTLN(F("Disabling sleep mode..."));
setSleepEnabled(false);
// get MPU hardware revision
DEBUG_PRINTLN(F("Selecting user bank 16..."));
setMemoryBank(0x10, true, true);
DEBUG_PRINTLN(F("Selecting memory byte 6..."));
setMemoryStartAddress(0x06);
DEBUG_PRINTLN(F("Checking hardware revision..."));
uint8_t hwRevision = readMemoryByte();
DEBUG_PRINT(F("Revision @ user[16][6] = "));
DEBUG_PRINTLNF(hwRevision, HEX);
DEBUG_PRINTLN(F("Resetting memory bank selection to 0..."));
setMemoryBank(0, false, false);
// check OTP bank valid
DEBUG_PRINTLN(F("Reading OTP bank valid flag..."));
uint8_t otpValid = getOTPBankValid();
DEBUG_PRINT(F("OTP bank is "));
DEBUG_PRINTLN(otpValid ? F("valid!") : F("invalid!"));
// get X/Y/Z gyro offsets
DEBUG_PRINTLN(F("Reading gyro offset TC values..."));
int8_t xgOffsetTC = getXGyroOffsetTC();
int8_t ygOffsetTC = getYGyroOffsetTC();
int8_t zgOffsetTC = getZGyroOffsetTC();
DEBUG_PRINT(F("X gyro offset = "));
DEBUG_PRINTLN(xgOffset);
DEBUG_PRINT(F("Y gyro offset = "));
DEBUG_PRINTLN(ygOffset);
DEBUG_PRINT(F("Z gyro offset = "));
DEBUG_PRINTLN(zgOffset);
// setup weird slave stuff (?)
DEBUG_PRINTLN(F("Setting slave 0 address to 0x7F..."));
setSlaveAddress(0, 0x7F);
DEBUG_PRINTLN(F("Disabling I2C Master mode..."));
setI2CMasterModeEnabled(false);
DEBUG_PRINTLN(F("Setting slave 0 address to 0x68 (self)..."));
setSlaveAddress(0, 0x68);
DEBUG_PRINTLN(F("Resetting I2C Master control..."));
resetI2CMaster();
delay(20);
// load DMP code into memory banks
DEBUG_PRINT(F("Writing DMP code to MPU memory banks ("));
DEBUG_PRINT(MPU6050_DMP_CODE_SIZE);
DEBUG_PRINTLN(F(" bytes)"));
if (writeProgMemoryBlock(dmpMemory, MPU6050_DMP_CODE_SIZE)) {
DEBUG_PRINTLN(F("Success! DMP code written and verified."));
// write DMP configuration
DEBUG_PRINT(F("Writing DMP configuration to MPU memory banks ("));
DEBUG_PRINT(MPU6050_DMP_CONFIG_SIZE);
DEBUG_PRINTLN(F(" bytes in config def)"));
if (writeProgDMPConfigurationSet(dmpConfig, MPU6050_DMP_CONFIG_SIZE)) {
DEBUG_PRINTLN(F("Success! DMP configuration written and verified."));
DEBUG_PRINTLN(F("Setting clock source to Z Gyro..."));
setClockSource(MPU6050_CLOCK_PLL_ZGYRO);
DEBUG_PRINTLN(F("Setting DMP and FIFO_OFLOW interrupts enabled..."));
setIntEnabled(0x12);
DEBUG_PRINTLN(F("Setting sample rate to 200Hz..."));
setRate(4); // 1khz / (1 + 4) = 200 Hz
DEBUG_PRINTLN(F("Setting external frame sync to TEMP_OUT_L[0]..."));
setExternalFrameSync(MPU6050_EXT_SYNC_TEMP_OUT_L);
DEBUG_PRINTLN(F("Setting DLPF bandwidth to 42Hz..."));
setDLPFMode(MPU6050_DLPF_BW_42);
DEBUG_PRINTLN(F("Setting gyro sensitivity to +/- 2000 deg/sec..."));
setFullScaleGyroRange(MPU6050_GYRO_FS_2000);
DEBUG_PRINTLN(F("Setting DMP configuration bytes (function unknown)..."));
setDMPConfig1(0x03);
setDMPConfig2(0x00);
DEBUG_PRINTLN(F("Clearing OTP Bank flag..."));
setOTPBankValid(false);
DEBUG_PRINTLN(F("Setting X/Y/Z gyro offset TCs to previous values..."));
setXGyroOffsetTC(xgOffsetTC);
setYGyroOffsetTC(ygOffsetTC);
setZGyroOffsetTC(zgOffsetTC);
//DEBUG_PRINTLN(F("Setting X/Y/Z gyro user offsets to zero..."));
//setXGyroOffset(0);
//setYGyroOffset(0);
//setZGyroOffset(0);
DEBUG_PRINTLN(F("Writing final memory update 1/7 (function unknown)..."));
uint8_t dmpUpdate[16], j;
uint16_t pos = 0;
for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]);
writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]);
DEBUG_PRINTLN(F("Writing final memory update 2/7 (function unknown)..."));
for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]);
writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]);
DEBUG_PRINTLN(F("Resetting FIFO..."));
resetFIFO();
DEBUG_PRINTLN(F("Reading FIFO count..."));
uint16_t fifoCount = getFIFOCount();
uint8_t fifoBuffer[128];
DEBUG_PRINT(F("Current FIFO count="));
DEBUG_PRINTLN(fifoCount);
getFIFOBytes(fifoBuffer, fifoCount);
DEBUG_PRINTLN(F("Setting motion detection threshold to 2..."));
setMotionDetectionThreshold(2);
DEBUG_PRINTLN(F("Setting zero-motion detection threshold to 156..."));
setZeroMotionDetectionThreshold(156);
DEBUG_PRINTLN(F("Setting motion detection duration to 80..."));
setMotionDetectionDuration(80);
DEBUG_PRINTLN(F("Setting zero-motion detection duration to 0..."));
setZeroMotionDetectionDuration(0);
DEBUG_PRINTLN(F("Resetting FIFO..."));
resetFIFO();
DEBUG_PRINTLN(F("Enabling FIFO..."));
setFIFOEnabled(true);
DEBUG_PRINTLN(F("Enabling DMP..."));
setDMPEnabled(true);
DEBUG_PRINTLN(F("Resetting DMP..."));
resetDMP();
DEBUG_PRINTLN(F("Writing final memory update 3/7 (function unknown)..."));
for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]);
writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]);
DEBUG_PRINTLN(F("Writing final memory update 4/7 (function unknown)..."));
for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]);
writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]);
DEBUG_PRINTLN(F("Writing final memory update 5/7 (function unknown)..."));
for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]);
writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]);
DEBUG_PRINTLN(F("Waiting for FIFO count > 2..."));
while ((fifoCount = getFIFOCount()) < 3);
DEBUG_PRINT(F("Current FIFO count="));
DEBUG_PRINTLN(fifoCount);
DEBUG_PRINTLN(F("Reading FIFO data..."));
getFIFOBytes(fifoBuffer, fifoCount);
DEBUG_PRINTLN(F("Reading interrupt status..."));
uint8_t mpuIntStatus = getIntStatus();
DEBUG_PRINT(F("Current interrupt status="));
DEBUG_PRINTLNF(mpuIntStatus, HEX);
DEBUG_PRINTLN(F("Reading final memory update 6/7 (function unknown)..."));
for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]);
readMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]);
DEBUG_PRINTLN(F("Waiting for FIFO count > 2..."));
while ((fifoCount = getFIFOCount()) < 3);
DEBUG_PRINT(F("Current FIFO count="));
DEBUG_PRINTLN(fifoCount);
DEBUG_PRINTLN(F("Reading FIFO data..."));
getFIFOBytes(fifoBuffer, fifoCount);
DEBUG_PRINTLN(F("Reading interrupt status..."));
mpuIntStatus = getIntStatus();
DEBUG_PRINT(F("Current interrupt status="));
DEBUG_PRINTLNF(mpuIntStatus, HEX);
DEBUG_PRINTLN(F("Writing final memory update 7/7 (function unknown)..."));
for (j = 0; j < 4 || j < dmpUpdate[2] + 3; j++, pos++) dmpUpdate[j] = pgm_read_byte(&dmpUpdates[pos]);
writeMemoryBlock(dmpUpdate + 3, dmpUpdate[2], dmpUpdate[0], dmpUpdate[1]);
DEBUG_PRINTLN(F("DMP is good to go! Finally."));
DEBUG_PRINTLN(F("Disabling DMP (you turn it on later)..."));
setDMPEnabled(false);
DEBUG_PRINTLN(F("Setting up internal 42-byte (default) DMP packet buffer..."));
dmpPacketSize = 42;
/*if ((dmpPacketBuffer = (uint8_t *)malloc(42)) == 0) {
return 3; // TODO: proper error code for no memory
}*/
DEBUG_PRINTLN(F("Resetting FIFO and clearing INT status one last time..."));
resetFIFO();
getIntStatus();
} else {
DEBUG_PRINTLN(F("ERROR! DMP configuration verification failed."));
return 2; // configuration block loading failed
}
} else {
DEBUG_PRINTLN(F("ERROR! DMP code verification failed."));
return 1; // main binary block loading failed
}
return 0; // success
}
bool MPU6050::dmpPacketAvailable() {
return getFIFOCount() >= dmpGetFIFOPacketSize();
}
// uint8_t MPU6050::dmpSetFIFORate(uint8_t fifoRate);
// uint8_t MPU6050::dmpGetFIFORate();
// uint8_t MPU6050::dmpGetSampleStepSizeMS();
// uint8_t MPU6050::dmpGetSampleFrequency();
// int32_t MPU6050::dmpDecodeTemperature(int8_t tempReg);
//uint8_t MPU6050::dmpRegisterFIFORateProcess(inv_obj_func func, int16_t priority);
//uint8_t MPU6050::dmpUnregisterFIFORateProcess(inv_obj_func func);
//uint8_t MPU6050::dmpRunFIFORateProcesses();
// uint8_t MPU6050::dmpSendQuaternion(uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendGyro(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendAccel(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendLinearAccel(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendLinearAccelInWorld(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendControlData(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendExternalSensorData(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendGravity(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendPacketNumber(uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendQuantizedAccel(uint_fast16_t elements, uint_fast16_t accuracy);
// uint8_t MPU6050::dmpSendEIS(uint_fast16_t elements, uint_fast16_t accuracy);
uint8_t MPU6050::dmpGetAccel(int32_t *data, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
data[0] = ((packet[28] << 24) + (packet[29] << 16) + (packet[30] << 8) + packet[31]);
data[1] = ((packet[32] << 24) + (packet[33] << 16) + (packet[34] << 8) + packet[35]);
data[2] = ((packet[36] << 24) + (packet[37] << 16) + (packet[38] << 8) + packet[39]);
return 0;
}
uint8_t MPU6050::dmpGetAccel(int16_t *data, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
data[0] = (packet[28] << 8) + packet[29];
data[1] = (packet[32] << 8) + packet[33];
data[2] = (packet[36] << 8) + packet[37];
return 0;
}
uint8_t MPU6050::dmpGetAccel(VectorInt16 *v, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
v -> x = (packet[28] << 8) + packet[29];
v -> y = (packet[32] << 8) + packet[33];
v -> z = (packet[36] << 8) + packet[37];
return 0;
}
uint8_t MPU6050::dmpGetQuaternion(int32_t *data, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
data[0] = ((packet[0] << 24) + (packet[1] << 16) + (packet[2] << 8) + packet[3]);
data[1] = ((packet[4] << 24) + (packet[5] << 16) + (packet[6] << 8) + packet[7]);
data[2] = ((packet[8] << 24) + (packet[9] << 16) + (packet[10] << 8) + packet[11]);
data[3] = ((packet[12] << 24) + (packet[13] << 16) + (packet[14] << 8) + packet[15]);
return 0;
}
uint8_t MPU6050::dmpGetQuaternion(int16_t *data, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
data[0] = ((packet[0] << 8) + packet[1]);
data[1] = ((packet[4] << 8) + packet[5]);
data[2] = ((packet[8] << 8) + packet[9]);
data[3] = ((packet[12] << 8) + packet[13]);
return 0;
}
uint8_t MPU6050::dmpGetQuaternion(Quaternion *q, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
int16_t qI[4];
uint8_t status = dmpGetQuaternion(qI, packet);
if (status == 0) {
q -> w = (float)qI[0] / 16384.0f;
q -> x = (float)qI[1] / 16384.0f;
q -> y = (float)qI[2] / 16384.0f;
q -> z = (float)qI[3] / 16384.0f;
return 0;
}
return status; // int16 return value, indicates error if this line is reached
}
// uint8_t MPU6050::dmpGet6AxisQuaternion(long *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetRelativeQuaternion(long *data, const uint8_t* packet);
uint8_t MPU6050::dmpGetGyro(int32_t *data, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
data[0] = ((packet[16] << 24) + (packet[17] << 16) + (packet[18] << 8) + packet[19]);
data[1] = ((packet[20] << 24) + (packet[21] << 16) + (packet[22] << 8) + packet[23]);
data[2] = ((packet[24] << 24) + (packet[25] << 16) + (packet[26] << 8) + packet[27]);
return 0;
}
uint8_t MPU6050::dmpGetGyro(int16_t *data, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
data[0] = (packet[16] << 8) + packet[17];
data[1] = (packet[20] << 8) + packet[21];
data[2] = (packet[24] << 8) + packet[25];
return 0;
}
uint8_t MPU6050::dmpGetGyro(VectorInt16 *v, const uint8_t* packet) {
// TODO: accommodate different arrangements of sent data (ONLY default supported now)
if (packet == 0) packet = dmpPacketBuffer;
v -> x = (packet[16] << 8) + packet[17];
v -> y = (packet[20] << 8) + packet[21];
v -> z = (packet[24] << 8) + packet[25];
return 0;
}
// uint8_t MPU6050::dmpSetLinearAccelFilterCoefficient(float coef);
// uint8_t MPU6050::dmpGetLinearAccel(long *data, const uint8_t* packet);
uint8_t MPU6050::dmpGetLinearAccel(VectorInt16 *v, VectorInt16 *vRaw, VectorFloat *gravity) {
// get rid of the gravity component (+1g = +8192 in standard DMP FIFO packet, sensitivity is 2g)
v -> x = vRaw -> x - gravity -> x*8192;
v -> y = vRaw -> y - gravity -> y*8192;
v -> z = vRaw -> z - gravity -> z*8192;
return 0;
}
// uint8_t MPU6050::dmpGetLinearAccelInWorld(long *data, const uint8_t* packet);
uint8_t MPU6050::dmpGetLinearAccelInWorld(VectorInt16 *v, VectorInt16 *vReal, Quaternion *q) {
// rotate measured 3D acceleration vector into original state
// frame of reference based on orientation quaternion
memcpy(v, vReal, sizeof(VectorInt16));
v -> rotate(q);
return 0;
}
// uint8_t MPU6050::dmpGetGyroAndAccelSensor(long *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetGyroSensor(long *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetControlData(long *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetTemperature(long *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetGravity(long *data, const uint8_t* packet);
uint8_t MPU6050::dmpGetGravity(VectorFloat *v, Quaternion *q) {
v -> x = 2 * (q -> x*q -> z - q -> w*q -> y);
v -> y = 2 * (q -> w*q -> x + q -> y*q -> z);
v -> z = q -> w*q -> w - q -> x*q -> x - q -> y*q -> y + q -> z*q -> z;
return 0;
}
// uint8_t MPU6050::dmpGetUnquantizedAccel(long *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetQuantizedAccel(long *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetExternalSensorData(long *data, int size, const uint8_t* packet);
// uint8_t MPU6050::dmpGetEIS(long *data, const uint8_t* packet);
uint8_t MPU6050::dmpGetEuler(float *data, Quaternion *q) {
data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1); // psi
data[1] = -asin(2*q -> x*q -> z + 2*q -> w*q -> y); // theta
data[2] = atan2(2*q -> y*q -> z - 2*q -> w*q -> x, 2*q -> w*q -> w + 2*q -> z*q -> z - 1); // phi
return 0;
}
uint8_t MPU6050::dmpGetYawPitchRoll(float *data, Quaternion *q, VectorFloat *gravity) {
// yaw: (about Z axis)
data[0] = atan2(2*q -> x*q -> y - 2*q -> w*q -> z, 2*q -> w*q -> w + 2*q -> x*q -> x - 1);
// pitch: (nose up/down, about Y axis)
data[1] = atan(gravity -> x / sqrt(gravity -> y*gravity -> y + gravity -> z*gravity -> z));
// roll: (tilt left/right, about X axis)
data[2] = atan(gravity -> y / sqrt(gravity -> x*gravity -> x + gravity -> z*gravity -> z));
return 0;
}
// uint8_t MPU6050::dmpGetAccelFloat(float *data, const uint8_t* packet);
// uint8_t MPU6050::dmpGetQuaternionFloat(float *data, const uint8_t* packet);
uint8_t MPU6050::dmpProcessFIFOPacket(const unsigned char *dmpData) {
/*for (uint8_t k = 0; k < dmpPacketSize; k++) {
if (dmpData[k] < 0x10) Serial.print("0");
Serial.print(dmpData[k], HEX);
Serial.print(" ");
}
Serial.print("\n");*/
//Serial.println((uint16_t)dmpPacketBuffer);
return 0;
}
uint8_t MPU6050::dmpReadAndProcessFIFOPacket(uint8_t numPackets, uint8_t *processed) {
uint8_t status;
uint8_t buf[dmpPacketSize];
for (uint8_t i = 0; i < numPackets; i++) {
// read packet from FIFO
getFIFOBytes(buf, dmpPacketSize);
// process packet
if ((status = dmpProcessFIFOPacket(buf)) > 0) return status;
// increment external process count variable, if supplied
if (processed != 0) *processed++;
}
return 0;
}
// uint8_t MPU6050::dmpSetFIFOProcessedCallback(void (*func) (void));
// uint8_t MPU6050::dmpInitFIFOParam();
// uint8_t MPU6050::dmpCloseFIFO();
// uint8_t MPU6050::dmpSetGyroDataSource(uint_fast8_t source);
// uint8_t MPU6050::dmpDecodeQuantizedAccel();
// uint32_t MPU6050::dmpGetGyroSumOfSquare();
// uint32_t MPU6050::dmpGetAccelSumOfSquare();
// void MPU6050::dmpOverrideQuaternion(long *q);
uint16_t MPU6050::dmpGetFIFOPacketSize() {
return dmpPacketSize;
}
#endif /* _MPU6050_6AXIS_MOTIONAPPS20_H_ */
| 41,027 | C | 53.704 | 114 | 0.617106 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/openDogV2/openDogV2-original/Release03/code/Python/camera100.py | import RPi.GPIO as GPIO
import jetson.inference
import jetson.utils
import time
import argparse
import sys
# parse the command line
parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.",
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage() +
jetson.utils.videoSource.Usage() + jetson.utils.videoOutput.Usage() + jetson.utils.logUsage())
parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream")
parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream")
parser.add_argument("--network", type=str, default="ssd-mobilenet-v2", help="pre-trained model to load (see below for options)")
parser.add_argument("--overlay", type=str, default="box,labels,conf", help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: 'box', 'labels', 'conf', 'none'")
parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use")
is_headless = ["--headless"] if sys.argv[0].find('console.py') != -1 else [""]
try:
opt = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)
# load the object detection network
net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold)
# create video sources & outputs
input = jetson.utils.videoSource(opt.input_URI, argv=sys.argv)
output = jetson.utils.videoOutput(opt.output_URI, argv=sys.argv+is_headless)
#setup GPIO pins
GPIO.setmode(GPIO.BCM) #RaspPi pin numbering
GPIO.setup(18, GPIO.OUT, initial=GPIO.HIGH)
GPIO.output(18, GPIO.HIGH)
GPIO.setup(17, GPIO.OUT, initial=GPIO.HIGH)
GPIO.output(17, GPIO.HIGH)
GPIO.setup(16, GPIO.OUT, initial=GPIO.HIGH)
GPIO.output(16, GPIO.HIGH)
GPIO.setup(20, GPIO.OUT, initial=GPIO.HIGH)
GPIO.output(20, GPIO.HIGH)
GPIO.setup(21, GPIO.OUT, initial=GPIO.HIGH)
GPIO.output(21, GPIO.HIGH)
def back():
GPIO.output(18, GPIO.LOW)
GPIO.output(17, GPIO.HIGH)
GPIO.output(16, GPIO.HIGH)
GPIO.output(20, GPIO.HIGH)
GPIO.output(21, GPIO.HIGH)
print("back")
def forward():
GPIO.output(18, GPIO.HIGH)
GPIO.output(17, GPIO.LOW)
GPIO.output(16, GPIO.HIGH)
GPIO.output(20, GPIO.HIGH)
GPIO.output(21, GPIO.HIGH)
print("forward")
def left():
GPIO.output(18, GPIO.HIGH)
GPIO.output(17, GPIO.HIGH)
GPIO.output(16, GPIO.LOW)
GPIO.output(20, GPIO.HIGH)
GPIO.output(21, GPIO.HIGH)
print("left")
def right():
GPIO.output(18, GPIO.HIGH)
GPIO.output(17, GPIO.HIGH)
GPIO.output(16, GPIO.HIGH)
GPIO.output(20, GPIO.LOW)
GPIO.output(21, GPIO.HIGH)
print("right")
def up():
GPIO.output(18, GPIO.HIGH)
GPIO.output(17, GPIO.HIGH)
GPIO.output(16, GPIO.HIGH)
GPIO.output(20, GPIO.HIGH)
GPIO.output(21, GPIO.LOW)
print("up")
def nothing():
GPIO.output(18, GPIO.HIGH)
GPIO.output(17, GPIO.HIGH)
GPIO.output(16, GPIO.HIGH)
GPIO.output(20, GPIO.HIGH)
GPIO.output(21, GPIO.HIGH)
print("nothing")
# declare variables as global and that
global index
global width
global location
global confidence
index = 0
width = 0
location = 0
condifence = 0;
# process frames until the user exits
while True:
# capture the next image
img = input.Capture()
# detect objects in the image (with overlay)
detections = net.Detect(img, overlay=opt.overlay)
# print the detections
#print("detected {:d} objects in image".format(len(detections)))
# check for detections, otherwise nothing
if(len(detections) > 0):
print("object detected")
for detection in detections:
index = detections[0].ClassID
confidence = (detections[0].Confidence)
width = (detections[0].Width)
location = (detections[0].Center[0])
# print index of item, width and horizonal location
print(index)
print(width)
print(location)
print(confidence)
# look for detections
if (index == 1 and confidence > 0.9):
back()
elif (index == 2 and confidence > 0.7):
forward()
elif (index == 3 and confidence > 0.7):
left()
elif (index == 4 and confidence > 0.7):
right()
elif (index == 5 and confidence > 0.7):
up()
else:
nothing() # nothing is detected
# render the image
output.Render(img)
# update the title bar
output.SetStatus("{:s} | Network {:.0f} FPS".format(opt.network, net.GetNetworkFPS()))
# print out performance info
#net.PrintProfilerTimes()
# exit on input/output EOS
if not input.IsStreaming() or not output.IsStreaming():
break
| 4,525 | Python | 24.570621 | 192 | 0.698122 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/cassie_description-UMich-BipedLab/README.md | # cassie_description
This repository contains the .urdf model of the CASSIE robot from Agility Robotics.
It also includes a a way to visualize the robot using ROS and rviz.
Installation to view .urdf using rviz
=====================================
- Download and install ROS by following the instructions at http://wiki.ros.org/indigo/Installation/Ubuntu.
- Create a folder for the catkin workspace
```
mkdir ~/catkin_ws
cd ~/catkin_ws
mkdir src
cd src
catkin_init_workspace
```
- Clone the repository to get the cassie_description package
```
git clone https://github.com/UMich-BipedLab/cassie_description.git
```
- Build the package
```
cd ../
catkin_make
source devel/setup.bash
```
- Launch rviz to visualize the .urdf file
```
roslaunch cassie_description display.launch
```
| 790 | Markdown | 22.264705 | 107 | 0.720253 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/cassie_description-UMich-BipedLab/config/dependent_joints.yaml | dependent_joints:
knee_to_shin_left: {parent: knee_joint_left, factor: -1 }
ankle_joint_left: {parent: knee_joint_left, factor: 0 }
knee_to_shin_right: {parent: knee_joint_right, factor: 0 }
ankle_joint_right: {parent: knee_joint_right, factor: -1 }
zeros:
knee_to_shin_left: 0
ankle_joint_left: 0.226893
knee_to_shin_right: 0
ankle_joint_right: 0.226893
| 374 | YAML | 30.249997 | 60 | 0.68984 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/calibrate_servos.py | from pupper.HardwareInterface import HardwareInterface
from pupper.Config import PWMParams, ServoParams
import numpy as np
import re
def get_motor_name(i, j):
motor_type = {0: "abduction", 1: "inner", 2: "outer"} # Top # Bottom
leg_pos = {0: "front-right", 1: "front-left", 2: "back-right", 3: "back-left"}
final_name = motor_type[i] + " " + leg_pos[j]
return final_name
def get_motor_setpoint(i, j):
data = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [45, 45, 45, 45]])
return data[i, j]
def degrees_to_radians(input_array):
"""Converts degrees to radians.
Parameters
----------
input_array : Numpy array or float
Degrees
Returns
-------
Numpy array or float
Radians
"""
return input_array * np.pi / 180.0
def radians_to_degrees(input_array):
"""Converts degrees to radians.
Parameters
----------
input_array : Numpy array or float
Radians
Returns
-------
Numpy array or float
Degrees
"""
return input_array * 180.0 / np.pi
def step_until(hardware_interface, axis, leg, set_point):
"""Returns the angle offset needed to correct a given link by asking the user for input.
Returns
-------
Float
Angle offset needed to correct the link.
"""
found_position = False
set_names = ["horizontal", "horizontal", "vertical"]
offset = 0
while not found_position:
move_input = str(
input("Enter 'a' or 'b' to move the link until it is **" + set_names[axis] + "**. Enter 'd' when done. Input: "
)
)
if move_input == "a":
offset += 1.0
hardware_interface.set_actuator_position(
degrees_to_radians(set_point + offset),
axis,
leg,
)
elif move_input == "b":
offset -= 1.0
hardware_interface.set_actuator_position(
degrees_to_radians(set_point + offset),
axis,
leg,
)
elif move_input == "d":
found_position = True
print("Offset: ", offset)
return offset
def calibrate_angle_offset(hardware_interface):
"""Calibrate the angle offset for the twelve motors on the robot. Note that servo_params is modified in-place.
Parameters
----------
servo_params : ServoParams
Servo parameters. This variable is updated in-place.
pi_board : Pi
RaspberryPi object.
pwm_params : PWMParams
PWMParams object.
"""
# Found K value of (11.4)
print("The scaling constant for your servo represents how much you have to increase\nthe pwm pulse width (in microseconds) to rotate the servo output 1 degree.")
print("This value is currently set to: {:.3f}".format(degrees_to_radians(hardware_interface.servo_params.micros_per_rad)))
print("For newer CLS6336 and CLS6327 servos the value should be 11.333.")
ks = input("Press <Enter> to keep the current value, or enter a new value: ")
if ks != '':
k = float(ks)
hardware_interface.servo_params.micros_per_rad = k * 180 / np.pi
hardware_interface.servo_params.neutral_angle_degrees = np.zeros((3, 4))
for leg_index in range(4):
for axis in range(3):
# Loop until we're satisfied with the calibration
completed = False
while not completed:
motor_name = get_motor_name(axis, leg_index)
print("\n\nCalibrating the **" + motor_name + " motor **")
set_point = get_motor_setpoint(axis, leg_index)
# Zero out the neutral angle
hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index] = 0
# Move servo to set_point angle
hardware_interface.set_actuator_position(
degrees_to_radians(set_point),
axis,
leg_index,
)
# Adjust the angle using keyboard input until it matches the reference angle
offset = step_until(
hardware_interface, axis, leg_index, set_point
)
print("Final offset: ", offset)
# The upper leg link has a different equation because we're calibrating to make it horizontal, not vertical
if axis == 1:
hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index] = set_point - offset
else:
hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index] = -(set_point + offset)
print("Calibrated neutral angle: ", hardware_interface.servo_params.neutral_angle_degrees[axis, leg_index])
# Send the servo command using the new beta value and check that it's ok
hardware_interface.set_actuator_position(
degrees_to_radians([0, 45, -45][axis]),
axis,
leg_index,
)
okay = ""
prompt = "The leg should be at exactly **" + ["horizontal", "45 degrees", "45 degrees"][axis] + "**. Are you satisfied? Enter 'yes' or 'no': "
while okay not in ["y", "n", "yes", "no"]:
okay = str(
input(prompt)
)
completed = okay == "y" or okay == "yes"
def overwrite_ServoCalibration_file(servo_params):
preamble = """# WARNING: This file is machine generated. Edit at your own risk.
import numpy as np
"""
# Format array object string for np.array
p1 = re.compile("([0-9]\.) ( *)") # pattern to replace the space that follows each number with a comma
partially_formatted_matrix = p1.sub(r"\1,\2", str(servo_params.neutral_angle_degrees))
p2 = re.compile("(\]\n)") # pattern to add a comma at the end of the first two lines
formatted_matrix_with_required_commas = p2.sub("],\n", partially_formatted_matrix)
# Overwrite pupper/ServoCalibration.py file with modified values
with open("pupper/ServoCalibration.py", "w") as f:
print(preamble, file = f)
print("MICROS_PER_RAD = {:.3f} * 180.0 / np.pi".format(degrees_to_radians(servo_params.micros_per_rad)), file = f)
print("NEUTRAL_ANGLE_DEGREES = np.array(", file = f)
print(formatted_matrix_with_required_commas, file = f)
print(")", file = f)
def main():
"""Main program
"""
hardware_interface = HardwareInterface()
calibrate_angle_offset(hardware_interface)
overwrite_ServoCalibration_file(hardware_interface.servo_params)
print("\n\n CALIBRATION COMPLETE!\n")
print("Calibrated neutral angles:")
print(hardware_interface.servo_params.neutral_angle_degrees)
main()
| 6,862 | Python | 34.376288 | 165 | 0.581609 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/run_robot.py | import numpy as np
import time
from src.IMU import IMU
from src.Controller import Controller
from src.JoystickInterface import JoystickInterface
from src.State import State
from pupper.HardwareInterface import HardwareInterface
from pupper.Config import Configuration
from pupper.Kinematics import four_legs_inverse_kinematics
def main(use_imu=False):
"""Main program
"""
# Create config
config = Configuration()
hardware_interface = HardwareInterface()
# Create imu handle
if use_imu:
imu = IMU(port="/dev/ttyACM0")
imu.flush_buffer()
# Create controller and user input handles
controller = Controller(
config,
four_legs_inverse_kinematics,
)
state = State()
print("Creating joystick listener...")
joystick_interface = JoystickInterface(config)
print("Done.")
last_loop = time.time()
print("Summary of gait parameters:")
print("overlap time: ", config.overlap_time)
print("swing time: ", config.swing_time)
print("z clearance: ", config.z_clearance)
print("x shift: ", config.x_shift)
# Wait until the activate button has been pressed
while True:
print("Waiting for L1 to activate robot.")
while True:
command = joystick_interface.get_command(state)
joystick_interface.set_color(config.ps4_deactivated_color)
if command.activate_event == 1:
break
time.sleep(0.1)
print("Robot activated.")
joystick_interface.set_color(config.ps4_color)
while True:
now = time.time()
if now - last_loop < config.dt:
continue
last_loop = time.time()
# Parse the udp joystick commands and then update the robot controller's parameters
command = joystick_interface.get_command(state)
if command.activate_event == 1:
print("Deactivating Robot")
break
# Read imu data. Orientation will be None if no data was available
quat_orientation = (
imu.read_orientation() if use_imu else np.array([1, 0, 0, 0])
)
state.quat_orientation = quat_orientation
# Step the controller forward by dt
controller.run(state, command)
# Update the pwm widths going to the servos
hardware_interface.set_actuator_postions(state.joint_angles)
main()
| 2,473 | Python | 29.925 | 95 | 0.627982 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Gaits.py | class GaitController:
def __init__(self, config):
self.config = config
def phase_index(self, ticks):
"""Calculates which part of the gait cycle the robot should be in given the time in ticks.
Parameters
----------
ticks : int
Number of timesteps since the program started
gaitparams : GaitParams
GaitParams object
Returns
-------
Int
The index of the gait phase that the robot should be in.
"""
phase_time = ticks % self.config.phase_length
phase_sum = 0
for i in range(self.config.num_phases):
phase_sum += self.config.phase_ticks[i]
if phase_time < phase_sum:
return i
assert False
def subphase_ticks(self, ticks):
"""Calculates the number of ticks (timesteps) since the start of the current phase.
Parameters
----------
ticks : Int
Number of timesteps since the program started
gaitparams : GaitParams
GaitParams object
Returns
-------
Int
Number of ticks since the start of the current phase.
"""
phase_time = ticks % self.config.phase_length
phase_sum = 0
subphase_ticks = 0
for i in range(self.config.num_phases):
phase_sum += self.config.phase_ticks[i]
if phase_time < phase_sum:
subphase_ticks = phase_time - phase_sum + self.config.phase_ticks[i]
return subphase_ticks
assert False
def contacts(self, ticks):
"""Calculates which feet should be in contact at the given number of ticks
Parameters
----------
ticks : Int
Number of timesteps since the program started.
gaitparams : GaitParams
GaitParams object
Returns
-------
numpy array (4,)
Numpy vector with 0 indicating flight and 1 indicating stance.
"""
return self.config.contact_phases[:, self.phase_index(ticks)]
| 2,154 | Python | 28.930555 | 98 | 0.545032 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Command.py | import numpy as np
class Command:
"""Stores movement command
"""
def __init__(self):
self.horizontal_velocity = np.array([0, 0])
self.yaw_rate = 0.0
self.height = -0.16
self.pitch = 0.0
self.roll = 0.0
self.activation = 0
self.hop_event = False
self.trot_event = False
self.activate_event = False | 392 | Python | 20.833332 | 51 | 0.533163 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/SwingLegController.py | import numpy as np
from transforms3d.euler import euler2mat
class SwingController:
def __init__(self, config):
self.config = config
def raibert_touchdown_location(
self, leg_index, command
):
delta_p_2d = (
self.config.alpha
* self.config.stance_ticks
* self.config.dt
* command.horizontal_velocity
)
delta_p = np.array([delta_p_2d[0], delta_p_2d[1], 0])
theta = (
self.config.beta
* self.config.stance_ticks
* self.config.dt
* command.yaw_rate
)
R = euler2mat(0, 0, theta)
return R @ self.config.default_stance[:, leg_index] + delta_p
def swing_height(self, swing_phase, triangular=True):
if triangular:
if swing_phase < 0.5:
swing_height_ = swing_phase / 0.5 * self.config.z_clearance
else:
swing_height_ = self.config.z_clearance * (1 - (swing_phase - 0.5) / 0.5)
return swing_height_
def next_foot_location(
self,
swing_prop,
leg_index,
state,
command,
):
assert swing_prop >= 0 and swing_prop <= 1
foot_location = state.foot_locations[:, leg_index]
swing_height_ = self.swing_height(swing_prop)
touchdown_location = self.raibert_touchdown_location(leg_index, command)
time_left = self.config.dt * self.config.swing_ticks * (1.0 - swing_prop)
v = (touchdown_location - foot_location) / time_left * np.array([1, 1, 0])
delta_foot_location = v * self.config.dt
z_vector = np.array([0, 0, swing_height_ + command.height])
return foot_location * np.array([1, 1, 0]) + z_vector + delta_foot_location
| 1,781 | Python | 32.622641 | 89 | 0.563167 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/State.py | import numpy as np
from enum import Enum
class State:
def __init__(self):
self.horizontal_velocity = np.array([0.0, 0.0])
self.yaw_rate = 0.0
self.height = -0.16
self.pitch = 0.0
self.roll = 0.0
self.activation = 0
self.behavior_state = BehaviorState.REST
self.ticks = 0
self.foot_locations = np.zeros((3, 4))
self.joint_angles = np.zeros((3, 4))
self.behavior_state = BehaviorState.REST
class BehaviorState(Enum):
DEACTIVATED = -1
REST = 0
TROT = 1
HOP = 2
FINISHHOP = 3 | 589 | Python | 20.851851 | 55 | 0.568761 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/StanceController.py | import numpy as np
from transforms3d.euler import euler2mat
class StanceController:
def __init__(self, config):
self.config = config
def position_delta(self, leg_index, state, command):
"""Calculate the difference between the next desired body location and the current body location
Parameters
----------
z_measured : float
Z coordinate of the feet relative to the body.
stance_params : StanceParams
Stance parameters object.
movement_reference : MovementReference
Movement reference object.
gait_params : GaitParams
Gait parameters object.
