Initial upload
#1
by
eachanjohnson
- opened
- README.md +160 -0
- biogen-adme.csv.gz +3 -0
- biogen-adme_test.csv.gz +3 -0
- biogen-adme_train.csv.gz +3 -0
- convert.log +21 -0
- processing.log +38 -0
- split.log +20 -0
README.md
CHANGED
@@ -1,3 +1,163 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
- text2text-generation
|
6 |
+
- translation
|
7 |
+
- zero-shot-classification
|
8 |
+
tags:
|
9 |
+
- chemistry
|
10 |
+
- biology
|
11 |
+
- SMILES
|
12 |
+
- benchmark
|
13 |
+
size_categories:
|
14 |
+
- 1k<n<10k
|
15 |
+
pretty_name: 'Biogen ADME (public data)'
|
16 |
+
configs:
|
17 |
+
- config_name: full
|
18 |
+
data_files: "biogen-adme.csv.gz"
|
19 |
+
- config_name: scaffold-split
|
20 |
+
data_files:
|
21 |
+
- split: train
|
22 |
+
path: "biogen-adme_train.csv.gz"
|
23 |
+
- split: test
|
24 |
+
path: "biogen-adme_test.csv.gz"
|
25 |
---
|
26 |
+
# Biogen ADME dataset (public data)
|
27 |
+
|
28 |
+
Data from [Fang et al., Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective](https://doi.org/10.1021/acs.jcim.3c00160), available from the [GitHub repositiory](https://github.com/molecularinformatics/Computational-ADME). We used [schemist](https://github.com/scbirlab/schemist) (which in turn uses RDKit)
|
29 |
+
to add molecuar weight, Murcko scaffold, Crippen cLogP, and topological surface area, and to generate scaffold splits.
|
30 |
+
|
31 |
+
## Dataset Details
|
32 |
+
|
33 |
+
From the [original README](https://github.com/molecularinformatics/Computational-ADME):
|
34 |
+
|
35 |
+
>
|
36 |
+
> To benefit the broader computational chemistry community and improve the > quality and diversity of public-domain ADME data sets we have disclosed a > collection of 3521 diverse compounds selected from commercially available > compound libraries (i.e. Enamine, eMolecules, WuXi LabNetwork, Mcule) and > tested them against our internal six ADME in vitro assays described in this > study using the same experimental conditions as of our in-house datasets.
|
37 |
+
>
|
38 |
+
|
39 |
+
### Dataset Description
|
40 |
+
|
41 |
+
- **Curated by:** Biogen
|
42 |
+
<!-- - **Funded by:** The Francis Crick Institute -->
|
43 |
+
- **License:** MIT
|
44 |
+
|
45 |
+
### Dataset Sources
|
46 |
+
|
47 |
+
<!-- Provide the basic links for the dataset. -->
|
48 |
+
|
49 |
+
- **Repository:** https://github.com/molecularinformatics/Computational-ADME
|
50 |
+
- **Paper:** https://doi.org/10.1021/acs.jcim.3c00160
|
51 |
+
<!-- - **Demo [optional]:** [More Information Needed] -->
|
52 |
+
|
53 |
+
## Uses
|
54 |
+
|
55 |
+
Benchmarking chemical property prediction models.
|
56 |
+
|
57 |
+
<!-- ### Direct Use -->
|
58 |
+
|
59 |
+
<!-- This section describes suitable use cases for the dataset. -->
|
60 |
+
|
61 |
+
<!-- [More Information Needed]
|
62 |
+
|
63 |
+
### Out-of-Scope Use
|
64 |
+
|
65 |
+
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
|
66 |
+
|
67 |
+
<!-- [More Information Needed] -->
|
68 |
+
|
69 |
+
## Dataset Structure
|
70 |
+
|
71 |
+
The train-test splits are generated by scaffold.
|
72 |
+
|
73 |
+
The column headings of the data are:
|
74 |
+
|
75 |
+
- **SMILES**: Original SMILES string, as in the original data release in the [GitHub repositiory](https://github.com/molecularinformatics/Computational-ADME)
|
76 |
+
- **smiles**: Canonicalized SMILES string
|
77 |
+
- **id**: Numeric structure identifier
|
78 |
+
- **inchikey**: Unique structure identifier
|
79 |
+
- **scaffold**: Murcko scaffold
|
80 |
+
- **mwt**: Molecular weight
|
81 |
+
- **clogp**: Crippen LogP
|
82 |
+
- **tpsa**: Calculated topological polar surface area.
