repo_id
stringlengths
15
132
file_path
stringlengths
34
176
content
stringlengths
2
3.52M
__index_level_0__
int64
0
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/samples.json
[ { "text": "text_1" }, { "text": "text_2" }, { "text": "text_3" }, { "text": "text_4" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/script_with___file__.py
from pathlib import Path from promptflow import tool print(f"The script is {__file__}") assert Path(__file__).is_absolute(), f"__file__ should be absolute path, got {__file__}" @tool def my_python_tool(input1: str) -> str: from pathlib import Path assert Path(__file__).name == "script_with___file__.py" assert __name__ == "__pf_main__" print(f"Prompt: {input1} {__file__}") return f"Prompt: {input1} {__file__}"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/flow.dag.yaml
inputs: text: type: string outputs: output_prompt: type: string reference: ${node1.output} nodes: - name: node1 type: python source: type: code path: script_with___file__.py inputs: input1: ${inputs.text} - name: node2 type: python source: type: code path: folder/another-tool.py inputs: input1: ${node1.output} - name: node3 type: python source: type: code path: folder/another-tool.py inputs: input1: random value
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with___file__
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with___file__/folder/another-tool.py
from promptflow import tool print(f"The script is {__file__}") @tool def my_python_tool(input1: str) -> str: from pathlib import Path assert Path(__file__).as_posix().endswith("folder/another-tool.py") assert __name__ == "__pf_main__" return f"Prompt: {input1} {__file__}"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_list_input/flow.dag.yaml
inputs: key: type: list outputs: output: type: string reference: ${print_val.output.value} nodes: - name: print_val type: python source: type: code path: print_val.py inputs: key: ${inputs.key}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_list_input/print_val.py
from typing import List from promptflow import tool @tool def get_val(key): # get from env var print(key) return {"value": f"{key}: {type(key)}"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/generator_tools/echo.py
from promptflow import tool from char_generator import character_generator @tool def echo(text): """Echo the input string.""" echo_text = "Echo - " + "".join(character_generator(text)) return echo_text
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/generator_tools/char_generator.py
from promptflow import tool @tool def character_generator(text: str): """Generate characters from a string.""" for char in text: yield char
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/generator_tools/flow.dag.yaml
inputs: text: type: string outputs: answer: type: string reference: ${echo.output} nodes: - name: echo type: python source: type: code path: echo.py inputs: text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow-with-nan-inf/nan_inf.py
from promptflow import tool @tool def nan_inf(number: int): print(number) return {"nan": float("nan"), "inf": float("inf")}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow-with-nan-inf/flow.dag.yaml
inputs: number: type: int outputs: output: type: object reference: ${nan_inf.output} nodes: - name: nan_inf type: python source: type: code path: nan_inf.py inputs: number: ${inputs.number}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/README.md
Exported Dockerfile & its dependencies are located in the same folder. The structure is as below: - flow: the folder contains all the flow files - ... - connections: the folder contains yaml files to create all related connections - ... - runit: the folder contains all the runit scripts - ... - Dockerfile: the dockerfile to build the image - start.sh: the script used in `CMD` of `Dockerfile` to start the service - settings.json: a json file to store the settings of the docker image - README.md: the readme file to describe how to use the dockerfile Please refer to [official doc](https://microsoft.github.io/promptflow/how-to-guides/deploy-and-export-a-flow.html#export-a-flow) for more details about how to use the exported dockerfile and scripts.
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/Dockerfile
# syntax=docker/dockerfile:1 FROM docker.io/continuumio/miniconda3:latest WORKDIR / COPY ./flow /flow # create conda environment RUN conda create -n promptflow-serve python=3.9.16 pip=23.0.1 -q -y && \ conda run -n promptflow-serve \ pip install -r /flow/requirements_txt && \ conda run -n promptflow-serve pip install keyrings.alt && \ conda run -n promptflow-serve pip install gunicorn==20.1.0 && \ conda run -n promptflow-serve pip cache purge && \ conda clean -a -y RUN apt-get update && apt-get install -y runit EXPOSE 8080 COPY ./connections/* /connections/ # reset runsvdir RUN rm -rf /var/runit COPY ./runit /var/runit # grant permission RUN chmod -R +x /var/runit COPY ./start.sh / CMD ["bash", "./start.sh"]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/settings.json
{ "CUSTOM_CONNECTION_AZURE_OPENAI_API_KEY": "" }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/start.sh
#!/bin/bash # stop services created by runsv and propagate SIGINT, SIGTERM to child jobs sv_stop() { echo "$(date -uIns) - Stopping all runsv services" for s in $(ls -d /var/runit/*); do sv stop $s done } # register SIGINT, SIGTERM handler trap sv_stop SIGINT SIGTERM # start services in background and wait all child jobs runsvdir /var/runit & wait
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/runit
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/runit/promptflow-serve/run
#! /bin/bash CONDA_ENV_PATH="$(conda info --base)/envs/promptflow-serve" export PATH="$CONDA_ENV_PATH/bin:$PATH" ls ls /connections pf connection create --file /connections/custom_connection.yaml echo "start promptflow serving with worker_num: 8, worker_threads: 1" cd /flow gunicorn -w 8 --threads 1 -b "0.0.0.0:8080" --timeout 300 "promptflow._sdk._serving.app:create_app()"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/runit