Returns
-------
(Numpy array (3), Numpy array (3, 3))
(Position increment, rotation matrix increment)
"""
z = state.foot_locations[2, leg_index]
v_xy = np.array(
[
-command.horizontal_velocity[0],
-command.horizontal_velocity[1],
1.0
/ self.config.z_time_constant
* (state.height - z),
]
)
delta_p = v_xy * self.config.dt
delta_R = euler2mat(0, 0, -command.yaw_rate * self.config.dt)
return (delta_p, delta_R)
# TODO: put current foot location into state
def next_foot_location(self, leg_index, state, command):
foot_location = state.foot_locations[:, leg_index]
(delta_p, delta_R) = self.position_delta(leg_index, state, command)
incremented_location = delta_R @ foot_location + delta_p
return incremented_location
| 1,628 | Python | 32.244897 | 104 | 0.57801 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/IMU.py | import serial
import numpy as np
import time
class IMU:
def __init__(self, port, baudrate=500000):
self.serial_handle = serial.Serial(
port=port,
baudrate=baudrate,
parity=serial.PARITY_NONE,
stopbits=serial.STOPBITS_ONE,
bytesize=serial.EIGHTBITS,
timeout=0,
)
self.last_quat = np.array([1, 0, 0, 0])
self.start_time = time.time()
def flush_buffer(self):
self.serial_handle.reset_input_buffer()
def read_orientation(self):
"""Reads quaternion measurements from the Teensy until none are left. Returns the last read quaternion.
Parameters
----------
serial_handle : Serial object
Handle to the pyserial Serial object
Returns
-------
np array (4,)
If there was quaternion data to read on the serial port returns the quaternion as a numpy array, otherwise returns the last read quaternion.
"""
while True:
x = self.serial_handle.readline().decode("utf").strip()
if x is "" or x is None:
return self.last_quat
else:
parsed = x.split(",")
if len(parsed) == 4:
self.last_quat = np.array(parsed, dtype=np.float64)
else:
print("Did not receive 4-vector from imu")
| 1,440 | Python | 30.326086 | 152 | 0.543056 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Tests.py | # using LinearAlgebra
# using Profile
# using StaticArrays
# using Plots
# using BenchmarkTools
# include("Kinematics.jl")
# include("PupperConfig.jl")
# include("Gait.jl")
# include("StanceController.jl")
# include("SwingLegController.jl")
# include("Types.jl")
# include("Controller.jl")
import numpy as np
import matplotlib.pyplot as plt
from Kinematics import leg_explicit_inverse_kinematics
from PupperConfig import *
from Gaits import *
from StanceController import position_delta, stance_foot_location
from SwingLegController import *
from Types import MovementReference, GaitParams, StanceParams, SwingParams
from Controller import *
# function round_(a, dec)
# return map(x -> round(x, digits=dec), a)
# end
# function testInverseKinematicsExplicit!()
# println("\n-------------- Testing Inverse Kinematics -----------")
# config = PupperConfig()
# println("\nTesting Inverse Kinematics")
# function testHelper(r, alpha_true, i; do_assert=true)
# eps = 1e-6
# @time α = leg_explicitinversekinematics_prismatic(r, i, config)
# println("Leg ", i, ": r: ", r, " -> α: ", α)
# if do_assert
# @assert norm(α - alpha_true) < eps
# end
# end
# c = config.LEG_L/sqrt(2)
# offset = config.ABDUCTION_OFFSET
# testHelper(SVector(0, offset, -0.125), SVector(0, 0, 0), 2)
# testHelper(SVector(c, offset, -c), SVector(0, -pi/4, 0), 2)
# testHelper(SVector(-c, offset, -c), SVector(0, pi/4, 0), 2)
# testHelper(SVector(0, c, -c), missing, 2, do_assert=false)
# testHelper(SVector(-c, -offset, -c), [0, pi/4, 0], 1)
# testHelper(SVector(config.LEG_L * sqrt(3)/2, offset, -config.LEG_L / 2), SVector(0, -pi/3, 0), 2)
# end
def test_inverse_kinematics_linkage():
print("\n-------------- Testing Five-bar Linkage Inverse Kinematics -----------")
config = PupperConfig()
print("\nTesting Inverse Kinematics")
def testHelper(r, alpha_true, i, do_assert=True):
eps = 1e-6
alpha = leg_explicit_inverse_kinematics(r, i, config)
print("Leg ", i, ": r: ", r, " -> α: ", alpha)
if do_assert:
assert np.linalg.norm(alpha - alpha_true) < eps
c = config.LEG_L / (2 ** 0.5)
offset = config.ABDUCTION_OFFSET
testHelper(np.array([0, offset, -0.125]), None, 1, do_assert=False)
testHelper(np.array([c, offset, -c]), None, 1, do_assert=False)
testHelper(np.array([-c, offset, -c]), None, 1, do_assert=False)
testHelper(np.array([0, c, -c]), None, 1, do_assert=False)
testHelper(np.array([-c, -offset, -c]), None, 0, do_assert=False)
testHelper(
np.array([config.LEG_L * (3 ** 0.5) / 2, offset, -config.LEG_L / 2]),
None,
1,
do_assert=False,
)
# function testForwardKinematics!()
# println("\n-------------- Testing Forward Kinematics -----------")
# config = PupperConfig()
# println("\nTesting Forward Kinematics")
# function testHelper(alpha, r_true, i; do_assert=true)
# eps = 1e-6
# r = zeros(3)
# println("Vectors")
# a = [alpha.data...]
# @time legForwardKinematics!(r, a, i, config)
# println("SVectors")
# @time r = legForwardKinematics(alpha, i, config)
# println("Leg ", i, ": α: ", alpha, " -> r: ", r)
# if do_assert
# @assert norm(r_true - r) < eps
# end
# end
# l = config.LEG_L
# offset = config.ABDUCTION_OFFSET
# testHelper(SVector{3}([0.0, 0.0, 0.0]), SVector{3}([0, offset, -l]), 2)
# testHelper(SVector{3}([0.0, pi/4, 0.0]), missing, 2, do_assert=false)
# # testHelper([0.0, 0.0, 0.0], [0, offset, -l], 2)
# # testHelper([0.0, pi/4, 0.0], missing, 2, do_assert=false)
# end
# function testForwardInverseAgreeance()
# println("\n-------------- Testing Forward/Inverse Consistency -----------")
# config = PupperConfig()
# println("\nTest forward/inverse consistency")
# eps = 1e-6
# for i in 1:10
# alpha = SVector(rand()-0.5, rand()-0.5, (rand()-0.5)*0.05)
# leg = rand(1:4)
# @time r = legForwardKinematics(alpha, leg, config)
# # @code_warntype legForwardKinematics!(r, alpha, leg, config)
# @time alpha_prime = leg_explicitinversekinematics_prismatic(r, leg, config)
# # @code_warntype inverseKinematicsExplicit!(alpha_prime, r, leg, config)
# println("Leg ", leg, ": α: ", round_(alpha, 3), " -> r_body_foot: ", round_(r, 3), " -> α': ", round_(alpha_prime, 3))
# @assert norm(alpha_prime - alpha) < eps
# end
# end
# function testAllInverseKinematics()
# println("\n-------------- Testing Four Leg Inverse Kinematics -----------")
# function helper(r_body, alpha_true; do_assert=true)
# println("Timing for fourlegs_inversekinematics")
# config = PupperConfig()
# @time alpha = fourlegs_inversekinematics(SMatrix(r_body), config)
# @code_warntype fourlegs_inversekinematics(SMatrix(r_body), config)
# println("r: ", r_body, " -> α: ", alpha)
# if do_assert
# @assert norm(alpha - alpha_true) < 1e-10
# end
# end
# config = PupperConfig()
# f = config.LEG_FB
# l = config.LEG_LR
# s = -0.125
# o = config.ABDUCTION_OFFSET
# r_body = MMatrix{3,4}(zeros(3,4))
# r_body[:,1] = [f, -l-o, s]
# r_body[:,2] = [f, l+o, s]
# r_body[:,3] = [-f, -l-o, s]
# r_body[:,4] = [-f, l+o, s]
# helper(r_body, zeros(3,4))
# helper(SMatrix{3,4}(zeros(3,4)), missing, do_assert=false)
# end
# function testKinematics()
# testInverseKinematicsExplicit!()
# testForwardKinematics!()
# testForwardInverseAgreeance()
# testAllInverseKinematics()
# end
# function testGait()
# println("\n-------------- Testing Gait -----------")
# p = GaitParams()
# # println("Gait params=",p)
# t = 680
# println("Timing for phaseindex")
# @time ph = phaseindex(t, p)
# # @code_warntype phaseindex(t, p)
# println("t=",t," phase=",ph)
# @assert ph == 4
# @assert phaseindex(0, p) == 1
# println("Timing for contacts")
# @time c = contacts(t, p)
# # @code_warntype contacts(t, p)
# @assert typeof(c) == SArray{Tuple{4},Int64,1,4}
# println("t=", t, " contacts=", c)
# end
def test_stance_controller():
print("\n-------------- Testing Stance Controller -----------")
stanceparams = StanceParams()
gaitparams = GaitParams()
zmeas = -0.20
mvref = MovementReference()
dp, dR = position_delta(zmeas, stanceparams, mvref, gaitparams)
assert np.linalg.norm(dR - np.eye(3)) < 1e-10
assert np.linalg.norm(dp - np.array([0, 0, gaitparams.dt * 0.04])) < 1e-10
zmeas = -0.18
mvref = MovementReference()
mvref.v_xy_ref = np.array([1.0, 0.0])
mvref.z_ref = -0.18
dp, dR = position_delta(zmeas, stanceparams, mvref, gaitparams)
zmeas = -0.20
mvref = MovementReference()
mvref.wz_ref = 1.0
mvref.z_ref = -0.20
dp, dR = position_delta(zmeas, stanceparams, mvref, gaitparams)
assert np.linalg.norm(dp - np.array([0, 0, 0])) < 1e-10
assert np.linalg.norm(dR[0, 1] - (gaitparams.dt)) < 1e-6
stancefootloc = np.zeros(3)
sloc = stance_foot_location(stancefootloc, stanceparams, gaitparams, mvref)
# function typeswinglegcontroller()
# println("\n--------------- Code warn type for raibert_tdlocation[s] ----------")
# swp = SwingParams()
# stp = StanceParams()
# gp = GaitParams()
# mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18)
# raibert_tdlocations(swp, stp, gp, mvref)
# mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18)
# raibert_tdlocation(1, swp, stp, gp, mvref)
# end
# function TestSwingLegController()
# println("\n-------------- Testing Swing Leg Controller -----------")
# swp = SwingParams()
# stp = StanceParams()
# gp = GaitParams()
# p = ControllerParams()
# println("Timing for swingheight:")
# @time z = swingheight(0.5, swp)
# println("z clearance at t=1/2swingtime =>",z)
# @assert abs(z - swp.zclearance) < 1e-10
# println("Timing for swingheight:")
# @time z = swingheight(0, swp)
# println("Z clearance at t=0 =>",z)
# @assert abs(z) < 1e-10
# mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18)
# println("Timing for raibert tdlocation*s*:")
# @time l = raibert_tdlocations(swp, stp, gp, mvref)
# target = stp.defaultstance .+ [gp.stanceticks*gp.dt*0.5*1, 0, 0]
# println("Touchdown locations =>", l, " <?=> ", target)
# @assert norm(l - target) <= 1e-10
# mvref = MovementReference(SVector(1.0, 0.0), 0, -0.18)
# println("Timing for raibert tdlocation:")
# @time l = raibert_tdlocation(1, swp, stp, gp, mvref)
# fcurrent = SMatrix{3, 4, Float64}(stp.defaultstance)
# mvref = MovementReference()
# tswing = 0.125
# println("Timing for swingfootlocation*s* increment")
# @time l = swingfootlocations(tswing, fcurrent, swp, stp, gp, mvref)
# println(l)
# fcurrent = SVector{3, Float64}(0.0, 0.0, 0.0)
# println("Timing for swingfootlocation")
# @time swingfootlocation(tswing, fcurrent, 1, swp, stp, gp, mvref)
# typeswinglegcontroller()
# return nothing
# end
def test_run():
print("Run timing")
foot_loc_history, joint_angle_history = run()
plt.subplot(211)
x = plt.plot(foot_loc_history[0, :, :].T, label="x")
y = plt.plot(foot_loc_history[1, :, :].T, label="y")
z = plt.plot(foot_loc_history[2, :, :].T, label="z")
plt.subplot(212)
alpha = plt.plot(joint_angle_history[0, :, :].T, label="alpha")
beta = plt.plot(joint_angle_history[1, :, :].T, label="beta")
gamma = plt.plot(joint_angle_history[2, :, :].T, label="gamma")
plt.show()
# plot(x, β, y, α, z, γ, layout=(3,2), legend=false))
# function teststep()
# swingparams = SwingParams()
# stanceparams = StanceParams()
# gaitparams = GaitParams()
# mvref = MovementReference(vxyref=SVector{2}(0.2, 0.0), wzref=0.0)
# conparams = ControllerParams()
# robotconfig = PupperConfig()
# footlocations::SMatrix{3, 4, Float64, 12} = stanceparams.defaultstance .+ SVector{3, Float64}(0, 0, mvref.zref)
# ticks = 1
# println("Timing for step!")
# @btime step($ticks, $footlocations, $swingparams, $stanceparams, $gaitparams, $mvref, $conparams)
# @code_warntype step(ticks, footlocations, swingparams, stanceparams, gaitparams, mvref, conparams)
# end
# # testGait()
# # testKinematics()
# # TestStanceController()
# # testStaticArrays()
# # TestSwingLegController()
# test_inversekinematics_linkage()
# # teststep()
# # testrun()
test_inverse_kinematics_linkage()
test_stance_controller()
test_run()
| 10,778 | Python | 33.548077 | 128 | 0.59705 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/JoystickInterface.py | import UDPComms
import numpy as np
import time
from src.State import BehaviorState, State
from src.Command import Command
from src.Utilities import deadband, clipped_first_order_filter
class JoystickInterface:
def __init__(
self, config, udp_port=8830, udp_publisher_port = 8840,
):
self.config = config
self.previous_gait_toggle = 0
self.previous_state = BehaviorState.REST
self.previous_hop_toggle = 0
self.previous_activate_toggle = 0
self.message_rate = 50
self.udp_handle = UDPComms.Subscriber(udp_port, timeout=0.3)
self.udp_publisher = UDPComms.Publisher(udp_publisher_port)
def get_command(self, state, do_print=False):
try:
msg = self.udp_handle.get()
command = Command()
####### Handle discrete commands ########
# Check if requesting a state transition to trotting, or from trotting to resting
gait_toggle = msg["R1"]
command.trot_event = (gait_toggle == 1 and self.previous_gait_toggle == 0)
# Check if requesting a state transition to hopping, from trotting or resting
hop_toggle = msg["x"]
command.hop_event = (hop_toggle == 1 and self.previous_hop_toggle == 0)
activate_toggle = msg["L1"]
command.activate_event = (activate_toggle == 1 and self.previous_activate_toggle == 0)
# Update previous values for toggles and state
self.previous_gait_toggle = gait_toggle
self.previous_hop_toggle = hop_toggle
self.previous_activate_toggle = activate_toggle
####### Handle continuous commands ########
x_vel = msg["ly"] * self.config.max_x_velocity
y_vel = msg["lx"] * -self.config.max_y_velocity
command.horizontal_velocity = np.array([x_vel, y_vel])
command.yaw_rate = msg["rx"] * -self.config.max_yaw_rate
message_rate = msg["message_rate"]
message_dt = 1.0 / message_rate
pitch = msg["ry"] * self.config.max_pitch
deadbanded_pitch = deadband(
pitch, self.config.pitch_deadband
)
pitch_rate = clipped_first_order_filter(
state.pitch,
deadbanded_pitch,
self.config.max_pitch_rate,
self.config.pitch_time_constant,
)
command.pitch = state.pitch + message_dt * pitch_rate
height_movement = msg["dpady"]
command.height = state.height - message_dt * self.config.z_speed * height_movement
roll_movement = - msg["dpadx"]
command.roll = state.roll + message_dt * self.config.roll_speed * roll_movement
return command
except UDPComms.timeout:
if do_print:
print("UDP Timed out")
return Command()
def set_color(self, color):
joystick_msg = {"ps4_color": color}
self.udp_publisher.send(joystick_msg) | 3,099 | Python | 36.349397 | 98 | 0.575992 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Utilities.py | import numpy as np
def deadband(value, band_radius):
return max(value - band_radius, 0) + min(value + band_radius, 0)
def clipped_first_order_filter(input, target, max_rate, tau):
rate = (target - input) / tau
return np.clip(rate, -max_rate, max_rate)
| 268 | Python | 23.454543 | 68 | 0.671642 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/src/Controller.py | from src.Gaits import GaitController
from src.StanceController import StanceController
from src.SwingLegController import SwingController
from src.Utilities import clipped_first_order_filter
from src.State import BehaviorState, State
import numpy as np
from transforms3d.euler import euler2mat, quat2euler
from transforms3d.quaternions import qconjugate, quat2axangle
from transforms3d.axangles import axangle2mat
class Controller:
"""Controller and planner object
"""
def __init__(
self,
config,
inverse_kinematics,
):
self.config = config
self.smoothed_yaw = 0.0 # for REST mode only
self.inverse_kinematics = inverse_kinematics
self.contact_modes = np.zeros(4)
self.gait_controller = GaitController(self.config)
self.swing_controller = SwingController(self.config)
self.stance_controller = StanceController(self.config)
self.hop_transition_mapping = {BehaviorState.REST: BehaviorState.HOP, BehaviorState.HOP: BehaviorState.FINISHHOP, BehaviorState.FINISHHOP: BehaviorState.REST, BehaviorState.TROT: BehaviorState.HOP}
self.trot_transition_mapping = {BehaviorState.REST: BehaviorState.TROT, BehaviorState.TROT: BehaviorState.REST, BehaviorState.HOP: BehaviorState.TROT, BehaviorState.FINISHHOP: BehaviorState.TROT}
self.activate_transition_mapping = {BehaviorState.DEACTIVATED: BehaviorState.REST, BehaviorState.REST: BehaviorState.DEACTIVATED}
def step_gait(self, state, command):
"""Calculate the desired foot locations for the next timestep
Returns
-------
Numpy array (3, 4)
Matrix of new foot locations.
"""
contact_modes = self.gait_controller.contacts(state.ticks)
new_foot_locations = np.zeros((3, 4))
for leg_index in range(4):
contact_mode = contact_modes[leg_index]
foot_location = state.foot_locations[:, leg_index]
if contact_mode == 1:
new_location = self.stance_controller.next_foot_location(leg_index, state, command)
else:
swing_proportion = (
self.gait_controller.subphase_ticks(state.ticks) / self.config.swing_ticks
)
new_location = self.swing_controller.next_foot_location(
swing_proportion,
leg_index,
state,
command
)
new_foot_locations[:, leg_index] = new_location
return new_foot_locations, contact_modes
def run(self, state, command):
"""Steps the controller forward one timestep
Parameters
----------
controller : Controller
Robot controller object.
"""
########## Update operating state based on command ######
if command.activate_event:
state.behavior_state = self.activate_transition_mapping[state.behavior_state]
elif command.trot_event:
state.behavior_state = self.trot_transition_mapping[state.behavior_state]
elif command.hop_event:
state.behavior_state = self.hop_transition_mapping[state.behavior_state]
if state.behavior_state == BehaviorState.TROT:
state.foot_locations, contact_modes = self.step_gait(
state,
command,
)
# Apply the desired body rotation
rotated_foot_locations = (
euler2mat(
command.roll, command.pitch, 0.0
)
@ state.foot_locations
)
# Construct foot rotation matrix to compensate for body tilt
(roll, pitch, yaw) = quat2euler(state.quat_orientation)
correction_factor = 0.8
max_tilt = 0.4
roll_compensation = correction_factor * np.clip(roll, -max_tilt, max_tilt)
pitch_compensation = correction_factor * np.clip(pitch, -max_tilt, max_tilt)
rmat = euler2mat(roll_compensation, pitch_compensation, 0)
rotated_foot_locations = rmat.T @ rotated_foot_locations
state.joint_angles = self.inverse_kinematics(
rotated_foot_locations, self.config
)
elif state.behavior_state == BehaviorState.HOP:
state.foot_locations = (
self.config.default_stance
+ np.array([0, 0, -0.09])[:, np.newaxis]
)
state.joint_angles = self.inverse_kinematics(
state.foot_locations, self.config
)
elif state.behavior_state == BehaviorState.FINISHHOP:
state.foot_locations = (
self.config.default_stance
+ np.array([0, 0, -0.22])[:, np.newaxis]
)
state.joint_angles = self.inverse_kinematics(
state.foot_locations, self.config
)
elif state.behavior_state == BehaviorState.REST:
yaw_proportion = command.yaw_rate / self.config.max_yaw_rate
self.smoothed_yaw += (
self.config.dt
* clipped_first_order_filter(
self.smoothed_yaw,
yaw_proportion * -self.config.max_stance_yaw,
self.config.max_stance_yaw_rate,
self.config.yaw_time_constant,
)
)
# Set the foot locations to the default stance plus the standard height
state.foot_locations = (
self.config.default_stance
+ np.array([0, 0, command.height])[:, np.newaxis]
)
# Apply the desired body rotation
rotated_foot_locations = (
euler2mat(
command.roll,
command.pitch,
self.smoothed_yaw,
)
@ state.foot_locations
)
state.joint_angles = self.inverse_kinematics(
rotated_foot_locations, self.config
)
state.ticks += 1
state.pitch = command.pitch
state.roll = command.roll
state.height = command.height
def set_pose_to_default(self):
state.foot_locations = (
self.config.default_stance
+ np.array([0, 0, self.config.default_z_ref])[:, np.newaxis]
)
state.joint_angles = controller.inverse_kinematics(
state.foot_locations, self.config
)
| 6,547 | Python | 37.292397 | 205 | 0.583168 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/ServoCalibration.py | # WARNING: This file is machine generated. Edit at your own risk.
import numpy as np
MICROS_PER_RAD = 11.333 * 180.0 / np.pi
NEUTRAL_ANGLE_DEGREES = np.array(
[[ 0., 0., 0., 0.],
[ 45., 45., 45., 45.],
[-45.,-45.,-45.,-45.]]
)
| 236 | Python | 18.749998 | 65 | 0.576271 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/HardwareInterface.py | import pigpio
from pupper.Config import ServoParams, PWMParams
class HardwareInterface:
def __init__(self):
self.pi = pigpio.pi()
self.pwm_params = PWMParams()
self.servo_params = ServoParams()
initialize_pwm(self.pi, self.pwm_params)
def set_actuator_postions(self, joint_angles):
send_servo_commands(self.pi, self.pwm_params, self.servo_params, joint_angles)
def set_actuator_position(self, joint_angle, axis, leg):
send_servo_command(self.pi, self.pwm_params, self.servo_params, joint_angle, axis, leg)
def pwm_to_duty_cycle(pulsewidth_micros, pwm_params):
"""Converts a pwm signal (measured in microseconds) to a corresponding duty cycle on the gpio pwm pin
Parameters
----------
pulsewidth_micros : float
Width of the pwm signal in microseconds
pwm_params : PWMParams
PWMParams object
Returns
-------
float
PWM duty cycle corresponding to the pulse width
"""
return int(pulsewidth_micros / 1e6 * pwm_params.freq * pwm_params.range)
def angle_to_pwm(angle, servo_params, axis_index, leg_index):
"""Converts a desired servo angle into the corresponding PWM command
Parameters
----------
angle : float
Desired servo angle, relative to the vertical (z) axis
servo_params : ServoParams
ServoParams object
axis_index : int
Specifies which joint of leg to control. 0 is abduction servo, 1 is inner hip servo, 2 is outer hip servo.
leg_index : int
Specifies which leg to control. 0 is front-right, 1 is front-left, 2 is back-right, 3 is back-left.
Returns
-------
float
PWM width in microseconds
"""
angle_deviation = (
angle - servo_params.neutral_angles[axis_index, leg_index]
) * servo_params.servo_multipliers[axis_index, leg_index]
pulse_width_micros = (
servo_params.neutral_position_pwm
+ servo_params.micros_per_rad * angle_deviation
)
return pulse_width_micros
def angle_to_duty_cycle(angle, pwm_params, servo_params, axis_index, leg_index):
return pwm_to_duty_cycle(
angle_to_pwm(angle, servo_params, axis_index, leg_index), pwm_params
)
def initialize_pwm(pi, pwm_params):
for leg_index in range(4):
for axis_index in range(3):
pi.set_PWM_frequency(
pwm_params.pins[axis_index, leg_index], pwm_params.freq
)
pi.set_PWM_range(pwm_params.pins[axis_index, leg_index], pwm_params.range)
def send_servo_commands(pi, pwm_params, servo_params, joint_angles):
for leg_index in range(4):
for axis_index in range(3):
duty_cycle = angle_to_duty_cycle(
joint_angles[axis_index, leg_index],
pwm_params,
servo_params,
axis_index,
leg_index,
)
pi.set_PWM_dutycycle(pwm_params.pins[axis_index, leg_index], duty_cycle)
def send_servo_command(pi, pwm_params, servo_params, joint_angle, axis, leg):
duty_cycle = angle_to_duty_cycle(joint_angle, pwm_params, servo_params, axis, leg)
pi.set_PWM_dutycycle(pwm_params.pins[axis, leg], duty_cycle)
def deactivate_servos(pi, pwm_params):
for leg_index in range(4):
for axis_index in range(3):
pi.set_PWM_dutycycle(pwm_params.pins[axis_index, leg_index], 0)
| 3,408 | Python | 32.097087 | 114 | 0.639085 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/Kinematics.py | import numpy as np
from transforms3d.euler import euler2mat
def leg_explicit_inverse_kinematics(r_body_foot, leg_index, config):
"""Find the joint angles corresponding to the given body-relative foot position for a given leg and configuration
Parameters
----------
r_body_foot : [type]
[description]
leg_index : [type]
[description]
config : [type]
[description]
Returns
-------
numpy array (3)
Array of corresponding joint angles.
"""
(x, y, z) = r_body_foot
# Distance from the leg origin to the foot, projected into the y-z plane
R_body_foot_yz = (y ** 2 + z ** 2) ** 0.5
# Distance from the leg's forward/back point of rotation to the foot
R_hip_foot_yz = (R_body_foot_yz ** 2 - config.ABDUCTION_OFFSET ** 2) ** 0.5
# Interior angle of the right triangle formed in the y-z plane by the leg that is coincident to the ab/adduction axis
# For feet 2 (front left) and 4 (back left), the abduction offset is positive, for the right feet, the abduction offset is negative.
arccos_argument = config.ABDUCTION_OFFSETS[leg_index] / R_body_foot_yz
arccos_argument = np.clip(arccos_argument, -0.99, 0.99)
phi = np.arccos(arccos_argument)
# Angle of the y-z projection of the hip-to-foot vector, relative to the positive y-axis
hip_foot_angle = np.arctan2(z, y)
# Ab/adduction angle, relative to the positive y-axis
abduction_angle = phi + hip_foot_angle
# theta: Angle between the tilted negative z-axis and the hip-to-foot vector
theta = np.arctan2(-x, R_hip_foot_yz)
# Distance between the hip and foot
R_hip_foot = (R_hip_foot_yz ** 2 + x ** 2) ** 0.5
# Angle between the line going from hip to foot and the link L1
arccos_argument = (config.LEG_L1 ** 2 + R_hip_foot ** 2 - config.LEG_L2 ** 2) / (
2 * config.LEG_L1 * R_hip_foot
)
arccos_argument = np.clip(arccos_argument, -0.99, 0.99)
trident = np.arccos(arccos_argument)
# Angle of the first link relative to the tilted negative z axis
hip_angle = theta + trident
# Angle between the leg links L1 and L2
arccos_argument = (config.LEG_L1 ** 2 + config.LEG_L2 ** 2 - R_hip_foot ** 2) / (
2 * config.LEG_L1 * config.LEG_L2
)
arccos_argument = np.clip(arccos_argument, -0.99, 0.99)
beta = np.arccos(arccos_argument)
# Angle of the second link relative to the tilted negative z axis
knee_angle = hip_angle - (np.pi - beta)
return np.array([abduction_angle, hip_angle, knee_angle])
def four_legs_inverse_kinematics(r_body_foot, config):
"""Find the joint angles for all twelve DOF correspoinding to the given matrix of body-relative foot positions.
Parameters
----------
r_body_foot : numpy array (3,4)
Matrix of the body-frame foot positions. Each column corresponds to a separate foot.
config : Config object
Object of robot configuration parameters.
Returns
-------
numpy array (3,4)
Matrix of corresponding joint angles.
"""
alpha = np.zeros((3, 4))
for i in range(4):
body_offset = config.LEG_ORIGINS[:, i]
alpha[:, i] = leg_explicit_inverse_kinematics(
r_body_foot[:, i] - body_offset, i, config
)
return alpha
| 3,324 | Python | 34.752688 | 136 | 0.639892 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/HardwareConfig.py | """
Per-robot configuration file that is particular to each individual robot, not just the type of robot.
"""
PS4_COLOR = {"red": 0, "blue": 0, "green": 255}
PS4_DEACTIVATED_COLOR = {"red": 0, "blue": 0, "green": 50} | 217 | Python | 35.333327 | 101 | 0.658986 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/pupper/Config.py | import numpy as np
from pupper.ServoCalibration import MICROS_PER_RAD, NEUTRAL_ANGLE_DEGREES
from pupper.HardwareConfig import PS4_COLOR, PS4_DEACTIVATED_COLOR
from enum import Enum
# TODO: put these somewhere else
class PWMParams:
def __init__(self):
self.pins = np.array([[2, 14, 18, 23], [3, 15, 27, 24], [4, 17, 22, 25]])
self.range = 4000
self.freq = 250
class ServoParams:
def __init__(self):
self.neutral_position_pwm = 1500 # Middle position
self.micros_per_rad = MICROS_PER_RAD # Must be calibrated
# The neutral angle of the joint relative to the modeled zero-angle in degrees, for each joint
self.neutral_angle_degrees = NEUTRAL_ANGLE_DEGREES
self.servo_multipliers = np.array(
[[1, 1, 1, 1], [-1, 1, -1, 1], [1, -1, 1, -1]]
)
@property
def neutral_angles(self):
return self.neutral_angle_degrees * np.pi / 180.0 # Convert to radians
class Configuration:
def __init__(self):
################# CONTROLLER BASE COLOR ##############
self.ps4_color = PS4_COLOR
self.ps4_deactivated_color = PS4_DEACTIVATED_COLOR
#################### COMMANDS ####################
self.max_x_velocity = 0.4
self.max_y_velocity = 0.3
self.max_yaw_rate = 2.0
self.max_pitch = 30.0 * np.pi / 180.0
#################### MOVEMENT PARAMS ####################
self.z_time_constant = 0.02
self.z_speed = 0.03 # maximum speed [m/s]
self.pitch_deadband = 0.02
self.pitch_time_constant = 0.25
self.max_pitch_rate = 0.15
self.roll_speed = 0.16 # maximum roll rate [rad/s]
self.yaw_time_constant = 0.3
self.max_stance_yaw = 1.2
self.max_stance_yaw_rate = 2.0
#################### STANCE ####################
self.delta_x = 0.1
self.delta_y = 0.09
self.x_shift = 0.0
self.default_z_ref = -0.16
#################### SWING ######################
self.z_coeffs = None
self.z_clearance = 0.07
self.alpha = (
0.5 # Ratio between touchdown distance and total horizontal stance movement
)
self.beta = (
0.5 # Ratio between touchdown distance and total horizontal stance movement
)
#################### GAIT #######################
self.dt = 0.01
self.num_phases = 4
self.contact_phases = np.array(
[[1, 1, 1, 0], [1, 0, 1, 1], [1, 0, 1, 1], [1, 1, 1, 0]]
)
self.overlap_time = (
0.10 # duration of the phase where all four feet are on the ground
)
self.swing_time = (
0.15 # duration of the phase when only two feet are on the ground
)
######################## GEOMETRY ######################
self.LEG_FB = 0.10 # front-back distance from center line to leg axis
self.LEG_LR = 0.04 # left-right distance from center line to leg plane
self.LEG_L2 = 0.115
self.LEG_L1 = 0.1235
self.ABDUCTION_OFFSET = 0.03 # distance from abduction axis to leg
self.FOOT_RADIUS = 0.01
self.HIP_L = 0.0394
self.HIP_W = 0.0744
self.HIP_T = 0.0214
self.HIP_OFFSET = 0.0132
self.L = 0.276
self.W = 0.100
self.T = 0.050
self.LEG_ORIGINS = np.array(
[
[self.LEG_FB, self.LEG_FB, -self.LEG_FB, -self.LEG_FB],
[-self.LEG_LR, self.LEG_LR, -self.LEG_LR, self.LEG_LR],
[0, 0, 0, 0],
]
)
self.ABDUCTION_OFFSETS = np.array(
[
-self.ABDUCTION_OFFSET,
self.ABDUCTION_OFFSET,
-self.ABDUCTION_OFFSET,
self.ABDUCTION_OFFSET,
]
)
################### INERTIAL ####################
self.FRAME_MASS = 0.560 # kg
self.MODULE_MASS = 0.080 # kg
self.LEG_MASS = 0.030 # kg
self.MASS = self.FRAME_MASS + (self.MODULE_MASS + self.LEG_MASS) * 4
# Compensation factor of 3 because the inertia measurement was just
# of the carbon fiber and plastic parts of the frame and did not
# include the hip servos and electronics
self.FRAME_INERTIA = tuple(
map(lambda x: 3.0 * x, (1.844e-4, 1.254e-3, 1.337e-3))
)
self.MODULE_INERTIA = (3.698e-5, 7.127e-6, 4.075e-5)
leg_z = 1e-6
leg_mass = 0.010
leg_x = 1 / 12 * self.LEG_L1 ** 2 * leg_mass
leg_y = leg_x
self.LEG_INERTIA = (leg_x, leg_y, leg_z)
@property
def default_stance(self):
return np.array(
[
[
self.delta_x + self.x_shift,
self.delta_x + self.x_shift,
-self.delta_x + self.x_shift,
-self.delta_x + self.x_shift,
],
[-self.delta_y, self.delta_y, -self.delta_y, self.delta_y],
[0, 0, 0, 0],
]
)
################## SWING ###########################
@property
def z_clearance(self):
return self.__z_clearance
@z_clearance.setter
def z_clearance(self, z):
self.__z_clearance = z
# b_z = np.array([0, 0, 0, 0, self.__z_clearance])
# A_z = np.array(
# [
# [0, 0, 0, 0, 1],
# [1, 1, 1, 1, 1],
# [0, 0, 0, 1, 0],
# [4, 3, 2, 1, 0],
# [0.5 ** 4, 0.5 ** 3, 0.5 ** 2, 0.5 ** 1, 0.5 ** 0],
# ]
# )
# self.z_coeffs = solve(A_z, b_z)
########################### GAIT ####################
@property
def overlap_ticks(self):
return int(self.overlap_time / self.dt)
@property
def swing_ticks(self):
return int(self.swing_time / self.dt)
@property
def stance_ticks(self):
return 2 * self.overlap_ticks + self.swing_ticks
@property
def phase_ticks(self):
return np.array(
[self.overlap_ticks, self.swing_ticks, self.overlap_ticks, self.swing_ticks]
)
@property
def phase_length(self):
return 2 * self.overlap_ticks + 2 * self.swing_ticks
class SimulationConfig:
def __init__(self):
self.XML_IN = "pupper.xml"
self.XML_OUT = "pupper_out.xml"
self.START_HEIGHT = 0.3
self.MU = 1.5 # coeff friction
self.DT = 0.001 # seconds between simulation steps
self.JOINT_SOLREF = "0.001 1" # time constant and damping ratio for joints
self.JOINT_SOLIMP = "0.9 0.95 0.001" # joint constraint parameters
self.GEOM_SOLREF = "0.01 1" # time constant and damping ratio for geom contacts
self.GEOM_SOLIMP = "0.9 0.95 0.001" # geometry contact parameters
# Joint params
G = 220 # Servo gear ratio
m_rotor = 0.016 # Servo rotor mass
r_rotor = 0.005 # Rotor radius
self.ARMATURE = G ** 2 * m_rotor * r_rotor ** 2 # Inertia of rotational joints
# print("Servo armature", self.ARMATURE)
NATURAL_DAMPING = 1.0 # Damping resulting from friction
ELECTRICAL_DAMPING = 0.049 # Damping resulting from back-EMF
self.REV_DAMPING = (
NATURAL_DAMPING + ELECTRICAL_DAMPING
) # Damping torque on the revolute joints
# Servo params
self.SERVO_REV_KP = 300 # Position gain [Nm/rad]
# Force limits
self.MAX_JOINT_TORQUE = 3.0
self.REVOLUTE_RANGE = 1.57
| 7,666 | Python | 32.480349 | 102 | 0.501435 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/HardwareInterface.py | import odrive
from odrive.enums import *
from woofer.Config import RobotConfig
from woofer.HardwareConfig import (
ODRIVE_SERIAL_NUMBERS,
ACTUATOR_DIRECTIONS,
ANGLE_OFFSETS,
map_actuators_to_axes,
)
import time
import threading
import numpy as np
class HardwareInterface:
def __init__(self):
self.config = RobotConfig()
assert len(ODRIVE_SERIAL_NUMBERS) == self.config.NUM_ODRIVES
self.odrives = [None for _ in range(self.config.NUM_ODRIVES)]
threads = []
for i in range(self.config.NUM_ODRIVES):
t = threading.Thread(target=find_odrive, args=(i, self.odrives))
threads.append(t)
t.start()
for t in threads:
t.join()
input("Press enter to calibrate odrives...")
calibrate_odrives(self.odrives)
set_position_control(self.odrives)
self.axes = assign_axes(self.odrives)
def set_actuator_postions(self, joint_angles):
set_all_odrive_positions(self.axes, joint_angles, self.config)
def deactivate_actuators(self):
set_odrives_idle(self.odrives)
def find_odrive(i, odrives):
o = odrive.find_any(serial_number=ODRIVE_SERIAL_NUMBERS[i])
print("Found odrive: ", i)
odrives[i] = o
def calibrate_odrives(odrives):
for odrv in odrives:
odrv.axis0.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE
odrv.axis1.requested_state = AXIS_STATE_FULL_CALIBRATION_SEQUENCE
for odrv in odrives:
while (
odrv.axis0.current_state != AXIS_STATE_IDLE
or odrv.axis1.current_state != AXIS_STATE_IDLE
):
time.sleep(0.1) # busy waiting - not ideal
def set_position_control(odrives):
for odrv in odrives:
for axis in [odrv.axis0, odrv.axis1]:
axis.controller.config.pos_gain = 60
axis.controller.config.vel_gain = 0.002
axis.controller.config.vel_limit_tolerance = 0
axis.controller.config.vel_integrator_gain = 0
axis.motor.config.current_lim = 15
print("Updated gains")
odrv.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
odrv.axis1.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL
def set_odrives_idle(odrives):
for odrv in odrives:
odrv.axis0.requested_state = AXIS_STATE_IDLE
odrv.axis1.requested_state = AXIS_STATE_IDLE
def assign_axes(odrives):
return map_actuators_to_axes(odrives)
def set_all_odrive_positions(axes, joint_angles, config):
for i in range(joint_angles.shape[0]):
for j in range(joint_angles.shape[1]):
axes[i][j].controller.pos_setpoint = actuator_angle_to_odrive(
joint_angles, i, j, config
)
def radians_to_encoder_count(angle, config):
return (angle / (2 * np.pi)) * config.ENCODER_CPR * config.MOTOR_REDUCTION
def actuator_angle_to_odrive(joint_angles, i, j, config):
offset_angle = joint_angles[i][j] + ANGLE_OFFSETS[i][j]
odrive_radians = offset_angle * ACTUATOR_DIRECTIONS[i][j]
return radians_to_encoder_count(odrive_radians, config)
| 3,118 | Python | 30.82653 | 78 | 0.652341 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/Kinematics.py | import numpy as np
def leg_forward_kinematics(alpha, leg_index, config):
"""Find the body-centric coordinates of a given foot given the joint angles.
