Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Swahili
Libraries:
Datasets
pandas
License:
id
int64
1
26.7k
translation
translation
25,335
{ "dav": "Ukaniw'ona wadazamiliwa ni ini.", "swa": "Akiniona huwa simfurahishi" }
15,989
{ "dav": "Hata iji Wavika", "swa": "Ukifika" }
17,974
{ "dav": "Wuki ghwa choki", "swa": "Asali ya nyuki" }
9,170
{ "dav": "Ikumi na imweri", "swa": "Kumi na moja" }
18,521
{ "dav": "Dawida malagho ni kilimo tu!", "swa": "Taita ni ukulima tu!" }
26,633
{ "dav": "Mapemba ghaw'uya mabaha.", "swa": "Mahindi yamekuwa makubwa" }
22,531
{ "dav": "Nadamduka sa mwana mtini", "swa": "Huwa nambeba kama dadangu mdogo" }
2,005
{ "dav": "Vua ikazoya kumotoka yanifwana nighale mzinyi", "swa": "Mvua ikianya kunyesha yanifa niende nyumbani" }
2,127
{ "dav": "Agha makoto ghekua", "swa": "Maswali haya ni magumu" }
1,148
{ "dav": "Wavi wijali kulela wana.", "swa": "Wazazi wanajali malezi ya watoto." }
20,319
{ "dav": "Wodejoka chopa", "swa": "Aliabiri chopa" }
1,140
{ "dav": "Wandu wikundike wikae na sere.", "swa": "Watu wanapaswa kuwa na amani." }
6,698
{ "dav": "Kwabonya kiwiwi", "swa": "Umefanya vibaya" }
25,140
{ "dav": "Maka ghose ghasia.", "swa": "Makaa yote yameisha" }
8,156
{ "dav": "Nachumba chumba", "swa": "Nimeruka ruka" }
7,580
{ "dav": "Kwawebora nicha", "swa": "Unaimba vizuri" }
3,535
{ "dav": "Wana ni inosi kufuma kwa mlungu.", "swa": "Watoto ni zawadi kutoka kwa Mungu." }
17,979
{ "dav": "Obanda shuu", "swa": "Ni mnono sana" }
1,876
{ "dav": "Harusi ya me Kombo yeko kifula nguwo cha ihi njumwa", "swa": "Harusi ya mama Kombo iko Jumamosi ya hii wiki" }
20,170
{ "dav": "Mutihani ghwa isanga ilazi ghudaw'oka law'uke", "swa": "Mtihani wa kitaifa unaanza kesho kutwa" }
15,567
{ "dav": "opimwa nyama", "swa": "Alipimwa nyama" }
993
{ "dav": "Kufuma navalwa siwonie.", "swa": "Tangu nizaliwe sijawai ona." }
20,659
{ "dav": "Kuzighane andonyi kakaw'adia", "swa": "Uangalie chini ukiwa unapita" }
21,765
{ "dav": "Chovu ndeilemwagha ni lwembe lwake", "swa": "Ndovu hua haishindwi na kubeba pembe zake" }
11,548
{ "dav": "Mwai wape olow'olwa ni mndu wa chopwa.", "swa": "Binti yake ameolewa na mzungu." }
24,776
{ "dav": "Wadeka mswara m'mbishi.", "swa": "Amepika sima mbichi" }
9,769
{ "dav": "Kwanywa uji wose", "swa": "Umekunywa uji wote" }
26,572
{ "dav": "Waghua mabamba ghamu.", "swa": "Amenunua mabati mengine" }
7,606
{ "dav": "Iridia jabuka imbu", "swa": "Nywele imeota mvi" }
20,368
{ "dav": "W'abonyikazi w'achelewa kucha kazinyi", "swa": "Wafanyakazi wamechelewa kuja kazini" }
21,358
{ "dav": "Neka aha nieka.", "swa": "Niko apa peke yangu." }
19,589
{ "dav": "Isanga jhaw'esia", "swa": "Dunia inaisha" }
4,019
{ "dav": "Elimu idadineka mfunguo ghwa wurumwengu na maarifa.", "swa": "Elimu inatupa ufunguo wa ulimwengu wa maarifa." }
1,980
{ "dav": "Sigha nighende pedu niwone mao na wanidu", "swa": "Wacha niende kwetu nione mama na ndugu zangu" }
20,487
{ "dav": "Hachi yadapatika kwa sharia", "swa": "Haki hupatikana kwa sheria" }
17,703
{ "dav": "Nganda yawuduka", "swa": "Ukuta umeanguka" }