|
83 |
+
|
84 |
+
The following columns are ADME properties:
|
85 |
+
|
86 |
+
- log_hlm: human liver microsomal (HLM) stability (Clint, mL/min/kg)
|
87 |
+
- log_mdr1_mdck_er: MDR1-MDCK efflux ratio
|
88 |
+
- log_solubility: solubility at pH 6.8 (ug/mL)
|
89 |
+
- log_plasma_protein_binding_human: human plasma protein binding (hPPB) percent unbound
|
90 |
+
- log_plasma_protein_binding_rat: rat plasma protein binding (rPPB) percent unbound
|
91 |
+
- log_rlm: rat liver microsomal (RLM) stability (Clint, mL/min/kg)
|
92 |
+
|
93 |
+
## Dataset Creation
|
94 |
+
|
95 |
+
### Curation Rationale
|
96 |
+
|
97 |
+
To make the Biogen ADME dataset readily available with light preprocessing.
|
98 |
+
|
99 |
+
#### Data Collection and Processing
|
100 |
+
|
101 |
+
Additional properties and scaffold splits were calculated using [schemist](https://github.com/scbirlab/schemist), a tool for processing chemical datasets.
|
102 |
+
|
103 |
+
#### Who are the source data producers?
|
104 |
+
|
105 |
+
Biogen
|
106 |
+
|
107 |
+
#### Personal and Sensitive Information
|
108 |
+
|
109 |
+
None
|
110 |
+
|
111 |
+
<!-- ## Bias, Risks, and Limitations -->
|
112 |
+
|
113 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
114 |
+
|
115 |
+
<!-- [More Information Needed] -->
|
116 |
+
|
117 |
+
<!-- ### Recommendations -->
|
118 |
+
|
119 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
120 |
+
|
121 |
+
<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. -->
|
122 |
+
|
123 |
+
## Citation
|
124 |
+
|
125 |
+
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
126 |
+
|
127 |
+
**BibTeX:**
|
128 |
+
|
129 |
+
```
|
130 |
+
@article{doi:10.1021/acs.jcim.3c00160,
|
131 |
+
author = {Fang, Cheng and Wang, Ye and Grater, Richard and Kapadnis, Sudarshan and Black, Cheryl and Trapa, Patrick and Sciabola, Simone},
|
132 |
+
title = {Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective},
|
133 |
+
journal = {Journal of Chemical Information and Modeling},
|
134 |
+
volume = {63},
|
135 |
+
number = {11},
|
136 |
+
pages = {3263-3274},
|
137 |
+
year = {2023},
|
138 |
+
doi = {10.1021/acs.jcim.3c00160},
|
139 |
+
note = {PMID: 37216672},
|
140 |
+
URL = {https://doi.org/10.1021/acs.jcim.3c00160},
|
141 |
+
eprint = {https://doi.org/10.1021/acs.jcim.3c00160}
|
142 |
+
}
|
143 |
+
```
|
144 |
+
|
145 |
+
<!-- **APA:** -->
|
146 |
+
|
147 |
+
<!-- ## Glossary [optional] -->
|
148 |
+
|
149 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
|
150 |
+
|
151 |
+
<!-- [More Information Needed]
|
152 |
+
|
153 |
+
<!-- ## More Information [optional]
|
154 |
+
|
155 |
+
<!-- [More Information Needed]
|
156 |
+
|
157 |
+
<!-- ## Dataset Card Authors [optional]
|
158 |
+
|
159 |
+
<!-- [More Information Needed] -->
|
160 |
+
|
161 |
+
## Dataset Card Contact
|
162 |
+
|
163 |
+
[@eachanjohnson](https://huggingface.co/eachanjohnson)
|
biogen-adme.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c103a34f381f18d9a4e0575bb7d7d43c622eb3b143562a29081e3aeceaf0400c
|
3 |
+
size 323011
|
biogen-adme_test.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59be0e95a494a57732c275ac51e91adca461feb10f278314d8b8c2b75909f757
|
3 |
+
size 53751
|
biogen-adme_train.csv.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30f9139d8b6d64743639da2bc203601fe33641a6fe8249325ed1a3e7a0ec519d
|
3 |
+
size 270047
|
convert.log