Parameters
----------
alpha : Numpy array (3)
Joint angles ordered as (abduction, hip, knee)
leg_index : int
Leg index.
config : Config object
Robot parameters object
Returns
-------
Numpy array (3)
Body-centric coordinates of the specified foot
"""
pass
def leg_explicit_inverse_kinematics(r_body_foot, leg_index, config):
"""Find the joint angles corresponding to the given body-relative foot position for a given leg and configuration
Parameters
----------
r_body_foot : [type]
[description]
leg_index : [type]
[description]
config : [type]
[description]
Returns
-------
numpy array (3)
Array of corresponding joint angles.
"""
(x, y, z) = r_body_foot
# Distance from the leg origin to the foot, projected into the y-z plane
R_body_foot_yz = (y ** 2 + z ** 2) ** 0.5
# Distance from the leg's forward/back point of rotation to the foot
R_hip_foot_yz = (R_body_foot_yz ** 2 - config.ABDUCTION_OFFSET ** 2) ** 0.5
# Interior angle of the right triangle formed in the y-z plane by the leg that is coincident to the ab/adduction axis
# For feet 2 (front left) and 4 (back left), the abduction offset is positive, for the right feet, the abduction offset is negative.
cos_param = config.ABDUCTION_OFFSETS[leg_index] / R_body_foot_yz
if abs(cos_param) > 0.9:
print("Clipping 1st cos param")
cos_param = np.clip(cos_param, -0.9, 0.9)
phi = np.arccos(cos_param)
# Angle of the y-z projection of the hip-to-foot vector, relative to the positive y-axis
hip_foot_angle = np.arctan2(z, y)
# Ab/adduction angle, relative to the positive y-axis
abduction_angle = phi + hip_foot_angle
# theta: Angle between the tilted negative z-axis and the hip-to-foot vector
theta = np.arctan2(-x, R_hip_foot_yz)
# Distance between the hip and foot
R_hip_foot = (R_hip_foot_yz ** 2 + x ** 2) ** 0.5
# Using law of cosines to determine the angle between upper leg links
cos_param = (config.UPPER_LEG ** 2 + R_hip_foot ** 2 - config.LOWER_LEG ** 2) / (2.0*config.UPPER_LEG*R_hip_foot)
# Ensure that the leg isn't over or under extending
cos_param = np.clip(cos_param, -0.9, 0.9)
if abs(cos_param) > 0.9:
print("Clipping 2nd cos param")
# gamma: Angle between upper leg links and the center of the leg
gamma = np.arccos(cos_param)
return np.array([abduction_angle, theta - gamma, theta + gamma])
def four_legs_inverse_kinematics(r_body_foot, config):
"""Find the joint angles for all twelve DOF correspoinding to the given matrix of body-relative foot positions.
Parameters
----------
r_body_foot : numpy array (3,4)
Matrix of the body-frame foot positions. Each column corresponds to a separate foot.
config : Config object
Object of robot configuration parameters.
Returns
-------
numpy array (3,4)
Matrix of corresponding joint angles.
"""
alpha = np.zeros((3, 4))
for i in range(4):
body_offset = config.LEG_ORIGINS[:, i]
alpha[:, i] = leg_explicit_inverse_kinematics(
r_body_foot[:, i] - body_offset, i, config
)
return alpha | 3,449 | Python | 34.204081 | 136 | 0.636416 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/HardwareConfig.py | """
Per-robot configuration file that is particular to each individual robot, not just the type of robot.
"""
import numpy as np
ODRIVE_SERIAL_NUMBERS = [
"2065339F304B",
"208F3384304B",
"365833753037",
"207E35753748",
"208F3385304B",
"208E3387304B",
]
ACTUATOR_DIRECTIONS = np.array([[1, 1, -1, -1], [-1, -1, -1, -1], [1, 1, 1, 1]])
ANGLE_OFFSETS = np.array(
[
[0, 0, 0, 0],
[np.pi / 2, np.pi / 2, np.pi / 2, np.pi / 2],
[-np.pi / 2, -np.pi / 2, -np.pi / 2, -np.pi / 2],
]
)
def map_actuators_to_axes(odrives):
axes = [[None for _ in range(4)] for _ in range(3)]
axes[0][0] = odrives[1].axis1
axes[1][0] = odrives[0].axis0
axes[2][0] = odrives[0].axis1
axes[0][1] = odrives[1].axis0
axes[1][1] = odrives[2].axis1
axes[2][1] = odrives[2].axis0
axes[0][2] = odrives[4].axis1
axes[1][2] = odrives[5].axis0
axes[2][2] = odrives[5].axis1
axes[0][3] = odrives[4].axis0
axes[1][3] = odrives[3].axis1
axes[2][3] = odrives[3].axis0
return axes
| 1,057 | Python | 22.511111 | 101 | 0.553453 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/StanfordQuadruped-pupper/woofer/Config.py | import numpy as np
from scipy.linalg import solve
class BehaviorState(Enum):
REST = 0
TROT = 1
HOP = 2
FINISHHOP = 3
class UserInputParams:
def __init__(self):
self.max_x_velocity = 0.5
self.max_y_velocity = 0.24
self.max_yaw_rate = 0.2
self.max_pitch = 30.0 * np.pi / 180.0
class MovementReference:
"""Stores movement reference
"""
def __init__(self):
self.v_xy_ref = np.array([0, 0])
self.wz_ref = 0.0
self.z_ref = -0.265
self.pitch = 0.0
self.roll = 0.0
class SwingParams:
"""Swing Parameters
"""
def __init__(self):
self.z_coeffs = None
self.z_clearance = 0.05
self.alpha = (
0.5
) # Ratio between touchdown distance and total horizontal stance movement
self.beta = (
0.5
) # Ratio between touchdown distance and total horizontal stance movement
@property
def z_clearance(self):
return self.__z_clearance
@z_clearance.setter
def z_clearance(self, z):
self.__z_clearance = z
b_z = np.array([0, 0, 0, 0, self.__z_clearance])
A_z = np.array(
[
[0, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
[0, 0, 0, 1, 0],
[4, 3, 2, 1, 0],
[0.5 ** 4, 0.5 ** 3, 0.5 ** 2, 0.5 ** 1, 0.5 ** 0],
]
)
self.z_coeffs = solve(A_z, b_z)
class StanceParams:
"""Stance parameters
"""
def __init__(self):
self.z_time_constant = 0.02
self.z_speed = 0.03 # maximum speed [m/s]
self.pitch_deadband = 0.02
self.pitch_time_constant = 0.25
self.max_pitch_rate = 0.15
self.roll_speed = 0.16 # maximum roll rate [rad/s]
self.delta_x = 0.23
self.delta_y = 0.173
self.x_shift = -0.01
@property
def default_stance(self):
return np.array(
[
[
self.delta_x + self.x_shift,
self.delta_x + self.x_shift,
-self.delta_x + self.x_shift,
-self.delta_x + self.x_shift,
],
[-self.delta_y, self.delta_y, -self.delta_y, self.delta_y],
[0, 0, 0, 0],
]
)
class GaitParams:
"""Gait Parameters
"""
def __init__(self):
self.dt = 0.01
self.num_phases = 4
self.contact_phases = np.array(
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]
)
self.overlap_time = (
0.5 # duration of the phase where all four feet are on the ground
)
self.swing_time = (
0.5 # duration of the phase when only two feet are on the ground
)
@property
def overlap_ticks(self):
return int(self.overlap_time / self.dt)
@property
def swing_ticks(self):
return int(self.swing_time / self.dt)
@property
def stance_ticks(self):
return 2 * self.overlap_ticks + self.swing_ticks
@property
def phase_times(self):
return np.array(
[self.overlap_ticks, self.swing_ticks, self.overlap_ticks, self.swing_ticks]
)
@property
def phase_length(self):
return 2 * self.overlap_ticks + 2 * self.swing_ticks
class RobotConfig:
"""Woofer hardware parameters
"""
def __init__(self):
# Robot geometry
self.LEG_FB = 0.23 # front-back distance from center line to leg axis
self.LEG_LR = 0.109 # left-right distance from center line to leg plane
self.ABDUCTION_OFFSET = 0.064 # distance from abduction axis to leg
self.FOOT_RADIUS = 0.02
self.UPPER_LEG = 0.18
self.LOWER_LEG = 0.32
# Update hip geometry
self.HIP_L = 0.0394
self.HIP_W = 0.0744
self.HIP_T = 0.0214
self.HIP_OFFSET = 0.0132
self.L = 0.66
self.W = 0.176
self.T = 0.092
self.LEG_ORIGINS = np.array(
[
[self.LEG_FB, self.LEG_FB, -self.LEG_FB, -self.LEG_FB],
[-self.LEG_LR, self.LEG_LR, -self.LEG_LR, self.LEG_LR],
[0, 0, 0, 0],
]
)
self.ABDUCTION_OFFSETS = np.array(
[
-self.ABDUCTION_OFFSET,
self.ABDUCTION_OFFSET,
-self.ABDUCTION_OFFSET,
self.ABDUCTION_OFFSET,
]
)
self.START_HEIGHT = 0.3
# Robot inertia params
self.FRAME_MASS = 3.0 # kg
self.MODULE_MASS = 1.033 # kg
self.LEG_MASS = 0.15 # kg
self.MASS = self.FRAME_MASS + (self.MODULE_MASS + self.LEG_MASS) * 4
# Compensation factor of 3 because the inertia measurement was just
# of the carbon fiber and plastic parts of the frame and did not
# include the hip servos and electronics
self.FRAME_INERTIA = tuple(
map(lambda x: 3.0 * x, (1.844e-4, 1.254e-3, 1.337e-3))
)
self.MODULE_INERTIA = (3.698e-5, 7.127e-6, 4.075e-5)
leg_z = 1e-6
leg_mass = 0.010
leg_x = 1 / 12 * self.LOWER_LEG ** 2 * leg_mass
leg_y = leg_x
self.LEG_INERTIA = (leg_x, leg_y, leg_z)
# Joint params
G = 220 # Servo gear ratio
m_rotor = 0.016 # Servo rotor mass
r_rotor = 0.005 # Rotor radius
self.ARMATURE = G ** 2 * m_rotor * r_rotor ** 2 # Inertia of rotational joints
# print("Servo armature", self.ARMATURE)
NATURAL_DAMPING = 1.0 # Damping resulting from friction
ELECTRICAL_DAMPING = 0.049 # Damping resulting from back-EMF
self.REV_DAMPING = (
NATURAL_DAMPING + ELECTRICAL_DAMPING
) # Damping torque on the revolute joints
# Force limits
self.MAX_JOINT_TORQUE = 12.0
self.REVOLUTE_RANGE = 3
self.NUM_ODRIVES = 6
self.ENCODER_CPR = 2000
self.MOTOR_REDUCTION = 4
class EnvironmentConfig:
"""Environmental parameters
"""
def __init__(self):
self.MU = 1.5 # coeff friction
self.DT = 0.001 # seconds between simulation steps
class SolverConfig:
"""MuJoCo solver parameters
"""
def __init__(self):
self.JOINT_SOLREF = "0.001 1" # time constant and damping ratio for joints
self.JOINT_SOLIMP = "0.9 0.95 0.001" # joint constraint parameters
self.GEOM_SOLREF = "0.01 1" # time constant and damping ratio for geom contacts
self.GEOM_SOLIMP = "0.9 0.95 0.001" # geometry contact parameters
| 6,661 | Python | 26.643153 | 88 | 0.523945 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/mini_pupper_simplified/README.md | # Mini Pupper Robot Description (URDF)
## Overview
This package contains a simplified robot description (URDF) of the [Mini Pupper](https://www.kickstarter.com/projects/336477435/mini-pupper-open-sourceros-robot-dog-kit) developed by [MangDang](https://twitter.com/LeggedRobot).
STL filesare forked from [mayataka/mini_pupper_trajopt](https://github.com/mayataka/mini_pupper_trajopt).
## License
This software is released under a [BSD 3-Clause license](LICENSE).
## Usage
See [CHAMP](https://github.com/chvmp/champ)
| 523 | Markdown | 31.749998 | 227 | 0.768642 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/rover.py | #!/usr/bin/env python3
import sys
import argparse
import json
import time
import select
import pexpect
import UDPComms
import msgpack
def peek_func(port):
sub = UDPComms.Subscriber(port, timeout = 10)
while 1:
try:
data = sub.recv()
print( json.dumps(data) )
except UDPComms.timeout:
exit()
def poke_func(port, rate):
pub = UDPComms.Publisher(port)
data = None
while 1:
if select.select([sys.stdin], [], [], 0)[0]:
line = sys.stdin.readline()
# detailed behaviour
# reading from file: -ignores empty lines -repeats last line forever
# reading from terminal: -repeats last command
if line.rstrip():
data = line.rstrip()
elif len(line) == 0:
# exit() #uncomment to quit on end of file
pass
else:
continue
if data != None:
pub.send( json.loads(data) )
time.sleep( rate/1000 )
def call_func(command, ssh = True):
child = pexpect.spawn(command)
if ssh:
i = 1
while i == 1:
try:
i = child.expect(['password:',
'Are you sure you want to continue connecting',
'Welcome'], timeout=20)
except pexpect.EOF:
print("Can't connect to device")
exit()
except pexpect.TIMEOUT:
print("Interaction with device failed")
exit()
if i == 1:
child.sendline('yes')
if i == 0:
child.sendline('raspberry')
else:
try:
child.expect('robot:', timeout=1)
child.sendline('hello')
except pexpect.TIMEOUT:
pass
child.interact()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='subparser')
peek = subparsers.add_parser("peek")
peek.add_argument('port', help="UDP port to subscribe to", type=int)
poke = subparsers.add_parser("poke")
poke.add_argument('port', help="UDP port to publish the data to", type=int)
poke.add_argument('rate', help="how often to republish (ms)", type=float)
peek = subparsers.add_parser("discover")
commands = ['status', 'log', 'start', 'stop', 'restart', 'enable', 'disable']
for command in commands:
status = subparsers.add_parser(command)
status.add_argument('host', help="Which device to look for this program on")
status.add_argument('unit', help="The unit whose status we want to know",
nargs='?', default=None)
connect = subparsers.add_parser('connect')
connect.add_argument('host', help="Which device to log into")
args = parser.parse_args()
if args.subparser == 'peek':
peek_func(args.port)
elif args.subparser == 'poke':
poke_func(args.port, args.rate)
elif args.subparser == 'connect':
call_func("ssh pi@"+args.host+".local")
elif args.subparser == 'discover':
call_func("nmap -sP 10.0.0.0/24", ssh=False)
elif args.subparser in commands:
if args.unit is None:
args.unit = args.host
if args.host == 'local':
prefix = ""
ssh = False
else:
prefix = "ssh pi@"+args.host+".local "
ssh = True
if args.subparser == 'status':
call_func(prefix + "sudo systemctl status "+args.unit, ssh)
elif args.subparser == 'log':
call_func(prefix + "sudo journalctl -f -u "+args.unit, ssh)
elif args.subparser == 'start':
call_func(prefix + "sudo systemctl start "+args.unit, ssh)
elif args.subparser == 'stop':
call_func(prefix + "sudo systemctl stop "+args.unit, ssh)
elif args.subparser == 'restart':
call_func(prefix + "sudo systemctl restart "+args.unit, ssh)
elif args.subparser == 'enable':
call_func(prefix + "sudo systemctl enable "+args.unit, ssh)
elif args.subparser == 'disable':
call_func(prefix + "sudo systemctl disable "+args.unit, ssh)
else:
parser.print_help()
| 4,329 | Python | 30.838235 | 84 | 0.546778 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/__init__.py | from .UDPComms import Publisher
from .UDPComms import Subscriber
from .UDPComms import timeout
| 95 | Python | 22.999994 | 32 | 0.842105 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/setup.py | #!/usr/bin/env python
from distutils.core import setup
setup(name='UDPComms',
version='1.1dev',
py_modules=['UDPComms'],
description='Simple library for sending messages over UDP',
author='Michal Adamkiewicz',
author_email='[email protected]',
url='https://github.com/stanfordroboticsclub/UDP-Comms',
)
| 349 | Python | 25.923075 | 65 | 0.673352 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/UDPComms.py |
import socket
import struct
from collections import namedtuple
from time import monotonic
import msgpack
import time
timeout = socket.timeout
MAX_SIZE = 65507
class Publisher:
def __init__(self, port_tx,port):
""" Create a Publisher Object
Arguments:
port -- the port to publish the messages on
"""
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.des_address = ("127.0.0.1",port_tx)
self.sock.bind(("127.0.0.1", port))
self.sock.settimeout(0.2)
def send(self, obj):
""" Publish a message. The obj can be any nesting of standard python types """
msg = msgpack.dumps(obj, use_bin_type=False)
assert len(msg) < MAX_SIZE, "Encoded message too big!"
self.sock.sendto(msg,self.des_address)
def __del__(self):
self.sock.close()
class Subscriber:
def __init__(self, port_rx, timeout=0.2):
""" Create a Subscriber Object
Arguments:
port -- the port to listen to messages on
timeout -- how long to wait before a message is considered out of date
"""
self.max_size = MAX_SIZE
self.timeout = timeout
self.last_data = None
self.last_time = float('-inf')
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.settimeout(timeout)
self.sock.bind(("127.0.0.1", port_rx))
def recv(self):
""" Receive a single message from the socket buffer. It blocks for up to timeout seconds.
If no message is received before timeout it raises a UDPComms.timeout exception"""
try:
self.last_data, address = self.sock.recvfrom(3)
except BlockingIOError:
raise socket.timeout("no messages in buffer and called with timeout = 0")
print(self.last_data)
self.last_time = monotonic()
return msgpack.loads(self.last_data, raw=False)
def get(self):
""" Returns the latest message it can without blocking. If the latest massage is
older then timeout seconds it raises a UDPComms.timeout exception"""
try:
self.sock.settimeout(0)
while True:
self.last_data, address = self.sock.recvfrom(self.max_size)
self.last_time = monotonic()
except socket.error:
pass
finally:
self.sock.settimeout(self.timeout)
current_time = monotonic()
if (current_time - self.last_time) < self.timeout:
return msgpack.loads(self.last_data, raw=False)
else:
raise socket.timeout("timeout=" + str(self.timeout) + \
", last message time=" + str(self.last_time) + \
", current time=" + str(current_time))
def get_list(self):
""" Returns list of messages, in the order they were received"""
msg_bufer = []
try:
self.sock.settimeout(0)
while True:
self.last_data, address = self.sock.recvfrom(self.max_size)
self.last_time = monotonic()
msg = msgpack.loads(self.last_data, raw=False)
msg_bufer.append(msg)
except socket.error:
pass
finally:
self.sock.settimeout(self.timeout)
return msg_bufer
def __del__(self):
self.sock.close()
class Subscriber:
def __init__(self, port, timeout=0.2):
""" Create a Subscriber Object
Arguments:
port -- the port to listen to messages on
timeout -- how long to wait before a message is considered out of date
"""
self.max_size = MAX_SIZE
self.port = port
self.timeout = timeout
self.last_data = None
self.last_time = float('-inf')
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # UDP
self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
if hasattr(socket, "SO_REUSEPORT"):
self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)
self.sock.settimeout(timeout)
self.sock.bind(("", port))
def recv(self):
""" Receive a single message from the socket buffer. It blocks for up to timeout seconds.
If no message is received before timeout it raises a UDPComms.timeout exception"""
try:
self.last_data, address = self.sock.recvfrom(self.max_size)
except BlockingIOError:
raise socket.timeout("no messages in buffer and called with timeout = 0")
self.last_time = monotonic()
return msgpack.loads(self.last_data, raw=False)
def get(self):
""" Returns the latest message it can without blocking. If the latest massage is
older then timeout seconds it raises a UDPComms.timeout exception"""
try:
self.sock.settimeout(0)
while True:
self.last_data, address = self.sock.recvfrom(self.max_size)
self.last_time = monotonic()
except socket.error:
pass
finally:
self.sock.settimeout(self.timeout)
current_time = monotonic()
if (current_time - self.last_time) < self.timeout:
return msgpack.loads(self.last_data, raw=False)
else:
raise socket.timeout("timeout=" + str(self.timeout) + \
", last message time=" + str(self.last_time) + \
", current time=" + str(current_time))
def get_list(self):
""" Returns list of messages, in the order they were received"""
msg_bufer = []
try:
self.sock.settimeout(0)
while True:
self.last_data, address = self.sock.recvfrom(self.max_size)
self.last_time = monotonic()
msg = msgpack.loads(self.last_data, raw=False)
msg_bufer.append(msg)
except socket.error:
pass
finally:
self.sock.settimeout(self.timeout)
return msg_bufer
def __del__(self):
self.sock.close()
if __name__ == "__main__":
msg = 'very important data'
a = Publisher(1000)
a.send( {"text": "magic", "number":5.5, "bool":False} )
| 6,463 | Python | 33.021052 | 97 | 0.573727 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/UDPComms/README.md | # UDPComms
This is a simple library to enable communication between different processes (potentially on different machines) over a network using UDP. It's goals a simplicity and easy of understanding and reliability. It works for devices on the `10.0.0.X` subnet although this can easiliy be changed.
Currently it works in python 2 and 3 but it should be relatively simple to extend it to other languages such as C (to run on embeded devices) or Julia (to interface with faster solvers).
This new verison of the library automatically determines the type of the message and trasmits it along with it, so the subscribers can decode it correctly. While faster to prototype with then systems with explicit type declaration (such as ROS) its easy to shoot yourself in the foot if types are mismatched between publisher and subscriber.
### To Send Messages
```
>>> from UDPComms import Publisher
>>> a = Publisher(5500)
>>> a.send({"name":"Bob", "age": 20, "height": 180.5, "mass": 70.1})
```
### To Receive Messages
#### recv Method
Note: before using the `Subsciber.recv()` method read about the `Subsciber.get()` and understand the difference between them. The `Subsciber.recv()` method will pull a message from the socket buffer and it won't necessary be the most recent message. If you are calling it too slowly and there is a lot of messages you will be getting old messages. The `Subsciber.recv()` can also block for up to `timeout` seconds messing up timing.
```
>>> from UDPComms import Subscriber
>>> a = Subscriber(5500)
>>> message = a.recv()
>>> message['age']
20
>>> message['height']
180.5
>>> message['name']
"Bob"
>>> message
{"name":"Bob", "age": 20, "height": 180.5, "mass": 70.1}
```
#### get Method
The preferred way of accessing messages is the `Subsciber.get()` method (as opposed to the `recv()` method). It is guaranteed to be nonblocking so it can be used in places without messing with timing. It checks for any new messages and returns the newest one.
If the newest message is older then `timeout` seconds it raises the `UDPComms.timeout` exception. **This is an important safety feature!** Make sure to catch the timeout using `try: ... except UDPComms.timeout: ...` and put the robot in a safe configuration (e.g. turn off motors, when the joystick stop sending messages)
Note that if you call `.get` immediately after creating a subscriber it is possible its hasn't received any messages yet and it will timeout. In general it is better to have a short timeout and gracefully catch timeouts then to have long timeouts
```
>>> from UDPComms import Subscriber, timout
>>> a = Subscriber(5500)
>>> while 1:
>>> try:
>>> message = a.get()
>>> print("got", message)
>>> except timeout:
>>> print("safing robot")
```
#### get_list Method
Although UDPComms isn't ideal for commands that need to be processed in order (as the underlying UDP protocol has no guarantees of deliverry) it can be used as such in a pinch. The `Subsciber.get_list()` method will return all the messages we haven't seen yet in a list
```
>>> from UDPComms import Subscriber, timout
>>> a = Subscriber(5500)
>>> messages = a.get_list()
>>> for message in messages:
>>> print("got", message)
```
### Publisher Arguments
- `port`
The port the messages will be sent on. If you are part of Stanford Student Robotics make sure there isn't any port conflicts by checking the `UDP Ports` sheet of the [CS Comms System](https://docs.google.com/spreadsheets/d/1pqduUwYa1_sWiObJDrvCCz4Al3pl588ytE4u-Dwa6Pw/edit?usp=sharing) document. If you are not I recommend keep track of your port numbers somewhere. It's possible that in the future UDPComms will have a system of naming (with a string) as opposed to numbering publishers.
- `ip` By default UDPComms sends to the `10.0.0.X` subnet, but can be changed to a different ip using this argument. Set to localhost (`127.0.0.1`) for development on the same computer.
### Subscriber Arguments
- `port`
The port the subscriber will be listen on.
- `timeout`
If the `recv()` method don't get a message in `timeout` seconds it throws a `UDPComms.timeout` exception
### Rover
The library also comes with the `rover` command that can be used to interact with the messages manually.
| Command | Descripion |
|---------|------------|
| `rover peek port` | print messages sent on port `port` |
| `rover poke port rate` | send messages to `port` once every `rate` milliseconds. Type message in json format and press return |
There are more commands used for starting and stoping services described in [this repo](https://github.com/stanfordroboticsclub/RPI-Setup/blob/master/README.md)
### To Install
```
$git clone https://github.com/stanfordroboticsclub/UDPComms.git
$sudo bash UDPComms/install.sh
```
### To Update
```
$cd UDPComms
$git pull
$sudo bash install.sh
```
### Developing without hardware
Because this library expects you to be connected to the robot (`10.0.0.X`) network you won't be able to send messages between two programs on your computer without any other hardware connected. You can get around this by forcing your (unused) ethernet interface to get an ip on the rover network without anything being connected to it. On my computer you can do this using this command:
`sudo ifconfig en1 10.0.0.52 netmask 255.255.255.0`
Note that the exact command depends which interface on your computer is unused and what ip you want. So only use this if you know what you are doing.
If you have internet access a slightly cleaner way to do it is to setup [RemoteVPN](https://github.com/stanfordroboticsclub/RemoteVPN) on your development computer and simply connect to a development network (given if you are the only computer there)
### Known issues:
- Macs have issues sending large messages. They are fine receiving them. I think it is related to [this issue](https://github.com/BanTheRewind/Cinder-Asio/issues/9). I wonder does it work on Linux by chance (as the packets happen to be in order) but so far we didn't have issues.
- Messages over the size of one MTU (typically 1500 bytes) will be split up into multiple frames which reduces their chance of getting to their destination on wireless networks.
| 6,216 | Markdown | 50.380165 | 489 | 0.742117 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Doc/guide/software_installation.rst | =====================
Software Installation
=====================
.. contents:: :depth: 4
Setting up your Raspberry Pi
------------------------------
* Raspberry Pi 4(2GB DDR for normal use, 4GB DDR for install and debug by self)
* SD Card (32GB recommended)
* Raspberry Pi 4 power supply (USB-C, 5V, >=3A)
* Ethernet cable
Preparing the Pi's SD card
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
From your desktop / laptop:
1. Put the SD card into your desktop / laptop.
###############################################
2. Download this version of Ubuntu 21.10
#################################################################
Download Ubuntu21.10 server version 64bit image(NOT including desktop). Use `this version <https://drive.google.com/file/d/1JVtjFTKE6FloG3giyMN_VuS0dKt4n2xq/view?usp=sharing>`_ so everyone is using the same version. Unzip and extract the file.
You can also check the version from `ubuntu offical website. <https://ubuntu.com/download/raspberry-pi>`_
3. Use `etcher <https://www.balena.io/etcher/>`_ to flash the card.
##########################################################################################
* For quick start, you can also download the `pre-installed image <https://drive.google.com/drive/folders/12FDFbZzO61Euh8pJI9oCxN-eLVm5zjyi?usp=sharing>`_ , (username: ubuntu , password: mangdang ) flash it into the card, then skip all the following steps and start to calibarte the Pupper Mini.
* If you are using the recommended etcher, this is the start-up menu. Select ubuntu-21.10-preinstalled-server-arm64+raspi.img (file inside zip )and the SD card.
.. image:: ../_static/flash1.png
:align: center
* Image of SD card being flashed.
.. image:: ../_static/flash2.png
:align: center
* Done!
.. image:: ../_static/flash3.png
:align: center
Enabling Basic Functionality
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1. Turn on your Raspberry Pi.
###################################################################################################
Remove SD card from computer and put it into your Raspberry Pi.
Connect the IO board to the Pi,
Connect battery power from IO board power interface,
Connect keyboard, and mouse to the Pi as well.
Connect the Pi to a displayer by HDMI line.
Switch power on/off button to set up the Pi.
Follow the prompts to change the password((The default password is ``mangdang``)), and then install desktop.
Before installation, please make sure that raspberry pi is plugged into the network cable to access the Internet.
After installing the desktop, you only need to reboot it one time. The system will enter the desktop system by default.
Run ``$sudo apt install ubuntu-desktop``
.. image:: ../_static/installDesktop.jpg
:align: center
2. Initial Ubuntu server
########################################################
* The install time depends on your network speed, probably dozens of minutes.
Input "Y" to continue, and then input "startx" to boot up desktop at first time.
.. image:: ../_static/installDesktop2.jpg
:align: center
Reboot it only at first time, and then check the IP address, you can connect it later by SSH.
.. image:: ../_static/bootupDesktop4.jpg
:align: center
2. SSH into the pi from your computer and install the robot program.
######################################
Run ``ssh ubuntu@IP address`` (The default password is ``mangdang``)
.. image:: ../_static/ssh.png
:align: center
Make ``Robotics`` folder and download the source code.
Run ``git clone -b MiniPupper_V2 https://github.com/mangdangroboticsclub/QuadrupedRobot.git``
.. image:: ../_static/gitclonesourcecode.png
:align: center
Install requirements (on the Pi).
Run ``sudo bash Legacy/pre_install.sh``, the pre-install time depends on your network speed, maybe dezons of minutes, or several hours.
.. image:: ../_static/preInstall.png
:align: center
Insall the pupper robot program.
* ``cd QuadrupedRobot``
* ``sudo bash install.sh``
.. image:: ../_static/preInstall.png
:align: center
3. Power-cycle the robot
#############################
Unplug the battery, wait about 30 seconds, and then plug it back in.
4. Verify everything is working
###############################
#. If you just powered on the Pi, wait about 30 seconds until the green light stops blinking.
#. SSH into the robot
* Run ``ssh [email protected] (where xx is the IP address you chose for the robot)``
#. Check the status for the joystick service
* Run ``sudo systemctl status joystick``
* If you haven't yet connected the PS4 controller, it should say something like ::
pi@pupper(rw):~/StanfordQuadruped$ sudo systemctl status joystick
● joystick.service - Pupper Joystick service
Loaded: loaded (/home/pi/PupperCommand/joystick.service; enabled; vendor preset: enabled)
Active: active (running) since Sun 2020-03-01 06:57:20 GMT; 1s ago
Main PID: 5692 (python3)
Tasks: 3 (limit: 4035)
Memory: 7.1M
CGroup: /system.slice/joystick.service
├─5692 /usr/bin/python3 /home/pi/PupperCommand/joystick.py
└─5708 hcitool scan --flush
Mar 01 06:57:20 pupper systemd[1]: Started Pupper Joystick service.