26,153
{ "dav": "Oghora ndeukunde kilambo chingi cha ndee.", "swa": "Alisema hataki kitu yoyote ya babake" }
13,875
{ "dav": "W'ajoka cha mghondinyi andu w'itasiragha.", "swa": "Wamepanda mlimani mahali wanapoabudu." }
16,622
{ "dav": "W'ufisadi ghwadima ghushughulikilwe kiw'ada?", "swa": "ufisadi unaweza shughulikiwa kwa njia gani?" }
14,965
{ "dav": "Na ghamu ghachuria garama rako", "swa": "na mengine huongeza gharama zao." }
26,195
{ "dav": "Ghuenyi mwana nguw'o rimkataa.", "swa": "Nunulieni mtoto nguo zenye zinamtosha" }
24,236
{ "dav": "Ndoukunde mwana uchie na mae.", "swa": "Hataki mtoto amekuja na mamake" }
5,606
{ "dav": "Sufuria eka na mkokolo", "swa": "Sufuria iko na ukoko" }
11,523
{ "dav": "Nerevalwa wughangenyi anyaa kavui.", "swa": "Nilizaliwa katika hospitali hapo karibu." }
21,397
{ "dav": "Kwaw'esekea kii oho.", "swa": "Unachekea nini wewe" }
9,855
{ "dav": "Nadukidshwa magho", "swa": "Nimebebeshwa mawe" }
18,300
{ "dav": "Navenyavura nivike aje naw'eghenda", "swa": "Naharakisha nifike mahali naenda" }
4,269
{ "dav": "Ilengo ja maisha ni kulola maana kwa kila malisano.", "swa": "Kusudi la maisha ni kutafuta maana katika kila uzoefu." }
12,872
{ "dav": "Obighwa usekeuza ndoe.", "swa": "Alikomeshwa kuuza ardhi." }
9,369
{ "dav": "W'andu w'engi w'afue kwa w'undu ghwa ugho w'ukongo", "swa": "Watu wengi walifariki kwa sababu ya huo ugonjwa" }
1,367
{ "dav": "Itunda ijo jafunya ndighi na virutubisho.", "swa": "Tunda hilo linatoa nguvu na virutubisho." }
19,648
{ "dav": "W'alimi w'aw'ekumba machi matutenyi", "swa": "Wakulima wananunyizia maji katika matuta" }
25,233
{ "dav": "Kuzighane mariw'a ghiseke dika.", "swa": "Uangalie maziwa yasimwagike" }
13,953
{ "dav": "Naw'ona karamu yakaia tayari.", "swa": "Nimeona karamu iko tayari." }
4,776
{ "dav": "Nyonyi radima kukaia na maliso ghisefwanane.", "swa": "Ndege wanaweza kuwa na tabia tofauti." }
16,050
{ "dav": "Iriko jaw~uada", "swa": "jiko lishashika" }
16,047
{ "dav": "Dini yaw'itesia sana w'anajamii", "swa": "Dini umewasaidia sana wanajamii" }
203
{ "dav": "Kusikira ni ilagho ja muhimu", "swa": "Kusikiliza ni jambo la muhimu." }
17,492
{ "dav": "Ndoo yalaghaya", "swa": "Ndoo imepotea" }
4,775
{ "dav": "Nyerinyeri radima kukaia na chughano riboie.", "swa": "Nyota zinaweza kuwa na hadithi za kuvutia." }
3,400
{ "dav": "Isanga jedu jeko na wuzuri na historia.", "swa": "Nchi yetu ina utajiri na historia." }
7,300
{ "dav": "Ini nefuma Mbale", "swa": "Mimi nimetoka Mbale" }
4,620
{ "dav": "Vindo vadima kukaia visingie.", "swa": "Chakula kinaweza kuwa kitamu." }
9,662
{ "dav": "oho nechi kwaw'emanya", "swa": "Wewe unajua" }
8,319
{ "dav": "Chia yewuya yeko hao", "swa": "Njia ya kurudi iko wapi" }
11,019
{ "dav": "Deko na choro chedu nyumbenyi pedu.", "swa": "Tuna choo chetu nyumbani kwetu." }
19,789
{ "dav": "Kakunda samaki kocha na magome.", "swa": "Ukiwataka samaki njoo na pesa" }
6,303
{ "dav": "Kavui sana", "swa": "Karibu sana" }
4,534
{ "dav": "Mndu na mruna wawesarigha.", "swa": "Ndugu na dada wanacheza." }
