Mimic4Dataset / cohort.py
thbndi's picture
Update cohort.py
d17168a
raw
history blame
5.66 kB
import ipywidgets as widgets
import sys
from pathlib import Path
import os
import importlib
import shutil
import time
import yaml
def task_cohort(task,mimic_path,path_benchmark, config_path):
root_dir = path_benchmark
config_path=path_benchmark+'/config/'+config_path
with open(config_path) as f:
config = yaml.safe_load(f)
version_path = mimic_path
version = version_path.split('/')[-1][0]
start = time.time()
#----------------------------------------------config----------------------------------------------------
disease_label = config['disease_label']
tim = config['time']
label = config['label']
timeW = config['timeW']
include=int(timeW.split()[1])
bucket = config['bucket']
radimp = config['radimp']
predW = config['predW']
diag_flag = config['diagnosis']
out_flag = config['output']
chart_flag = config['chart']
proc_flag= config['proc']
med_flag = config['meds']
disease_filter = config['disease_filter']
icu_no_icu = config['icu_no_icu']
groupingICD = config['groupingICD']
# -------------------------------------------------------------------------------------------------------------
data_icu=icu_no_icu=="ICU"
data_mort=label=="Mortality"
data_admn=label=='Readmission'
data_los=label=='Length of Stay'
if (disease_filter=="Heart Failure"):
icd_code='I50'
elif (disease_filter=="CKD"):
icd_code='N18'
elif (disease_filter=="COPD"):
icd_code='J44'
elif (disease_filter=="CAD"):
icd_code='I25'
else:
icd_code='No Disease Filter'
#-----------------------------------------------EXTRACT MIMIC-----------------------------------------------------
if version == '2':
cohort_output = day_intervals_cohort_v22.extract_data(icu_no_icu,label,tim,icd_code, version_path,disease_label)
elif version == '1':
cohort_output = day_intervals_cohort.extract_data(icu_no_icu,label,tim,icd_code, version_path,disease_label)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
#----------------------------------------------FEATURES-------------------------------------------------------
if data_icu :
feature_selection_icu.feature_icu(cohort_output, version_path,diag_flag,out_flag,chart_flag,proc_flag,med_flag)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
#----------------------------------------------GROUPING-------------------------------------------------------
group_diag=False
group_med=False
group_proc=False
if data_icu:
if diag_flag:
group_diag=groupingICD
feature_selection_icu.preprocess_features_icu(cohort_output, diag_flag, group_diag,False,False,False,0,0)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
#----------------------------------------------SUMMARY-------------------------------------------------------
if data_icu:
feature_selection_icu.generate_summary_icu(cohort_output,diag_flag,proc_flag,med_flag,out_flag,chart_flag)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
#----------------------------------------------FEATURE SELECTION---------------------------------------------
select_diag= config['select_diag']
select_med= config['select_med']
select_proc= config['select_proc']
#select_lab= config['select_lab']
select_out= config['select_out']
select_chart= config['select_chart']
feature_selection_icu.features_selection_icu(cohort_output, diag_flag,proc_flag,med_flag,out_flag, chart_flag,select_diag,select_med,select_proc,select_out,select_chart)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
#---------------------------------------CLEANING OF FEATURES-----------------------------------------------
thresh=0
if data_icu:
if chart_flag:
outlier_removal=config['outlier_removal']
clean_chart=outlier_removal!='No outlier detection'
impute_outlier_chart=outlier_removal=='Impute Outlier (default:98)'
thresh=config['outlier']
left_thresh=config['left_outlier']
feature_selection_icu.preprocess_features_icu(cohort_output, False, False,chart_flag,clean_chart,impute_outlier_chart,thresh,left_thresh)
end = time.time()
print("Time elapsed : ", round((end - start)/60,2),"mins")
# ---------------------------------------tim-Series Representation--------------------------------------------
if radimp == 'forward fill and mean' :
impute='Mean'
elif radimp =='forward fill and median':
impute = 'Median'
else :
impute = False
if data_icu:
gen=data_generation_icu_modify.Generator(task,cohort_output,data_mort,data_admn,data_los,diag_flag,proc_flag,out_flag,chart_flag,med_flag,impute,include,bucket,predW)
print("[============TASK COHORT SUCCESSFULLY CREATED============]")
if __name__ == '__main__':
task = sys.argv[1]
mimic_path = sys.argv[2]
path_benchmark = sys.argv[3]
config = sys.argv[4]
sys.path.append(path_benchmark+'/preprocessing/day_intervals_preproc')
sys.path.append(path_benchmark+'/utils')
sys.path.append(path_benchmark+'/preprocessing/hosp_module_preproc')
sys.path.append(path_benchmark+'/model')
import day_intervals_cohort_v22
import day_intervals_cohort
import feature_selection_icu
import data_generation_icu_modify
task_cohort(task, mimic_path, path_benchmark, config)