Mar 01 06:57:21 pupper python3[5692]: [info][controller 1] Created devices /dev/input/js0 (joystick) /dev/input/event0 (evdev)
Mar 01 06:57:21 pupper python3[5692]: [info][bluetooth] Scanning for devices
#. Connect the PS4 controller to the Pi by putting it pairing mode.
* To put it into pairing mode, hold the share button and circular Playstation button at the same time until it starts making quick double flashes.
* If it starts making slow single flashes, hold the Playstation button down until it stops blinking and try again.
#. Once the controller is connected, check the status again
* Run ``sudo systemctl status joystick``
* It should now look something like::
pi@pupper(rw):~/StanfordQuadruped$ sudo systemctl status joystick
● joystick.service - Pupper Joystick service
Loaded: loaded (/home/pi/PupperCommand/joystick.service; enabled; vendor preset: enabled)
Active: active (running) since Sun 2020-03-01 06:57:20 GMT; 55s ago
Main PID: 5692 (python3)
Tasks: 2 (limit: 4035)
Memory: 7.3M
CGroup: /system.slice/joystick.service
└─5692 /usr/bin/python3 /home/pi/PupperCommand/joystick.py
Mar 01 06:57:20 pupper systemd[1]: Started Pupper Joystick service.
Mar 01 06:57:21 pupper python3[5692]: [info][controller 1] Created devices /dev/input/js0 (joystick) /dev/input/event0 (evdev)
Mar 01 06:57:21 pupper python3[5692]: [info][bluetooth] Scanning for devices
Mar 01 06:58:12 pupper python3[5692]: [info][bluetooth] Found device A0:AB:51:33:B5:A0
Mar 01 06:58:13 pupper python3[5692]: [info][controller 1] Connected to Bluetooth Controller (A0:AB:51:33:B5:A0)
Mar 01 06:58:14 pupper python3[5692]: running
Mar 01 06:58:14 pupper python3[5692]: [info][controller 1] Battery: 50%
* If the pi can't find the joystick after a minute or two, it's possible that the pi's bluetooth controller was never turned on. Run ``sudo hciconfig hci0 up`` to turn the radio on. Then restart the pi.
#. Check the status of the robot service
* Run ``sudo systemctl status robot``
* The output varies depending on the order of you running various programs, but just check that it doesn't have any red text saying that it failed.
* If it did fail, usually this fixes it: ``sudo systemctl restart robot``
7. Done!
#########
Continue to Calibration.
| 7,709 | reStructuredText | 40.675675 | 297 | 0.652354 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Example/display/demo.py | import os
import sys
from PIL import Image
sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot")
sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs])
from Mangdang.LCD.ST7789 import ST7789
def main():
""" The demo for picture show
"""
# init st7789 device
disp = ST7789()
disp.begin()
disp.clear()
# show exaple picture
image=Image.open("./dog.png")
image.resize((320,240))
disp.display(image)
main()
| 527 | Python | 20.119999 | 129 | 0.671727 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/PWMController/pwm-pca9685.c | // SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for PCA9685 16-channel 12-bit PWM LED controller
*
* Copyright (C) 2013 Steffen Trumtrar <[email protected]>
* Copyright (C) 2015 Clemens Gruber <[email protected]>
*
* based on the pwm-twl-led.c driver
*/
#include <linux/acpi.h>
#include <linux/gpio/driver.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/bitmap.h>
/*
* Because the PCA9685 has only one prescaler per chip, only the first channel
* that is enabled is allowed to change the prescale register.
* PWM channels requested afterwards must use a period that results in the same
* prescale setting as the one set by the first requested channel.
* GPIOs do not count as enabled PWMs as they are not using the prescaler.
*/
#define PCA9685_MODE1 0x00
#define PCA9685_MODE2 0x01
#define PCA9685_SUBADDR1 0x02
#define PCA9685_SUBADDR2 0x03
#define PCA9685_SUBADDR3 0x04
#define PCA9685_ALLCALLADDR 0x05
#define PCA9685_LEDX_ON_L 0x06
#define PCA9685_LEDX_ON_H 0x07
#define PCA9685_LEDX_OFF_L 0x08
#define PCA9685_LEDX_OFF_H 0x09
#define PCA9685_ALL_LED_ON_L 0xFA
#define PCA9685_ALL_LED_ON_H 0xFB
#define PCA9685_ALL_LED_OFF_L 0xFC
#define PCA9685_ALL_LED_OFF_H 0xFD
#define PCA9685_PRESCALE 0xFE
#define PCA9685_PRESCALE_MIN 0x03 /* => max. frequency of 1526 Hz */
#define PCA9685_PRESCALE_MAX 0xFF /* => min. frequency of 24 Hz */
#define PCA9685_COUNTER_RANGE 4096
#define PCA9685_OSC_CLOCK_MHZ 25 /* Internal oscillator with 25 MHz */
#define PCA9685_NUMREGS 0xFF
#define PCA9685_MAXCHAN 0x10
#define LED_FULL BIT(4)
#define MODE1_ALLCALL BIT(0)
#define MODE1_SUB3 BIT(1)
#define MODE1_SUB2 BIT(2)
#define MODE1_SUB1 BIT(3)
#define MODE1_SLEEP BIT(4)
#define MODE2_INVRT BIT(4)
#define MODE2_OUTDRV BIT(2)
#define LED_N_ON_H(N) (PCA9685_LEDX_ON_H + (4 * (N)))
#define LED_N_ON_L(N) (PCA9685_LEDX_ON_L + (4 * (N)))
#define LED_N_OFF_H(N) (PCA9685_LEDX_OFF_H + (4 * (N)))
#define LED_N_OFF_L(N) (PCA9685_LEDX_OFF_L + (4 * (N)))
#define REG_ON_H(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_ON_H : LED_N_ON_H((C)))
#define REG_ON_L(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_ON_L : LED_N_ON_L((C)))
#define REG_OFF_H(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_OFF_H : LED_N_OFF_H((C)))
#define REG_OFF_L(C) ((C) >= PCA9685_MAXCHAN ? PCA9685_ALL_LED_OFF_L : LED_N_OFF_L((C)))
struct pca9685 {
struct pwm_chip chip;
struct regmap *regmap;
struct mutex lock;
DECLARE_BITMAP(pwms_enabled, PCA9685_MAXCHAN + 1);
#if IS_ENABLED(CONFIG_GPIOLIB)
struct gpio_chip gpio;
DECLARE_BITMAP(pwms_inuse, PCA9685_MAXCHAN + 1);
#endif
};
static inline struct pca9685 *to_pca(struct pwm_chip *chip)
{
return container_of(chip, struct pca9685, chip);
}
/* This function is supposed to be called with the lock mutex held */
static bool pca9685_prescaler_can_change(struct pca9685 *pca, int channel)
{
/* No PWM enabled: Change allowed */
if (bitmap_empty(pca->pwms_enabled, PCA9685_MAXCHAN + 1))
return true;
/* More than one PWM enabled: Change not allowed */
if (bitmap_weight(pca->pwms_enabled, PCA9685_MAXCHAN + 1) > 1)
return false;
/*
* Only one PWM enabled: Change allowed if the PWM about to
* be changed is the one that is already enabled
*/
return test_bit(channel, pca->pwms_enabled);
}
/* Helper function to set the duty cycle ratio to duty/4096 (e.g. duty=2048 -> 50%) */
static void pca9685_pwm_set_duty(struct pca9685 *pca, int channel, unsigned int duty)
{
if (duty == 0) {
/* Set the full OFF bit, which has the highest precedence */
regmap_write(pca->regmap, REG_OFF_H(channel), LED_FULL);
} else if (duty >= PCA9685_COUNTER_RANGE) {
/* Set the full ON bit and clear the full OFF bit */
regmap_write(pca->regmap, REG_ON_H(channel), LED_FULL);
regmap_write(pca->regmap, REG_OFF_H(channel), 0);
} else {
/* Set OFF time (clears the full OFF bit) */
regmap_write(pca->regmap, REG_OFF_L(channel), duty & 0xff);
regmap_write(pca->regmap, REG_OFF_H(channel), (duty >> 8) & 0xf);
/* Clear the full ON bit */
regmap_write(pca->regmap, REG_ON_H(channel), 0);
}
}
static unsigned int pca9685_pwm_get_duty(struct pca9685 *pca, int channel)
{
unsigned int off_h = 0, val = 0;
if (WARN_ON(channel >= PCA9685_MAXCHAN)) {
/* HW does not support reading state of "all LEDs" channel */
return 0;
}
regmap_read(pca->regmap, LED_N_OFF_H(channel), &off_h);
if (off_h & LED_FULL) {
/* Full OFF bit is set */
return 0;
}
regmap_read(pca->regmap, LED_N_ON_H(channel), &val);
if (val & LED_FULL) {
/* Full ON bit is set */
return PCA9685_COUNTER_RANGE;
}
if (regmap_read(pca->regmap, LED_N_OFF_L(channel), &val)) {
/* Reset val to 0 in case reading LED_N_OFF_L failed */
val = 0;
}
return ((off_h & 0xf) << 8) | (val & 0xff);
}
#if IS_ENABLED(CONFIG_GPIOLIB)
static bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca, int pwm_idx)
{
bool is_inuse;
mutex_lock(&pca->lock);
if (pwm_idx >= PCA9685_MAXCHAN) {
/*
* "All LEDs" channel:
* pretend already in use if any of the PWMs are requested
*/
if (!bitmap_empty(pca->pwms_inuse, PCA9685_MAXCHAN)) {
is_inuse = true;
goto out;
}
} else {
/*
* Regular channel:
* pretend already in use if the "all LEDs" channel is requested
*/
if (test_bit(PCA9685_MAXCHAN, pca->pwms_inuse)) {
is_inuse = true;
goto out;
}
}
is_inuse = test_and_set_bit(pwm_idx, pca->pwms_inuse);
out:
mutex_unlock(&pca->lock);
return is_inuse;
}
static void pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx)
{
mutex_lock(&pca->lock);
clear_bit(pwm_idx, pca->pwms_inuse);
mutex_unlock(&pca->lock);
}
static int pca9685_pwm_gpio_request(struct gpio_chip *gpio, unsigned int offset)
{
struct pca9685 *pca = gpiochip_get_data(gpio);
if (pca9685_pwm_test_and_set_inuse(pca, offset))
return -EBUSY;
pm_runtime_get_sync(pca->chip.dev);
return 0;
}
static int pca9685_pwm_gpio_get(struct gpio_chip *gpio, unsigned int offset)
{
struct pca9685 *pca = gpiochip_get_data(gpio);
return pca9685_pwm_get_duty(pca, offset) != 0;
}
static void pca9685_pwm_gpio_set(struct gpio_chip *gpio, unsigned int offset,
int value)
{
struct pca9685 *pca = gpiochip_get_data(gpio);
pca9685_pwm_set_duty(pca, offset, value ? PCA9685_COUNTER_RANGE : 0);
}
static void pca9685_pwm_gpio_free(struct gpio_chip *gpio, unsigned int offset)
{
struct pca9685 *pca = gpiochip_get_data(gpio);
pca9685_pwm_set_duty(pca, offset, 0);
pm_runtime_put(pca->chip.dev);
pca9685_pwm_clear_inuse(pca, offset);
}
static int pca9685_pwm_gpio_get_direction(struct gpio_chip *chip,
unsigned int offset)
{
/* Always out */
return GPIO_LINE_DIRECTION_OUT;
}
static int pca9685_pwm_gpio_direction_input(struct gpio_chip *gpio,
unsigned int offset)
{
return -EINVAL;
}
static int pca9685_pwm_gpio_direction_output(struct gpio_chip *gpio,
unsigned int offset, int value)
{
pca9685_pwm_gpio_set(gpio, offset, value);
return 0;
}
/*
* The PCA9685 has a bit for turning the PWM output full off or on. Some
* boards like Intel Galileo actually uses these as normal GPIOs so we
* expose a GPIO chip here which can exclusively take over the underlying
* PWM channel.
*/
static int pca9685_pwm_gpio_probe(struct pca9685 *pca)
{
struct device *dev = pca->chip.dev;
pca->gpio.label = dev_name(dev);
pca->gpio.parent = dev;
pca->gpio.request = pca9685_pwm_gpio_request;
pca->gpio.free = pca9685_pwm_gpio_free;
pca->gpio.get_direction = pca9685_pwm_gpio_get_direction;
pca->gpio.direction_input = pca9685_pwm_gpio_direction_input;
pca->gpio.direction_output = pca9685_pwm_gpio_direction_output;
pca->gpio.get = pca9685_pwm_gpio_get;
pca->gpio.set = pca9685_pwm_gpio_set;
pca->gpio.base = -1;
pca->gpio.ngpio = PCA9685_MAXCHAN;
pca->gpio.can_sleep = true;
return devm_gpiochip_add_data(dev, &pca->gpio, pca);
}
#else
static inline bool pca9685_pwm_test_and_set_inuse(struct pca9685 *pca,
int pwm_idx)
{
return false;
}
static inline void
pca9685_pwm_clear_inuse(struct pca9685 *pca, int pwm_idx)
{
}
static inline int pca9685_pwm_gpio_probe(struct pca9685 *pca)
{
return 0;
}
#endif
static void pca9685_set_sleep_mode(struct pca9685 *pca, bool enable)
{
regmap_update_bits(pca->regmap, PCA9685_MODE1,
MODE1_SLEEP, enable ? MODE1_SLEEP : 0);
if (!enable) {
/* Wait 500us for the oscillator to be back up */
udelay(500);
}
}
static int __pca9685_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pca9685 *pca = to_pca(chip);
unsigned long long duty, prescale;
unsigned int val = 0;
if (state->polarity != PWM_POLARITY_NORMAL)
return -EINVAL;
prescale = DIV_ROUND_CLOSEST_ULL(PCA9685_OSC_CLOCK_MHZ * state->period,
PCA9685_COUNTER_RANGE * 1000) - 1;
if (prescale < PCA9685_PRESCALE_MIN || prescale > PCA9685_PRESCALE_MAX) {
dev_err(chip->dev, "pwm not changed: period out of bounds!\n");
return -EINVAL;
}
if (!state->enabled) {
pca9685_pwm_set_duty(pca, pwm->hwpwm, 0);
return 0;
}
regmap_read(pca->regmap, PCA9685_PRESCALE, &val);
if (prescale != val) {
if (!pca9685_prescaler_can_change(pca, pwm->hwpwm)) {
dev_err(chip->dev,
"pwm not changed: periods of enabled pwms must match!\n");
return -EBUSY;
}
/*
* Putting the chip briefly into SLEEP mode
* at this point won't interfere with the
* pm_runtime framework, because the pm_runtime
* state is guaranteed active here.
*/
/* Put chip into sleep mode */
pca9685_set_sleep_mode(pca, true);
/* Change the chip-wide output frequency */
regmap_write(pca->regmap, PCA9685_PRESCALE, prescale);
/* Wake the chip up */
pca9685_set_sleep_mode(pca, false);
}
duty = PCA9685_COUNTER_RANGE * state->duty_cycle;
duty = DIV_ROUND_UP_ULL(duty, state->period);
pca9685_pwm_set_duty(pca, pwm->hwpwm, duty);
return 0;
}
static int pca9685_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pca9685 *pca = to_pca(chip);
int ret;
mutex_lock(&pca->lock);
ret = __pca9685_pwm_apply(chip, pwm, state);
if (ret == 0) {
if (state->enabled)
set_bit(pwm->hwpwm, pca->pwms_enabled);
else
clear_bit(pwm->hwpwm, pca->pwms_enabled);
}
mutex_unlock(&pca->lock);
return ret;
}
static void pca9685_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct pca9685 *pca = to_pca(chip);
unsigned long long duty;
unsigned int val = 0;
/* Calculate (chip-wide) period from prescale value */
regmap_read(pca->regmap, PCA9685_PRESCALE, &val);
/*
* PCA9685_OSC_CLOCK_MHZ is 25, i.e. an integer divider of 1000.
* The following calculation is therefore only a multiplication
* and we are not losing precision.
*/
state->period = (PCA9685_COUNTER_RANGE * 1000 / PCA9685_OSC_CLOCK_MHZ) *
(val + 1);
/* The (per-channel) polarity is fixed */
state->polarity = PWM_POLARITY_NORMAL;
if (pwm->hwpwm >= PCA9685_MAXCHAN) {
/*
* The "all LEDs" channel does not support HW readout
* Return 0 and disabled for backwards compatibility
*/
state->duty_cycle = 0;
state->enabled = false;
return;
}
state->enabled = true;
duty = pca9685_pwm_get_duty(pca, pwm->hwpwm);
state->duty_cycle = DIV_ROUND_DOWN_ULL(duty * state->period, PCA9685_COUNTER_RANGE);
}
static int pca9685_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct pca9685 *pca = to_pca(chip);
if (pca9685_pwm_test_and_set_inuse(pca, pwm->hwpwm))
return -EBUSY;
if (pwm->hwpwm < PCA9685_MAXCHAN) {
/* PWMs - except the "all LEDs" channel - default to enabled */
mutex_lock(&pca->lock);
set_bit(pwm->hwpwm, pca->pwms_enabled);
mutex_unlock(&pca->lock);
}
pm_runtime_get_sync(chip->dev);
return 0;
}
static void pca9685_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct pca9685 *pca = to_pca(chip);
mutex_lock(&pca->lock);
pca9685_pwm_set_duty(pca, pwm->hwpwm, 0);
clear_bit(pwm->hwpwm, pca->pwms_enabled);
mutex_unlock(&pca->lock);
pm_runtime_put(chip->dev);
pca9685_pwm_clear_inuse(pca, pwm->hwpwm);
}
static const struct pwm_ops pca9685_pwm_ops = {
.apply = pca9685_pwm_apply,
.get_state = pca9685_pwm_get_state,
.request = pca9685_pwm_request,
.free = pca9685_pwm_free,
.owner = THIS_MODULE,
};
static const struct regmap_config pca9685_regmap_i2c_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = PCA9685_NUMREGS,
.cache_type = REGCACHE_NONE,
};
static int pca9685_pwm_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct pca9685 *pca;
unsigned int reg;
int ret;
pca = devm_kzalloc(&client->dev, sizeof(*pca), GFP_KERNEL);
if (!pca)
return -ENOMEM;
pca->regmap = devm_regmap_init_i2c(client, &pca9685_regmap_i2c_config);
if (IS_ERR(pca->regmap)) {
ret = PTR_ERR(pca->regmap);
dev_err(&client->dev, "Failed to initialize register map: %d\n",
ret);
return ret;
}
i2c_set_clientdata(client, pca);
mutex_init(&pca->lock);
regmap_read(pca->regmap, PCA9685_MODE2, ®);
if (device_property_read_bool(&client->dev, "invert"))
reg |= MODE2_INVRT;
else
reg &= ~MODE2_INVRT;
if (device_property_read_bool(&client->dev, "open-drain"))
reg &= ~MODE2_OUTDRV;
else
reg |= MODE2_OUTDRV;
regmap_write(pca->regmap, PCA9685_MODE2, reg);
/* Disable all LED ALLCALL and SUBx addresses to avoid bus collisions */
regmap_read(pca->regmap, PCA9685_MODE1, ®);
reg &= ~(MODE1_ALLCALL | MODE1_SUB1 | MODE1_SUB2 | MODE1_SUB3);
regmap_write(pca->regmap, PCA9685_MODE1, reg);
/* Reset OFF registers to POR default */
regmap_write(pca->regmap, PCA9685_ALL_LED_OFF_L, LED_FULL);
regmap_write(pca->regmap, PCA9685_ALL_LED_OFF_H, LED_FULL);
pca->chip.ops = &pca9685_pwm_ops;
/* Add an extra channel for ALL_LED */
pca->chip.npwm = PCA9685_MAXCHAN + 1;
pca->chip.dev = &client->dev;
ret = pwmchip_add(&pca->chip);
if (ret < 0)
return ret;
ret = pca9685_pwm_gpio_probe(pca);
if (ret < 0) {
pwmchip_remove(&pca->chip);
return ret;
}
pm_runtime_enable(&client->dev);
if (pm_runtime_enabled(&client->dev)) {
/*
* Although the chip comes out of power-up in the sleep state,
* we force it to sleep in case it was woken up before
*/
pca9685_set_sleep_mode(pca, true);
pm_runtime_set_suspended(&client->dev);
} else {
/* Wake the chip up if runtime PM is disabled */
pca9685_set_sleep_mode(pca, false);
}
return 0;
}
static int pca9685_pwm_remove(struct i2c_client *client)
{
struct pca9685 *pca = i2c_get_clientdata(client);
int ret;
//ret = pwmchip_remove(&pca->chip);
pwmchip_remove(&pca->chip);
//if (ret)
// return ret;
if (!pm_runtime_enabled(&client->dev)) {
/* Put chip in sleep state if runtime PM is disabled */
pca9685_set_sleep_mode(pca, true);
}
pm_runtime_disable(&client->dev);
return 0;
}
static int __maybe_unused pca9685_pwm_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct pca9685 *pca = i2c_get_clientdata(client);
pca9685_set_sleep_mode(pca, true);
return 0;
}
static int __maybe_unused pca9685_pwm_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct pca9685 *pca = i2c_get_clientdata(client);
pca9685_set_sleep_mode(pca, false);
return 0;
}
static const struct i2c_device_id pca9685_id[] = {
{ "pca9685", 0 },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(i2c, pca9685_id);
#ifdef CONFIG_ACPI
static const struct acpi_device_id pca9685_acpi_ids[] = {
{ "INT3492", 0 },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(acpi, pca9685_acpi_ids);
#endif
#ifdef CONFIG_OF
static const struct of_device_id pca9685_dt_ids[] = {
{ .compatible = "nxp,pca9685-pwm", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, pca9685_dt_ids);
#endif
static const struct dev_pm_ops pca9685_pwm_pm = {
SET_RUNTIME_PM_OPS(pca9685_pwm_runtime_suspend,
pca9685_pwm_runtime_resume, NULL)
};
static struct i2c_driver pca9685_i2c_driver = {
.driver = {
.name = "pca9685-pwm",
.acpi_match_table = ACPI_PTR(pca9685_acpi_ids),
.of_match_table = of_match_ptr(pca9685_dt_ids),
.pm = &pca9685_pwm_pm,
},
.probe = pca9685_pwm_probe,
.remove = pca9685_pwm_remove,
.id_table = pca9685_id,
};
module_i2c_driver(pca9685_i2c_driver);
MODULE_AUTHOR("Steffen Trumtrar <[email protected]>");
MODULE_DESCRIPTION("PWM driver for PCA9685");
MODULE_LICENSE("GPL");
| 16,597 | C | 25.901134 | 88 | 0.685124 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/EEPROM/at24.c | // SPDX-License-Identifier: GPL-2.0-or-later
/*
* at24.c - handle most I2C EEPROMs
*
* Copyright (C) 2005-2007 David Brownell
* Copyright (C) 2008 Wolfram Sang, Pengutronix
*/
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/nvmem-provider.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
/* Address pointer is 16 bit. */
#define AT24_FLAG_ADDR16 BIT(7)
/* sysfs-entry will be read-only. */
#define AT24_FLAG_READONLY BIT(6)
/* sysfs-entry will be world-readable. */
#define AT24_FLAG_IRUGO BIT(5)
/* Take always 8 addresses (24c00). */
#define AT24_FLAG_TAKE8ADDR BIT(4)
/* Factory-programmed serial number. */
#define AT24_FLAG_SERIAL BIT(3)
/* Factory-programmed mac address. */
#define AT24_FLAG_MAC BIT(2)
/* Does not auto-rollover reads to the next slave address. */
#define AT24_FLAG_NO_RDROL BIT(1)
/*
* I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
* Differences between different vendor product lines (like Atmel AT24C or
* MicroChip 24LC, etc) won't much matter for typical read/write access.
* There are also I2C RAM chips, likewise interchangeable. One example
* would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
*
* However, misconfiguration can lose data. "Set 16-bit memory address"
* to a part with 8-bit addressing will overwrite data. Writing with too
* big a page size also loses data. And it's not safe to assume that the
* conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
* uses 0x51, for just one example.
*
* Accordingly, explicit board-specific configuration data should be used
* in almost all cases. (One partial exception is an SMBus used to access
* "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
*
* So this driver uses "new style" I2C driver binding, expecting to be
* told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
* similar kernel-resident tables; or, configuration data coming from
* a bootloader.
*
* Other than binding model, current differences from "eeprom" driver are
* that this one handles write access and isn't restricted to 24c02 devices.
* It also handles larger devices (32 kbit and up) with two-byte addresses,
* which won't work on pure SMBus systems.
*/
struct at24_client {
struct i2c_client *client;
struct regmap *regmap;
};
struct at24_data {
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
*/
struct mutex lock;
unsigned int write_max;
unsigned int num_addresses;
unsigned int offset_adj;
u32 byte_len;
u16 page_size;
u8 flags;
struct nvmem_device *nvmem;
struct regulator *vcc_reg;
void (*read_post)(unsigned int off, char *buf, size_t count);
/*
* Some chips tie up multiple I2C addresses; dummy devices reserve
* them for us, and we'll use them with SMBus calls.
*/
struct at24_client client[];
};
/*
* This parameter is to help this driver avoid blocking other drivers out
* of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
* clock, one 256 byte read takes about 1/43 second which is excessive;
* but the 1/170 second it takes at 400 kHz may be quite reasonable; and
* at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
*
* This value is forced to be a power of two so that writes align on pages.
*/
static unsigned int at24_io_limit = 128;
module_param_named(io_limit, at24_io_limit, uint, 0);
MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)");
/*
* Specs often allow 5 msec for a page write, sometimes 20 msec;
* it's important to recover from write timeouts.
*/
static unsigned int at24_write_timeout = 25;
module_param_named(write_timeout, at24_write_timeout, uint, 0);
MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)");
struct at24_chip_data {
u32 byte_len;
u8 flags;
void (*read_post)(unsigned int off, char *buf, size_t count);
};
#define AT24_CHIP_DATA(_name, _len, _flags) \
static const struct at24_chip_data _name = { \
.byte_len = _len, .flags = _flags, \
}
#define AT24_CHIP_DATA_CB(_name, _len, _flags, _read_post) \
static const struct at24_chip_data _name = { \
.byte_len = _len, .flags = _flags, \
.read_post = _read_post, \
}
static void at24_read_post_vaio(unsigned int off, char *buf, size_t count)
{
int i;
if (capable(CAP_SYS_ADMIN))
return;
/*
* Hide VAIO private settings to regular users:
* - BIOS passwords: bytes 0x00 to 0x0f
* - UUID: bytes 0x10 to 0x1f
* - Serial number: 0xc0 to 0xdf
*/
for (i = 0; i < count; i++) {
if ((off + i <= 0x1f) ||
(off + i >= 0xc0 && off + i <= 0xdf))
buf[i] = 0;
}
}
/* needs 8 addresses as A0-A2 are ignored */
AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR);
/* old variants can't be handled with this generic entry! */
AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs01, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs02, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24mac402, 48 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24mac602, 64 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY);
/* spd is a 24c02 in memory DIMMs */
AT24_CHIP_DATA(at24_data_spd, 2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO);
/* 24c02_vaio is a 24c02 on some Sony laptops */
AT24_CHIP_DATA_CB(at24_data_24c02_vaio, 2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO,
at24_read_post_vaio);
AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs04, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
/* 24rf08 quirk is handled at i2c-core */
AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs08, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0);
AT24_CHIP_DATA(at24_data_24cs16, 16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24cs32, 16,
AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24cs64, 16,
AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16);
AT24_CHIP_DATA(at24_data_24c2048, 2097152 / 8, AT24_FLAG_ADDR16);
/* identical to 24c08 ? */
AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0);
static const struct i2c_device_id at24_ids[] = {
{ "24c00", (kernel_ulong_t)&at24_data_24c00 },
{ "24c01", (kernel_ulong_t)&at24_data_24c01 },
{ "24cs01", (kernel_ulong_t)&at24_data_24cs01 },
{ "24c02", (kernel_ulong_t)&at24_data_24c02 },
{ "24cs02", (kernel_ulong_t)&at24_data_24cs02 },
{ "24mac402", (kernel_ulong_t)&at24_data_24mac402 },
{ "24mac602", (kernel_ulong_t)&at24_data_24mac602 },
{ "spd", (kernel_ulong_t)&at24_data_spd },
{ "24c02-vaio", (kernel_ulong_t)&at24_data_24c02_vaio },
{ "24c04", (kernel_ulong_t)&at24_data_24c04 },
{ "24cs04", (kernel_ulong_t)&at24_data_24cs04 },
{ "24c08", (kernel_ulong_t)&at24_data_24c08 },
{ "24cs08", (kernel_ulong_t)&at24_data_24cs08 },
{ "24c16", (kernel_ulong_t)&at24_data_24c16 },
{ "24cs16", (kernel_ulong_t)&at24_data_24cs16 },
{ "24c32", (kernel_ulong_t)&at24_data_24c32 },
{ "24cs32", (kernel_ulong_t)&at24_data_24cs32 },
{ "24c64", (kernel_ulong_t)&at24_data_24c64 },
{ "24cs64", (kernel_ulong_t)&at24_data_24cs64 },
{ "24c128", (kernel_ulong_t)&at24_data_24c128 },
{ "24c256", (kernel_ulong_t)&at24_data_24c256 },
{ "24c512", (kernel_ulong_t)&at24_data_24c512 },
{ "24c1024", (kernel_ulong_t)&at24_data_24c1024 },
{ "24c2048", (kernel_ulong_t)&at24_data_24c2048 },
{ "at24", 0 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(i2c, at24_ids);
static const struct of_device_id at24_of_match[] = {
{ .compatible = "atmel,24c00", .data = &at24_data_24c00 },
{ .compatible = "atmel,24c01", .data = &at24_data_24c01 },
{ .compatible = "atmel,24cs01", .data = &at24_data_24cs01 },
{ .compatible = "atmel,24c02", .data = &at24_data_24c02 },
{ .compatible = "atmel,24cs02", .data = &at24_data_24cs02 },
{ .compatible = "atmel,24mac402", .data = &at24_data_24mac402 },
{ .compatible = "atmel,24mac602", .data = &at24_data_24mac602 },
{ .compatible = "atmel,spd", .data = &at24_data_spd },
{ .compatible = "atmel,24c04", .data = &at24_data_24c04 },
{ .compatible = "atmel,24cs04", .data = &at24_data_24cs04 },
{ .compatible = "atmel,24c08", .data = &at24_data_24c08 },
{ .compatible = "atmel,24cs08", .data = &at24_data_24cs08 },
{ .compatible = "atmel,24c16", .data = &at24_data_24c16 },
{ .compatible = "atmel,24cs16", .data = &at24_data_24cs16 },
{ .compatible = "atmel,24c32", .data = &at24_data_24c32 },
{ .compatible = "atmel,24cs32", .data = &at24_data_24cs32 },
{ .compatible = "atmel,24c64", .data = &at24_data_24c64 },
{ .compatible = "atmel,24cs64", .data = &at24_data_24cs64 },
{ .compatible = "atmel,24c128", .data = &at24_data_24c128 },
{ .compatible = "atmel,24c256", .data = &at24_data_24c256 },
{ .compatible = "atmel,24c512", .data = &at24_data_24c512 },
{ .compatible = "atmel,24c1024", .data = &at24_data_24c1024 },
{ .compatible = "atmel,24c2048", .data = &at24_data_24c2048 },
{ /* END OF LIST */ },
};
MODULE_DEVICE_TABLE(of, at24_of_match);
static const struct acpi_device_id __maybe_unused at24_acpi_ids[] = {
{ "INT3499", (kernel_ulong_t)&at24_data_INT3499 },
{ "TPF0001", (kernel_ulong_t)&at24_data_24c1024 },
{ /* END OF LIST */ }
};
MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
/*
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*/
static struct at24_client *at24_translate_offset(struct at24_data *at24,
unsigned int *offset)
{
unsigned int i;
if (at24->flags & AT24_FLAG_ADDR16) {
i = *offset >> 16;
*offset &= 0xffff;
} else {
i = *offset >> 8;
*offset &= 0xff;
}
return &at24->client[i];
}
static struct device *at24_base_client_dev(struct at24_data *at24)
{
return &at24->client[0].client->dev;
}
static size_t at24_adjust_read_count(struct at24_data *at24,
unsigned int offset, size_t count)
{
unsigned int bits;
size_t remainder;
/*
* In case of multi-address chips that don't rollover reads to
* the next slave address: truncate the count to the slave boundary,
* so that the read never straddles slaves.
*/
if (at24->flags & AT24_FLAG_NO_RDROL) {
bits = (at24->flags & AT24_FLAG_ADDR16) ? 16 : 8;
remainder = BIT(bits) - offset;
if (count > remainder)
count = remainder;
}
if (count > at24_io_limit)
count = at24_io_limit;
return count;
}
static ssize_t at24_regmap_read(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct at24_client *at24_client;
struct i2c_client *client;
struct regmap *regmap;
int ret;
at24_client = at24_translate_offset(at24, &offset);
regmap = at24_client->regmap;
client = at24_client->client;
count = at24_adjust_read_count(at24, offset, count);
/* adjust offset for mac and serial read ops */
offset += at24->offset_adj;
timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
do {
/*
* The timestamp shall be taken before the actual operation
* to avoid a premature timeout in case of high CPU load.
*/
read_time = jiffies;
ret = regmap_bulk_read(regmap, offset, buf, count);
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, ret, jiffies);
if (!ret)
return count;
usleep_range(1000, 1500);
} while (time_before(read_time, timeout));
return -ETIMEDOUT;
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. These routines
* write at most one page.
*/
static size_t at24_adjust_write_count(struct at24_data *at24,
unsigned int offset, size_t count)
{
unsigned int next_page;
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->page_size);
if (offset + count > next_page)
count = next_page - offset;
return count;
}
static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct at24_client *at24_client;
struct i2c_client *client;
struct regmap *regmap;
int ret;
at24_client = at24_translate_offset(at24, &offset);
regmap = at24_client->regmap;
client = at24_client->client;
count = at24_adjust_write_count(at24, offset, count);
timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
do {
/*
* The timestamp shall be taken before the actual operation
* to avoid a premature timeout in case of high CPU load.
*/
write_time = jiffies;
ret = regmap_bulk_write(regmap, offset, buf, count);
dev_dbg(&client->dev, "write %zu@%d --> %d (%ld)\n",
count, offset, ret, jiffies);
if (!ret)
return count;
usleep_range(1000, 1500);
} while (time_before(write_time, timeout));
return -ETIMEDOUT;
}
static int at24_read(void *priv, unsigned int off, void *val, size_t count)
{
struct at24_data *at24;
struct device *dev;
char *buf = val;
int i, ret;
at24 = priv;
dev = at24_base_client_dev(at24);
if (unlikely(!count))
return count;
if (off + count > at24->byte_len)
return -EINVAL;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
/*
* Read data from chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
for (i = 0; count; i += ret, count -= ret) {
ret = at24_regmap_read(at24, buf + i, off + i, count);
if (ret < 0) {
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
return ret;
}
}
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
if (unlikely(at24->read_post))
at24->read_post(off, buf, i);
return 0;
}
static int at24_write(void *priv, unsigned int off, void *val, size_t count)
{
struct at24_data *at24;
struct device *dev;
char *buf = val;
int ret;
at24 = priv;
dev = at24_base_client_dev(at24);
if (unlikely(!count))
return -EINVAL;
if (off + count > at24->byte_len)
return -EINVAL;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
/*
* Write data to chip, protecting against concurrent updates
* from this host, but not from other I2C masters.