20,433
{ "dav": "W'ana w'a sikulu w'ew'adwa ni makongo", "swa": "Wanafunzi wamevamiwa na magonjwa" }
19,571
{ "dav": "W'ona seji w'ajikucha", "swa": "Ona vile amejikunja" }
24,678
{ "dav": "Nedenekwa marughu adadu.", "swa": "Nilipewa ndizi tatu" }
16,123
{ "dav": "Nguwo ra harusi radashonwa na mafundi wa hali ya ighu", "swa": "Nguo za hrusi husahonwa na mafundi wa hali ya juu" }
3,973
{ "dav": "Lukundo la kichuku lwadafunya ndighi na kuboilwa kwa ngelo rikurie.", "swa": "Upendo wa familia hutoa nguvu na faraja katika nyakati ngumu." }
10,524
{ "dav": "Wangia chumba cha mghenyu wape.", "swa": "Ameingia kwenye chumba cha rafiki yake." }
3,727
{ "dav": "Nyamandu rakundikie kupata ndisha iboie na machi.", "swa": "Wanyama wanafaa kupata lishe vizuri na maji." }
20,286
{ "dav": "Apa obia shuu", "swa": "Baba yangu ni mkali sana" }
18,527
{ "dav": "Mghende mungie", "swa": "Mwende muingie" }
12,117
{ "dav": "Ndodo yapo ni kukaia umu wa w'aja w'iandikagha habari riboie nandighi w'urumwengunyi.", "swa": "Ndoto yangu ni kuwa mmojawapo wa waandishi wa habari bora zaidi ulimwenguni." }
5,008
{ "dav": "Nyonyi radima kukaia na misharia ya rangi.", "swa": "Ndege wanaweza kuwa na michirizi ya rangi." }
24,396
{ "dav": "Ukaghusha wadaghona sa kichula.", "swa": "Akilala huwa anakoroma kama chura" }
17,033
{ "dav": "Waweenda mboa mboa", "swa": "Anatembea polepole" }
24,800
{ "dav": "Kanileka w'ele.", "swa": "Niache jamani" }
5,530
{ "dav": "Vilole va nyumba", "swa": "Vioo vya nyumba" }
20,063
{ "dav": "Naobua kughala mzinyi niekeri.", "swa": "Naogopa kuenda nyumbani peke yangu" }
8,251
{ "dav": "Niwineka voro rako", "swa": "Nitawapatia salamu zako" }
2,477
{ "dav": "Nguku ya mteja", "swa": "Kuku kishingo" }
9,961
{ "dav": "vighemu vawudukia vigharo", "swa": "Miamba imeangukia nyumba" }
9,821
{ "dav": "Chuya mada", "swa": "Tema mate" }
11,970
{ "dav": "Dipwanye maghesho eri disekew'uria kazi iw'I iw'i.", "swa": "Tushirikiane kimawazo ili tusirudie juhudi." }
8,030
{ "dav": "Irina jhako jiele", "swa": "Jina lako litukuzwe" }
15,825
{ "dav": "Mkongo ohoa", "swa": "Mgojwa alipona" }
13,907
{ "dav": "Kukadumwa kughende shwa-shwa.", "swa": "Ukitumwa uende haraka-haraka." }
14,513
{ "dav": "Eka ni mndu na mruna w'itandikilo angu w'erelwagha sokonyi w'iko w'aw'ongeri.", "swa": "Ilikuwa ni kichapo cha kaka wawili waliokuwa wakipigana sokoni wakiwa walevi." }
3,417
{ "dav": "Kutesia wazima kwadabonya maisha ghikaiye na ilengo.", "swa": "Kusaidia wengine hufanya maisha kuwa ya kusudi." }
8,657
{ "dav": "Kudwalwa mdida", "swa": "Utapelekwa kwa kasi" }
118
{ "dav": "Matunda na mbogha ni muhimu kwa afya", "swa": "Matunda na mboga ni muhimu kwa afya." }
3,830
{ "dav": "Didashanwa lawuke kwa ihi kazi daibonya idime.", "swa": "Tutalipwa kesho kutwa kwa kazi tulioifanya leo." }
14,752
{ "dav": "Waghorie reko na faida raenga kwa iji isanga.", "swa": "Alisema zina manufaa mengi kwa taifa hili" }
20,819
{ "dav": "Ogha w'ushu nema kukushinge mavuda.", "swa": "Nawa uso halafu ujipake mafuta" }