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/runit/promptflow-serve/finish
#!/bin/bash echo "$(date -uIns) - promptflow-serve/finish $@" # stop all gunicorn processes echo "$(date -uIns) - Stopping all Gunicorn processes" pkill gunicorn while pgrep gunicorn >/dev/null; do echo "$(date -uIns) - Gunicorn process is still running, waiting for 1s" sleep 1 done echo "$(date -uIns) - Stopped all Gunicorn processes"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/connections/custom_connection.yaml
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json type: custom name: custom_connection configs: CHAT_DEPLOYMENT_NAME: gpt-35-turbo AZURE_OPENAI_API_BASE: https://gpt-test-eus.openai.azure.com/ secrets: AZURE_OPENAI_API_KEY: ${env:CUSTOM_CONNECTION_AZURE_OPENAI_API_KEY} module: promptflow.connections
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/user_intent_few_shot.jinja2
You are given a list of orders with item_numbers from a customer and a statement from the customer. It is your job to identify the intent that the customer has with their statement. Possible intents can be: "product return", "product exchange", "general question", "product question", "other". If the intent is product related ("product return", "product exchange", "product question"), then you should also provide the order id and item that the customer is referring to in their statement. For instance if you are give the following list of orders: order_number: 2020230 date: 2023-04-23 store_location: SeattleStore items: - description: Roof Rack, color black, price $199.99 item_number: 101010 - description: Running Shoes, size 10, color blue, price $99.99 item_number: 202020 You are given the following customer statements: - I am having issues with the jobbing shoes I bought. Then you should answer with in valid yaml format with the fields intent, order_number, item, and item_number like so: intent: product question order_number: 2020230 descrption: Running Shoes, size 10, color blue, price $99.99 item_number: 202020 Here is the actual problem you need to solve: In triple backticks below is the customer information and a list of orders. ``` {{customer_info}} ``` In triple backticks below are the is the chat history with customer statements and replies from the customer service agent: ``` {{chat_history}} ``` What is the customer's `intent:` here? "product return", "exchange product", "general question", "product question" or "other"? Reply with only the intent string.
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/user_intent_zero_shot.jinja2
You are given a list of orders with item_numbers from a customer and a statement from the customer. It is your job to identify the intent that the customer has with their statement. Possible intents can be: "product return", "product exchange", "general question", "product question", "other". In triple backticks below is the customer information and a list of orders. ``` {{customer_info}} ``` In triple backticks below are the is the chat history with customer statements and replies from the customer service agent: ``` {{chat_history}} ``` What is the customer's `intent:` here? "product return", "exchange product", "general question", "product question" or "other"? Reply with only the intent string.
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/requirements_txt
keyrings.alt promptflow-tools promptflow langchain
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/intent.py
import os import pip def extract_intent(chat_prompt: str): from langchain.chat_models import AzureChatOpenAI from langchain.schema import HumanMessage if "AZURE_OPENAI_API_KEY" not in os.environ: # load environment variables from .env file try: from dotenv import load_dotenv except ImportError: # This can be removed if user using custom image. pip.main(["install", "python-dotenv"]) from dotenv import load_dotenv load_dotenv() chat = AzureChatOpenAI( deployment_name=os.environ["CHAT_DEPLOYMENT_NAME"], openai_api_key=os.environ["AZURE_OPENAI_API_KEY"], openai_api_base=os.environ["AZURE_OPENAI_API_BASE"], openai_api_type="azure", openai_api_version="2023-03-15-preview", temperature=0, ) reply_message = chat([HumanMessage(content=chat_prompt)]) return reply_message.content def generate_prompt(customer_info: str, history: list, user_prompt_template: str): from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate from langchain.prompts.prompt import PromptTemplate chat_history_text = "\n".join( [message["role"] + ": " + message["content"] for message in history] ) prompt_template = PromptTemplate.from_template(user_prompt_template) chat_prompt_template = ChatPromptTemplate.from_messages( [ HumanMessagePromptTemplate(prompt=prompt_template) ] ) return chat_prompt_template.format_prompt(customer_info=customer_info, chat_history=chat_history_text).to_string() if __name__ == "__main__": import json with open("./data/denormalized-flat.jsonl", "r") as f: data = [json.loads(line) for line in f.readlines()] # only ten samples data = data[:10] # load template from file with open("user_intent_zero_shot.md", "r") as f: user_prompt_template = f.read() # each test for item in data: chat_prompt = generate_prompt(item["customer_info"], item["history"], user_prompt_template) reply = extract_intent(chat_prompt) print("=====================================") # print("Customer info: ", item["customer_info"]) # print("+++++++++++++++++++++++++++++++++++++") print("Chat history: ", item["history"]) print("+++++++++++++++++++++++++++++++++++++") print(reply) print("+++++++++++++++++++++++++++++++++++++") print(f"Ground Truth: {item['intent']}") print("=====================================")
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/setup.sh
echo Hello Promptflow!