*/
mutex_lock(&at24->lock);
while (count) {
ret = at24_regmap_write(at24, buf, off, count);
if (ret < 0) {
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
return ret;
}
buf += ret;
off += ret;
count -= ret;
}
mutex_unlock(&at24->lock);
pm_runtime_put(dev);
return 0;
}
static const struct at24_chip_data *at24_get_chip_data(struct device *dev)
{
struct device_node *of_node = dev->of_node;
const struct at24_chip_data *cdata;
const struct i2c_device_id *id;
id = i2c_match_id(at24_ids, to_i2c_client(dev));
/*
* The I2C core allows OF nodes compatibles to match against the
* I2C device ID table as a fallback, so check not only if an OF
* node is present but also if it matches an OF device ID entry.
*/
if (of_node && of_match_device(at24_of_match, dev))
cdata = of_device_get_match_data(dev);
else if (id)
cdata = (void *)id->driver_data;
else
cdata = acpi_device_get_match_data(dev);
if (!cdata)
return ERR_PTR(-ENODEV);
return cdata;
}
static int at24_make_dummy_client(struct at24_data *at24, unsigned int index,
struct regmap_config *regmap_config)
{
struct i2c_client *base_client, *dummy_client;
struct regmap *regmap;
struct device *dev;
base_client = at24->client[0].client;
dev = &base_client->dev;
dummy_client = devm_i2c_new_dummy_device(dev, base_client->adapter,
base_client->addr + index);
if (IS_ERR(dummy_client))
return PTR_ERR(dummy_client);
regmap = devm_regmap_init_i2c(dummy_client, regmap_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
at24->client[index].client = dummy_client;
at24->client[index].regmap = regmap;
return 0;
}
static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len)
{
if (flags & AT24_FLAG_MAC) {
/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
return 0xa0 - byte_len;
} else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) {
/*
* For 16 bit address pointers, the word address must contain
* a '10' sequence in bits 11 and 10 regardless of the
* intended position of the address pointer.
*/
return 0x0800;
} else if (flags & AT24_FLAG_SERIAL) {
/*
* Otherwise the word address must begin with a '10' sequence,
* regardless of the intended address.
*/
return 0x0080;
} else {
return 0;
}
}
static int at24_probe(struct i2c_client *client)
{
struct regmap_config regmap_config = { };
struct nvmem_config nvmem_config = { };
u32 byte_len, page_size, flags, addrw;
const struct at24_chip_data *cdata;
struct device *dev = &client->dev;
bool i2c_fn_i2c, i2c_fn_block;
unsigned int i, num_addresses;
struct at24_data *at24;
struct regmap *regmap;
bool writable;
u8 test_byte;
int err;
i2c_fn_i2c = i2c_check_functionality(client->adapter, I2C_FUNC_I2C);
i2c_fn_block = i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK);
cdata = at24_get_chip_data(dev);
if (IS_ERR(cdata))
return PTR_ERR(cdata);
err = device_property_read_u32(dev, "pagesize", &page_size);
if (err)
/*
* This is slow, but we can't know all eeproms, so we better
* play safe. Specifying custom eeprom-types via device tree
* or properties is recommended anyhow.
*/
page_size = 1;
flags = cdata->flags;
if (device_property_present(dev, "read-only"))
flags |= AT24_FLAG_READONLY;
if (device_property_present(dev, "no-read-rollover"))
flags |= AT24_FLAG_NO_RDROL;
err = device_property_read_u32(dev, "address-width", &addrw);
if (!err) {
switch (addrw) {
case 8:
if (flags & AT24_FLAG_ADDR16)
dev_warn(dev,
"Override address width to be 8, while default is 16\n");
flags &= ~AT24_FLAG_ADDR16;
break;
case 16:
flags |= AT24_FLAG_ADDR16;
break;
default:
dev_warn(dev, "Bad \"address-width\" property: %u\n",
addrw);
}
}
err = device_property_read_u32(dev, "size", &byte_len);
if (err)
byte_len = cdata->byte_len;
if (!i2c_fn_i2c && !i2c_fn_block)
page_size = 1;
if (!page_size) {
dev_err(dev, "page_size must not be 0!\n");
return -EINVAL;
}
if (!is_power_of_2(page_size))
dev_warn(dev, "page_size looks suspicious (no power of 2)!\n");
err = device_property_read_u32(dev, "num-addresses", &num_addresses);
if (err) {
if (flags & AT24_FLAG_TAKE8ADDR)
num_addresses = 8;
else
num_addresses = DIV_ROUND_UP(byte_len,
(flags & AT24_FLAG_ADDR16) ? 65536 : 256);
}
if ((flags & AT24_FLAG_SERIAL) && (flags & AT24_FLAG_MAC)) {
dev_err(dev,
"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
return -EINVAL;
}
regmap_config.val_bits = 8;
regmap_config.reg_bits = (flags & AT24_FLAG_ADDR16) ? 16 : 8;
regmap_config.disable_locking = true;
regmap = devm_regmap_init_i2c(client, ®map_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
at24 = devm_kzalloc(dev, struct_size(at24, client, num_addresses),
GFP_KERNEL);
if (!at24)
return -ENOMEM;
mutex_init(&at24->lock);
at24->byte_len = byte_len;
at24->page_size = page_size;
at24->flags = flags;
at24->read_post = cdata->read_post;
at24->num_addresses = num_addresses;
at24->offset_adj = at24_get_offset_adj(flags, byte_len);
at24->client[0].client = client;
at24->client[0].regmap = regmap;
at24->vcc_reg = devm_regulator_get(dev, "vcc");
if (IS_ERR(at24->vcc_reg))
return PTR_ERR(at24->vcc_reg);
writable = !(flags & AT24_FLAG_READONLY);
if (writable) {
at24->write_max = min_t(unsigned int,
page_size, at24_io_limit);
if (!i2c_fn_i2c && at24->write_max > I2C_SMBUS_BLOCK_MAX)
at24->write_max = I2C_SMBUS_BLOCK_MAX;
}
/* use dummy devices for multiple-address chips */
for (i = 1; i < num_addresses; i++) {
err = at24_make_dummy_client(at24, i, ®map_config);
if (err)
return err;
}
/*
* We initialize nvmem_config.id to NVMEM_DEVID_AUTO even if the
* label property is set as some platform can have multiple eeproms
* with same label and we can not register each of those with same
* label. Failing to register those eeproms trigger cascade failure
* on such platform.
*/
nvmem_config.id = NVMEM_DEVID_AUTO;
if (device_property_present(dev, "label")) {
err = device_property_read_string(dev, "label",
&nvmem_config.name);
if (err)
return err;
} else {
nvmem_config.name = dev_name(dev);
}
nvmem_config.type = NVMEM_TYPE_EEPROM;
nvmem_config.dev = dev;
nvmem_config.read_only = !writable;
nvmem_config.root_only = !(flags & AT24_FLAG_IRUGO);
nvmem_config.owner = THIS_MODULE;
nvmem_config.compat = true;
nvmem_config.base_dev = dev;
nvmem_config.reg_read = at24_read;
nvmem_config.reg_write = at24_write;
nvmem_config.priv = at24;
nvmem_config.stride = 1;
nvmem_config.word_size = 1;
nvmem_config.size = byte_len;
i2c_set_clientdata(client, at24);
err = regulator_enable(at24->vcc_reg);
if (err) {
dev_err(dev, "Failed to enable vcc regulator\n");
return err;
}
/* enable runtime pm */
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
at24->nvmem = devm_nvmem_register(dev, &nvmem_config);
if (IS_ERR(at24->nvmem)) {
pm_runtime_disable(dev);
if (!pm_runtime_status_suspended(dev))
regulator_disable(at24->vcc_reg);
return PTR_ERR(at24->nvmem);
}
/*
* Perform a one-byte test read to verify that the
* chip is functional.
*/
err = at24_read(at24, 0, &test_byte, 1);
if (err) {
pm_runtime_disable(dev);
if (!pm_runtime_status_suspended(dev))
regulator_disable(at24->vcc_reg);
return -ENODEV;
}
pm_runtime_idle(dev);
if (writable)
dev_info(dev, "%u byte %s EEPROM, writable, %u bytes/write\n",
byte_len, client->name, at24->write_max);
else
dev_info(dev, "%u byte %s EEPROM, read-only\n",
byte_len, client->name);
return 0;
}
static int at24_remove(struct i2c_client *client)
{
struct at24_data *at24 = i2c_get_clientdata(client);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
regulator_disable(at24->vcc_reg);
pm_runtime_set_suspended(&client->dev);
return 0;
}
static int __maybe_unused at24_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct at24_data *at24 = i2c_get_clientdata(client);
return regulator_disable(at24->vcc_reg);
}
static int __maybe_unused at24_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct at24_data *at24 = i2c_get_clientdata(client);
return regulator_enable(at24->vcc_reg);
}
static const struct dev_pm_ops at24_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(at24_suspend, at24_resume, NULL)
};
static struct i2c_driver at24_driver = {
.driver = {
.name = "at24",
.pm = &at24_pm_ops,
.of_match_table = at24_of_match,
.acpi_match_table = ACPI_PTR(at24_acpi_ids),
},
.probe_new = at24_probe,
.remove = at24_remove,
.id_table = at24_ids,
};
static int __init at24_init(void)
{
if (!at24_io_limit) {
pr_err("at24: at24_io_limit must not be 0!\n");
return -EINVAL;
}
at24_io_limit = rounddown_pow_of_two(at24_io_limit);
return i2c_add_driver(&at24_driver);
}
module_init(at24_init);
static void __exit at24_exit(void)
{
i2c_del_driver(&at24_driver);
}
module_exit(at24_exit);
MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
MODULE_AUTHOR("David Brownell and Wolfram Sang");
MODULE_LICENSE("GPL");
| 24,923 | C | 28.015134 | 80 | 0.676443 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/__init__.py | from __future__ import absolute_import
from Mangdang.Adafruit_GPIO.GPIO import *
| 82 | Python | 19.749995 | 41 | 0.780488 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/Platform.py | # Copyright (c) 2014 Adafruit Industries
# Author: Tony DiCola
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import platform
import re
# Platform identification constants.
UNKNOWN = 0
RASPBERRY_PI = 1
BEAGLEBONE_BLACK = 2
MINNOWBOARD = 3
JETSON_NANO = 4
def platform_detect():
"""Detect if running on the Raspberry Pi or Beaglebone Black and return the
platform type. Will return RASPBERRY_PI, BEAGLEBONE_BLACK, or UNKNOWN."""
# Handle Raspberry Pi
pi = pi_version()
if pi is not None:
return RASPBERRY_PI
# Handle Beaglebone Black
# TODO: Check the Beaglebone Black /proc/cpuinfo value instead of reading
# the platform.
plat = platform.platform()
if plat.lower().find('armv7l-with-debian') > -1:
return BEAGLEBONE_BLACK
elif plat.lower().find('armv7l-with-ubuntu') > -1:
return BEAGLEBONE_BLACK
elif plat.lower().find('armv7l-with-glibc2.4') > -1:
return BEAGLEBONE_BLACK
elif plat.lower().find('tegra-aarch64-with-ubuntu') > -1:
return JETSON_NANO
# Handle Minnowboard
# Assumption is that mraa is installed
try:
import mraa
if mraa.getPlatformName()=='MinnowBoard MAX':
return MINNOWBOARD
except ImportError:
pass
# Couldn't figure out the platform, just return unknown.
return UNKNOWN
def pi_revision():
"""Detect the revision number of a Raspberry Pi, useful for changing
functionality like default I2C bus based on revision."""
# Revision list available at: http://elinux.org/RPi_HardwareHistory#Board_Revision_History
with open('/proc/cpuinfo', 'r') as infile:
for line in infile:
# Match a line of the form "Revision : 0002" while ignoring extra
# info in front of the revsion (like 1000 when the Pi was over-volted).
match = re.match('Revision\s+:\s+.*(\w{4})$', line, flags=re.IGNORECASE)
if match and match.group(1) in ['0000', '0002', '0003']:
# Return revision 1 if revision ends with 0000, 0002 or 0003.
return 1
elif match:
# Assume revision 2 if revision ends with any other 4 chars.
return 2
# Couldn't find the revision, throw an exception.
raise RuntimeError('Could not determine Raspberry Pi revision.')
def pi_version():
"""Detect the version of the Raspberry Pi. Returns either 1, 2 or
None depending on if it's a Raspberry Pi 1 (model A, B, A+, B+),
Raspberry Pi 2 (model B+), or not a Raspberry Pi.
"""
# Check /proc/cpuinfo for the Hardware field value.
# 2708 is pi 1
# 2709 is pi 2
# 2835 is pi 3 on 4.9.x kernel
# Anything else is not a pi.
with open('/proc/cpuinfo', 'r') as infile:
cpuinfo = infile.read()
# Match a line like 'Hardware : BCM2709'
match = re.search('^Hardware\s+:\s+(\w+)$', cpuinfo,
flags=re.MULTILINE | re.IGNORECASE)
if not match:
# Couldn't find the hardware, assume it isn't a pi.
return None
if match.group(1) == 'BCM2708':
# Pi 1
return 1
elif match.group(1) == 'BCM2709':
# Pi 2
return 2
elif match.group(1) == 'BCM2835':
# Pi 3 / Pi on 4.9.x kernel
return 3
else:
# Something else, not a pi.
return None
| 4,413 | Python | 37.719298 | 94 | 0.65375 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/GPIO.py | # Copyright (c) 2014 Adafruit Industries
# Author: Tony DiCola
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import Adafruit_GPIO.Platform as Platform
OUT = 0
IN = 1
HIGH = True
LOW = False
RISING = 1
FALLING = 2
BOTH = 3
PUD_OFF = 0
PUD_DOWN = 1
PUD_UP = 2
class BaseGPIO(object):
"""Base class for implementing simple digital IO for a platform.
Implementors are expected to subclass from this and provide an implementation
of the setup, output, and input functions."""
def setup(self, pin, mode, pull_up_down=PUD_OFF):
"""Set the input or output mode for a specified pin. Mode should be
either OUT or IN."""
raise NotImplementedError
def output(self, pin, value):
"""Set the specified pin the provided high/low value. Value should be
either HIGH/LOW or a boolean (true = high)."""
raise NotImplementedError
def input(self, pin):
"""Read the specified pin and return HIGH/true if the pin is pulled high,
or LOW/false if pulled low."""
raise NotImplementedError
def set_high(self, pin):
"""Set the specified pin HIGH."""
self.output(pin, HIGH)
def set_low(self, pin):
"""Set the specified pin LOW."""
self.output(pin, LOW)
def is_high(self, pin):
"""Return true if the specified pin is pulled high."""
return self.input(pin) == HIGH
def is_low(self, pin):
"""Return true if the specified pin is pulled low."""
return self.input(pin) == LOW
# Basic implementation of multiple pin methods just loops through pins and
# processes each one individually. This is not optimal, but derived classes can
# provide a more optimal implementation that deals with groups of pins
# simultaneously.
# See MCP230xx or PCF8574 classes for examples of optimized implementations.
def output_pins(self, pins):
"""Set multiple pins high or low at once. Pins should be a dict of pin
name to pin value (HIGH/True for 1, LOW/False for 0). All provided pins
will be set to the given values.
"""
# General implementation just loops through pins and writes them out
# manually. This is not optimized, but subclasses can choose to implement
# a more optimal batch output implementation. See the MCP230xx class for
# example of optimized implementation.
for pin, value in iter(pins.items()):
self.output(pin, value)
def setup_pins(self, pins):
"""Setup multiple pins as inputs or outputs at once. Pins should be a
dict of pin name to pin type (IN or OUT).
"""
# General implementation that can be optimized by derived classes.
for pin, value in iter(pins.items()):
self.setup(pin, value)
def input_pins(self, pins):
"""Read multiple pins specified in the given list and return list of pin values
GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low.
"""
# General implementation that can be optimized by derived classes.
return [self.input(pin) for pin in pins]
def add_event_detect(self, pin, edge):
"""Enable edge detection events for a particular GPIO channel. Pin
should be type IN. Edge must be RISING, FALLING or BOTH.
"""
raise NotImplementedError
def remove_event_detect(self, pin):
"""Remove edge detection for a particular GPIO channel. Pin should be
type IN.
"""
raise NotImplementedError
def add_event_callback(self, pin, callback):
"""Add a callback for an event already defined using add_event_detect().
Pin should be type IN.
"""
raise NotImplementedError
def event_detected(self, pin):
"""Returns True if an edge has occured on a given GPIO. You need to
enable edge detection using add_event_detect() first. Pin should be
type IN.
"""
raise NotImplementedError
def wait_for_edge(self, pin, edge):
"""Wait for an edge. Pin should be type IN. Edge must be RISING,
FALLING or BOTH."""
raise NotImplementedError
def cleanup(self, pin=None):
"""Clean up GPIO event detection for specific pin, or all pins if none
is specified.
"""
raise NotImplementedError
# helper functions useful to derived classes
def _validate_pin(self, pin):
# Raise an exception if pin is outside the range of allowed values.
if pin < 0 or pin >= self.NUM_GPIO:
raise ValueError('Invalid GPIO value, must be between 0 and {0}.'.format(self.NUM_GPIO))
def _bit2(self, src, bit, val):
bit = 1 << bit
return (src | bit) if val else (src & ~bit)
class RPiGPIOAdapter(BaseGPIO):
"""GPIO implementation for the Raspberry Pi using the RPi.GPIO library."""
def __init__(self, rpi_gpio, mode=None):
self.rpi_gpio = rpi_gpio
# Suppress warnings about GPIO in use.
rpi_gpio.setwarnings(False)
# Setup board pin mode.
if mode == rpi_gpio.BOARD or mode == rpi_gpio.BCM:
rpi_gpio.setmode(mode)
elif mode is not None:
raise ValueError('Unexpected value for mode. Must be BOARD or BCM.')
else:
# Default to BCM numbering if not told otherwise.
rpi_gpio.setmode(rpi_gpio.BCM)
# Define mapping of Adafruit GPIO library constants to RPi.GPIO constants.
self._dir_mapping = { OUT: rpi_gpio.OUT,
IN: rpi_gpio.IN }
self._pud_mapping = { PUD_OFF: rpi_gpio.PUD_OFF,
PUD_DOWN: rpi_gpio.PUD_DOWN,
PUD_UP: rpi_gpio.PUD_UP }
self._edge_mapping = { RISING: rpi_gpio.RISING,
FALLING: rpi_gpio.FALLING,
BOTH: rpi_gpio.BOTH }
def setup(self, pin, mode, pull_up_down=PUD_OFF):
"""Set the input or output mode for a specified pin. Mode should be
either OUTPUT or INPUT.
"""
self.rpi_gpio.setup(pin, self._dir_mapping[mode],
pull_up_down=self._pud_mapping[pull_up_down])
def output(self, pin, value):
"""Set the specified pin the provided high/low value. Value should be
either HIGH/LOW or a boolean (true = high).
"""
self.rpi_gpio.output(pin, value)
def input(self, pin):
"""Read the specified pin and return HIGH/true if the pin is pulled high,
or LOW/false if pulled low.
"""
return self.rpi_gpio.input(pin)
def input_pins(self, pins):
"""Read multiple pins specified in the given list and return list of pin values
GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low.
"""
# maybe rpi has a mass read... it would be more efficient to use it if it exists
return [self.rpi_gpio.input(pin) for pin in pins]
def add_event_detect(self, pin, edge, callback=None, bouncetime=-1):
"""Enable edge detection events for a particular GPIO channel. Pin
should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a
function for the event. Bouncetime is switch bounce timeout in ms for
callback
"""
kwargs = {}
if callback:
kwargs['callback']=callback
if bouncetime > 0:
kwargs['bouncetime']=bouncetime
self.rpi_gpio.add_event_detect(pin, self._edge_mapping[edge], **kwargs)
def remove_event_detect(self, pin):
"""Remove edge detection for a particular GPIO channel. Pin should be
type IN.
"""
self.rpi_gpio.remove_event_detect(pin)
def add_event_callback(self, pin, callback):
"""Add a callback for an event already defined using add_event_detect().
Pin should be type IN.
"""
self.rpi_gpio.add_event_callback(pin, callback)
def event_detected(self, pin):
"""Returns True if an edge has occured on a given GPIO. You need to
enable edge detection using add_event_detect() first. Pin should be
type IN.
"""
return self.rpi_gpio.event_detected(pin)
def wait_for_edge(self, pin, edge):
"""Wait for an edge. Pin should be type IN. Edge must be RISING,
FALLING or BOTH.
"""
self.rpi_gpio.wait_for_edge(pin, self._edge_mapping[edge])
def cleanup(self, pin=None):
"""Clean up GPIO event detection for specific pin, or all pins if none
is specified.
"""
if pin is None:
self.rpi_gpio.cleanup()
else:
self.rpi_gpio.cleanup(pin)
class AdafruitBBIOAdapter(BaseGPIO):
"""GPIO implementation for the Beaglebone Black using the Adafruit_BBIO
library.
"""
def __init__(self, bbio_gpio):
self.bbio_gpio = bbio_gpio
# Define mapping of Adafruit GPIO library constants to RPi.GPIO constants.
self._dir_mapping = { OUT: bbio_gpio.OUT,
IN: bbio_gpio.IN }
self._pud_mapping = { PUD_OFF: bbio_gpio.PUD_OFF,
PUD_DOWN: bbio_gpio.PUD_DOWN,
PUD_UP: bbio_gpio.PUD_UP }
self._edge_mapping = { RISING: bbio_gpio.RISING,
FALLING: bbio_gpio.FALLING,
BOTH: bbio_gpio.BOTH }
def setup(self, pin, mode, pull_up_down=PUD_OFF):
"""Set the input or output mode for a specified pin. Mode should be
either OUTPUT or INPUT.
"""
self.bbio_gpio.setup(pin, self._dir_mapping[mode],
pull_up_down=self._pud_mapping[pull_up_down])
def output(self, pin, value):
"""Set the specified pin the provided high/low value. Value should be
either HIGH/LOW or a boolean (true = high).
"""
self.bbio_gpio.output(pin, value)
def input(self, pin):
"""Read the specified pin and return HIGH/true if the pin is pulled high,
or LOW/false if pulled low.
"""
return self.bbio_gpio.input(pin)
def input_pins(self, pins):
"""Read multiple pins specified in the given list and return list of pin values
GPIO.HIGH/True if the pin is pulled high, or GPIO.LOW/False if pulled low.
"""
# maybe bbb has a mass read... it would be more efficient to use it if it exists
return [self.bbio_gpio.input(pin) for pin in pins]
def add_event_detect(self, pin, edge, callback=None, bouncetime=-1):
"""Enable edge detection events for a particular GPIO channel. Pin
should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a
function for the event. Bouncetime is switch bounce timeout in ms for
callback
"""
kwargs = {}
if callback:
kwargs['callback']=callback
if bouncetime > 0:
kwargs['bouncetime']=bouncetime
self.bbio_gpio.add_event_detect(pin, self._edge_mapping[edge], **kwargs)
def remove_event_detect(self, pin):
"""Remove edge detection for a particular GPIO channel. Pin should be
type IN.
"""
self.bbio_gpio.remove_event_detect(pin)
def add_event_callback(self, pin, callback, bouncetime=-1):
"""Add a callback for an event already defined using add_event_detect().
Pin should be type IN. Bouncetime is switch bounce timeout in ms for
callback
"""
kwargs = {}
if bouncetime > 0:
kwargs['bouncetime']=bouncetime
self.bbio_gpio.add_event_callback(pin, callback, **kwargs)
def event_detected(self, pin):
"""Returns True if an edge has occured on a given GPIO. You need to
enable edge detection using add_event_detect() first. Pin should be
type IN.
"""
return self.bbio_gpio.event_detected(pin)
def wait_for_edge(self, pin, edge):
"""Wait for an edge. Pin should be type IN. Edge must be RISING,
FALLING or BOTH.
"""
self.bbio_gpio.wait_for_edge(pin, self._edge_mapping[edge])
def cleanup(self, pin=None):
"""Clean up GPIO event detection for specific pin, or all pins if none
is specified.
"""
if pin is None:
self.bbio_gpio.cleanup()
else:
self.bbio_gpio.cleanup(pin)
class AdafruitMinnowAdapter(BaseGPIO):
"""GPIO implementation for the Minnowboard + MAX using the mraa library"""
def __init__(self,mraa_gpio):
self.mraa_gpio = mraa_gpio
# Define mapping of Adafruit GPIO library constants to mraa constants
self._dir_mapping = { OUT: self.mraa_gpio.DIR_OUT,
IN: self.mraa_gpio.DIR_IN }
self._pud_mapping = { PUD_OFF: self.mraa_gpio.MODE_STRONG,
PUD_UP: self.mraa_gpio.MODE_HIZ,
PUD_DOWN: self.mraa_gpio.MODE_PULLDOWN }
self._edge_mapping = { RISING: self.mraa_gpio.EDGE_RISING,
FALLING: self.mraa_gpio.EDGE_FALLING,
BOTH: self.mraa_gpio.EDGE_BOTH }
def setup(self,pin,mode):
"""Set the input or output mode for a specified pin. Mode should be
either DIR_IN or DIR_OUT.
"""
self.mraa_gpio.Gpio.dir(self.mraa_gpio.Gpio(pin),self._dir_mapping[mode])
def output(self,pin,value):
"""Set the specified pin the provided high/low value. Value should be
either 1 (ON or HIGH), or 0 (OFF or LOW) or a boolean.
"""
self.mraa_gpio.Gpio.write(self.mraa_gpio.Gpio(pin), value)
def input(self,pin):
"""Read the specified pin and return HIGH/true if the pin is pulled high,
or LOW/false if pulled low.
"""
return self.mraa_gpio.Gpio.read(self.mraa_gpio.Gpio(pin))
def add_event_detect(self, pin, edge, callback=None, bouncetime=-1):
"""Enable edge detection events for a particular GPIO channel. Pin
should be type IN. Edge must be RISING, FALLING or BOTH. Callback is a
function for the event. Bouncetime is switch bounce timeout in ms for
callback
"""
kwargs = {}
if callback:
kwargs['callback']=callback
if bouncetime > 0:
kwargs['bouncetime']=bouncetime
self.mraa_gpio.Gpio.isr(self.mraa_gpio.Gpio(pin), self._edge_mapping[edge], **kwargs)
def remove_event_detect(self, pin):
"""Remove edge detection for a particular GPIO channel. Pin should be
type IN.
"""
self.mraa_gpio.Gpio.isrExit(self.mraa_gpio.Gpio(pin))
def wait_for_edge(self, pin, edge):
"""Wait for an edge. Pin should be type IN. Edge must be RISING,
FALLING or BOTH.
"""
self.bbio_gpio.wait_for_edge(self.mraa_gpio.Gpio(pin), self._edge_mapping[edge])
def get_platform_gpio(**keywords):
"""Attempt to return a GPIO instance for the platform which the code is being
executed on. Currently supports only the Raspberry Pi using the RPi.GPIO
library and Beaglebone Black using the Adafruit_BBIO library. Will throw an
exception if a GPIO instance can't be created for the current platform. The
returned GPIO object is an instance of BaseGPIO.
"""
plat = Platform.platform_detect()
if plat == Platform.RASPBERRY_PI:
import RPi.GPIO
return RPiGPIOAdapter(RPi.GPIO, **keywords)
elif plat == Platform.BEAGLEBONE_BLACK:
import Adafruit_BBIO.GPIO
return AdafruitBBIOAdapter(Adafruit_BBIO.GPIO, **keywords)
elif plat == Platform.MINNOWBOARD:
import mraa
return AdafruitMinnowAdapter(mraa, **keywords)
elif plat == Platform.JETSON_NANO:
import Jetson.GPIO
return RPiGPIOAdapter(Jetson.GPIO, **keywords)
elif plat == Platform.UNKNOWN:
raise RuntimeError('Could not determine platform.')
| 17,268 | Python | 39.160465 | 100 | 0.618253 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/Adafruit_GPIO/SPI.py | # Copyright (c) 2014 Adafruit Industries
# Author: Tony DiCola
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import operator
import time
import Mangdang.Adafruit_GPIO as GPIO
MSBFIRST = 0
LSBFIRST = 1
class SpiDev(object):
"""Hardware-based SPI implementation using the spidev interface."""
def __init__(self, port, device, max_speed_hz=500000):
"""Initialize an SPI device using the SPIdev interface. Port and device
identify the device, for example the device /dev/spidev1.0 would be port
1 and device 0.
"""
import spidev
self._device = spidev.SpiDev()
self._device.open(port, device)
self._device.max_speed_hz=max_speed_hz
# Default to mode 0, and make sure CS is active low.
self._device.mode = 0
#self._device.cshigh = False
def set_clock_hz(self, hz):
"""Set the speed of the SPI clock in hertz. Note that not all speeds
are supported and a lower speed might be chosen by the hardware.
"""
self._device.max_speed_hz=hz
def set_mode(self, mode):
"""Set SPI mode which controls clock polarity and phase. Should be a
numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning:
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
"""
if mode < 0 or mode > 3:
raise ValueError('Mode must be a value 0, 1, 2, or 3.')
self._device.mode = mode
def set_bit_order(self, order):
"""Set order of bits to be read/written over serial lines. Should be
either MSBFIRST for most-significant first, or LSBFIRST for
least-signifcant first.
"""
if order == MSBFIRST:
self._device.lsbfirst = False
elif order == LSBFIRST:
self._device.lsbfirst = True
else:
raise ValueError('Order must be MSBFIRST or LSBFIRST.')
def close(self):
"""Close communication with the SPI device."""
self._device.close()
def write(self, data):
"""Half-duplex SPI write. The specified array of bytes will be clocked
out the MOSI line.
"""
self._device.writebytes(data)
def read(self, length):
"""Half-duplex SPI read. The specified length of bytes will be clocked
in the MISO line and returned as a bytearray object.
"""
return bytearray(self._device.readbytes(length))
def transfer(self, data):
"""Full-duplex SPI read and write. The specified array of bytes will be
clocked out the MOSI line, while simultaneously bytes will be read from
the MISO line. Read bytes will be returned as a bytearray object.
"""
return bytearray(self._device.xfer2(data))
class SpiDevMraa(object):
"""Hardware SPI implementation with the mraa library on Minnowboard"""
def __init__(self, port, device, max_speed_hz=500000):
import mraa
self._device = mraa.Spi(0)
self._device.mode(0)
def set_clock_hz(self, hz):
"""Set the speed of the SPI clock in hertz. Note that not all speeds
are supported and a lower speed might be chosen by the hardware.
"""
self._device.frequency(hz)
def set_mode(self,mode):
"""Set SPI mode which controls clock polarity and phase. Should be a
numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning:
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
"""
if mode < 0 or mode > 3:
raise ValueError('Mode must be a value 0, 1, 2, or 3.')
self._device.mode(mode)
def set_bit_order(self, order):
"""Set order of bits to be read/written over serial lines. Should be
either MSBFIRST for most-significant first, or LSBFIRST for
least-signifcant first.
"""
if order == MSBFIRST:
self._device.lsbmode(False)
elif order == LSBFIRST:
self._device.lsbmode(True)
else:
raise ValueError('Order must be MSBFIRST or LSBFIRST.')
def close(self):
"""Close communication with the SPI device."""
self._device.Spi()
def write(self, data):
"""Half-duplex SPI write. The specified array of bytes will be clocked
out the MOSI line.
"""
self._device.write(bytearray(data))
class BitBang(object):
"""Software-based implementation of the SPI protocol over GPIO pins."""
def __init__(self, gpio, sclk, mosi=None, miso=None, ss=None):
"""Initialize bit bang (or software) based SPI. Must provide a BaseGPIO
class, the SPI clock, and optionally MOSI, MISO, and SS (slave select)
pin numbers. If MOSI is set to None then writes will be disabled and fail
with an error, likewise for MISO reads will be disabled. If SS is set to
None then SS will not be asserted high/low by the library when
transfering data.
"""
self._gpio = gpio
self._sclk = sclk
self._mosi = mosi
self._miso = miso
self._ss = ss
# Set pins as outputs/inputs.
gpio.setup(sclk, GPIO.OUT)
if mosi is not None:
gpio.setup(mosi, GPIO.OUT)
if miso is not None:
gpio.setup(miso, GPIO.IN)
if ss is not None:
gpio.setup(ss, GPIO.OUT)
# Assert SS high to start with device communication off.
gpio.set_high(ss)
# Assume mode 0.
self.set_mode(0)
# Assume most significant bit first order.
self.set_bit_order(MSBFIRST)
def set_clock_hz(self, hz):
"""Set the speed of the SPI clock. This is unsupported with the bit
bang SPI class and will be ignored.
"""
pass
def set_mode(self, mode):
"""Set SPI mode which controls clock polarity and phase. Should be a
numeric value 0, 1, 2, or 3. See wikipedia page for details on meaning:
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
"""
if mode < 0 or mode > 3:
raise ValueError('Mode must be a value 0, 1, 2, or 3.')
if mode & 0x02:
# Clock is normally high in mode 2 and 3.
self._clock_base = GPIO.HIGH
else:
# Clock is normally low in mode 0 and 1.
self._clock_base = GPIO.LOW
if mode & 0x01:
# Read on trailing edge in mode 1 and 3.
self._read_leading = False
else:
# Read on leading edge in mode 0 and 2.
self._read_leading = True
# Put clock into its base state.
self._gpio.output(self._sclk, self._clock_base)
def set_bit_order(self, order):
"""Set order of bits to be read/written over serial lines. Should be
either MSBFIRST for most-significant first, or LSBFIRST for
least-signifcant first.
"""
# Set self._mask to the bitmask which points at the appropriate bit to
# read or write, and appropriate left/right shift operator function for
# reading/writing.
if order == MSBFIRST:
self._mask = 0x80
self._write_shift = operator.lshift
self._read_shift = operator.rshift
elif order == LSBFIRST:
self._mask = 0x01
self._write_shift = operator.rshift
self._read_shift = operator.lshift
else:
raise ValueError('Order must be MSBFIRST or LSBFIRST.')
def close(self):
"""Close the SPI connection. Unused in the bit bang implementation."""
pass
def write(self, data, assert_ss=True, deassert_ss=True):
"""Half-duplex SPI write. If assert_ss is True, the SS line will be
asserted low, the specified bytes will be clocked out the MOSI line, and
if deassert_ss is True the SS line be put back high.
"""
# Fail MOSI is not specified.
if self._mosi is None:
raise RuntimeError('Write attempted with no MOSI pin specified.')
if assert_ss and self._ss is not None:
self._gpio.set_low(self._ss)
for byte in data:
for i in range(8):
# Write bit to MOSI.
if self._write_shift(byte, i) & self._mask:
self._gpio.set_high(self._mosi)
else:
self._gpio.set_low(self._mosi)
# Flip clock off base.
self._gpio.output(self._sclk, not self._clock_base)
# Return clock to base.
self._gpio.output(self._sclk, self._clock_base)
if deassert_ss and self._ss is not None:
self._gpio.set_high(self._ss)
def read(self, length, assert_ss=True, deassert_ss=True):
"""Half-duplex SPI read. If assert_ss is true, the SS line will be
asserted low, the specified length of bytes will be clocked in the MISO
line, and if deassert_ss is true the SS line will be put back high.
Bytes which are read will be returned as a bytearray object.
"""
if self._miso is None:
raise RuntimeError('Read attempted with no MISO pin specified.')
if assert_ss and self._ss is not None:
self._gpio.set_low(self._ss)
result = bytearray(length)
for i in range(length):
for j in range(8):
# Flip clock off base.
self._gpio.output(self._sclk, not self._clock_base)
# Handle read on leading edge of clock.
if self._read_leading:
if self._gpio.is_high(self._miso):
# Set bit to 1 at appropriate location.
result[i] |= self._read_shift(self._mask, j)
else:
# Set bit to 0 at appropriate location.
result[i] &= ~self._read_shift(self._mask, j)
# Return clock to base.
self._gpio.output(self._sclk, self._clock_base)
# Handle read on trailing edge of clock.
if not self._read_leading:
if self._gpio.is_high(self._miso):
# Set bit to 1 at appropriate location.
result[i] |= self._read_shift(self._mask, j)
else:
# Set bit to 0 at appropriate location.
result[i] &= ~self._read_shift(self._mask, j)
if deassert_ss and self._ss is not None:
self._gpio.set_high(self._ss)
return result
def transfer(self, data, assert_ss=True, deassert_ss=True):
"""Full-duplex SPI read and write. If assert_ss is true, the SS line
will be asserted low, the specified bytes will be clocked out the MOSI
line while bytes will also be read from the MISO line, and if
deassert_ss is true the SS line will be put back high. Bytes which are
read will be returned as a bytearray object.
