README.md CHANGED
@@ -1,3 +1,163 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ task_categories:
4
+ - text-classification
5
+ - text2text-generation
6
+ - translation
7
+ - zero-shot-classification
8
+ tags:
9
+ - chemistry
10
+ - biology
11
+ - SMILES
12
+ - benchmark
13
+ size_categories:
14
+ - 1k<n<10k
15
+ pretty_name: 'Biogen ADME (public data)'
16
+ configs:
17
+ - config_name: full
18
+ data_files: "biogen-adme.csv.gz"
19
+ - config_name: scaffold-split
20
+ data_files:
21
+ - split: train
22
+ path: "biogen-adme_train.csv.gz"
23
+ - split: test
24
+ path: "biogen-adme_test.csv.gz"
25
  ---
26
+ # Biogen ADME dataset (public data)
27
+
28
+ Data from [Fang et al., Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective](https://doi.org/10.1021/acs.jcim.3c00160), available from the [GitHub repositiory](https://github.com/molecularinformatics/Computational-ADME). We used [schemist](https://github.com/scbirlab/schemist) (which in turn uses RDKit)
29
+ to add molecuar weight, Murcko scaffold, Crippen cLogP, and topological surface area, and to generate scaffold splits.
30
+
31
+ ## Dataset Details
32
+
33
+ From the [original README](https://github.com/molecularinformatics/Computational-ADME):
34
+
35
+ >
36
+ > To benefit the broader computational chemistry community and improve the > quality and diversity of public-domain ADME data sets we have disclosed a > collection of 3521 diverse compounds selected from commercially available > compound libraries (i.e. Enamine, eMolecules, WuXi LabNetwork, Mcule) and > tested them against our internal six ADME in vitro assays described in this > study using the same experimental conditions as of our in-house datasets.
37
+ >
38
+
39
+ ### Dataset Description
40
+
41
+ - **Curated by:** Biogen
42
+ <!-- - **Funded by:** The Francis Crick Institute -->
43
+ - **License:** MIT
44
+
45
+ ### Dataset Sources
46
+
47
+ <!-- Provide the basic links for the dataset. -->
48
+
49
+ - **Repository:** https://github.com/molecularinformatics/Computational-ADME
50
+ - **Paper:** https://doi.org/10.1021/acs.jcim.3c00160
51
+ <!-- - **Demo [optional]:** [More Information Needed] -->
52
+
53
+ ## Uses
54
+
55
+ Benchmarking chemical property prediction models.
56
+
57
+ <!-- ### Direct Use -->
58
+
59
+ <!-- This section describes suitable use cases for the dataset. -->
60
+
61
+ <!-- [More Information Needed]
62
+
63
+ ### Out-of-Scope Use
64
+
65
+ <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
66
+
67
+ <!-- [More Information Needed] -->
68
+
69
+ ## Dataset Structure
70
+
71
+ The train-test splits are generated by scaffold.
72
+
73
+ The column headings of the data are:
74
+
75
+ - **SMILES**: Original SMILES string, as in the original data release in the [GitHub repositiory](https://github.com/molecularinformatics/Computational-ADME)
76
+ - **smiles**: Canonicalized SMILES string
77
+ - **id**: Numeric structure identifier
78
+ - **inchikey**: Unique structure identifier
79
+ - **scaffold**: Murcko scaffold
80
+ - **mwt**: Molecular weight
81
+ - **clogp**: Crippen LogP
82
+ - **tpsa**: Calculated topological polar surface area.
83
+
84
+ The following columns are ADME properties:
85
+
86
+ - log_hlm: human liver microsomal (HLM) stability (Clint, mL/min/kg)
87
+ - log_mdr1_mdck_er: MDR1-MDCK efflux ratio
88
+ - log_solubility: solubility at pH 6.8 (ug/mL)
89
+ - log_plasma_protein_binding_human: human plasma protein binding (hPPB) percent unbound
90
+ - log_plasma_protein_binding_rat: rat plasma protein binding (rPPB) percent unbound
91
+ - log_rlm: rat liver microsomal (RLM) stability (Clint, mL/min/kg)
92
+
93
+ ## Dataset Creation
94
+
95
+ ### Curation Rationale
96
+
97
+ To make the Biogen ADME dataset readily available with light preprocessing.
98
+
99
+ #### Data Collection and Processing
100
+
101
+ Additional properties and scaffold splits were calculated using [schemist](https://github.com/scbirlab/schemist), a tool for processing chemical datasets.
102
+
103
+ #### Who are the source data producers?