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/.amlignore
*.ipynb .venv/ .data/ .env .vscode/ outputs/ connection.json .gitignore README.md eval_cli.md data/
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/extract_intent_tool.py
import os from promptflow import tool from promptflow.connections import CustomConnection from intent import extract_intent @tool def extract_intent_tool( chat_prompt, connection: CustomConnection) -> str: # set environment variables for key, value in dict(connection).items(): os.environ[key] = value # call the entry function return extract_intent( chat_prompt=chat_prompt, )
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/export/linux/flow/flow.dag.yaml
inputs: customer_info: type: string chat_history: type: string outputs: output: type: string reference: ${extract_intent.output} nodes: - name: chat_prompt type: prompt source: type: code path: user_intent_zero_shot.jinja2 inputs: # Please check the generated prompt inputs customer_info: ${inputs.customer_info} chat_history: ${inputs.chat_history} - name: extract_intent type: python source: type: code path: extract_intent_tool.py inputs: chat_prompt: ${chat_prompt.output} connection: custom_connection environment: python_requirements_txt: requirements_txt
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/llm_tool_with_duplicated_inputs/prompt_with_duplicated_inputs.jinja2
{{prompt}}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/llm_tool_with_duplicated_inputs/flow.dag.yaml
inputs: text: type: string outputs: output_prompt: type: string reference: ${llm_tool_with_duplicated_inputs.output} nodes: - name: llm_tool_with_duplicated_inputs type: llm provider: AzureOpenAI api: completion module: promptflow.tools.aoai connection: azure_open_ai_connection source: type: code path: prompt_with_duplicated_inputs.jinja2 inputs: deployment_name: text-ada-001 max_tokens: 16 text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment_variables/inputs.jsonl
{"text": "env1"} {"text": "env2"} {"text": "env3"} {"text": "env4"} {"text": "env5"} {"text": "env10"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment_variables/flow.dag.yaml
environment_variables: env1: 2 env2: spawn env3: - 1 - 2 - 3 - 4 - 5 env4: a: 1 b: "2" inputs: key: type: string outputs: output: type: string reference: ${print_env.output.value} nodes: - name: print_env type: python source: type: code path: print_env.py inputs: key: ${inputs.key}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment_variables/print_env.py
import os from promptflow import tool @tool def get_env_var(key: str): print(os.environ.get(key)) # get from env var return {"value": os.environ.get(key)}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_python_node_streaming_output/stream.py
from promptflow import tool from typing import Generator, List def stream(question: str) -> Generator[str, None, None]: for word in question: yield word @tool def my_python_tool(chat_history: List[dict], question: str) -> dict: return {"answer": stream(question)}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_python_node_streaming_output/flow.dag.yaml
inputs: chat_history: type: list is_chat_history: true question: type: string is_chat_input: true outputs: answer: type: string reference: ${stream.output.answer} is_chat_output: true nodes: - name: stream type: python source: type: code path: stream.py inputs: chat_history: ${inputs.chat_history} question: ${inputs.question}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_additional_include/samples.json
[ { "line_number": 0, "variant_id": "variant_0", "groundtruth": "App", "prediction": "App" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_additional_include/classify_with_llm.jinja2
system: Your task is to classify a given url into one of the following types: Movie, App, Academic, Channel, Profile, PDF or None based on the text content information. The classification will be based on the url, the webpage text content summary, or both. user: Here are a few examples: {% for ex in examples %} URL: {{ex.url}} Text content: {{ex.text_content}} OUTPUT: {"category": "{{ex.category}}", "evidence": "{{ex.evidence}}"} {% endfor %} For a given URL : {{url}}, and text content: {{text_content}}. Classify above url to complete the category and indicate evidence. OUTPUT:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_additional_include/summarize_text_content__variant_1.jinja2
system: Please summarize some keywords of this paragraph and have some details of each keywords. Do not add any information that is not in the text. user: Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_additional_include/prepare_examples.py
from pathlib import Path from promptflow import tool # read file from additional includes lines = open(r"fetch_text_content_from_url.py", "r").readlines() @tool def prepare_examples(): if not Path("summarize_text_content.jinja2").exists(): raise Exception("Cannot find summarize_text_content.jinja2") return [ { "url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both", }, { "url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL", }, { "url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content", }, { "url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None", }, ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_additional_include/flow.dag.yaml