"""
if self._mosi is None:
raise RuntimeError('Write attempted with no MOSI pin specified.')
if self._miso is None:
raise RuntimeError('Read attempted with no MISO pin specified.')
if assert_ss and self._ss is not None:
self._gpio.set_low(self._ss)
result = bytearray(len(data))
for i in range(len(data)):
for j in range(8):
# Write bit to MOSI.
if self._write_shift(data[i], j) & self._mask:
self._gpio.set_high(self._mosi)
else:
self._gpio.set_low(self._mosi)
# Flip clock off base.
self._gpio.output(self._sclk, not self._clock_base)
# Handle read on leading edge of clock.
if self._read_leading:
if self._gpio.is_high(self._miso):
# Set bit to 1 at appropriate location.
result[i] |= self._read_shift(self._mask, j)
else:
# Set bit to 0 at appropriate location.
result[i] &= ~self._read_shift(self._mask, j)
# Return clock to base.
self._gpio.output(self._sclk, self._clock_base)
# Handle read on trailing edge of clock.
if not self._read_leading:
if self._gpio.is_high(self._miso):
# Set bit to 1 at appropriate location.
result[i] |= self._read_shift(self._mask, j)
else:
# Set bit to 0 at appropriate location.
result[i] &= ~self._read_shift(self._mask, j)
if deassert_ss and self._ss is not None:
self._gpio.set_high(self._ss)
return result
| 13,970 | Python | 41.465045 | 81 | 0.585827 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/FuelGauge/max1720x_battery.c | /*
* Maxim MAX17201/MAX17205 fuel gauge driver
*
* Author: Mahir Ozturk <[email protected]>
* Copyright (C) 2019 Maxim Integrated
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This driver is based on max17042/40_battery.c
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/power_supply.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#define DRV_NAME "max1720x"
/* CONFIG register bits */
#define MAX1720X_CONFIG_ALRT_EN (1 << 2)
/* STATUS register bits */
#define MAX1720X_STATUS_BST (1 << 3)
#define MAX1720X_STATUS_POR (1 << 1)
/* STATUS interrupt status bits */
#define MAX1720X_STATUS_ALRT_CLR_MASK (0x88BB)
#define MAX1720X_STATUS_SOC_MAX_ALRT (1 << 14)
#define MAX1720X_STATUS_TEMP_MAX_ALRT (1 << 13)
#define MAX1720X_STATUS_VOLT_MAX_ALRT (1 << 12)
#define MAX1720X_STATUS_SOC_MIN_ALRT (1 << 10)
#define MAX1720X_STATUS_TEMP_MIN_ALRT (1 << 9)
#define MAX1720X_STATUS_VOLT_MIN_ALRT (1 << 8)
#define MAX1720X_STATUS_CURR_MAX_ALRT (1 << 6)
#define MAX1720X_STATUS_CURR_MIN_ALRT (1 << 2)
/* ProtStatus register bits */
#define MAX1730X_PROTSTATUS_CHGWDT (1 << 15)
#define MAX1730X_PROTSTATUS_TOOHOTC (1 << 14)
#define MAX1730X_PROTSTATUS_FULL (1 << 13)
#define MAX1730X_PROTSTATUS_TOOCOLDC (1 << 12)
#define MAX1730X_PROTSTATUS_OVP (1 << 11)
#define MAX1730X_PROTSTATUS_OCCP (1 << 10)
#define MAX1730X_PROTSTATUS_QOVFLW (1 << 9)
#define MAX1730X_PROTSTATUS_RESCFAULT (1 << 7)
#define MAX1730X_PROTSTATUS_PERMFAIL (1 << 6)
#define MAX1730X_PROTSTATUS_DIEHOT (1 << 5)
#define MAX1730X_PROTSTATUS_TOOHOTD (1 << 4)
#define MAX1730X_PROTSTATUS_UVP (1 << 3)
#define MAX1730X_PROTSTATUS_ODCP (1 << 2)
#define MAX1730X_PROTSTATUS_RESDFAULT (1 << 1)
#define MAX1730X_PROTSTATUS_SHDN (1 << 0)
#define MAX1720X_VMAX_TOLERANCE 50 /* 50 mV */
#define MODELGAUGE_DATA_I2C_ADDR 0x36
#define NONVOLATILE_DATA_I2C_ADDR 0x0B
struct max1720x_platform_data {
/*
* rsense in miliOhms.
* default 10 (if rsense = 0) as it is the recommended value by
* the datasheet although it can be changed by board designers.
*/
unsigned int rsense;
int volt_min; /* in mV */
int volt_max; /* in mV */
int temp_min; /* in DegreC */
int temp_max; /* in DegreeC */
int soc_max; /* in percent */
int soc_min; /* in percent */
int curr_max; /* in mA */
int curr_min; /* in mA */
};
struct max1720x_priv {
struct i2c_client *client;
struct device *dev;
struct regmap *regmap;
struct power_supply *battery;
struct max1720x_platform_data *pdata;
struct work_struct init_worker;
struct attribute_group *attr_grp;
const u8 *regs;
u8 nvmem_high_addr;
int cycles_reg_lsb_percent;
int (*get_charging_status)(void);
int (*get_battery_health)(struct max1720x_priv *priv, int *health);
};
enum chip_id {
ID_MAX1720X,
ID_MAX1730X,
};
enum register_ids {
STATUS_REG = 0,
VALRTTH_REG,
TALRTTH_REG,
SALRTTH_REG,
ATRATE_REG,
REPCAP_REG,
REPSOC_REG,
TEMP_REG,
VCELL_REG,
CURRENT_REG,
AVGCURRENT_REG,
TTE_REG ,
CYCLES_REG,
DESIGNCAP_REG,
AVGVCELL_REG,
MAXMINVOLT_REG,
CONFIG_REG,
TTF_REG ,
VERSION_REG,
FULLCAPREP_REG,
VEMPTY_REG,
QH_REG ,
IALRTTH_REG,
PROTSTATUS_REG,
ATTTE_REG,
VFOCV_REG,
};
static int max1720x_get_battery_health(struct max1720x_priv *priv, int *health);
static int max1730x_get_battery_health(struct max1720x_priv *priv, int *health);
static int (*get_battery_health_handlers[])
(struct max1720x_priv *priv, int *health) = {
[ID_MAX1720X] = max1720x_get_battery_health,
[ID_MAX1730X] = max1730x_get_battery_health,
};
/* Register addresses */
static const u8 max1720x_regs[] = {
[STATUS_REG] = 0x00,
[VALRTTH_REG] = 0x01,
[TALRTTH_REG] = 0x02,
[SALRTTH_REG] = 0x03,
[ATRATE_REG] = 0x04,
[REPCAP_REG] = 0x05,
[REPSOC_REG] = 0x06,
[TEMP_REG] = 0x08,
[VCELL_REG] = 0x09,
[CURRENT_REG] = 0x0A,
[AVGCURRENT_REG] = 0x0B,
[TTE_REG] = 0x11,
[CYCLES_REG] = 0x17,
[DESIGNCAP_REG] = 0x18,
[AVGVCELL_REG] = 0x19,
[MAXMINVOLT_REG] = 0x1B,
[CONFIG_REG] = 0x1D,
[TTF_REG] = 0x20,
[VERSION_REG] = 0x21,
[FULLCAPREP_REG] = 0x35,
[VEMPTY_REG] = 0x3A,
[QH_REG] = 0x4D,
[IALRTTH_REG] = 0xB4,
[ATTTE_REG] = 0xDD,
[VFOCV_REG] = 0xFB,
};
static const u8 max1730x_regs[] = {
[STATUS_REG] = 0x00,
[VALRTTH_REG] = 0x01,
[TALRTTH_REG] = 0x02,
[SALRTTH_REG] = 0x03,
[ATRATE_REG] = 0x04,
[REPCAP_REG] = 0x05,
[REPSOC_REG] = 0x06,
[TEMP_REG] = 0x1B,
[VCELL_REG] = 0x1A,
[CURRENT_REG] = 0x1C,
[AVGCURRENT_REG] = 0x1D,
[TTE_REG] = 0x11,
[CYCLES_REG] = 0x17,
[DESIGNCAP_REG] = 0x18,
[AVGVCELL_REG] = 0x19,
[MAXMINVOLT_REG] = 0x08,
[CONFIG_REG] = 0x1D,
[TTF_REG] = 0x20,
[VERSION_REG] = 0x21,
[FULLCAPREP_REG] = 0x10,
[VEMPTY_REG] = 0x3A,
[QH_REG] = 0x4D,
[IALRTTH_REG] = 0xAC,
[PROTSTATUS_REG] = 0xD9,
[ATTTE_REG] = 0xDD,
[VFOCV_REG] = 0xFB,
};
static const u8* chip_regs[] = {
[ID_MAX1720X] = max1720x_regs,
[ID_MAX1730X] = max1730x_regs,
};
static const u8 nvmem_high_addrs[] = {
[ID_MAX1720X] = 0xDF,
[ID_MAX1730X] = 0xEF,
};
static const int cycles_reg_lsb_percents[] = {
[ID_MAX1720X] = 25,
[ID_MAX1730X] = 16,
};
static enum power_supply_property max1720x_battery_props[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_VOLTAGE_MAX,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_AVG,
POWER_SUPPLY_PROP_VOLTAGE_OCV,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN,
POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_COUNTER,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
};
static inline int max1720x_raw_voltage_to_uvolts(struct max1720x_priv *priv,
int lsb)
{
return lsb * 10000 / 65536; /* 78.125uV per bit */
}
static inline int max1720x_raw_current_to_uamps(struct max1720x_priv *priv,
int curr)
{
return curr * 15625 / ((int)priv->pdata->rsense * 10);
}
static inline int max1720x_raw_capacity_to_uamph(struct max1720x_priv *priv,
int cap)
{
return cap * 5000 / (int)priv->pdata->rsense;
}
static ssize_t max1720x_log_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct max1720x_priv *priv = dev_get_drvdata(dev);
int rc = 0, reg = 0;
u32 val = 0;
for (reg = 0; reg < 0xE0; reg++) {
regmap_read(priv->regmap, reg, &val);
rc += (int)snprintf(buf+rc, PAGE_SIZE-rc, "0x%04X,", val);
if (reg == 0x4F)
reg += 0x60;
if (reg == 0xBF)
reg += 0x10;
}
rc += (int)snprintf(buf+rc, PAGE_SIZE-rc, "\n");
return rc;
}
static ssize_t max1720x_nvmem_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct max1720x_priv *priv = dev_get_drvdata(dev);
int rc = 0, reg = 0;
u32 val = 0;
int ret;
int i;
/*
* Device has a separate slave address for accessing non-volatile memory
* region, so we are temporarily changing i2c client address.
*/
priv->client->addr = NONVOLATILE_DATA_I2C_ADDR;
for (reg = 0x80; reg < priv->nvmem_high_addr; reg += 16) {
rc += snprintf(buf+rc, PAGE_SIZE-rc, "Page %02Xh: ",
(reg + 0x100) >> 4);
for (i = 0; i < 16; i++) {
ret = regmap_read(priv->regmap, reg + i, &val);
if (ret) {
dev_err(dev, "NV memory reading failed (%d)\n",
ret);
return 0;
}
rc += snprintf(buf+rc, PAGE_SIZE-rc, "0x%04X ", val);
}
rc += snprintf(buf+rc, PAGE_SIZE-rc, "\n");
}
priv->client->addr = MODELGAUGE_DATA_I2C_ADDR;
return rc;
}
static ssize_t max1720x_atrate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct max1720x_priv *priv = dev_get_drvdata(dev);
u32 val = 0;
int ret;
ret = regmap_read(priv->regmap, priv->regs[ATRATE_REG], &val);
if (ret) {
return 0;
}
return sprintf(buf, "%d", (short)val);
}
static ssize_t max1720x_atrate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct max1720x_priv *priv = dev_get_drvdata(dev);
s32 val = 0;
int ret;
if (kstrtos32(buf, 0, &val))
return -EINVAL;
ret = regmap_write(priv->regmap, priv->regs[ATRATE_REG], val);
if (ret < 0)
return ret;
return count;
}
static ssize_t max1720x_attte_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct max1720x_priv *priv = dev_get_drvdata(dev);
u32 val = 0;
int ret;
ret = regmap_read(priv->regmap, priv->regs[ATTTE_REG], &val);
if (ret) {
return 0;
}
return sprintf(buf, "%d", (short)val);
}
static DEVICE_ATTR(log, S_IRUGO, max1720x_log_show, NULL);
static DEVICE_ATTR(nvmem, S_IRUGO, max1720x_nvmem_show, NULL);
static DEVICE_ATTR(atrate, S_IRUGO | S_IWUSR, max1720x_atrate_show,
max1720x_atrate_store);
static DEVICE_ATTR(attte, S_IRUGO, max1720x_attte_show, NULL);
static struct attribute *max1720x_attr[] = {
&dev_attr_log.attr,
&dev_attr_nvmem.attr,
&dev_attr_atrate.attr,
&dev_attr_attte.attr,
NULL
};
static struct attribute_group max1720x_attr_group = {
.attrs = max1720x_attr,
};
static int max1720x_get_temperature(struct max1720x_priv *priv, int *temp)
{
int ret;
u32 data;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[TEMP_REG], &data);
if (ret < 0)
return ret;
*temp = sign_extend32(data, 15);
/* The value is converted into centigrade scale */
/* Units of LSB = 1 / 256 degree Celsius */
*temp = (*temp * 10) >> 8;
return 0;
}
static int max1720x_set_temp_lower_limit(struct max1720x_priv *priv,
int temp)
{
int ret;
u32 data;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[TALRTTH_REG], &data);
if (ret < 0)
return ret;
/* Input in deci-centigrade, convert to centigrade */
temp /= 10;
data &= 0xFF00;
data |= (temp & 0xFF);
ret = regmap_write(map, priv->regs[TALRTTH_REG], data);
if (ret < 0)
return ret;
return 0;
}
static int max1720x_get_temperature_alert_min(struct max1720x_priv *priv,
int *temp)
{
int ret;
u32 data;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[TALRTTH_REG], &data);
if (ret < 0)
return ret;
/* Convert 1DegreeC LSB to 0.1DegreeC LSB */
*temp = sign_extend32(data & 0xff, 7) * 10;
return 0;
}
static int max1720x_set_temp_upper_limit(struct max1720x_priv *priv,
int temp)
{
int ret;
u32 data;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[TALRTTH_REG], &data);
if (ret < 0)
return ret;
/* Input in deci-centigrade, convert to centigrade */
temp /= 10;
data &= 0xFF;
data |= ((temp << 8) & 0xFF00);
ret = regmap_write(map, priv->regs[TALRTTH_REG], data);
if (ret < 0)
return ret;
return 0;
}
static int max1720x_get_temperature_alert_max(struct max1720x_priv *priv,
int *temp)
{
int ret;
u32 data;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[TALRTTH_REG], &data);
if (ret < 0)
return ret;
/* Convert 1DegreeC LSB to 0.1DegreeC LSB */
*temp = sign_extend32(data >> 8, 7) * 10;
return 0;
}
static int max1720x_get_battery_health(struct max1720x_priv *priv, int *health)
{
int temp, vavg, vbatt, ret;
u32 val;
ret = regmap_read(priv->regmap, priv->regs[AVGVCELL_REG], &val);
if (ret < 0)
goto health_error;
/* bits [0-3] unused */
vavg = max1720x_raw_voltage_to_uvolts(priv, val);
/* Convert to millivolts */
vavg /= 1000;
ret = regmap_read(priv->regmap, priv->regs[VCELL_REG], &val);
if (ret < 0)
goto health_error;
/* bits [0-3] unused */
vbatt = max1720x_raw_voltage_to_uvolts(priv, val);
/* Convert to millivolts */
vbatt /= 1000;
if (vavg < priv->pdata->volt_min) {
*health = POWER_SUPPLY_HEALTH_DEAD;
goto out;
}
if (vbatt > priv->pdata->volt_max + MAX1720X_VMAX_TOLERANCE) {
*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
goto out;
}
ret = max1720x_get_temperature(priv, &temp);
if (ret < 0)
goto health_error;
if (temp <= priv->pdata->temp_min) {
*health = POWER_SUPPLY_HEALTH_COLD;
goto out;
}
if (temp >= priv->pdata->temp_max) {
*health = POWER_SUPPLY_HEALTH_OVERHEAT;
goto out;
}
*health = POWER_SUPPLY_HEALTH_GOOD;
out:
return 0;
health_error:
return ret;
}
static int max1730x_get_battery_health(struct max1720x_priv *priv, int *health)
{
int ret;
u32 val;
ret = regmap_read(priv->regmap, priv->regs[PROTSTATUS_REG], &val);
if (ret < 0)
return ret;
if ((val & MAX1730X_PROTSTATUS_RESCFAULT) ||
(val & MAX1730X_PROTSTATUS_RESDFAULT)) {
*health = POWER_SUPPLY_HEALTH_UNKNOWN;
} else if ((val & MAX1730X_PROTSTATUS_TOOHOTC) ||
(val & MAX1730X_PROTSTATUS_TOOHOTD) ||
(val & MAX1730X_PROTSTATUS_DIEHOT)) {
*health = POWER_SUPPLY_HEALTH_OVERHEAT;
} else if ((val & MAX1730X_PROTSTATUS_UVP) ||
(val & MAX1730X_PROTSTATUS_PERMFAIL) ||
(val & MAX1730X_PROTSTATUS_SHDN)) {
*health = POWER_SUPPLY_HEALTH_DEAD;
} else if (val & MAX1730X_PROTSTATUS_TOOCOLDC) {
*health = POWER_SUPPLY_HEALTH_COLD;
} else if (val & MAX1730X_PROTSTATUS_OVP) {
*health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
} else if ((val & MAX1730X_PROTSTATUS_QOVFLW) ||
(val & MAX1730X_PROTSTATUS_OCCP) ||
(val & MAX1730X_PROTSTATUS_ODCP)) {
*health = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
} else if (val & MAX1730X_PROTSTATUS_CHGWDT) {
*health = POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE;
} else {
*health = POWER_SUPPLY_HEALTH_GOOD;
}
return 0;
}
static int max1720x_get_min_capacity_alert_th(struct max1720x_priv *priv,
unsigned int *th)
{
int ret;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[SALRTTH_REG], th);
if (ret < 0)
return ret;
*th &= 0xFF;
return 0;
}
static int max1720x_set_min_capacity_alert_th(struct max1720x_priv *priv,
unsigned int th)
{
int ret;
unsigned int data;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[SALRTTH_REG], &data);
if (ret < 0)
return ret;
data &= 0xFF00;
data |= (th & 0xFF);
ret = regmap_write(map, priv->regs[SALRTTH_REG], data);
if (ret < 0)
return ret;
return 0;
}
static int max1720x_get_max_capacity_alert_th(struct max1720x_priv *priv,
unsigned int *th)
{
int ret;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[SALRTTH_REG], th);
if (ret < 0)
return ret;
*th >>= 8;
return 0;
}
static int max1720x_set_max_capacity_alert_th(struct max1720x_priv *priv,
unsigned int th)
{
int ret;
unsigned int data;
struct regmap *map = priv->regmap;
ret = regmap_read(map, priv->regs[SALRTTH_REG], &data);
if (ret < 0)
return ret;
data &= 0xFF;
data |= ((th & 0xFF) << 8);
ret = regmap_write(map, priv->regs[SALRTTH_REG], data);
if (ret < 0)
return ret;
return 0;
}
static int max1720x_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct max1720x_priv *priv = power_supply_get_drvdata(psy);
struct regmap *regmap = priv->regmap;
struct max1720x_platform_data *pdata = priv->pdata;
unsigned int reg;
int ret;
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
ret = regmap_read(regmap, priv->regs[STATUS_REG], ®);
if (ret < 0)
return ret;
if (reg & MAX1720X_STATUS_BST)
val->intval = 0;
else
val->intval = 1;
break;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
ret = regmap_read(regmap, priv->regs[CYCLES_REG], ®);
if (ret < 0)
return ret;
val->intval = reg * 100 / priv->cycles_reg_lsb_percent;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
ret = regmap_read(regmap, priv->regs[MAXMINVOLT_REG], ®);
if (ret < 0)
return ret;
val->intval = reg >> 8;
val->intval *= 20000; /* Units of LSB = 20mV */
break;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
ret = regmap_read(regmap, priv->regs[VEMPTY_REG], ®);
if (ret < 0)
return ret;
val->intval = reg >> 7;
val->intval *= 10000; /* Units of LSB = 10mV */
break;
case POWER_SUPPLY_PROP_STATUS:
if (pdata && priv->get_charging_status)
val->intval = priv->get_charging_status();
else
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
ret = regmap_read(regmap, priv->regs[VCELL_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_voltage_to_uvolts(priv, reg);
break;
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
ret = regmap_read(regmap, priv->regs[AVGVCELL_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_voltage_to_uvolts(priv, reg);
break;
case POWER_SUPPLY_PROP_VOLTAGE_OCV:
ret = regmap_read(regmap, priv->regs[VFOCV_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_voltage_to_uvolts(priv, reg);
break;
case POWER_SUPPLY_PROP_CAPACITY:
ret = regmap_read(regmap, priv->regs[REPSOC_REG], ®);
if (ret < 0)
return ret;
val->intval = reg >> 8; /* RepSOC LSB: 1/256 % */
break;
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
ret = max1720x_get_min_capacity_alert_th(priv, &val->intval);
if (ret < 0)
return ret;
break;
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX:
ret = max1720x_get_max_capacity_alert_th(priv, &val->intval);
if (ret < 0)
return ret;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
ret = regmap_read(regmap, priv->regs[DESIGNCAP_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_capacity_to_uamph(priv, reg);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
ret = regmap_read(regmap, priv->regs[FULLCAPREP_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_capacity_to_uamph(priv, reg);
break;
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
ret = regmap_read(regmap, priv->regs[QH_REG], ®);
if (ret < 0)
return ret;
/* This register is signed as oppose to other capacity type
* registers.
*/
val->intval = max1720x_raw_capacity_to_uamph(priv,
sign_extend32(reg, 15));
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
ret = regmap_read(regmap, priv->regs[REPCAP_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_capacity_to_uamph(priv, reg);
break;
case POWER_SUPPLY_PROP_TEMP:
ret = max1720x_get_temperature(priv, &val->intval);
if (ret < 0)
return ret;
break;
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
ret = max1720x_get_temperature_alert_min(priv, &val->intval);
if (ret < 0)
return ret;
break;
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
ret = max1720x_get_temperature_alert_max(priv, &val->intval);
if (ret < 0)
return ret;
break;
case POWER_SUPPLY_PROP_HEALTH:
if (priv->get_battery_health != 0) {
ret = priv->get_battery_health(priv, &val->intval);
if (ret < 0)
return ret;
} else {
val->intval = POWER_SUPPLY_HEALTH_UNKNOWN;
}
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
ret = regmap_read(regmap, priv->regs[CURRENT_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_current_to_uamps(priv, sign_extend32(reg, 15));
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
ret = regmap_read(regmap, priv->regs[AVGCURRENT_REG], ®);
if (ret < 0)
return ret;
val->intval = max1720x_raw_current_to_uamps(priv, sign_extend32(reg, 15));
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
ret = regmap_read(regmap, priv->regs[TTE_REG], ®);
if (ret < 0)
return ret;
val->intval = (reg * 45) >> 3; /* TTE LSB: 5.625 sec */
break;
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
ret = regmap_read(regmap, priv->regs[TTF_REG], ®);
if (ret < 0)
return ret;
val->intval = (reg * 45) >> 3; /* TTF LSB: 5.625 sec */
break;
default:
return -EINVAL;
}
return 0;
}
static int max1720x_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct max1720x_priv *priv = power_supply_get_drvdata(psy);
int ret = 0;
switch (psp) {
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
ret = max1720x_set_temp_lower_limit(priv, val->intval);
if (ret < 0)
dev_err(priv->dev, "temp alert min set fail:%d\n",
ret);
break;
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
ret = max1720x_set_temp_upper_limit(priv, val->intval);
if (ret < 0)
dev_err(priv->dev, "temp alert max set fail:%d\n",
ret);
break;
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
ret = max1720x_set_min_capacity_alert_th(priv, val->intval);
if (ret < 0)
dev_err(priv->dev, "capacity alert min set fail:%d\n",
ret);
break;
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX:
ret = max1720x_set_max_capacity_alert_th(priv, val->intval);
if (ret < 0)
dev_err(priv->dev, "capacity alert max set fail:%d\n",
ret);
break;
default:
return -EINVAL;
}
return ret;
}
static int max1720x_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
int ret;
switch (psp) {
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX:
ret = 1;
break;
default:
ret = 0;
}
return ret;
}
static irqreturn_t max1720x_irq_handler(int id, void *dev)
{
struct max1720x_priv *priv = dev;
u32 val;
/* Check alert type */
regmap_read(priv->regmap, priv->regs[STATUS_REG], &val);
if (val & MAX1720X_STATUS_SOC_MAX_ALRT)
dev_info(priv->dev, "Alert: SOC MAX!\n");
if (val & MAX1720X_STATUS_SOC_MIN_ALRT)
dev_info(priv->dev, "Alert: SOC MIN!\n");
if (val & MAX1720X_STATUS_TEMP_MAX_ALRT)
dev_info(priv->dev, "Alert: TEMP MAX!\n");
if (val & MAX1720X_STATUS_TEMP_MIN_ALRT)
dev_info(priv->dev, "Alert: TEMP MIN!\n");
if (val & MAX1720X_STATUS_VOLT_MAX_ALRT)
dev_info(priv->dev, "Alert: VOLT MAX!\n");
if (val & MAX1720X_STATUS_VOLT_MIN_ALRT)
dev_info(priv->dev, "Alert: VOLT MIN!\n");
if (val & MAX1720X_STATUS_CURR_MAX_ALRT)
dev_info(priv->dev, "Alert: CURR MAX!\n");
if (val & MAX1720X_STATUS_CURR_MIN_ALRT)
dev_info(priv->dev, "Alert: CURR MIN!\n");
/* Clear alerts */
regmap_write(priv->regmap, priv->regs[STATUS_REG],
val & MAX1720X_STATUS_ALRT_CLR_MASK);
power_supply_changed(priv->battery);
return IRQ_HANDLED;
}
static void max1720x_set_alert_thresholds(struct max1720x_priv *priv)
{
struct max1720x_platform_data *pdata = priv->pdata;
struct regmap *regmap = priv->regmap;
u32 val;
/* Set VAlrtTh */
val = (pdata->volt_min / 20);
val |= ((pdata->volt_max / 20) << 8);
regmap_write(regmap, priv->regs[VALRTTH_REG], val);
/* Set TAlrtTh */
val = pdata->temp_min & 0xFF;
val |= ((pdata->temp_max & 0xFF) << 8);
regmap_write(regmap, priv->regs[TALRTTH_REG], val);
/* Set SAlrtTh */
val = pdata->soc_min;
val |= (pdata->soc_max << 8);
regmap_write(regmap, priv->regs[SALRTTH_REG], val);
/* Set IAlrtTh */
val = (pdata->curr_min * pdata->rsense / 400) & 0xFF;
val |= (((pdata->curr_max * pdata->rsense / 400) & 0xFF) << 8);
regmap_write(regmap, priv->regs[IALRTTH_REG], val);
}
static int max1720x_init(struct max1720x_priv *priv)
{
struct regmap *regmap = priv->regmap;
int ret;
unsigned int reg;
u32 fgrev;
ret = regmap_read(regmap, priv->regs[VERSION_REG], &fgrev);
if (ret < 0)
return ret;
dev_info(priv->dev, "IC Version: 0x%04x\n", fgrev);
/* Optional step - alert threshold initialization */
max1720x_set_alert_thresholds(priv);
/* Clear Status.POR */
ret = regmap_read(regmap, priv->regs[STATUS_REG], ®);
if (ret < 0)
return ret;
ret = regmap_write(regmap, priv->regs[STATUS_REG],
reg & ~MAX1720X_STATUS_POR);
if (ret < 0)
return ret;
return 0;
}
static void max1720x_init_worker(struct work_struct *work)
{
struct max1720x_priv *priv = container_of(work,
struct max1720x_priv,
init_worker);
max1720x_init(priv);
}
static struct max1720x_platform_data *max1720x_parse_dt(struct device *dev)
{
struct device_node *np = dev->of_node;
struct max1720x_platform_data *pdata;
int ret;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
ret = of_property_read_u32(np, "talrt-min", &pdata->temp_min);
if (ret)
pdata->temp_min = -128; /* DegreeC */ /* Disable alert */
ret = of_property_read_u32(np, "talrt-max", &pdata->temp_max);
if (ret)
pdata->temp_max = 127; /* DegreeC */ /* Disable alert */
ret = of_property_read_u32(np, "valrt-min", &pdata->volt_min);
if (ret)
pdata->volt_min = 0; /* mV */ /* Disable alert */
ret = of_property_read_u32(np, "valrt-max", &pdata->volt_max);
if (ret)
pdata->volt_max = 5100; /* mV */ /* Disable alert */
ret = of_property_read_u32(np, "ialrt-min", &pdata->curr_min);
if (ret)
pdata->curr_min = -5120; /* mA */ /* Disable alert */
ret = of_property_read_u32(np, "ialrt-max", &pdata->curr_max);
if (ret)
pdata->curr_max = 5080; /* mA */ /* Disable alert */
ret = of_property_read_u32(np, "salrt-min", &pdata->soc_min);
if (ret)
pdata->soc_min = 0; /* Percent */ /* Disable alert */
ret = of_property_read_u32(np, "salrt-max", &pdata->soc_max);
if (ret)
pdata->soc_max = 255; /* Percent */ /* Disable alert */
ret = of_property_read_u32(np, "rsense", &pdata->rsense);
if (ret)
pdata->rsense = 10;
return pdata;
}
static const struct regmap_config max1720x_regmap = {
.reg_bits = 8,
.val_bits = 16,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
};
static const struct power_supply_desc max1720x_fg_desc = {
.name = "max1720x_battery",
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = max1720x_battery_props,
.num_properties = ARRAY_SIZE(max1720x_battery_props),
.get_property = max1720x_get_property,
.set_property = max1720x_set_property,
.property_is_writeable = max1720x_property_is_writeable,
};
static int max1720x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct max1720x_priv *priv;
struct power_supply_config psy_cfg = {};
int ret;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA))
return -EIO;
priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->regs = chip_regs[id->driver_data];
priv->nvmem_high_addr = nvmem_high_addrs[id->driver_data];
priv->cycles_reg_lsb_percent = cycles_reg_lsb_percents[id->driver_data];
priv->get_battery_health = get_battery_health_handlers[id->driver_data];
if (client->dev.of_node)
priv->pdata = max1720x_parse_dt(&client->dev);
else
priv->pdata = client->dev.platform_data;
priv->dev = &client->dev;
i2c_set_clientdata(client, priv);
priv->client = client;
priv->regmap = devm_regmap_init_i2c(client, &max1720x_regmap);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
INIT_WORK(&priv->init_worker, max1720x_init_worker);
schedule_work(&priv->init_worker);
psy_cfg.drv_data = priv;
priv->battery = power_supply_register(&client->dev,
&max1720x_fg_desc, &psy_cfg);
if (IS_ERR(priv->battery)) {
ret = PTR_ERR(priv->battery);
dev_err(&client->dev, "failed to register battery: %d\n", ret);
goto err_supply;
}
if (client->irq) {
ret = devm_request_threaded_irq(priv->dev, client->irq,
NULL,
max1720x_irq_handler,
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
priv->battery->desc->name,
priv);
if (ret) {
dev_err(priv->dev, "Failed to request irq %d\n",
client->irq);
goto err_irq;
} else {
regmap_update_bits(priv->regmap, priv->regs[CONFIG_REG],
MAX1720X_CONFIG_ALRT_EN,
MAX1720X_CONFIG_ALRT_EN);
}
}
/* Create max1720x sysfs attributes */
priv->attr_grp = &max1720x_attr_group;
ret = sysfs_create_group(&priv->dev->kobj, priv->attr_grp);
if (ret) {
dev_err(priv->dev, "Failed to create attribute group [%d]\n",
ret);
priv->attr_grp = NULL;
goto err_attr;
}
return 0;
err_irq:
power_supply_unregister(priv->battery);
err_supply:
cancel_work_sync(&priv->init_worker);
err_attr:
sysfs_remove_group(&priv->dev->kobj, priv->attr_grp);
return ret;
}
static int max1720x_remove(struct i2c_client *client)
{
struct max1720x_priv *priv = i2c_get_clientdata(client);
cancel_work_sync(&priv->init_worker);
sysfs_remove_group(&priv->dev->kobj, priv->attr_grp);
power_supply_unregister(priv->battery);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int max1720x_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
if (client->irq) {
disable_irq(client->irq);
enable_irq_wake(client->irq);
}
return 0;
}
static int max1720x_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
if (client->irq) {
disable_irq_wake(client->irq);
enable_irq(client->irq);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(max1720x_pm_ops, max1720x_suspend, max1720x_resume);
#define MAX1720X_PM_OPS (&max1720x_pm_ops)
#else
#define MAX1720X_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_OF
static const struct of_device_id max1720x_match[] = {
{ .compatible = "maxim,max17201", },
{ .compatible = "maxim,max17205", },
{ .compatible = "maxim,max17301", },
{ .compatible = "maxim,max17302", },
{ .compatible = "maxim,max17303", },
{ },
};
MODULE_DEVICE_TABLE(of, max1720x_match);
#endif
static const struct i2c_device_id max1720x_id[] = {
{ "max17201", ID_MAX1720X },
{ "max17205", ID_MAX1720X },
{ "max17301", ID_MAX1730X },
{ "max17302", ID_MAX1730X },
{ "max17303", ID_MAX1730X },
{ },
};
MODULE_DEVICE_TABLE(i2c, max1720x_id);
static struct i2c_driver max1720x_i2c_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(max1720x_match),
.pm = MAX1720X_PM_OPS,
},
.probe = max1720x_probe,
.remove = max1720x_remove,
.id_table = max1720x_id,
};
module_i2c_driver(max1720x_i2c_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mahir Ozturk <[email protected]>");
MODULE_DESCRIPTION("Maxim MAX17201/5 and MAX17301/2/3 Fuel Gauge driver");
| 30,367 | C | 23.912223 | 80 | 0.662331 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/LCD/ST7789.py | # ST7789 IPS LCD (320x240) driver
import numbers
import time
import numpy as np
import sys
import os
from PIL import Image
from PIL import ImageDraw
sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot")
sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs])
import Mangdang.Adafruit_GPIO as GPIO
import Mangdang.Adafruit_GPIO.SPI as SPI
from Mangdang.LCD.gif import AnimatedGif
SPI_CLOCK_HZ = 31200000 # 31.2 MHz
# Constants for interacting with display registers.
ST7789_TFTWIDTH = 320
ST7789_TFTHEIGHT = 240
ST7789_NOP = 0x00
ST7789_SWRESET = 0x01
ST7789_RDDID = 0x04
ST7789_RDDST = 0x09
ST7789_RDDPM = 0x0A
ST7789_RDDMADCTL = 0x0B
ST7789_RDDCOLMOD = 0x0C
ST7789_RDDIM = 0x0D
ST7789_RDDSM = 0x0E
ST7789_RDDSDR = 0x0F
ST7789_SLPIN = 0x10
ST7789_SLPOUT = 0x11
ST7789_PTLON = 0x12
ST7789_NORON = 0x13
ST7789_INVOFF = 0x20
ST7789_INVON = 0x21
ST7789_GAMSET = 0x26
ST7789_DISPOFF = 0x28
ST7789_DISPON = 0x29
ST7789_CASET = 0x2A
ST7789_RASET = 0x2B
ST7789_RAMWR = 0x2C
ST7789_RAMRD = 0x2E
ST7789_PTLAR = 0x30
ST7789_VSCRDEF = 0x33
ST7789_TEOFF = 0x34
ST7789_TEON = 0x35
ST7789_MADCTL = 0x36
ST7789_VSCRSADD = 0x37
ST7789_IDMOFF = 0x38
ST7789_IDMON = 0x39
ST7789_COLMOD = 0x3A
ST7789_RAMWRC = 0x3C
ST7789_RAMRDC = 0x3E
ST7789_TESCAN = 0x44
ST7789_RDTESCAN = 0x45
ST7789_WRDISBV = 0x51
ST7789_RDDISBV = 0x52
ST7789_WRCTRLD = 0x53
ST7789_RDCTRLD = 0x54
ST7789_WRCACE = 0x55
ST7789_RDCABC = 0x56
ST7789_WRCABCMB = 0x5E
ST7789_RDCABCMB = 0x5F
ST7789_RDABCSDR = 0x68
ST7789_RDID1 = 0xDA
ST7789_RDID2 = 0xDB
ST7789_RDID3 = 0xDC
ST7789_RAMCTRL = 0xB0
ST7789_RGBCTRL = 0xB1
ST7789_PORCTRL = 0xB2
ST7789_FRCTRL1 = 0xB3
ST7789_GCTRL = 0xB7
ST7789_DGMEN = 0xBA
ST7789_VCOMS = 0xBB
ST7789_LCMCTRL = 0xC0
ST7789_IDSET = 0xC1
ST7789_VDVVRHEN = 0xC2
ST7789_VRHS = 0xC3
ST7789_VDVSET = 0xC4
ST7789_VCMOFSET = 0xC5
ST7789_FRCTR2 = 0xC6
ST7789_CABCCTRL = 0xC7
ST7789_REGSEL1 = 0xC8
ST7789_REGSEL2 = 0xCA
ST7789_PWMFRSEL = 0xCC
ST7789_PWCTRL1 = 0xD0
ST7789_VAPVANEN = 0xD2
ST7789_CMD2EN = 0xDF5A6902
ST7789_PVGAMCTRL = 0xE0
ST7789_NVGAMCTRL = 0xE1
ST7789_DGMLUTR = 0xE2
ST7789_DGMLUTB = 0xE3
ST7789_GATECTRL = 0xE4
ST7789_PWCTRL2 = 0xE8
ST7789_EQCTRL = 0xE9
ST7789_PROMCTRL = 0xEC
ST7789_PROMEN = 0xFA
ST7789_NVMSET = 0xFC
ST7789_PROMACT = 0xFE
# Colours for convenience
ST7789_BLACK = 0x0000 # 0b 00000 000000 00000
ST7789_BLUE = 0x001F # 0b 00000 000000 11111
ST7789_GREEN = 0x07E0 # 0b 00000 111111 00000
ST7789_RED = 0xF800 # 0b 11111 000000 00000
ST7789_CYAN = 0x07FF # 0b 00000 111111 11111
ST7789_MAGENTA = 0xF81F # 0b 11111 000000 11111
ST7789_YELLOW = 0xFFE0 # 0b 11111 111111 00000
ST7789_WHITE = 0xFFFF # 0b 11111 111111 11111
def color565(r, g, b):
"""Convert red, green, blue components to a 16-bit 565 RGB value. Components
should be values 0 to 255.