104
+
105
+ Biogen
106
+
107
+ #### Personal and Sensitive Information
108
+
109
+ None
110
+
111
+ <!-- ## Bias, Risks, and Limitations -->
112
+
113
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
114
+
115
+ <!-- [More Information Needed] -->
116
+
117
+ <!-- ### Recommendations -->
118
+
119
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
120
+
121
+ <!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. -->
122
+
123
+ ## Citation
124
+
125
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
126
+
127
+ **BibTeX:**
128
+
129
+ ```
130
+ @article{doi:10.1021/acs.jcim.3c00160,
131
+ author = {Fang, Cheng and Wang, Ye and Grater, Richard and Kapadnis, Sudarshan and Black, Cheryl and Trapa, Patrick and Sciabola, Simone},
132
+ title = {Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective},
133
+ journal = {Journal of Chemical Information and Modeling},
134
+ volume = {63},
135
+ number = {11},
136
+ pages = {3263-3274},
137
+ year = {2023},
138
+ doi = {10.1021/acs.jcim.3c00160},
139
+ note = {PMID: 37216672},
140
+ URL = {https://doi.org/10.1021/acs.jcim.3c00160},
141
+ eprint = {https://doi.org/10.1021/acs.jcim.3c00160}
142
+ }
143
+ ```
144
+
145
+ <!-- **APA:** -->
146
+
147
+ <!-- ## Glossary [optional] -->
148
+
149
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
150
+
151
+ <!-- [More Information Needed]
152
+
153
+ <!-- ## More Information [optional]
154
+
155
+ <!-- [More Information Needed]
156
+
157
+ <!-- ## Dataset Card Authors [optional]
158
+
159
+ <!-- [More Information Needed] -->
160
+
161
+ ## Dataset Card Contact
162
+
163
+ [@eachanjohnson](https://huggingface.co/eachanjohnson)
biogen-adme.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c103a34f381f18d9a4e0575bb7d7d43c622eb3b143562a29081e3aeceaf0400c
3
+ size 323011
biogen-adme_test.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59be0e95a494a57732c275ac51e91adca461feb10f278314d8b8c2b75909f757
3
+ size 53751
biogen-adme_train.csv.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30f9139d8b6d64743639da2bc203601fe33641a6fe8249325ed1a3e7a0ec519d
3
+ size 270047
convert.log ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 🚀 Converting between string representations with the following parameters:
2
+ subcommand: convert
3
+ output: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>
4
+ format: csv
5
+ input: <_io.TextIOWrapper name='/nemo/lab/johnsone/home/users/johnsoe/data/datasets/biogen-adme/ADME_public_set_3521-eoj.csv' mode='r' encoding='UTF-8'>
6
+ representation: SMILES
7
+ column: SMILES
8
+ prefix: None
9
+ to: ['id', 'inchikey', 'smiles', 'scaffold', 'mwt', 'clogp', 'tpsa']
10
+ options: ['prefix=SCB-']
11
+ func: <function _convert at 0x7f5b3b793240>
12
+
13
+ Error counts:
14
+ id: 0
15
+ inchikey: 0
16
+ smiles: 0
17
+ scaffold: 0
18
+ mwt: 0
19
+ clogp: 0
20
+ tpsa: 0
21
+ ⏰ Completed process in 0:00:05.623413
processing.log ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + schemist convert /nemo/lab/johnsone/home/users/johnsoe/data/datasets/biogen-adme/ADME_public_set_3521-eoj.csv --format csv --column SMILES --to id inchikey smiles scaffold mwt clogp tpsa --options prefix=SCB-
2
+ + schemist split --format csv --column SMILES --type scaffold --train 0.85 --test 0.15 --seed 1
3
+ + gzip --best
4
+ + for split_name in train test
5
+ ++ basename /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz .csv.gz
6
+ + split=/nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme_train.csv.gz
7
+ ++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
8
+ ++ head -n1
9
+ ++ tr , '
10
+ '
11
+ ++ grep -n is_train
12
+ ++ cut -d: -f1
13
+ + filter_field=18
14
+ + gzip --best
15
+ + cat /dev/fd/63 /dev/fd/62
16
+ ++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
17
+ ++ head -n1
18
+ ++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
19
+ ++ tail -n+2
20
+ ++ awk -F, -v OFS=, '$18 == "True"'
21
+ + for split_name in train test
22
+ ++ basename /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz .csv.gz
23
+ + split=/nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme_test.csv.gz
24
+ ++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
25
+ ++ head -n1
26
+ ++ tr , '
27
+ '
28
+ ++ grep -n is_test
29
+ ++ cut -d: -f1
30
+ + filter_field=19
31
+ + gzip --best
32
+ + cat /dev/fd/63 /dev/fd/62
33
+ ++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
34
+ ++ head -n1
35
+ ++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
36
+ ++ tail -n+2
37
+ ++ awk -F, -v OFS=, '$19 == "True"'
38
+ + set +x
split.log ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 🚀 Splitting table with the following parameters:
2
+ subcommand: split
3
+ output: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>
4
+ format: csv
5
+ input: <_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>
6
+ representation: SMILES
7
+ column: SMILES
8
+ prefix: None
9
+ type: scaffold
10
+ train: 0.85
11
+ test: 0.15
12
+ seed: 1
13
+ func: <function _split at 0x7f55b081f4c0>
14
+
15
+
16
+ Split counts:
17
+ train: 2993
18
+ test: 528
19
+ validation: 0
20
+ ⏰ Completed process in 0:00:10.966729