inputs: url: type: string default: https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h outputs: category: type: string reference: ${convert_to_dict.output.category} evidence: type: string reference: ${convert_to_dict.output.evidence} nodes: - name: fetch_text_content_from_url type: python source: type: code path: fetch_text_content_from_url.py inputs: url: ${inputs.url} - name: summarize_text_content type: llm source: type: code path: summarize_text_content.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: chat module: promptflow.tools.aoai use_variants: true - name: prepare_examples type: python source: type: code path: prepare_examples.py inputs: {} - name: classify_with_llm type: llm source: type: code path: classify_with_llm.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' url: ${inputs.url} examples: ${prepare_examples.output} text_content: ${summarize_text_content.output} provider: AzureOpenAI connection: azure_open_ai_connection api: chat module: promptflow.tools.aoai - name: convert_to_dict type: python source: type: code path: convert_to_dict.py inputs: input_str: ${classify_with_llm.output} node_variants: summarize_text_content: default_variant_id: variant_1 variants: variant_0: node: type: llm source: type: code path: summarize_text_content.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: chat module: promptflow.tools.aoai variant_1: node: type: llm source: type: code path: summarize_text_content__variant_1.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '256' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: chat module: promptflow.tools.aoai additional_includes: - ../external_files/convert_to_dict.py - ../external_files/fetch_text_content_from_url.py - ../external_files/summarize_text_content.jinja2 - ../external_files/summarize_text_content.jinja2 - ../external_files - ../external_files
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/saved_component_spec/parallel.yaml
creation_context: created_at: xxx created_by: xxx created_by_type: xxx last_modified_at: xxx last_modified_by: xxx last_modified_by_type: xxx description: Create flows that use large language models to classify URLs into multiple categories. display_name: web_classification_4 error_threshold: -1 id: azureml:/subscriptions/xxx/resourceGroups/xxx/providers/Microsoft.MachineLearningServices/workspaces/xxx/components/xxx/versions/xxx input_data: ${{inputs.data}} inputs: connections.classify_with_llm.connection: default: azure_open_ai_connection optional: true type: string connections.classify_with_llm.deployment_name: default: text-davinci-003 optional: true type: string connections.classify_with_llm.model: enum: - text-davinci-001 - text-davinci-002 - text-davinci-003 - text-curie-001 - text-babbage-001 - text-ada-001 - code-cushman-001 - code-davinci-002 optional: true type: string connections.summarize_text_content.connection: default: azure_open_ai_connection optional: true type: string connections.summarize_text_content.deployment_name: default: text-davinci-003 optional: true type: string connections.summarize_text_content.model: enum: - text-davinci-001 - text-davinci-002 - text-davinci-003 - text-curie-001 - text-babbage-001 - text-ada-001 - code-cushman-001 - code-davinci-002 optional: true type: string data: optional: false type: uri_folder run_outputs: optional: true type: uri_folder url: default: https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h optional: false type: string is_deterministic: true logging_level: INFO max_concurrency_per_instance: 1 mini_batch_error_threshold: 0 mini_batch_size: '1' name: web_classification_4 outputs: debug_info: type: uri_folder flow_outputs: type: uri_folder retry_settings: max_retries: 2 timeout: 3600 task: append_row_to: ${{outputs.flow_outputs}} code: /subscriptions/xxx/resourceGroups/xxx/providers/Microsoft.MachineLearningServices/workspaces/xxx/codes/xxx/versions/xxx entry_script: driver/azureml_user/parallel_run/prompt_flow_entry.py environment: azureml:/subscriptions/xxx/resourceGroups/xxx/providers/Microsoft.MachineLearningServices/workspaces/xxx/environments/xxx/versions/xxx program_arguments: --amlbi_pf_enabled True --amlbi_pf_run_mode component --amlbi_mini_batch_rows 1 --amlbi_file_format jsonl $[[--amlbi_pf_run_outputs ${{inputs.run_outputs}}]] --amlbi_pf_debug_info ${{outputs.debug_info}} --amlbi_pf_connections "$[[classify_with_llm.connection=${{inputs.connections.classify_with_llm.connection}},]]$[[summarize_text_content.connection=${{inputs.connections.summarize_text_content.connection}},]]" --amlbi_pf_deployment_names "$[[classify_with_llm.deployment_name=${{inputs.connections.classify_with_llm.deployment_name}},]]$[[summarize_text_content.deployment_name=${{inputs.connections.summarize_text_content.deployment_name}},]]" --amlbi_pf_model_names "$[[classify_with_llm.model=${{inputs.connections.classify_with_llm.model}},]]$[[summarize_text_content.model=${{inputs.connections.summarize_text_content.model}},]]" --amlbi_pf_input_url ${{inputs.url}} type: run_function type: parallel version: 1.0.0
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_sys_inject/hello.py
import os import sys from promptflow import tool sys.path.append(f"{os.path.dirname(__file__)}/custom_lib") from custom_lib.foo import foo @tool def my_python_tool(input1: str) -> str: return foo(param=input1)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_sys_inject/flow.dag.yaml
inputs: text: type: string outputs: output_prompt: type: string reference: ${echo_my_prompt.output} nodes: - inputs: input1: ${inputs.text} name: echo_my_prompt type: python source: type: code path: hello.py
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_sys_inject
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_sys_inject/custom_lib/foo.py
def foo(param: str) -> str: return f"{param} from func foo"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_image_nested_api_calls/passthrough.py
from promptflow import tool @tool def passthrough(image, call_passthrough: bool = True): if call_passthrough: image = passthrough(image, False) return image
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_image_nested_api_calls/flow.dag.yaml
inputs: image: type: image default: logo.jpg outputs: output: type: image reference: ${python_node.output} nodes: - name: python_node type: python source: type: code path: passthrough.py inputs: image: ${inputs.image}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/package_tools/flow.dag.yaml