"""
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3)
def image_to_data(image):
"""Generator function to convert a PIL image to 16-bit 565 RGB bytes."""
# NumPy is much faster at doing this. NumPy code provided by:
# Keith (https://www.blogger.com/profile/02555547344016007163)
pb = np.array(image.convert('RGB')).astype('uint16')
color = ((pb[:,:,0] & 0xF8) << 8) | ((pb[:,:,1] & 0xFC) << 3) | (pb[:,:,2] >> 3)
return np.dstack(((color >> 8) & 0xFF, color & 0xFF)).flatten().tolist()
class ST7789(object):
"""Representation of an ST7789 IPS LCD."""
def __init__(self, rst, dc, led):
"""Create an instance of the display using SPI communication. Must
provide the GPIO pin number for the D/C pin and the SPI driver. Can
optionally provide the GPIO pin number for the reset pin as the rst
parameter.
"""
SPI_PORT = 0
SPI_DEVICE = 0
SPI_MODE = 0b11
SPI_SPEED_HZ = 40000000
self._spi = SPI.SpiDev(SPI_PORT, SPI_DEVICE, max_speed_hz=SPI_SPEED_HZ)
self._rst = rst
self._dc = dc
self._led = led
self._gpio = None
self.width = ST7789_TFTWIDTH
self.height = ST7789_TFTHEIGHT
if self._gpio is None:
self._gpio = GPIO.get_platform_gpio()
# Set DC as output.
self._gpio.setup(self._dc, GPIO.OUT)
# Setup reset as output (if provided).
if self._rst is not None:
self._gpio.setup(self._rst, GPIO.OUT)
# Turn on the backlight LED
self._gpio.setup(self._led, GPIO.OUT)
# Set SPI to mode 0, MSB first.
self._spi.set_mode(SPI_MODE)
self._spi.set_bit_order(SPI.MSBFIRST)
self._spi.set_clock_hz(SPI_CLOCK_HZ)
# Create an image buffer.
self.buffer = Image.new('RGB', (self.width, self.height))
def send(self, data, is_data=True, chunk_size=4096):
"""Write a byte or array of bytes to the display. Is_data parameter
controls if byte should be interpreted as display data (True) or command
data (False). Chunk_size is an optional size of bytes to write in a
single SPI transaction, with a default of 4096.
"""
# Set DC low for command, high for data.
self._gpio.output(self._dc, is_data)
# Convert scalar argument to list so either can be passed as parameter.
if isinstance(data, numbers.Number):
data = [data & 0xFF]
# Write data a chunk at a time.
for start in range(0, len(data), chunk_size):
end = min(start+chunk_size, len(data))
self._spi.write(data[start:end])
def command(self, data):
"""Write a byte or array of bytes to the display as command data."""
self.send(data, False)
def data(self, data):
"""Write a byte or array of bytes to the display as display data."""
self.send(data, True)
def reset(self):
"""Reset the display, if reset pin is connected."""
if self._rst is not None:
self._gpio.set_high(self._rst)
time.sleep(0.100)
self._gpio.set_low(self._rst)
time.sleep(0.100)
self._gpio.set_high(self._rst)
time.sleep(0.100)
def _init(self):
# Initialize the display. Broken out as a separate function so it can
# be overridden by other displays in the future.
time.sleep(0.012)
self.command(0x11)
time.sleep(0.150)
self.command(0x36)
self.data(0xA0)
self.data(0x00)
self.command(0x3A)
self.data(0x05)
self.command(0xB2)
self.data(0x0C)
self.data(0x0C)
self.data(0x00)
self.data(0x33)
self.data(0x33)
self.command(0xB7)
self.data(0x35)
## ---------------------------------ST7789S Power setting - ----------------------------
self.command(0xBB)
self.data(0x29)
# self.command(0xC0)
# self.data(0x2C)
self.command(0xC2)
self.data(0x01)
self.command(0xC3)
self.data(0x19)
self.command(0xC4)
self.data(0x20)
self.command(0xC5)
self.data(0x1A)
self.command(0xC6)
self.data(0x1F) ## 0x0F:60Hz
# self.command(0xCA)
# self.data(0x0F)
#
# self.command(0xC8)
# self.data(0x08)
#
# self.command(0x55)
# self.data(0x90)
self.command(0xD0)
self.data(0xA4)
self.data(0xA1)
## --------------------------------ST7789S gamma setting - -----------------------------
self.command(0xE0)
self.data(0xD0)
self.data(0x08)
self.data(0x0E)
self.data(0x09)
self.data(0x09)
self.data(0x05)
self.data(0x31)
self.data(0x33)
self.data(0x48)
self.data(0x17)
self.data(0x14)
self.data(0x15)
self.data(0x31)
self.data(0x34)
self.command(0xE1)
self.data(0xD0)
self.data(0x08)
self.data(0x0E)
self.data(0x09)
self.data(0x09)
self.data(0x15)
self.data(0x31)
self.data(0x33)
self.data(0x48)
self.data(0x17)
self.data(0x14)
self.data(0x15)
self.data(0x31)
self.data(0x34)
self.command(0x21)
self.command(0x29)
time.sleep(0.100) # 100 ms
self._gpio.set_high(self._led)
def begin(self):
"""Initialize the display. Should be called once before other calls that
interact with the display are called.
"""
self.reset()
self._init()
def set_window(self, x0=0, y0=0, x1=None, y1=None):
"""Set the pixel address window for proceeding drawing commands. x0 and
x1 should define the minimum and maximum x pixel bounds. y0 and y1
should define the minimum and maximum y pixel bound. If no parameters
are specified the default will be to update the entire display from 0,0
to width-1,height-1.
"""
if x1 is None:
x1 = self.width-1
if y1 is None:
y1 = self.height-1
self.command(ST7789_CASET) # Column addr set
self.data(x0 >> 8)
self.data(x0) # XSTART
self.data(x1 >> 8)
self.data(x1) # XEND
self.command(ST7789_RASET) # Row addr set
self.data(y0 >> 8)
self.data(y0) # YSTART
self.data(y1 >> 8)
self.data(y1) # YEND
self.command(ST7789_RAMWR) # write to RAM
#def display(self, image=None):
def display(self, image=None, x0=0, y0=0, x1=None, y1=None):
"""Write the display buffer or provided image to the hardware. If no
image parameter is provided the display buffer will be written to the
hardware. If an image is provided, it should be RGB format and the
same dimensions as the display hardware.
"""
# By default write the internal buffer to the display.
if image is None:
image = self.buffer
# Set address bounds to entire display.
#self.set_window()
if x1 is None:
x1 = self.width-1
if y1 is None:
y1 = self.height-1
self.set_window(x0, y0, x1, y1)
#image.thumbnail((x1-x0+1, y1-y0+1), Image.ANTIALIAS)
# Convert image to array of 16bit 565 RGB data bytes.
# Unfortunate that this copy has to occur, but the SPI byte writing
# function needs to take an array of bytes and PIL doesn't natively
# store images in 16-bit 565 RGB format.
pixelbytes = list(image_to_data(image))
# Write data to hardware.
self.data(pixelbytes)
def clear(self, color=(0,0,0)):
"""Clear the image buffer to the specified RGB color (default black)."""
width, height = self.buffer.size
self.buffer.putdata([color]*(width*height))
def draw(self):
"""Return a PIL ImageDraw instance for 2D drawing on the image buffer."""
return ImageDraw.Draw(self.buffer)
| 11,573 | Python | 29.781915 | 129 | 0.584723 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Mangdang/LCD/gif.py | import os
import time
from PIL import Image
from PIL import ImageOps
class Frame:
def __init__(self, duration=0):
self.duration = duration
self.image = None
class AnimatedGif:
def __init__(self, display, width=None, height=None, folder=None):
self._frame_count = 0
self._loop = 0
self._index = 0
self._duration = 0
self._gif_files = []
self._frames = []
self._gif_folder = folder
if width is not None:
self._width = width
else:
self._width = display.width
if height is not None:
self._height = height
else:
self._height = display.height
self.display = display
if folder is not None:
self.load_files(folder)
self.preload()
def advance(self):
self._index = (self._index + 1) % len(self._gif_files)
def back(self):
self._index = (self._index - 1 + len(self._gif_files)) % len(self._gif_files)
def load_files(self, folder):
gif_files = [f for f in os.listdir(folder) if f.endswith(".gif")]
for gif_file in gif_files:
image = Image.open(folder + gif_file)
# Only add animated Gifs
if image.is_animated:
self._gif_files.append(gif_file)
#print("Found", self._gif_files)
if not self._gif_files:
print("No Gif files found in current folder")
exit() # pylint: disable=consider-using-sys-exit
def preload(self):
image = Image.open(self._gif_folder + self._gif_files[self._index])
#print("Loading {}...".format(self._gif_files[self._index]))
if "duration" in image.info:
self._duration = image.info["duration"]
else:
self._duration = 0
if "loop" in image.info:
self._loop = image.info["loop"]
else:
self._loop = 1
self._frame_count = image.n_frames
del self._frames[:]
for frame in range(self._frame_count):
image.seek(frame)
# Create blank image for drawing.
# Make sure to create image with mode 'RGB' for full color.
frame_object = Frame(duration=self._duration)
if "duration" in image.info:
frame_object.duration = image.info["duration"]
frame_object.image = ImageOps.pad( # pylint: disable=no-member
image.convert("RGB"),
(self._width, self._height),
method=Image.NEAREST,
color=(0, 0, 0),
centering=(0.5, 0.5),
)
self._frames.append(frame_object)
def play(self):
# Check if we have loaded any files first
if not self._gif_files:
print("There are no Gif Images loaded to Play")
return False
#while True:
for frame_object in self._frames:
start_time = time.time()
self.display.display(frame_object.image)
while time.time() < (start_time + frame_object.duration / 1000):
pass
if self._loop == 1:
return True
if self._loop > 0:
self._loop -= 1
def run(self):
while True:
auto_advance = self.play()
if auto_advance:
self.advance()
| 3,404 | Python | 31.740384 | 85 | 0.529083 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PupperCommand/joystick.py | from UDPComms import Publisher, Subscriber, timeout
from PS4Joystick import Joystick
import time
## you need to git clone the PS4Joystick repo and run `sudo bash install.sh`
## Configurable ##
MESSAGE_RATE = 20
PUPPER_COLOR = {"red":0, "blue":0, "green":255}
joystick_pub = Publisher(8830,65530)
joystick_subcriber = Subscriber(8840, timeout=0.01)
joystick = Joystick()
joystick.led_color(**PUPPER_COLOR)
while True:
values = joystick.get_input()
left_y = -values["left_analog_y"]
right_y = -values["right_analog_y"]
right_x = values["right_analog_x"]
left_x = values["left_analog_x"]
L2 = values["l2_analog"]
R2 = values["r2_analog"]
R1 = values["button_r1"]
L1 = values["button_l1"]
square = values["button_square"]
x = values["button_cross"]
circle = values["button_circle"]
triangle = values["button_triangle"]
dpadx = values["dpad_right"] - values["dpad_left"]
dpady = values["dpad_up"] - values["dpad_down"]
msg = {
"ly": left_y,
"lx": left_x,
"rx": right_x,
"ry": right_y,
"L2": L2,
"R2": R2,
"R1": R1,
"L1": L1,
"dpady": dpady,
"dpadx": dpadx,
"x": x,
"square": square,
"circle": circle,
"triangle": triangle,
"message_rate": MESSAGE_RATE,
}
joystick_pub.send(msg)
try:
msg = joystick_subcriber.get()
joystick.led_color(**msg["ps4_color"])
except timeout:
pass
time.sleep(1 / MESSAGE_RATE)
| 1,539 | Python | 22.692307 | 76 | 0.581546 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/PupperCommand/README.md | # PupperCommand
## Installation
```shell
git clone https://github.com/stanfordroboticsclub/PupperCommand.git
cd PupperCommand
sudo bash install.sh
```
Then clone https://github.com/stanfordroboticsclub/PS4Joystick/ and follow the installation instructions in the README.
## Starting the joystick publisher
1. The ```install.sh``` script makes the Raspberry Pi automatically look to pair and connect to PS4 joysticks on boot.
2. So once the Raspberry Pi turns on, put the PS4 controller into pairing mode by holding the share and PS button at the same time. The light should start blinking in bursts of two.
3. By around 10 seconds, the joystick should have paired with the Raspberry Pi and the front light on the joystick will change to whatever color you specify in the ```joystick.py``` script.
## Debugging
To see if the controller is publishing to the Rover topic use:
```shell
rover peek 8830
```
You can also check the status of the system daemon (systemd) running the ```joystick.py``` script by doing
```shell
sudo systemctl status joystick
```
If it shows that the service failed, you can try
```shell
sudo systemctl stop joystick
sudo systemctl start joystick
```
## Notes
If a packet is lost over the joystick connection, the PS4Joystick code will raise an exception and cause the program to exit. Systemd will then restart the ```joystick.py``` script, which means you will have to re-pair the joystick (hold share + ps4 button until double blinking).
| 1,473 | Markdown | 42.35294 | 281 | 0.773931 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/Legacy/ImageOps.py | #
# The Python Imaging Library.
# $Id$
#
# standard image operations
#
# History:
# 2001-10-20 fl Created
# 2001-10-23 fl Added autocontrast operator
# 2001-12-18 fl Added Kevin's fit operator
# 2004-03-14 fl Fixed potential division by zero in equalize
# 2005-05-05 fl Fixed equalize for low number of values
#
# Copyright (c) 2001-2004 by Secret Labs AB
# Copyright (c) 2001-2004 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from . import Image
import operator
import functools
import warnings
#
# helpers
def _border(border):
if isinstance(border, tuple):
if len(border) == 2:
left, top = right, bottom = border
elif len(border) == 4:
left, top, right, bottom = border
else:
left = top = right = bottom = border
return left, top, right, bottom
def _color(color, mode):
if isStringType(color):
from . import ImageColor
color = ImageColor.getcolor(color, mode)
return color
def _lut(image, lut):
if image.mode == "P":
# FIXME: apply to lookup table, not image data
raise NotImplementedError("mode P support coming soon")
elif image.mode in ("L", "RGB"):
if image.mode == "RGB" and len(lut) == 256:
lut = lut + lut + lut
return image.point(lut)
else:
raise IOError("not supported for this image mode")
#
# actions
def autocontrast(image, cutoff=0, ignore=None):
"""
Maximize (normalize) image contrast. This function calculates a
histogram of the input image, removes **cutoff** percent of the
lightest and darkest pixels from the histogram, and remaps the image
so that the darkest pixel becomes black (0), and the lightest
becomes white (255).
:param image: The image to process.
:param cutoff: How many percent to cut off from the histogram.
:param ignore: The background pixel value (use None for no background).
:return: An image.
"""
histogram = image.histogram()
lut = []
for layer in range(0, len(histogram), 256):
h = histogram[layer:layer+256]
if ignore is not None:
# get rid of outliers
try:
h[ignore] = 0
except TypeError:
# assume sequence
for ix in ignore:
h[ix] = 0
if cutoff:
# cut off pixels from both ends of the histogram
# get number of pixels
n = 0
for ix in range(256):
n = n + h[ix]
# remove cutoff% pixels from the low end
cut = n * cutoff // 100
for lo in range(256):
if cut > h[lo]:
cut = cut - h[lo]
h[lo] = 0
else:
h[lo] -= cut
cut = 0
if cut <= 0:
break
# remove cutoff% samples from the hi end
cut = n * cutoff // 100
for hi in range(255, -1, -1):
if cut > h[hi]:
cut = cut - h[hi]
h[hi] = 0
else:
h[hi] -= cut
cut = 0
if cut <= 0:
break
# find lowest/highest samples after preprocessing
for lo in range(256):
if h[lo]:
break
for hi in range(255, -1, -1):
if h[hi]:
break
if hi <= lo:
# don't bother
lut.extend(list(range(256)))
else:
scale = 255.0 / (hi - lo)
offset = -lo * scale
for ix in range(256):
ix = int(ix * scale + offset)
if ix < 0:
ix = 0
elif ix > 255:
ix = 255
lut.append(ix)
return _lut(image, lut)
def colorize(image, black, white, mid=None, blackpoint=0,
whitepoint=255, midpoint=127):
"""
Colorize grayscale image.
This function calculates a color wedge which maps all black pixels in
the source image to the first color and all white pixels to the
second color. If **mid** is specified, it uses three-color mapping.
The **black** and **white** arguments should be RGB tuples or color names;
optionally you can use three-color mapping by also specifying **mid**.
Mapping positions for any of the colors can be specified
(e.g. **blackpoint**), where these parameters are the integer
value corresponding to where the corresponding color should be mapped.
These parameters must have logical order, such that
**blackpoint** <= **midpoint** <= **whitepoint** (if **mid** is specified).
:param image: The image to colorize.
:param black: The color to use for black input pixels.
:param white: The color to use for white input pixels.
:param mid: The color to use for midtone input pixels.
:param blackpoint: an int value [0, 255] for the black mapping.
:param whitepoint: an int value [0, 255] for the white mapping.
:param midpoint: an int value [0, 255] for the midtone mapping.
:return: An image.
"""
# Initial asserts
assert image.mode == "L"
if mid is None:
assert 0 <= blackpoint <= whitepoint <= 255
else:
assert 0 <= blackpoint <= midpoint <= whitepoint <= 255
# Define colors from arguments
black = _color(black, "RGB")
white = _color(white, "RGB")
if mid is not None:
mid = _color(mid, "RGB")
# Empty lists for the mapping
red = []
green = []
blue = []
# Create the low-end values
for i in range(0, blackpoint):
red.append(black[0])
green.append(black[1])
blue.append(black[2])
# Create the mapping (2-color)
if mid is None:
range_map = range(0, whitepoint - blackpoint)
for i in range_map:
red.append(black[0] + i * (white[0] - black[0]) // len(range_map))
green.append(black[1] + i * (white[1] - black[1]) // len(range_map))
blue.append(black[2] + i * (white[2] - black[2]) // len(range_map))
# Create the mapping (3-color)
else:
range_map1 = range(0, midpoint - blackpoint)
range_map2 = range(0, whitepoint - midpoint)
for i in range_map1:
red.append(black[0] + i * (mid[0] - black[0]) // len(range_map1))
green.append(black[1] + i * (mid[1] - black[1]) // len(range_map1))
blue.append(black[2] + i * (mid[2] - black[2]) // len(range_map1))
for i in range_map2:
red.append(mid[0] + i * (white[0] - mid[0]) // len(range_map2))
green.append(mid[1] + i * (white[1] - mid[1]) // len(range_map2))
blue.append(mid[2] + i * (white[2] - mid[2]) // len(range_map2))
# Create the high-end values
for i in range(0, 256 - whitepoint):
red.append(white[0])
green.append(white[1])
blue.append(white[2])
# Return converted image
image = image.convert("RGB")
return _lut(image, red + green + blue)
def pad(image, size, method=Image.NEAREST, color=None, centering=(0.5, 0.5)):
"""
Returns a sized and padded version of the image, expanded to fill the
requested aspect ratio and size.
:param image: The image to size and crop.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: What resampling method to use. Default is
:py:attr:`PIL.Image.NEAREST`.
:param color: The background color of the padded image.
:param centering: Control the position of the original image within the
padded version.
(0.5, 0.5) will keep the image centered
(0, 0) will keep the image aligned to the top left
(1, 1) will keep the image aligned to the bottom
right
:return: An image.
"""
im_ratio = image.width / image.height
dest_ratio = float(size[0]) / size[1]
if im_ratio == dest_ratio:
out = image.resize(size, resample=method)
else:
out = Image.new(image.mode, size, color)
if im_ratio > dest_ratio:
new_height = int(image.height / image.width * size[0])
if new_height != size[1]:
image = image.resize((size[0], new_height), resample=method)
y = int((size[1] - new_height) * max(0, min(centering[1], 1)))
out.paste(image, (0, y))
else:
new_width = int(image.width / image.height * size[1])
if new_width != size[0]:
image = image.resize((new_width, size[1]), resample=method)
x = int((size[0] - new_width) * max(0, min(centering[0], 1)))
out.paste(image, (x, 0))
return out
def crop(image, border=0):
"""
Remove border from image. The same amount of pixels are removed
from all four sides. This function works on all image modes.
.. seealso:: :py:meth:`~PIL.Image.Image.crop`
:param image: The image to crop.
:param border: The number of pixels to remove.
:return: An image.
"""
left, top, right, bottom = _border(border)
return image.crop(
(left, top, image.size[0]-right, image.size[1]-bottom)
)
def scale(image, factor, resample=Image.NEAREST):
"""
Returns a rescaled image by a specific factor given in parameter.
A factor greater than 1 expands the image, between 0 and 1 contracts the
image.
:param image: The image to rescale.
:param factor: The expansion factor, as a float.
:param resample: An optional resampling filter. Same values possible as
in the PIL.Image.resize function.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if factor == 1:
return image.copy()
elif factor <= 0:
raise ValueError("the factor must be greater than 0")
else:
size = (int(round(factor * image.width)),
int(round(factor * image.height)))
return image.resize(size, resample)
def deform(image, deformer, resample=Image.BILINEAR):
"""
Deform the image.
:param image: The image to deform.
:param deformer: A deformer object. Any object that implements a
**getmesh** method can be used.
:param resample: An optional resampling filter. Same values possible as
in the PIL.Image.transform function.
:return: An image.
"""
return image.transform(
image.size, Image.MESH, deformer.getmesh(image), resample
)
def equalize(image, mask=None):
"""
Equalize the image histogram. This function applies a non-linear
mapping to the input image, in order to create a uniform
distribution of grayscale values in the output image.
:param image: The image to equalize.
:param mask: An optional mask. If given, only the pixels selected by
the mask are included in the analysis.
:return: An image.
"""
if image.mode == "P":
image = image.convert("RGB")
h = image.histogram(mask)
lut = []
for b in range(0, len(h), 256):
histo = [_f for _f in h[b:b+256] if _f]
if len(histo) <= 1:
lut.extend(list(range(256)))
else:
step = (functools.reduce(operator.add, histo) - histo[-1]) // 255
if not step:
lut.extend(list(range(256)))
else:
n = step // 2
for i in range(256):
lut.append(n // step)
n = n + h[i+b]
return _lut(image, lut)
def expand(image, border=0, fill=0):
"""
Add border to the image
:param image: The image to expand.
:param border: Border width, in pixels.
:param fill: Pixel fill value (a color value). Default is 0 (black).
:return: An image.
"""
left, top, right, bottom = _border(border)
width = left + image.size[0] + right
height = top + image.size[1] + bottom
out = Image.new(image.mode, (width, height), _color(fill, image.mode))
out.paste(image, (left, top))
return out
def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)):
"""
Returns a sized and cropped version of the image, cropped to the
requested aspect ratio and size.
This function was contributed by Kevin Cazabon.
:param image: The image to size and crop.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: What resampling method to use. Default is
:py:attr:`PIL.Image.NEAREST`.
:param bleed: Remove a border around the outside of the image from all
four edges. The value is a decimal percentage (use 0.01 for
one percent). The default value is 0 (no border).
Cannot be greater than or equal to 0.5.
:param centering: Control the cropping position. Use (0.5, 0.5) for
center cropping (e.g. if cropping the width, take 50% off
of the left side, and therefore 50% off the right side).
(0.0, 0.0) will crop from the top left corner (i.e. if
cropping the width, take all of the crop off of the right
side, and if cropping the height, take all of it off the
bottom). (1.0, 0.0) will crop from the bottom left
corner, etc. (i.e. if cropping the width, take all of the
crop off the left side, and if cropping the height take
none from the top, and therefore all off the bottom).
:return: An image.
"""
# by Kevin Cazabon, Feb 17/2000
# [email protected]
# http://www.cazabon.com
# ensure centering is mutable
centering = list(centering)
if not 0.0 <= centering[0] <= 1.0:
centering[0] = 0.5
if not 0.0 <= centering[1] <= 1.0:
centering[1] = 0.5
if not 0.0 <= bleed < 0.5:
bleed = 0.0
# calculate the area to use for resizing and cropping, subtracting
# the 'bleed' around the edges
# number of pixels to trim off on Top and Bottom, Left and Right
bleed_pixels = (bleed * image.size[0], bleed * image.size[1])
live_size = (image.size[0] - bleed_pixels[0] * 2,
image.size[1] - bleed_pixels[1] * 2)
# calculate the aspect ratio of the live_size
live_size_ratio = float(live_size[0]) / live_size[1]
# calculate the aspect ratio of the output image
output_ratio = float(size[0]) / size[1]
# figure out if the sides or top/bottom will be cropped off
if live_size_ratio >= output_ratio:
# live_size is wider than what's needed, crop the sides
crop_width = output_ratio * live_size[1]
crop_height = live_size[1]
else:
# live_size is taller than what's needed, crop the top and bottom
crop_width = live_size[0]
crop_height = live_size[0] / output_ratio
# make the crop
crop_left = bleed_pixels[0] + (live_size[0]-crop_width) * centering[0]
crop_top = bleed_pixels[1] + (live_size[1]-crop_height) * centering[1]
crop = (
crop_left, crop_top,
crop_left + crop_width, crop_top + crop_height
)
# resize the image and return it
return image.resize(size, method, box=crop)
def flip(image):
"""
Flip the image vertically (top to bottom).
:param image: The image to flip.
:return: An image.
"""
return image.transpose(Image.FLIP_TOP_BOTTOM)
def grayscale(image):
"""
Convert the image to grayscale.
:param image: The image to convert.
:return: An image.
"""
return image.convert("L")
def invert(image):
"""
Invert (negate) the image.
:param image: The image to invert.
:return: An image.
"""
lut = []
for i in range(256):
lut.append(255-i)
return _lut(image, lut)
def mirror(image):
"""
Flip image horizontally (left to right).
:param image: The image to mirror.
:return: An image.
"""
return image.transpose(Image.FLIP_LEFT_RIGHT)
def posterize(image, bits):
"""
Reduce the number of bits for each color channel.
:param image: The image to posterize.
:param bits: The number of bits to keep for each channel (1-8).
:return: An image.
"""
lut = []
mask = ~(2**(8-bits)-1)
for i in range(256):
lut.append(i & mask)
return _lut(image, lut)
def solarize(image, threshold=128):
"""
Invert all pixel values above a threshold.
:param image: The image to solarize.
:param threshold: All pixels above this greyscale level are inverted.
:return: An image.
"""
lut = []
for i in range(256):
if i < threshold:
lut.append(i)
else:
lut.append(255-i)
return _lut(image, lut)
# --------------------------------------------------------------------
# PIL USM components, from Kevin Cazabon.
def gaussian_blur(im, radius=None):
""" PIL_usm.gblur(im, [radius])"""
warnings.warn(
'PIL.ImageOps.gaussian_blur is deprecated. '
'Use PIL.ImageFilter.GaussianBlur instead. '
'This function will be removed in a future version.',
DeprecationWarning
)
if radius is None:
radius = 5.0
im.load()
return im.im.gaussian_blur(radius)
def gblur(im, radius=None):
""" PIL_usm.gblur(im, [radius])"""
warnings.warn(
'PIL.ImageOps.gblur is deprecated. '
'Use PIL.ImageFilter.GaussianBlur instead. '
'This function will be removed in a future version.',
DeprecationWarning
)
return gaussian_blur(im, radius)
def unsharp_mask(im, radius=None, percent=None, threshold=None):
""" PIL_usm.usm(im, [radius, percent, threshold])"""
warnings.warn(
'PIL.ImageOps.unsharp_mask is deprecated. '
'Use PIL.ImageFilter.UnsharpMask instead. '
'This function will be removed in a future version.',
DeprecationWarning
)
if radius is None:
radius = 5.0
if percent is None:
percent = 150
if threshold is None:
threshold = 3
im.load()
return im.im.unsharp_mask(radius, percent, threshold)
def usm(im, radius=None, percent=None, threshold=None):
""" PIL_usm.usm(im, [radius, percent, threshold])"""
warnings.warn(
'PIL.ImageOps.usm is deprecated. '
'Use PIL.ImageFilter.UnsharpMask instead. '
'This function will be removed in a future version.',
DeprecationWarning
)
return unsharp_mask(im, radius, percent, threshold)
def box_blur(image, radius):
"""
Blur the image by setting each pixel to the average value of the pixels
in a square box extending radius pixels in each direction.
Supports float radius of arbitrary size. Uses an optimized implementation
which runs in linear time relative to the size of the image
for any radius value.
:param image: The image to blur.
:param radius: Size of the box in one direction. Radius 0 does not blur,
returns an identical image. Radius 1 takes 1 pixel
in each direction, i.e. 9 pixels in total.
:return: An image.
