|
--- |
|
|
|
tags: |
|
- pyterrier |
|
- pyterrier-artifact |
|
- pyterrier-artifact.sparse_index |
|
- pyterrier-artifact.sparse_index.terrier |
|
task_categories: |
|
- text-retrieval |
|
viewer: false |
|
--- |
|
|
|
# nfcorpus.terrier |
|
|
|
## Description |
|
|
|
Terrier index for NFCorpus |
|
|
|
## Usage |
|
|
|
```python |
|
# Load the artifact |
|
import pyterrier as pt |
|
index = pt.Artifact.from_hf('pyterrier/nfcorpus.terrier') |
|
index.bm25() |
|
``` |
|
|
|
## Benchmarks |
|
|
|
`nfcorpus/dev` |
|
|
|
| name | nDCG@10 | R@1000 | |
|
|:-------|----------:|---------:| |
|
| bm25 | 0.2944 | 0.3291 | |
|
| dph | 0.2914 | 0.3293 | |
|
|
|
`nfcorpus/test` |
|
|
|
| name | nDCG@10 | R@1000 | |
|
|:-------|----------:|---------:| |
|
| bm25 | 0.3282 | 0.365 | |
|
| dph | 0.3221 | 0.3671 | |
|
|
|
## Reproduction |
|
|
|
```python |
|
import pyterrier as pt |
|
from tqdm import tqdm |
|
import ir_datasets |
|
dataset = ir_datasets.load('beir/nfcorpus') |
|
meta_docno_len = dataset.metadata()['docs']['fields']['doc_id']['max_len'] |
|
indexer = pt.IterDictIndexer("./nfcorpus.terrier", meta={'docno': meta_docno_len, 'text': 4096}) |
|
docs = ({'docno': d.doc_id, 'text': d.default_text()} for d in tqdm(dataset.docs)) |
|
indexer.index(docs) |
|
``` |
|
|
|
## Metadata |
|
|
|
``` |
|
{ |
|
"type": "sparse_index", |
|
"format": "terrier", |
|
"package_hint": "python-terrier" |
|
} |
|
``` |
|
|