inputs: text: type: string outputs: output: type: string reference: ${search_by_text.output.search_metadata} nodes: - name: search_by_text type: python source: type: package tool: promptflow.tools.serpapi.SerpAPI.search inputs: connection: serp_connection query: ${inputs.text} num: 1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/prompt_tools/samples.json
[ { "text": "text_1" }, { "text": "text_2" }, { "text": "text_3" }, { "text": "text_4" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/prompt_tools/summarize_text_content_prompt.jinja2
Please summarize the following content in one paragraph. 50 words. Do not add any information that is not in the content. Text: {{text}} Images: ![image]({{image1}}) ![ image]({{image2}}) ![image ]({{image3}}) ![ image ]({{image4}}) Video: ![video]({{video1}}) Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/prompt_tools/summarize_text_content_prompt.meta.json
{ "name": "summarize_text_content_prompt", "type": "prompt", "inputs": { "text": { "type": [ "string" ] }, "image1": { "type": [ "image" ] }, "image2": { "type": [ "image" ] }, "image3": { "type": [ "image" ] }, "image4": { "type": [ "image" ] }, "video1": { "type": [ "string" ] } }, "source": "summarize_text_content_prompt.jinja2" }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/prompt_tools/flow.dag.yaml
inputs: text: type: string outputs: output_prompt: type: string reference: ${summarize_text_content_prompt.output} nodes: - name: summarize_text_content_prompt type: prompt source: type: code path: summarize_text_content_prompt.jinja2 inputs: text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/print_input_flow/inputs.jsonl
{"text": "text_0"} {"text": "text_1"} {"text": "text_2"} {"text": "text_3"} {"text": "text_4"} {"text": "text_5"} {"text": "text_6"} {"text": "text_7"} {"text": "text_8"} {"text": "text_9"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/print_input_flow/print_input.py
from promptflow import tool import sys @tool def print_inputs( text: str = None, ): print(f"STDOUT: {text}") print(f"STDERR: {text}", file=sys.stderr) return text
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/print_input_flow/flow.dag.yaml
inputs: text: type: string outputs: output_text: type: string reference: ${print_input.output} nodes: - name: print_input type: python source: type: code path: print_input.py inputs: text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_invalid_import/hello.py
import package_not_exist
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_invalid_import/flow.dag.yaml
inputs: text: type: string outputs: output_prompt: type: string reference: ${echo_my_prompt.output} nodes: - inputs: text: ${inputs.text} name: echo_my_prompt type: python source: type: code path: hello.py node_variants: {}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/unordered_nodes/flow.dag.yaml
name: node_wrong_order inputs: text: type: string outputs: result: type: string reference: ${third_node} nodes: - name: third_node type: python source: type: code path: test.py inputs: text: ${second_node} - name: first_node type: python source: type: code path: test.py inputs: text: ${inputs.text} - name: second_node type: python source: type: code path: test.py inputs: text: ${first_node}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_connection/data.jsonl
{"text": "Hello World!"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_connection/flow.dag.yaml
inputs: text: type: string default: Hello! outputs: out: type: string reference: ${my_first_tool.output} nodes: - name: my_first_tool type: python source: type: package tool: my_tool_package.tools.my_tool_1.my_tool inputs: connection: custom_connection_3 input_text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/async_tools_failures/async_fail.py
from promptflow import tool async def raise_exception_async(s): msg = f"In raise_exception_async: {s}" raise Exception(msg) @tool async def raise_an_exception_async(s: str): try: await raise_exception_async(s) except Exception as e: raise Exception(f"In tool raise_an_exception_async: {s}") from e
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/async_tools_failures/flow.dag.yaml
inputs: text: type: string default: dummy_input outputs: output_prompt: type: string reference: ${async_fail.output} nodes: - name: async_fail type: python source: type: code path: async_fail.py inputs: s: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_special_character/script_with_special_character.py
from promptflow import tool @tool def print_special_character(input1: str) -> str: # Add special character to test if file read is working. return "https://www.bing.com//"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_special_character/script_with_special_character.meta.json
{ "name": "script_with_special_character", "type": "python", "inputs": { "input1": { "type": [ "string" ] } }, "source": "script_with_special_character.py", "function": "print_special_character" }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool_and_aggregate/aggregate_num.py
import statistics from typing import List from promptflow import tool @tool def aggregate_num(num: List[int]) -> int: return statistics.mean(num)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool_and_aggregate/divide_num.py
from promptflow import tool @tool def divide_num(num: int) -> int: return (int)(num / 2)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool_and_aggregate/flow.dag.yaml
inputs: num: type: int outputs: content: type: string reference: ${divide_num.output} aggregate_content: type: string reference: ${aggregate_num.output} nodes: - name: divide_num type: python source: type: code path: divide_num.py inputs: num: ${inputs.num} - name: aggregate_num type: python source: type: code path: aggregate_num.py inputs: num: ${divide_num.output} aggregation: True
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/unordered_nodes_with_activate/flow.dag.yaml
name: node_wrong_order inputs: text: type: string skip: type: bool outputs: result: type: string reference: ${third_node} nodes: - name: third_node type: python source: type: code path: test.py inputs: text: ${second_node} - name: first_node type: python source: type: code path: test.py inputs: text: ${inputs.text} - name: second_node type: python source: type: code path: test.py inputs: text: ${first_node} activate: when: ${inputs.skip} is: true