"""
warnings.warn(
'PIL.ImageOps.box_blur is deprecated. '
'Use PIL.ImageFilter.BoxBlur instead. '
'This function will be removed in a future version.',
DeprecationWarning
)
image.load()
return image._new(image.im.box_blur(radius))
| 19,772 | Python | 30.891935 | 80 | 0.581732 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/calibrate_tool.py | import re
import tkinter as tk
import tkinter.messagebox
from tkinter import *
import _thread
import time
import os
import sys
import numpy as np
from pupper.HardwareInterface import HardwareInterface
###################################################################
OverLoadCurrentMax = 1500000
OverLoadHoldCounterMax = 100 # almost 3s
ServoCalibrationFilePath = '/sys/bus/i2c/devices/3-0050/eeprom'
servo1_en = 25
servo2_en = 21
hw_version=""
###################################################################
class LegPositionScale:
def __init__(self,root,location_x,location_y,leg_name):
self.LocationX = location_x
self.LocationY = location_y
delt_x = 40
delt_y = 45
self.Value1 = DoubleVar()
self.Value2 = DoubleVar()
self.Value3 = DoubleVar()
self.title = Label(root,text = leg_name,font = ('bold',16))
self.label1 = Label(root,text = 'Hip')
self.slider1 = Scale(root,from_=-100,to=100,variable = self.Value1,length = 120,orient = HORIZONTAL)
self.label2 = Label(root,text = 'Thigh')
self.slider2 = Scale(root,from_=-55,to=145,variable = self.Value2,length = 120,orient = HORIZONTAL)
self.label3 = Label(root,text = 'Calf')
self.slider3 = Scale(root,from_=-145,to=55,variable = self.Value3,length = 120,orient = HORIZONTAL)
self.label1.place(x=location_x, y=location_y + 20)
self.label2.place(x=location_x, y=location_y + delt_y*1+ 20)
self.label3.place(x=location_x, y=location_y + delt_y*2+ 20)
self.slider1.place(x=location_x + delt_x, y=location_y )
self.slider2.place(x=location_x + delt_x, y=location_y + delt_y*1)
self.slider3.place(x=location_x + delt_x, y=location_y + delt_y*2)
self.title.place(x=location_x + 70, y=location_y + delt_y*3)
def setValue(self,value):
self.slider1.set(value[0])
self.slider2.set(value[1])
self.slider3.set(value[2])
return True
def getValue(self):
value = []
value.append(self.Value1.get())
value.append(self.Value2.get())
value.append(self.Value3.get())
return value
class CalibrationTool:
def __init__(self,title, width, height):
self.Run = True
self.FileAllLines = []
#leg slider value
self.Leg1SlidersValue = [0,0,0]
self.Leg2SlidersValue = [0,0,0]
self.Leg3SlidersValue = [0,0,0]
self.Leg4SlidersValue = [0,0,0]
# calibration data
self.Matrix_EEPROM = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [-45, -45, -45, -45]])
self.ServoStandardLAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]]
self.ServoNeutralLAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]]
self.NocalibrationServoAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]]
self.CalibrationServoAngle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]]
#build main window
self.MainWindow = tk.Tk()
screenwidth = self.MainWindow.winfo_screenwidth()
screenheight = self.MainWindow.winfo_screenheight()
size = '%dx%d+%d+%d' % (width, height, (screenwidth - width) / 2, (screenheight - height) / 2)
self.MainWindow.geometry(size)
self.MainWindow.title('MiniPupper') #Mini Pupper Calibration Tool
self.MainWindow.update()
#init title
self.Title = Label(self.MainWindow,text = title,font = ('bold',30))
self.Title.place(x=140,y=15)
#init robot image
self.photo = tk.PhotoImage(file= '/home/ubuntu/Robotics/QuadrupedRobot/Doc/imgs/MiniPupper.Calibration.png')
self.MainImg = Label(self.MainWindow,image = self.photo)
self.MainImg.place(x=230,y=60)
#init read update button
self.ResetButton = Button(self.MainWindow,text = ' Reset ',font = ('bold',20),command=self.ResetButtonEvent)
self.UpdateButton = Button(self.MainWindow,text = 'Update',font = ('bold',20),command=self.updateButtonEvent)
self.RestoreButton = Button(self.MainWindow,text = 'Restore',font = ('bold',7),command=self.RestoreButtonEvent)
self.ResetButton.place(x=600,y=100)
self.UpdateButton.place(x=600,y=200)
self.RestoreButton.place(x=160,y=80)
#build 4 legs sliders
self.Leg1Calibration = LegPositionScale(self.MainWindow,20,300, 'Leg 1')
self.Leg2Calibration = LegPositionScale(self.MainWindow,220,300,'Leg 2')
self.Leg3Calibration = LegPositionScale(self.MainWindow,420,300,'Leg 3')
self.Leg4Calibration = LegPositionScale(self.MainWindow,620,300,'Leg 4')
self.Leg1Calibration.setValue([self.ServoNeutralLAngle[0][0],self.ServoNeutralLAngle[1][0],self.ServoNeutralLAngle[2][0]])
self.Leg2Calibration.setValue([self.ServoNeutralLAngle[0][1],self.ServoNeutralLAngle[1][1],self.ServoNeutralLAngle[2][1]])
self.Leg3Calibration.setValue([self.ServoNeutralLAngle[0][2],self.ServoNeutralLAngle[1][2],self.ServoNeutralLAngle[2][2]])
self.Leg4Calibration.setValue([self.ServoNeutralLAngle[0][3],self.ServoNeutralLAngle[1][3],self.ServoNeutralLAngle[2][3]])
def setLegSlidersValue(self,value):
self.Leg1Calibration.setValue(value[0])
self.Leg2Calibration.setValue(value[1])
self.Leg3Calibration.setValue(value[2])
self.Leg4Calibration.setValue(value[3])
return value
def readCalibrationFile(self):
#read all lines text from EEPROM
try:
with open(ServoCalibrationFilePath, "rb") as nv_f:
arr1 = np.array(eval(nv_f.readline()))
arr2 = np.array(eval(nv_f.readline()))
matrix = np.append(arr1, arr2)
arr3 = np.array(eval(nv_f.readline()))
matrix = np.append(matrix, arr3)
matrix.resize(3,4)
self.Matrix_EEPROM = matrix
print("Get nv calibration params: \n" , self.Matrix_EEPROM)
except:
matrix = np.array([[0, 0, 0, 0], [45, 45, 45, 45], [-45, -45, -45, -45]])
self.Matrix_EEPROM = matrix
#update
for i in range(3):
for j in range(4):
self.NocalibrationServoAngle[i][j] = self.Matrix_EEPROM[i,j]
self.CalibrationServoAngle[i][j] = self.Matrix_EEPROM[i,j]
return True
def updateCalibrationMatrix(self,angle):
for i in range(3):
for j in range(4):
self.Matrix_EEPROM[i,j] = angle[i][j]
return True
def writeCalibrationFile(self):
#write matrix to EEPROM
buf_matrix = np.zeros((3, 4))
for i in range(3):
for j in range(4):
buf_matrix[i,j]= self.Matrix_EEPROM[i,j]
# Format array object string for np.array
p1 = re.compile("([0-9]\.) ( *)") # pattern to replace the space that follows each number with a comma
partially_formatted_matrix = p1.sub(r"\1,\2", str(buf_matrix))
p2 = re.compile("(\]\n)") # pattern to add a comma at the end of the first two lines
formatted_matrix_with_required_commas = p2.sub("],\n", partially_formatted_matrix)
with open(ServoCalibrationFilePath, "w") as nv_f:
_tmp = str(buf_matrix)
_tmp = _tmp.replace('.' , ',')
_tmp = _tmp.replace('[' , '')
_tmp = _tmp.replace(']' , '')
print(_tmp, file = nv_f)
nv_f.close()
return True
def getLegSlidersValue(self):
value = [[0,0,0,0],[0,0,0,0],[0,0,0,0]]
self.Leg1SlidersValue = self.Leg1Calibration.getValue()
self.Leg2SlidersValue = self.Leg2Calibration.getValue()
self.Leg3SlidersValue = self.Leg3Calibration.getValue()
self.Leg4SlidersValue = self.Leg4Calibration.getValue()
value[0] = [self.Leg1SlidersValue[0],self.Leg2SlidersValue[0],self.Leg3SlidersValue[0],self.Leg4SlidersValue[0]]
value[1] = [self.Leg1SlidersValue[1],self.Leg2SlidersValue[1],self.Leg3SlidersValue[1],self.Leg4SlidersValue[1]]
value[2] = [self.Leg1SlidersValue[2],self.Leg2SlidersValue[2],self.Leg3SlidersValue[2],self.Leg4SlidersValue[2]]
self.ServoNeutralLAngle = value
return value
def ResetButtonEvent(self):
value = [[0,0,0],[0,0,0],[0,0,0],[0,0,0]]
for i in range(3):
for j in range(4):
value[j][i] = self.ServoStandardLAngle[i][j]
self.setLegSlidersValue(value)
return True
def updateButtonEvent(self):
# update angle matrix
value = self.getLegSlidersValue()
angle = [[0,0,0,0],[0,0,0,0],[0,0,0,0]]
for i in range(3):
for j in range(4):
angle[i][j] = self.ServoStandardLAngle[i][j] - value[i][j] +MainWindow.NocalibrationServoAngle[i][j]
# limit angle
for i in range(3):
for j in range(4):
if angle[i][j] > 90:
angle[i][j] = 90
elif angle[i][j] < -90:
angle[i][j] = -90
# popup message box
result = tk.messagebox.askquestion('Info:','****** Angle Matrix ******\n'
+str(angle[0])+'\n'
+str(angle[1])+'\n'
+str(angle[2])+'\n'
+'****************************\n'
+' Update Matrix?')
# update matrix
if result == 'yes':
self.updateCalibrationMatrix(angle)
self.writeCalibrationFile()
print('******** Angle Matrix ********')
print(angle[0])
print(angle[1])
print(angle[2])
print('******************************')
return True
def RestoreButtonEvent(self):
# update angle matrix
value = self.getLegSlidersValue()
angle = [[0,0,0,0],[45,45,45,45],[-45,-45,-45,-45]]
# popup message box
result = tk.messagebox.askquestion('Warning','Are you sure you want to Restore Factory Setting!?')
# update matrix
if result == 'yes':
self.updateCalibrationMatrix(angle)
self.writeCalibrationFile()
print('******** Angle Matrix ********')
print(angle[0])
print(angle[1])
print(angle[2])
print('******************************')
sys.exit()
for i in range(3):
for j in range(4):
self.NocalibrationServoAngle[i][j] = angle[i][j]
#self.CalibrationServoAngle[i][j] = angle[i][j]
value = [[0,0,0],[0,0,0],[0,0,0],[0,0,0]]
for i in range(3):
for j in range(4):
value[j][i] = self.ServoStandardLAngle[i][j]
self.setLegSlidersValue(value)
return True
def runMainWindow(self):
self.MainWindow.mainloop()
return True
def stopMainWindow(self):
self.Run = False
return True
OverLoadHoldCounter = 0
def OverLoadDetection():
overload = False
global OverLoadHoldCounter
r = os.popen("cat /sys/class/power_supply/max1720x_battery/current_now")
feedback = str(r.readlines())
current_now = int(feedback[3:len(feedback)-4])
if (current_now > OverLoadCurrentMax):
OverLoadHoldCounter = OverLoadHoldCounter + 1
if (OverLoadHoldCounter > OverLoadHoldCounterMax):
OverLoadHoldCounter = OverLoadHoldCounterMax
os.popen("echo 0 > /sys/class/gpio/gpio"+ str(servo1_en) + "/value")
os.popen("echo 0 > /sys/class/gpio/gpio"+ str(servo2_en) + "/value")
overload = True
else:
overload = False
else:
OverLoadHoldCounter = OverLoadHoldCounter - 10
if (OverLoadHoldCounter < 0):
OverLoadHoldCounter = 0
os.popen("echo 1 > /sys/class/gpio/gpio" + str(servo1_en) + "/value")
os.popen("echo 1 > /sys/class/gpio/gpio" + str(servo2_en) + "/value")
overload = False
return overload
def updateServoValue(MainWindow,servo):
while MainWindow.Run:
#update leg slider value
value = MainWindow.getLegSlidersValue()
# overload detection
overload = OverLoadDetection()
if overload == True:
tk.messagebox.showwarning('Warning','Servos overload, please check !!!')
else:
#control servo
joint_angles = np.zeros((3, 4))
joint_angles2 = np.zeros((3, 4))
for i in range(3):
for j in range(4):
joint_angles[i,j] = (value[i][j] - (MainWindow.NocalibrationServoAngle[i][j] - MainWindow.CalibrationServoAngle[i][j]))*0.01745
servo.set_actuator_postions(joint_angles)
time.sleep(0.01)
##############################################
with open("/home/ubuntu/.hw_version", "r") as hw_f:
hw_version = hw_f.readline()
if hw_version == 'P1\n':
ServoCalibrationFilePath = "/home/ubuntu/.nv_fle"
servo1_en = 19
servo2_en = 26
else:
servo1_en = 25
servo2_en = 21
os.system("sudo systemctl stop robot")
os.system("echo 1 > /sys/class/gpio/gpio" + str(servo1_en) + "/value")
os.system("echo 1 > /sys/class/gpio/gpio" + str(servo2_en) + "/value")
MainWindow = CalibrationTool('MiniPupper Calibration Tool',800,500)
MainWindow.readCalibrationFile()
hardware_interface = HardwareInterface()
try:
_thread.start_new_thread( updateServoValue, ( MainWindow, hardware_interface,) )
except:
print ('Thread Error')
MainWindow.runMainWindow()
MainWindow.stopMainWindow()
os.system("sudo systemctl start robot")
os.system("echo 1 > /sys/class/gpio/gpio"+ str(servo1_en) + "/value")
os.system("echo 1 > /sys/class/gpio/gpio"+ str(servo2_en) + "/value")
| 14,538 | Python | 34.987624 | 147 | 0.554684 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/run_robot.py | import os
import sys
import threading
import time
import numpy as np
from PIL import Image
from multiprocessing import Process
import multiprocessing
sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot")
sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs])
from Mangdang.LCD.ST7789 import ST7789
from Mangdang.LCD.gif import AnimatedGif
from src.Controller import Controller
from src.JoystickInterface import JoystickInterface
from src.State import State
from pupper.MovementGroup import MovementLib
from src.MovementScheme import MovementScheme
from pupper.HardwareInterface import HardwareInterface
from pupper.Config import Configuration
from pupper.Kinematics import four_legs_inverse_kinematics
quat_orientation = np.array([1, 0, 0, 0])
cartoons_folder = "/home/ubuntu/Robotics/QuadrupedRobot/Mangdang/LCD/cartoons/"
current_show = ""
with open("/home/ubuntu/.hw_version", "r") as hw_f:
hw_version = hw_f.readline()
if hw_version == 'P1\n':
disp = ST7789(14, 15, 47)
else :
disp = ST7789(27, 24, 26)
def pic_show(disp, pic_name, _lock):
""" Show the specify picture
Parameter:
disp : display instance
pic_name : picture name to show
Return : None
"""
if pic_name == "":
return
global current_show
if pic_name == current_show:
return
image=Image.open(cartoons_folder + pic_name)
image.resize((320,240))
_lock.acquire()
disp.display(image)
_lock.release()
current_show = pic_name
def animated_thr_fun(_disp, duration, is_connect, current_leg, _lock):
"""
The thread funcation to show sleep animated gif
Parameter: None
Returen: None
"""
try:
gif_player = AnimatedGif(_disp, width=320, height=240, folder=cartoons_folder)
last_time = time.time()
last_joint_angles = np.zeros(3)
while True:
if is_connect.value == 1 :
#if ((current_leg[0]==last_joint_angles[0]) and (current_leg[1]==last_joint_angles[1]) and (current_leg[2]==last_joint_angles[2])) == False :
if ((current_leg[0]==last_joint_angles[0]) and (current_leg[1]==last_joint_angles[1])) == False :
last_time = time.time()
last_joint_angles[0] = current_leg[0]
last_joint_angles[1] = current_leg[1]
#last_joint_angles[2] = current_leg[2]
if (time.time() - last_time) > duration :
_lock.acquire()
gif_player.play()
_lock.release()
time.sleep(0.5)
else :
last_time = time.time()
time.sleep(1.5)
except KeyboardInterrupt:
_lock.release()
pass
def cmd_dump(cmd):
"""
debug interface to show all info about PS4 command
Parameter: None
return : None
"""
print("\nGet PS4 command :")
print("horizontal_velocity: ", cmd.horizontal_velocity)
print("yaw_rate ", cmd.yaw_rate)
print("height", cmd.height)
print("pitch ", cmd.pitch)
print("roll ", cmd.roll)
print("activation ", cmd.activation)
print("hop_event ", cmd.hop_event)
print("trot_event ", cmd.trot_event)
print("activate_event ", cmd.activate_event)
def main():
"""Main program
"""
# Create config
config = Configuration()
hardware_interface = HardwareInterface()
# show logo
global disp
disp.begin()
disp.clear()
image=Image.open(cartoons_folder + "logo.png")
image.resize((320,240))
disp.display(image)
shutdown_counter = 0 # counter for shuudown cmd
# Start animated process
duration = 10
is_connect = multiprocessing.Value('l', 0)
current_leg = multiprocessing.Array('d', [0, 0, 0])
lock = multiprocessing.Lock()
animated_process = Process(target=animated_thr_fun, args=(disp, duration, is_connect, current_leg, lock))
#animated_process.start()
#Create movement group scheme
movement_ctl = MovementScheme(MovementLib)
# Create controller and user input handles
controller = Controller(
config,
four_legs_inverse_kinematics,
)
state = State()
print("Creating joystick listener...")
joystick_interface = JoystickInterface(config)
print("Done.")
last_loop = time.time()
print("Summary of gait parameters:")
print("overlap time: ", config.overlap_time)
print("swing time: ", config.swing_time)
print("z clearance: ", config.z_clearance)
print("x shift: ", config.x_shift)
# Wait until the activate button has been pressed
while True:
print("Waiting for L1 to activate robot.")
while True:
command = joystick_interface.get_command(state)
joystick_interface.set_color(config.ps4_deactivated_color)
if command.activate_event == 1:
break
time.sleep(0.1)
print("Robot activated.")
is_connect.value = 1
joystick_interface.set_color(config.ps4_color)
pic_show(disp, "walk.png", lock)
while True:
now = time.time()
if now - last_loop < config.dt:
continue
last_loop = time.time()
# Parse the udp joystick commands and then update the robot controller's parameters
command = joystick_interface.get_command(state)
#cmd_dump(command)
_pic = "walk.png" if command.yaw_rate ==0 else "turnaround.png"
if command.trot_event == True:
_pic = "walk_r1.png"
pic_show(disp, _pic, lock)
if command.activate_event == 1:
is_connect.value = 0
pic_show(disp, "notconnect.png", lock)
print("Deactivating Robot")
break
state.quat_orientation = quat_orientation
# movement scheme
movement_switch = command.dance_switch_event
gait_state = command.trot_event
dance_state = command.dance_activate_event
shutdown_signal = command.shutdown_signal
#shutdown counter
if shutdown_signal == True:
shutdown_counter = shutdown_counter + 1
# press shut dow button more 3s(0.015*200), shut down system
if shutdown_counter >= 200:
print('shutdown system now')
os.system('systemctl stop robot')
os.system('shutdown -h now')
# gait and movement control
if gait_state == True or dance_state == True: # if triger tort event, reset the movement number to 0
movement_ctl.resetMovementNumber()
movement_ctl.runMovementScheme(movement_switch)
food_location = movement_ctl.getMovemenLegsLocation()
attitude_location = movement_ctl.getMovemenAttitude()
robot_speed = movement_ctl.getMovemenSpeed()
controller.run(state,command,food_location,attitude_location,robot_speed)
# Update the pwm widths going to the servos
hardware_interface.set_actuator_postions(state.joint_angles)
current_leg[0]= state.joint_angles[0][0]
current_leg[1]= state.joint_angles[1][0]
#current_leg[2]= state.joint_angles[2][0]
try:
main()
except KeyboardInterrupt:
pass
| 7,553 | Python | 33.81106 | 158 | 0.60572 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/MovementScheme.py | from ActuatorControl import ActuatorControl
LocationStanding = [[ 0.06,0.06,-0.06,-0.06],[-0.05, 0.05,-0.05,0.05],[ -0.07,-0.07,-0.07,-0.07]]
DeltLocationMax = 0.001
AttitudeMinMax = [[-20,20],[-20,20],[-100,100]]
class SequenceInterpolation:
def __init__(self,name,dimension):
self.Name = name
self.Dimension = dimension
self.InterpolationNumber = 1
self.ExecuteTick = 0
self.SequenceExecuteCounter = 0
self.PhaseNumberMax = 1
self.SequencePoint = [[0,0,0]]
# interpolation point data
self.PointPhaseStart = 0
self.PointPhaseStop = 1
self.TnterpolationDelt = [0,0,0]
self.PointNow = [0,0,0]
self.PointPrevious = [0,0,0]
def setCycleType(self,cycle_type,cycle_index):
if cycle_type == 'Forever':
self.SequenceExecuteCounter = 9999
elif cycle_type == 'Multiple':
self.SequenceExecuteCounter = cycle_index
else:
self.SequenceExecuteCounter = 1
return True
def setInterpolationNumber(self,interpolation_number):
self.InterpolationNumber = interpolation_number
return True
def setSequencePoint(self,sequence):
self.SequencePoint = sequence
self.PhaseNumberMax = len(sequence)
# init now and pre point phase
for xyz in range(self.Dimension):
self.PointNow[xyz] = sequence[0][xyz]
self.PointPrevious[xyz] = sequence[0][xyz]
# init start point phase
self.PointPhaseStart = 0
# init stop point phase
self.PointPhaseStop = self.PointPhaseStart + 1
if self.PointPhaseStop >= len(sequence):
self.PointPhaseStop = self.PointPhaseStart
return True
def updatePointPhase(self):
# update start point phase
self.PointPhaseStart = self.PointPhaseStart + 1
if self.PointPhaseStart >= self.PhaseNumberMax:
if self.SequenceExecuteCounter >0:
self.PointPhaseStart = 0
else:
self.SequenceExecuteCounter = 0
self.PointPhaseStart = self.PointPhaseStart - 1
# update stop point phase
self.PointPhaseStop = self.PointPhaseStart + 1
if self.PointPhaseStop >= self.PhaseNumberMax:
self.SequenceExecuteCounter = self.SequenceExecuteCounter - 1
if self.SequenceExecuteCounter >0:
self.PointPhaseStop = 0
else:
self.SequenceExecuteCounter = 0
self.PointPhaseStop = self.PointPhaseStop - 1
self.PointPhaseStop = 0
return True
def updateInterpolationDelt(self):
#get start and stop point
point_start = self.SequencePoint[self.PointPhaseStart]
point_stop = self.SequencePoint[self.PointPhaseStop]
for xyz in range(self.Dimension):
diff = point_stop[xyz] - point_start[xyz]
self.TnterpolationDelt[xyz] = - diff/self.InterpolationNumber
return True
def getNewPoint(self):
#update movement tick
self.ExecuteTick = self.ExecuteTick + 1
if self.ExecuteTick >= self.InterpolationNumber:
self.ExecuteTick = 0
self.updatePointPhase()
self.updateInterpolationDelt()
self.PointNow[0] = self.PointPrevious[0] + self.TnterpolationDelt[0]
self.PointNow[1] = self.PointPrevious[1] + self.TnterpolationDelt[1]
self.PointNow[2] = self.PointPrevious[2] + self.TnterpolationDelt[2]
self.PointPrevious = self.PointNow
return self.PointNow
class Movements:
def __init__(self,name,speed_enable,attitude_enable,legs_enable,actuator_enable):
self.MovementName = name
self.SpeedEnable = speed_enable
self.AttitudeEnable = attitude_enable
self.LegsEnable = legs_enable
self.ActuatorEnable = actuator_enable
self.ExitToStand = True
self.SpeedMovements = SequenceInterpolation('speed',2)
self.AttitudeMovements = SequenceInterpolation('attitude',3)
self.LegsMovements = []
self.LegsMovements.append(SequenceInterpolation('leg1',3))
self.LegsMovements.append(SequenceInterpolation('leg2',3))
self.LegsMovements.append(SequenceInterpolation('leg3',3))
self.LegsMovements.append(SequenceInterpolation('leg4',3))
self.ActuatorsMovements = SequenceInterpolation('actuators',1)
# init state value
self.SpeedInit = [0,0,0] # x, y speed
self.AttitudeInit = [0,0,0] # roll pitch yaw rate
self.LegsLocationInit = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] # x,y,z for 4 legs
self.ActuatorsAngleInit = [0,0,0] # angle for 3 actuators
# output
self.SpeedOutput = [0,0,0] # x, y speed
self.AttitudeOutput = [0,0,0] # roll pitch yaw rate
self.LegsLocationOutput = [[0,0,0,0],[0,0,0,0],[0,0,0,0]] # x,y,z for 4 legs
self.ActuatorsAngleOutput = [0,0,0] # angle for 3 actuators
def setInterpolationNumber(self,number):
self.ActuatorsMovements.setInterpolationNumber(number)
for leg in range(4):
self.LegsMovements[leg].setInterpolationNumber(number)
self.AttitudeMovements.setInterpolationNumber(number)
self.SpeedMovements.setInterpolationNumber(number)
return True
def setExitstate(self,state):
if state != 'Stand':
self.ExitToStand = False
return True
def setSpeedSequence(self,sequence,cycle_type,cycle_index):
self.SpeedMovements.setSequencePoint(sequence)
self.SpeedMovements.setCycleType(cycle_type,cycle_index)
self.SpeedInit = sequence[0]
def setAttitudeSequence(self,sequence,cycle_type,cycle_index):
self.AttitudeMovements.setSequencePoint(sequence)
self.AttitudeMovements.setCycleType(cycle_type,cycle_index)
self.AttitudeInit = sequence[0]
def setLegsSequence(self,sequence,cycle_type,cycle_index):
for leg in range(4):
self.LegsMovements[leg].setSequencePoint(sequence[leg])
self.LegsMovements[leg].setCycleType(cycle_type,cycle_index)
# init location
self.LegsLocationInit[0][leg] = sequence[leg][0][0]
self.LegsLocationInit[1][leg] = sequence[leg][0][1]
self.LegsLocationInit[2][leg] = sequence[leg][0][2]
def setActuatorsSequence(self,sequence,cycle_type,cycle_index):
self.ActuatorsMovements.setSequencePoint(sequence)
self.ActuatorsMovements.setCycleType(cycle_type,cycle_index)
self.ActuatorsAngleInit = sequence[0]
def runMovementSequence(self):
if self.SpeedEnable == 'SpeedEnable':
self.SpeedOutput = self.SpeedMovements.getNewPoint()
if self.AttitudeEnable == 'AttitudeEnable':
self.AttitudeOutput = self.AttitudeMovements.getNewPoint()
if self.LegsEnable == 'LegsEnable':
for leg in range(4):
leg_loaction = self.LegsMovements[leg].getNewPoint()
for xyz in range(3):
self.LegsLocationOutput[xyz][leg] = leg_loaction[xyz]
if self.ActuatorEnable == 'ActuatorEnable':
self.ActuatorsAngleOutput = self.ActuatorsMovements.getNewPoint()
def getSpeedOutput(self, state = 'Normal'):
if state == 'Init':
return self.SpeedInit
else:
return self.SpeedOutput
def getAttitudeOutput(self, state = 'Normal'):
if state == 'Init':
return self.AttitudeInit
else:
return self.AttitudeOutput
def getLegsLocationOutput(self, state = 'Normal'):
if state == 'Init':
return self.LegsLocationInit
else:
return self.LegsLocationOutput
def getActuatorsAngleOutput(self, state = 'Normal'):
if state == 'Init':
return self.ActuatorsAngleInit
else:
return self.ActuatorsAngleOutput
def getMovementName(self):
return self.MovementName
class MovementScheme:
def __init__(self,movements_lib):
self.movements_lib = movements_lib
self.movements_now = movements_lib[0]
self.movements_pre = movements_lib[0]
self.movement_now_name = movements_lib[0].getMovementName()
self.movement_now_number = 0
self.ststus = 'Movement' # 'Entry' 'Movement' 'Exit'
self.entry_down = False
self.exit_down = False
self.tick = 0
self.legs_location_pre = LocationStanding
self.legs_location_now = LocationStanding
self.attitude_pre = [0,0,0]
self.attitude_now = [0,0,0]
self.speed_pre = [0,0,0]
self.speed_now = [0,0,0]
self.actuators_pre = [0,0,0]
self.actuators_now = [0,0,0]
self.actuator = []
self.actuator.append(ActuatorControl(1))
self.actuator.append(ActuatorControl(2))
self.actuator.append(ActuatorControl(3))
def updateMovementType(self):
self.movements_pre = self.movements_lib[self.movement_now_number]
self.movement_now_number = self.movement_now_number + 1
if self.movement_now_number>= len(self.movements_lib):
self.movement_now_number = 0
self.entry_down = False
self.exit_down = False
self.movements_now = self.movements_lib[self.movement_now_number]
return self.movements_now.getMovementName()
def resetMovementNumber(self):
self.movements_pre = self.movements_lib[self.movement_now_number]
self.movement_now_number = 0
self.entry_down = False
self.exit_down = False
self.movements_now = self.movements_lib[0]
return True
def updateMovement(self,movement_type):
# movement state transition
if movement_type != self.movement_now_name:
self.ststus = 'Exit'
elif(self.entry_down):
self.ststus = 'Movement'
elif(self.exit_down):
self.ststus = 'Entry'
self.movement_now_name = movement_type
# update system tick
self.tick = self.tick+ 1
# movement execute
if self.ststus == 'Entry':
location_ready = self.movements_now.getLegsLocationOutput('Init')
self.legs_location_now,self.entry_down = self.updateMovementGradient(self.legs_location_pre,location_ready)
self.legs_location_pre = self.legs_location_now
if self.ststus == 'Exit':
if self.movements_pre.ExitToStand == False:
self.legs_location_now,self.exit_down = self.updateMovementGradient(self.location_pre,LocationStanding)
self.legs_location_pre = self.legs_location_now
else:
self.legs_location_now = self.legs_location_pre
self.exit_down = True
elif self.ststus == 'Movement':
self.updateMovemenScheme(self.tick)
self.legs_location_pre = self.legs_location_now
self.attitude_pre = self.attitude_now
return self.legs_location_now
def updateMovementGradient(self,location_now,location_target):
loaction_gradient = location_now
gradient_done = False
gradient_done_counter = 0
#legs gradient
for xyz_index in range(3):
for leg_index in range(4):
diff = location_now[xyz_index][leg_index] - location_target[xyz_index][leg_index]
if diff > DeltLocationMax:
loaction_gradient[xyz_index][leg_index] = location_now[xyz_index][leg_index] - DeltLocationMax
elif diff < -DeltLocationMax:
loaction_gradient[xyz_index][leg_index] = location_now[xyz_index][leg_index] + DeltLocationMax
else :
loaction_gradient[xyz_index][leg_index] = location_target[xyz_index][leg_index]
gradient_done_counter = gradient_done_counter + 1
# movement gradient is down
if gradient_done_counter == 12:
gradient_done = True
return loaction_gradient, gradient_done
def updateMovemenScheme(self,tick):
# run movement
self.movements_now.runMovementSequence()
# legs movement
self.legs_location_now = self.movements_now.getLegsLocationOutput('normal')
# speed movement
self.speed_now = self.movements_now.getSpeedOutput('normal')
# attitude movement
self.attitude_now = self.movements_now.getAttitudeOutput('normal')
# attitude movement
self.actuators_now = self.movements_now.getActuatorsAngleOutput('normal')
# attitude process
'''
for rpy in range(3):
#limite attitude angle
if attitude_now[rpy] < AttitudeMinMax[rpy][0]:
attitude_now[rpy] = AttitudeMinMax[rpy][0]
elif attitude_now[rpy] > AttitudeMinMax[rpy][1]:
attitude_now[rpy] = AttitudeMinMax[rpy][1]
'''
# speed process
return True
def runMovementScheme(self,transition):
# update movement
movement_name = ''
if transition == True:
movement_name = self.updateMovementType()
self.updateMovement(movement_name)
return True
def getMovemenSpeed(self):
speed_now = [0,0,0]
for xyz in range(3):
speed_now[xyz] = -self.speed_now[xyz]
return speed_now
def getMovemenLegsLocation(self):
return self.legs_location_now
def getMovemenAttitude(self):
attitude_now_rad = [0,0,0]
for rpy in range(3):
#angle to radin
attitude_now_rad[rpy] = -self.attitude_now[rpy] / 57.3
return attitude_now_rad
def getMovemenActuators(self):
return self.actuators_now
| 14,291 | Python | 31.930876 | 130 | 0.607865 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/src/ActuatorControl.py | import os
import sys
import time
class ActuatorControl:
def __init__(self,pwm_number):
self.pwm_number = pwm_number
def updateDutyCycle(self,angle):
duty_cycle = int((1.11*angle+50)*10000)
return duty_cycle
def updateActuatorAngle(self,angle):
if self.pwm_number == 1:
actuator_name = 'pwm1'
elif self.pwm_number == 2:
actuator_name = 'pwm2'
elif self.pwm_number == 3:
actuator_name = 'pwm3'
duty_cycle = self.updateDutyCycle(angle)
file_node = '/sys/class/pwm/pwmchip0/' + actuator_name+ '/duty_cycle'
f = open(file_node, "w")
f.write(str(duty_cycle))
#test = ActuatorControl(3)
#time.sleep(10)
#for index in range(30):
# test.updateActuatorAngle(index*3)
# time.sleep(0.1)
# test.updateActuatorAngle(0)
| 856 | Python | 22.162162 | 77 | 0.600467 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/ServoCalibration.py | # WARNING: This file is machine generated. Edit at your own risk.
import numpy as np
MICROS_PER_RAD = 11.111 * 180.0 / np.pi
| 128 | Python | 17.428569 | 65 | 0.703125 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/MovementGroup.py |
from src.MovementScheme import Movements
def appendDanceMovement():
'''
#demo 1
dance_scheme = Movements('stand','SpeedDisable','AttitudeDisable','LegsEnable','ActuatorDisable')
dance_scheme.setExitstate('Stand')
dance_all_legs = []
dance_all_legs.append([[ 0.06,-0.05,-0.065]]) # leg1
dance_all_legs.append([[ 0.06, 0.05,-0.065]]) # leg2
dance_all_legs.append([[-0.06,-0.05,-0.065]]) # leg3
dance_all_legs.append([[-0.06, 0.05,-0.065]]) # leg4
dance_scheme.setInterpolationNumber(50)
dance_scheme.setLegsSequence(dance_all_legs,'Forever',5)
MovementLib.append(dance_scheme) # append dance
'''
#demo 2
dance_scheme = Movements('push-up','SpeedEnable','AttitudeDisable','LegsEnable','ActuatorDisable')
dance_scheme.setExitstate('Stand')
dance_all_legs = []
dance_all_legs.append([[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.07],[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.04],[ 0.06,-0.05,-0.04]]) # leg1
dance_all_legs.append([[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.07],[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.04],[ 0.06, 0.05,-0.04]]) # leg2
dance_all_legs.append([[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.07],[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.04],[-0.06,-0.05,-0.04]]) # leg3
dance_all_legs.append([[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.07],[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.04],[-0.06, 0.05,-0.04]]) # leg4
dance_speed = [[0,0,0],[0,0,0],[0,0,0],[0.25,0,0,0],[0.25,0,0,0]] # speed_, speed_y, no_use
dance_attitude = [[0,0,0],[10,0,0],[0,0,0]] # roll, pitch, yaw rate
dance_scheme.setInterpolationNumber(70)
dance_scheme.setLegsSequence(dance_all_legs,'Forever',1)
dance_scheme.setSpeedSequence(dance_speed,'Forever',1)
dance_scheme.setAttitudeSequence(dance_attitude,'Forever',1)
MovementLib.append(dance_scheme) # append dance
MovementLib = []
appendDanceMovement()
| 1,955 | Python | 38.918367 | 137 | 0.588235 |
renanmb/Omniverse_legged_robotics/URDF-Descriptions/Mini_pupper/QuadrupedRobot-mini_pupper/StanfordQuadruped/pupper/HardwareInterface.py | import os
import sys
sys.path.append("/home/ubuntu/Robotics/QuadrupedRobot/")
sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("/home/ubuntu/Robotics/QuadrupedRobot") for name in dirs])
from Mangdang import PWMController
from pupper.Config import ServoParams, PWMParams
#from __future__ import division
import numpy as np
class HardwareInterface:
def __init__(self):
self.pwm_params = PWMParams()
self.servo_params = ServoParams()
def set_actuator_postions(self, joint_angles):
send_servo_commands(self.pwm_params, self.servo_params, joint_angles)
def set_actuator_position(self, joint_angle, axis, leg):
send_servo_command(self.pwm_params, self.servo_params, joint_angle, axis, leg)
def pwm_to_duty_cycle(pulsewidth_micros, pwm_params):
"""Converts a pwm signal (measured in microseconds) to a corresponding duty cycle on the gpio pwm pin
Parameters
----------
pulsewidth_micros : float
Width of the pwm signal in microseconds
pwm_params : PWMParams
PWMParams object
Returns
-------
float
PWM duty cycle corresponding to the pulse width
"""
pulsewidth_micros = int(pulsewidth_micros / 1e6 * pwm_params.freq * pwm_params.range)
if np.isnan(pulsewidth_micros):
return 0
return int(np.clip(pulsewidth_micros, 0, 4096))
def angle_to_pwm(angle, servo_params, axis_index, leg_index):
"""Converts a desired servo angle into the corresponding PWM command
Parameters
----------
angle : float
Desired servo angle, relative to the vertical (z) axis
servo_params : ServoParams
ServoParams object
axis_index : int
Specifies which joint of leg to control. 0 is abduction servo, 1 is inner hip servo, 2 is outer hip servo.
leg_index : int
Specifies which leg to control. 0 is front-right, 1 is front-left, 2 is back-right, 3 is back-left.
Returns
-------
float
PWM width in microseconds
"""
angle_deviation = (
angle - servo_params.neutral_angles[axis_index, leg_index]
) * servo_params.servo_multipliers[axis_index, leg_index]
pulse_width_micros = (
servo_params.neutral_position_pwm
+ servo_params.micros_per_rad * angle_deviation
)
return pulse_width_micros
def angle_to_duty_cycle(angle, pwm_params, servo_params, axis_index, leg_index):
duty_cycle_f = angle_to_pwm(angle, servo_params, axis_index, leg_index) * 1e3
if np.isnan(duty_cycle_f):
return 0
return int(duty_cycle_f)
def initialize_pwm(pi, pwm_params):
pi.set_pwm_freq(pwm_params.freq)
def send_servo_commands(pwm_params, servo_params, joint_angles):
for leg_index in range(4):
for axis_index in range(3):
duty_cycle = angle_to_duty_cycle(
joint_angles[axis_index, leg_index],
pwm_params,
servo_params,
axis_index,
leg_index,
)
# write duty_cycle to pwm linux kernel node
file_node = "/sys/class/pwm/pwmchip0/pwm" + str(pwm_params.pins[axis_index, leg_index]) + "/duty_cycle"
f = open(file_node, "w")
f.write(str(duty_cycle))
def send_servo_command(pwm_params, servo_params, joint_angle, axis, leg):
duty_cycle = angle_to_duty_cycle(joint_angle, pwm_params, servo_params, axis, leg)
file_node = "/sys/class/pwm/pwmchip0/pwm" + str(pwm_params.pins[axis, leg]) + "/duty_cycle"
f = open(file_node, "w")
f.write(str(duty_cycle))
def deactivate_servos(pi, pwm_params):
for leg_index in range(4):
for axis_index in range(3):
pi.set_pwm(pwm_params.pins[axis_index, leg_index], 0, 0)
| 3,798 | Python | 33.225225 | 129 | 0.639547 |