Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Vietnamese
Size:
10K - 100K
ArXiv:
metadata
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- found
language:
- vi
multilinguality:
- monolingual
task_categories:
- question-answering
task_ids:
- extractive-qa
pretty_name: 'UIT-ViQuAD2.0: Vietnamese Question Answering Dataset 2.0'
dataset_info:
features:
- name: id
dtype: string
- name: uit_id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
- name: is_impossible
dtype: bool
- name: plausible_answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: train
num_bytes: 37554233
num_examples: 28454
- name: validation
num_bytes: 4937137
num_examples: 3814
- name: test
num_bytes: 8970380
num_examples: 7301
download_size: 7099746
dataset_size: 51461750
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
Vietnamese Question Answering Dataset
Dataset Card for UIT-ViQuAD2.0
Dataset Summary
The HF version for Vietnamese QA dataset created by Nguyen et al. (2020) and released in the shared task.
The original UIT-ViQuAD contains over 23,000 QA pairs based on 174 Vietnamese Wikipedia articles. UIT-ViQuAD2.0 adds over 12K unanswerable questions for the same passage.
The dataset has been processed to remove a few duplicated questions and answers.
Questions about the private test set or the dataset should be directed to the authors.
Languages
Vietnamese (vi
)
Dataset Creation
Source Data
Vietnamese Wikipedia
Annotations
Human annotators
Citation Information
Original dataset:
@inproceedings{nguyen-etal-2020-vietnamese,
title = "A {V}ietnamese Dataset for Evaluating Machine Reading Comprehension",
author = "Nguyen, Kiet and
Nguyen, Vu and
Nguyen, Anh and
Nguyen, Ngan",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.233",
doi = "10.18653/v1/2020.coling-main.233",
pages = "2595--2605",
abstract = "Over 97 million inhabitants speak Vietnamese as the native language in the world. However, there are few research studies on machine reading comprehension (MRC) in Vietnamese, the task of understanding a document or text, and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands complicate reasoning such as single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods in English and Chinese as the first experimental models on UIT-ViQuAD, which will be compared to further models. We also estimate human performances on the dataset and compare it to the experimental results of several powerful machine models. As a result, the substantial differences between humans and the best model performances on the dataset indicate that improvements can be explored on UIT-ViQuAD through future research. Our dataset is freely available to encourage the research community to overcome challenges in Vietnamese MRC.",
}
Shared task where version 2.0 was published:
@article{Nguyen_2022,
title={VLSP 2021-ViMRC Challenge: Vietnamese Machine Reading Comprehension},
volume={38},
ISSN={2615-9260},
url={http://dx.doi.org/10.25073/2588-1086/vnucsce.340},
DOI={10.25073/2588-1086/vnucsce.340},
number={2},
journal={VNU Journal of Science: Computer Science and Communication Engineering},
publisher={Vietnam National University Journal of Science},
author={Nguyen, Kiet and Tran, Son Quoc and Nguyen, Luan Thanh and Huynh, Tin Van and Luu, Son Thanh and Nguyen, Ngan Luu-Thuy},
year={2022},
month=dec }
Acknowledgements
We thank the authors of ViQuAD for releasing this dataset to the community.