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/partial_fail/data.jsonl
{"key": "no"} {"key": "raise"} {"key": "matter"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/partial_fail/flow.dag.yaml
inputs: key: type: string outputs: output: type: string reference: ${print_env.output.value} nodes: - name: print_env type: python source: type: code path: print_env.py inputs: key: ${inputs.key}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/partial_fail/print_env.py
import os from promptflow import tool @tool def get_env_var(key: str): if key == "raise": raise Exception("expected raise!") print(os.environ.get(key)) # get from env var return {"value": os.environ.get(key)}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/samples.json
[ { "line_number": 0, "variant_id": "variant_0", "groundtruth": "App", "prediction": "App" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/convert_to_dict.py
import json from promptflow import tool @tool def convert_to_dict(input_str: str): try: return json.loads(input_str) except Exception as e: print("input is not valid, error: {}".format(e)) return {"category": "None", "evidence": "None"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/fetch_text_content_from_url.py
import bs4 import requests from promptflow import tool @tool def fetch_text_content_from_url(url: str): # Send a request to the URL try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } response = requests.get(url, headers=headers) if response.status_code == 200: # Parse the HTML content using BeautifulSoup soup = bs4.BeautifulSoup(response.text, "html.parser") soup.prettify() return soup.get_text()[:2000] else: msg = ( f"Get url failed with status code {response.status_code}.\nURL: {url}\nResponse: {response.text[:100]}" ) print(msg) return "No available content" except Exception as e: print("Get url failed with error: {}".format(e)) return "No available content"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/classify_with_llm.jinja2
Your task is to classify a given url into one of the following types: Movie, App, Academic, Channel, Profile, PDF or None based on the text content information. The classification will be based on the url, the webpage text content summary, or both. Here are a few examples: {% for ex in examples %} URL: {{ex.url}} Text content: {{ex.text_content}} OUTPUT: {"category": "{{ex.category}}", "evidence": "{{ex.evidence}}"} {% endfor %} For a given URL : {{url}}, and text content: {{text_content}}. Classify above url to complete the category and indicate evidence. OUTPUT:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/summarize_text_content__variant_1.jinja2
Please summarize some keywords of this paragraph and have some details of each keywords. Do not add any information that is not in the text. Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/prepare_examples.py
from promptflow import tool @tool def prepare_examples(): return [ { "url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both", }, { "url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL", }, { "url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content", }, { "url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None", }, ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/flow.dag.yaml
inputs: url: type: string default: https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h outputs: category: type: string reference: ${convert_to_dict.output.category} evidence: type: string reference: ${convert_to_dict.output.evidence} nodes: - name: fetch_text_content_from_url type: python source: type: code path: fetch_text_content_from_url.py inputs: url: ${inputs.url} - name: summarize_text_content type: llm source: type: code path: summarize_text_content.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai use_variants: true - name: prepare_examples type: python source: type: code path: prepare_examples.py inputs: {} - name: classify_with_llm type: llm source: type: code path: classify_with_llm.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' url: ${inputs.url} examples: ${prepare_examples.output} text_content: ${summarize_text_content.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai - name: convert_to_dict type: python source: type: code path: convert_to_dict.py inputs: input_str: ${classify_with_llm.output} node_variants: summarize_text_content: default_variant_id: variant_1 variants: variant_0: node: type: llm source: type: code path: summarize_text_content.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai variant_1: node: type: llm source: type: code path: summarize_text_content__variant_1.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '256' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/summarize_text_content.jinja2
Please summarize the following text in one paragraph. 100 words. Do not add any information that is not in the text. Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_v2/.promptflow/flow.tools.json
{ "package": {}, "code": { "fetch_text_content_from_url.py": { "type": "python", "inputs": { "url": { "type": [ "string" ] } }, "function": "fetch_text_content_from_url" }, "summarize_text_content.jinja2": { "type": "llm", "inputs": { "text": { "type": [ "string" ] } }, "description": "Summarize webpage content into a short paragraph." }, "summarize_text_content__variant_1.jinja2": { "type": "llm", "inputs": { "text": { "type": [ "string" ] } } }, "prepare_examples.py": { "type": "python", "function": "prepare_examples" }, "classify_with_llm.jinja2": { "type": "llm", "inputs": { "url": { "type": [ "string" ] }, "examples": { "type": [ "string" ] }, "text_content": { "type": [ "string" ] } }, "description": "Multi-class classification of a given url and text content." }, "convert_to_dict.py": { "type": "python", "inputs": { "input_str": { "type": [ "string" ] } }, "function": "convert_to_dict" } } }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/async_tools_with_sync_tools/sync_passthrough.py
