Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 7,936 Bytes
08b62a1
cc93bfb
9caa35b
cc93bfb
 
1ae1e14
cc93bfb
1ae1e14
 
cc93bfb
 
 
 
 
 
 
 
9caa35b
 
 
 
c33734e
08b62a1
a5fe538
 
 
dda8d4f
4801255
a5fe538
4801255
 
 
 
 
 
a5fe538
ef4a78e
f2c7f41
cc93bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c33734e
 
cc93bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5fe538
4801255
a5fe538
ebd7a7f
 
 
 
 
 
 
 
 
 
 
 
 
a5fe538
4801255
 
d477105
 
 
 
 
 
 
ebd7a7f
 
 
a5fe538
ebd7a7f
4801255
ebd7a7f
a5fe538
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
annotations_creators:
- Leonardo Zilio, Hadeel Saadany, Prashant Sharma, Diptesh Kanojia, Constantin Orasan
language_creators:
- found
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids: []
paperswithcode_id: plod-an-abbreviation-detection-dataset-for
pretty_name: 'PLOD: An Abbreviation Detection Dataset'
tags:
- abbreviation-detection
---

# PLOD: An Abbreviation Detection Dataset  

This is the repository for PLOD Dataset published at LREC 2022. The dataset can help build sequence labelling models for the task Abbreviation Detection.

### Dataset

We provide two variants of our dataset - Filtered and Unfiltered. They are described in our paper here.

1. The Filtered version can be accessed via [Huggingface Datasets here](https://huggingface.co/datasets/surrey-nlp/PLOD-filtered) and a [CONLL format is present here](https://github.com/surrey-nlp/PLOD-AbbreviationDetection).<br/>

2. The Unfiltered version can be accessed via [Huggingface Datasets here](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) and a [CONLL format is present here](https://github.com/surrey-nlp/PLOD-AbbreviationDetection).<br/>

3. The [SDU Shared Task](https://sites.google.com/view/sdu-aaai22/home) data we use for zero-shot testing is [available here](https://huggingface.co/datasets/surrey-nlp/SDU-test).

# Dataset Card for PLOD-unfiltered

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [Needs More Information]
- **Repository:** https://github.com/surrey-nlp/PLOD-AbbreviationDetection
- **Paper:** https://arxiv.org/abs/2204.12061
- **Leaderboard:** https://paperswithcode.com/sota/abbreviationdetection-on-plod-an-abbreviation
- **Point of Contact:** [Diptesh Kanojia](mailto:[email protected])

### Dataset Summary

This PLOD Dataset is an English-language dataset of abbreviations and their long-forms tagged in text. The dataset has been collected for research from the PLOS journals indexing of abbreviations and long-forms in the text. This dataset was created to support the Natural Language Processing task of abbreviation detection and covers the scientific domain. 

### Supported Tasks and Leaderboards

This dataset primarily supports the Abbreviation Detection Task. It has also been tested on a train+dev split provided by the Acronym Detection Shared Task organized as a part of the Scientific Document Understanding (SDU) workshop at AAAI 2022.


### Languages

English

## Dataset Structure

### Data Instances

A typical data point comprises an ID, a set of `tokens` present in the text, a set of `pos_tags` for the corresponding tokens obtained via Spacy NER, and a set of `ner_tags` which are limited to `AC` for `Acronym` and `LF` for `long-forms`.

An example from the dataset:
{'id': '1',
 'tokens': ['Study', '-', 'specific', 'risk', 'ratios', '(', 'RRs', ')', 'and', 'mean', 'BW', 'differences', 'were', 'calculated', 'using', 'linear', 'and', 'log', '-', 'binomial', 'regression', 'models', 'controlling', 'for', 'confounding', 'using', 'inverse', 'probability', 'of', 'treatment', 'weights', '(', 'IPTW', ')', 'truncated', 'at', 'the', '1st', 'and', '99th', 'percentiles', '.'],
 'pos_tags': [8, 13, 0, 8, 8, 13, 12, 13, 5, 0, 12, 8, 3, 16, 16, 0, 5, 0, 13, 0, 8, 8, 16, 1, 8, 16, 0, 8, 1, 8, 8, 13, 12, 13, 16, 1, 6, 0, 5, 0, 8, 13],
 'ner_tags': [0, 0, 0, 3, 4, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}

### Data Fields

- id: the row identifier for the dataset point.
- tokens: The tokens contained in the text.
- pos_tags: the Part-of-Speech tags obtained for the corresponding token above from Spacy NER.
- ner_tags: The tags for abbreviations and long-forms.


### Data Splits

|            | Train   | Valid | Test |
| -----      | ------ | -----  | ---- |
| Filtered   | 112652 |  24140 | 24140|
| Unfiltered | 113860 |  24399 | 24399|


## Dataset Creation

### Source Data

#### Initial Data Collection and Normalization

Extracting the data from PLOS Journals online and then tokenization, normalization.

#### Who are the source language producers?

PLOS Journal

## Additional Information

### Dataset Curators

The dataset was initially created by Leonardo Zilio, Hadeel Saadany, Prashant Sharma,
Diptesh Kanojia, Constantin Orasan.

### Licensing Information

CC-BY-SA 4.0

### Citation Information

[Needs More Information]

### Installation

We use the custom NER pipeline in the [spaCy transformers](https://spacy.io/universe/project/spacy-transformers) library to train our models. This library supports training via any pre-trained language models available at the :rocket: [HuggingFace repository](https://huggingface.co/).<br/>
Please see the instructions at these websites to setup your own custom training with our dataset to reproduce the experiments using Spacy.

OR<br/>

However, you can also reproduce the experiments via the Python notebook we [provide here](https://github.com/surrey-nlp/PLOD-AbbreviationDetection/blob/main/nbs/fine_tuning_abbr_det.ipynb) which uses HuggingFace Trainer class to perform the same experiments. The exact hyperparameters can be obtained from the models readme cards linked below. Before starting, please perform the following steps:

```bash
git clone https://github.com/surrey-nlp/PLOD-AbbreviationDetection
cd PLOD-AbbreviationDetection
pip install -r requirements.txt
```

Now, you can use the notebook to reproduce the experiments.

### Model(s)

Our best performing models are hosted on the HuggingFace models repository:

| Models | [`PLOD - Unfiltered`](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) | [`PLOD - Filtered`](https://huggingface.co/datasets/surrey-nlp/PLOD-filtered) | Description |
| --- | :---: | :---: | --- |
| [RoBERTa<sub>large</sub>](https://huggingface.co/roberta-large) | [RoBERTa<sub>large</sub>-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) | -soon- | Fine-tuning on the RoBERTa<sub>large</sub> language model |
| [RoBERTa<sub>base</sub>](https://huggingface.co/roberta-base) | -soon- | [RoBERTa<sub>base</sub>-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) | Fine-tuning on the RoBERTa<sub>base</sub> language model |
| [AlBERT<sub>large-v2</sub>](https://huggingface.co/albert-large-v2) | [AlBERT<sub>large-v2</sub>-finetuned-abbDet](https://huggingface.co/surrey-nlp/albert-large-v2-finetuned-abbDet) | -soon- | Fine-tuning on the AlBERT<sub>large-v2</sub> language model |


On the link provided above, the model(s) can be used with the help of the Inference API via the web-browser itself. We have placed some examples with the API for testing.<br/>

### Usage

You can use the HuggingFace Model link above to find the instructions for using this model in Python locally using the notebook provided in the Git repo.