Low-Resource Language Data: Parallel Corpora for Kiswahili and Kidaw'ida, Kalenjin, and Dholuo

Description

This dataset consists of three parallel corpora:

  1. Kidaw'ida (Dawida)-Kiswahili (dav_swa)
  2. Kalenjin-Kiswahili (kln_swa)
  3. Dholuo-Kiswahili (luo_swa)

Each corpus contains approximately 30,000 sentence pairs. The dataset was created for use in training machine translation models, enabling translation from Kiswahili (the national language of Kenya) into indigenous languages.

Purpose

The primary purpose of this dataset is to facilitate the development of machine translation models for three indigenous Kenyan languages:

  • Kidaw'ida (Dawida)
  • Kalenjin
  • Dholuo

By providing parallel corpora with Kiswahili, this dataset aims to bridge the gap between the national language and these indigenous languages, promoting linguistic diversity and accessibility.

Dataset Details

  • Format: Parallel corpora (sentence pairs)
  • Languages: Kiswahili (swa), Kidaw'ida (dav), Kalenjin (kln), Dholuo (luo)
  • License: CC-BY-4.0
  • Task: Translation

Corpus Statistics

  1. Kidaw'ida-Kiswahili (dav_swa):

    • Train set: 21,329 examples
    • Test set: 5,333 examples
    • Total size: 1,973,706 bytes
  2. Kalenjin-Kiswahili (kln_swa):

    • Train set: 28,101 examples
    • Test set: 7,026 examples
    • Total size: 3,537,847 bytes
  3. Dholuo-Kiswahili (luo_swa):

    • Train set: 23,446 examples
    • Test set: 5,862 examples
    • Total size: 4,387,588 bytes

How to Use

To use this dataset for machine translation tasks:

  1. Load the dataset using the Hugging Face Datasets library:
from datasets import load_dataset

# Load a specific language pair
dav_swa = load_dataset("kenyan-low-resource-language-data", "dav_swa")
kln_swa = load_dataset("kenyan-low-resource-language-data", "kln_swa")
luo_swa = load_dataset("kenyan-low-resource-language-data", "luo_swa")
  1. Access the train and test splits:
train_data = dav_swa["train"]
test_data = dav_swa["test"]
  1. Iterate through the examples:
for example in train_data:
    kidawida_text = example["translation"]["dav"]
    kiswahili_text = example["translation"]["swa"]
    # Process the text as needed
  1. Use the data to train your machine translation model or for other NLP tasks.

Citation

If you use this dataset in your research or project, please cite it as follows:

@dataset{mbogho_2024_low_resource_language_data,
  author       = {Mbogho, Audrey and
                  Kipkebut, Andrew and
                  Wanzare, Lilian and
                  Awuor, Quin and
                  Oloo, Vivian and
                  Lugano, Rose},
  title        = {{Low-Resource Language Data: Parallel Corpora for 
                   Kiswahili and Kidaw'ida, Kalenjin, and Dholuo}},
  year         = 2024,
  publisher    = {Tech Innovators Network (THiNK) on Hugging Face},
  howpublished = {\url{https://huggingface.co/datasets/thinkKenya/kenyan-low-resource-language-data}}
}

Contributors

Creators

  • Audrey Mbogho (Project Manager) - United States International University Africa
  • Andrew Kipkebut (Data Curator) - Kabarak University
  • Lilian Wanzare (Data Curator) - Maseno University
  • Quin Awuor (Data Curator) - United States International University Africa
  • Vivian Oloo (Data Curator) - Maseno University
  • Rose Lugano (Data Curator) - University of Florida

Data Collectors

  • Esther Mkawanyika Nkrumah
  • Shalet Doreen Mkamzungu
  • Patience Chao Mwangola
  • David Mbela Mwakaba

Funding

This dataset was collected with funding from Lacuna Fund.

Updates and Future Releases

This dataset is also available on GitHub, where it will continue to be expanded and improved. Future releases will be uploaded to Hugging Face and Zenodo as new versions become available.

Contact

For questions or more information about this dataset, please contact:

  • Principal Investigator: Audrey Mbogho, United States International University - Africa

Acknowledgments

We would like to thank all the contributors, data collectors, and the Lacuna Fund for making this dataset possible. Their efforts contribute significantly to the preservation and technological advancement of low-resource languages in Kenya.

Downloads last month
32