from promptflow import tool import time @tool def passthrough_str_and_wait_sync(input1: str, wait_seconds=3) -> str: assert isinstance(input1, str), f"input1 should be a string, got {input1}" print(f"Wait for {wait_seconds} seconds in sync function") for i in range(wait_seconds): print(i) time.sleep(1) return input1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/async_tools_with_sync_tools/flow.dag.yaml
inputs: input_str: type: string default: Hello outputs: ouput1: type: string reference: ${async_passthrough1.output} output2: type: string reference: ${sync_passthrough1.output} nodes: - name: async_passthrough type: python source: type: code path: async_passthrough.py inputs: input1: ${inputs.input_str} wait_seconds: 1 - name: async_passthrough1 type: python source: type: code path: async_passthrough.py inputs: input1: ${async_passthrough.output} wait_seconds: 10 wait_seconds_in_cancellation: 1 - name: sync_passthrough1 type: python source: type: code path: sync_passthrough.py inputs: input1: ${async_passthrough.output} wait_seconds: 10
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/async_tools_with_sync_tools/async_passthrough.py
from promptflow import tool import asyncio @tool async def passthrough_str_and_wait(input1: str, wait_seconds=3, wait_seconds_in_cancellation=1) -> str: assert isinstance(input1, str), f"input1 should be a string, got {input1}" try: print(f"Wait for {wait_seconds} seconds in async function") for i in range(wait_seconds): print(i) await asyncio.sleep(1) except asyncio.CancelledError: print(f"Async function is cancelled, wait for {wait_seconds_in_cancellation}" " in cancellation process") for i in range(wait_seconds_in_cancellation): print(f"Wait for {i} seconds in async tool cancellation logic") await asyncio.sleep(1) print(f"End time consuming cancellation process") raise return input1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/test_langchain_traces.py
import os from langchain.chat_models import AzureChatOpenAI from langchain_core.messages import HumanMessage from langchain.agents.agent_types import AgentType from langchain.agents.initialize import initialize_agent from langchain.agents.load_tools import load_tools from promptflow import tool from promptflow.connections import AzureOpenAIConnection from promptflow.integrations.langchain import PromptFlowCallbackHandler @tool def test_langchain_traces(question: str, conn: AzureOpenAIConnection): os.environ["AZURE_OPENAI_API_KEY"] = conn.api_key os.environ["OPENAI_API_VERSION"] = conn.api_version os.environ["AZURE_OPENAI_ENDPOINT"] = conn.api_base model = AzureChatOpenAI( temperature=0.7, azure_deployment="gpt-35-turbo", ) tools = load_tools(["llm-math"], llm=model) # Please keep use agent to enable customized CallBack handler agent = initialize_agent( tools, model, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=False, callbacks=[PromptFlowCallbackHandler()] ) message = HumanMessage( content=question ) try: return agent.run(message) except Exception as e: return str(e)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/samples.json
[ { "question": "What is 2 to the 10th power?" }, { "question": "What is the sum of 2 and 2?" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/inputs.jsonl
{"question": "What is 2 to the 10th power?"} {"question": "What is the sum of 2 and 2?"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/code_first_input.csv
question What is 2 to the 10th power? What is the sum of 2 and 2?
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/data_inputs.json
{ "data": "code_first_input.csv" }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/flow.dag.yaml
inputs: question: type: string outputs: output: type: string reference: ${test_langchain_traces.output} nodes: - name: test_langchain_traces type: python source: type: code path: test_langchain_traces.py inputs: question: ${inputs.question} conn: azure_open_ai_connection
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/long_run/long_run.py
import time from promptflow import tool def f1(): time.sleep(61) return 0 def f2(): return f1() @tool def long_run_func(): return f2()
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/long_run/flow.dag.yaml
inputs: {} outputs: output: type: string reference: ${long_run_node.output} nodes: - name: long_run_node type: python inputs: {} source: type: code path: long_run.py
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow/show_answer.py
from promptflow import tool @tool def show_answer(chat_answer: str): print("print:", chat_answer) return chat_answer
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow/chat.jinja2
system: You are a helpful assistant. {% for item in chat_history %} user: {{item.inputs.question}} assistant: {{item.outputs.answer}} {% endfor %} user: {{question}}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow/flow.dag.yaml
inputs: chat_history: type: list question: type: string is_chat_input: true default: What is ChatGPT? outputs: answer: type: string reference: ${show_answer.output} is_chat_output: true nodes: - inputs: deployment_name: gpt-35-turbo max_tokens: "256" temperature: "0.7" chat_history: ${inputs.chat_history} question: ${inputs.question} name: chat_node type: llm source: type: code path: chat.jinja2 api: chat provider: AzureOpenAI connection: azure_open_ai_connection - name: show_answer type: python source: type: code path: show_answer.py inputs: chat_answer: ${chat_node.output} node_variants: {}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/prompt_tool_with_duplicated_inputs/prompt_with_duplicated_inputs.jinja2
{{template}}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/prompt_tool_with_duplicated_inputs/flow.dag.yaml