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
🚀 Converting between string representations with the following parameters:
|
2 |
+
subcommand: convert
|
3 |
+
output: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>
|
4 |
+
format: csv
|
5 |
+
input: <_io.TextIOWrapper name='/nemo/lab/johnsone/home/users/johnsoe/data/datasets/biogen-adme/ADME_public_set_3521-eoj.csv' mode='r' encoding='UTF-8'>
|
6 |
+
representation: SMILES
|
7 |
+
column: SMILES
|
8 |
+
prefix: None
|
9 |
+
to: ['id', 'inchikey', 'smiles', 'scaffold', 'mwt', 'clogp', 'tpsa']
|
10 |
+
options: ['prefix=SCB-']
|
11 |
+
func: <function _convert at 0x7f5b3b793240>
|
12 |
+
|
13 |
+
Error counts:
|
14 |
+
id: 0
|
15 |
+
inchikey: 0
|
16 |
+
smiles: 0
|
17 |
+
scaffold: 0
|
18 |
+
mwt: 0
|
19 |
+
clogp: 0
|
20 |
+
tpsa: 0
|
21 |
+
⏰ Completed process in 0:00:05.623413
|
processing.log
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
+ schemist convert /nemo/lab/johnsone/home/users/johnsoe/data/datasets/biogen-adme/ADME_public_set_3521-eoj.csv --format csv --column SMILES --to id inchikey smiles scaffold mwt clogp tpsa --options prefix=SCB-
|
2 |
+
+ schemist split --format csv --column SMILES --type scaffold --train 0.85 --test 0.15 --seed 1
|
3 |
+
+ gzip --best
|
4 |
+
+ for split_name in train test
|
5 |
+
++ basename /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz .csv.gz
|
6 |
+
+ split=/nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme_train.csv.gz
|
7 |
+
++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
|
8 |
+
++ head -n1
|
9 |
+
++ tr , '
|
10 |
+
'
|
11 |
+
++ grep -n is_train
|
12 |
+
++ cut -d: -f1
|
13 |
+
+ filter_field=18
|
14 |
+
+ gzip --best
|
15 |
+
+ cat /dev/fd/63 /dev/fd/62
|
16 |
+
++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
|
17 |
+
++ head -n1
|
18 |
+
++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
|
19 |
+
++ tail -n+2
|
20 |
+
++ awk -F, -v OFS=, '$18 == "True"'
|
21 |
+
+ for split_name in train test
|
22 |
+
++ basename /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz .csv.gz
|
23 |
+
+ split=/nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme_test.csv.gz
|
24 |
+
++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
|
25 |
+
++ head -n1
|
26 |
+
++ tr , '
|
27 |
+
'
|
28 |
+
++ grep -n is_test
|
29 |
+
++ cut -d: -f1
|
30 |
+
+ filter_field=19
|
31 |
+
+ gzip --best
|
32 |
+
+ cat /dev/fd/63 /dev/fd/62
|
33 |
+
++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
|
34 |
+
++ head -n1
|
35 |
+
++ zcat /nemo/lab/johnsone/home/users/johnsoe/data/datasets/fang-2023-biogen-adme/biogen-adme.csv.gz
|
36 |
+
++ tail -n+2
|
37 |
+
++ awk -F, -v OFS=, '$19 == "True"'
|
38 |
+
+ set +x
|
split.log
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
🚀 Splitting table with the following parameters:
|
2 |
+
subcommand: split
|
3 |
+
output: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>
|
4 |
+
format: csv
|
5 |
+
input: <_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>
|
6 |
+
representation: SMILES
|
7 |
+
column: SMILES
|
8 |
+
prefix: None
|
9 |
+
type: scaffold
|
10 |
+
train: 0.85
|
11 |
+
test: 0.15
|
12 |
+
seed: 1
|
13 |
+
func: <function _split at 0x7f55b081f4c0>
|
14 |
+
|
15 |
+
|
16 |
+
Split counts:
|
17 |
+
train: 2993
|
18 |
+
test: 528
|
19 |
+
validation: 0
|
20 |
+
⏰ Completed process in 0:00:10.966729
|