inputs: text: type: string outputs: output_prompt: type: string reference: ${prompt_tool_with_duplicated_inputs.output} nodes: - name: prompt_tool_with_duplicated_inputs type: prompt source: type: code path: prompt_with_duplicated_inputs.jinja2 inputs: text: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/data.jsonl
{"chat_history":[], "question": "If I am going to run with 1.5 hours this morning, how many calories will I burn?", "assistant_id": "asst_yWhdFYoCS1UatnRRQZGY85aL", "thread_id": ""} {"chat_history":[], "question": "I'm going to swim in Guangzhou city today for 30 min, how much calories will I burn?", "assistant_id": "asst_yWhdFYoCS1UatnRRQZGY85aL", "thread_id": ""} {"chat_history":[], "question": "I'm going to run slowly on local street today, how much calories will I burn?", "assistant_id": "asst_yWhdFYoCS1UatnRRQZGY85aL", "thread_id": ""} {"chat_history":[], "question": "If I am going to run 1.5 hours under 24 degrees Celsius, how many calories will I burn", "assistant_id": "asst_yWhdFYoCS1UatnRRQZGY85aL", "thread_id": ""} {"chat_history":[], "question": "I'm going to biking for 2 hours duration today, how much calories will I burn?", "assistant_id": "asst_yWhdFYoCS1UatnRRQZGY85aL", "thread_id": ""}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/get_temperature.py
import random import time from promptflow import tool @tool def get_temperature(city: str, unit: str = "c"): """Estimate the current temperature of a given city. :param city: city to get the estimated temperature for. :type city: str :param unit: the unit of the temperature, either 'c' for Celsius or 'f' for Fahrenheit. Defaults to Celsius ('c'). :type unit: str """ # Generating a random number between 0.2 and 1 for tracing purpose time.sleep(random.uniform(0.2, 1)) return random.uniform(0, 35)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/assistant_definition.yaml
model: gpt-4-1106-preview instructions: You are a helpful assistant. tools: - type: code_interpreter - type: function source: type: code path: get_calorie_by_jogging.py tool_type: python - type: function source: type: code path: get_calorie_by_swimming.py tool_type: python - type: function source: type: code path: get_current_city.py tool_type: python - type: function source: type: code path: get_temperature.py tool_type: python
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/get_calorie_by_swimming.py
import random import time from promptflow import tool @tool def get_calorie_by_swimming(duration: float, temperature: float): """Estimate the calories burned by swimming based on duration and temperature. :param duration: the length of the swimming in hours. :type duration: float :param temperature: the environment temperature in degrees Celsius. :type temperature: float """ print( f"Figure out the calories burned by swimming, with temperature of {temperature} degrees Celsius, " f"and duration of {duration} hours." ) # Generating a random number between 0.2 and 1 for tracing purpose time.sleep(random.uniform(0.2, 1)) return random.randint(100, 200)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/README.md
# Chat with Calorie Assistant This sample demonstrates how to chat with the PromptFlow Assistant tool facilitates calorie calculations by considering your location, the duration of your exercise, and the type of sport. Currently, it supports two types of sports: jogging and swimming. Tools used in this flow: - `add_message_and_run` tool, assistant tool, provisioned with below inner functions: - `get_current_location``: get current city - `get_temperature(location)``: get temperature of the city - `get_calorie_by_jogging(duration, temperature)``: calculate calorie for jogging exercise - `get_calorie_by_jogging(duration, temperature)``: calculate calorie for swimming exercise ## Prerequisites Install promptflow sdk and other dependencies in this folder: ```sh pip install -r requirements.txt ``` ## What you will learn In this flow, you will understand how assistant tools within PromptFlow are triggered by user prompts. The assistant tool decides which internal functions or tools to invoke based on the input provided. Your responsibility involves implementing each of these tools and registering them in the `assistant_definition`. Additionally, be aware that the tools may have dependencies on each other, affecting the order and manner of their invocation. ## Getting started ### 1. Create assistant connection (openai) Go to "Prompt flow" "Connections" tab. Click on "Create" button, select one of assistant tool supported connection types and fill in the configurations. Currently, only "Open AI" connection type are supported for assistant tool. Please refer to [OpenAI](https://platform.openai.com/) for more details. ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/openai.yml --set api_key=<your_api_key> ``` Note in [flow.dag.yaml](flow.dag.yaml) we are using connection named `open_ai_connection`. ```bash # show registered connection pf connection show --name open_ai_connection ``` ### 2. Create or get assistant/thread Navigate to the OpenAI Assistant page and create an assistant if you haven't already. Once created, click on the 'Test' button to enter the assistant's playground. Make sure to note down the assistant_id. **[Optional]** Start a chat session to create thread automatically. Keep track of the thread_id. ### 3. run the flow ```bash # run chat flow with default question in flow.dag.yaml pf flow test --flow . --interactive --multi-modal --user-agent "prompt-flow-extension/1.8.0 (win32; x64) VSCode/1.85.1" ```
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/get_or_create_thread.py
from openai import AsyncOpenAI from promptflow import tool from promptflow.connections import OpenAIConnection @tool async def get_or_create_thread(conn: OpenAIConnection, thread_id: str): if thread_id: return thread_id cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) thread = await cli.beta.threads.create() return thread.id
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/get_current_city.py
import random import time from promptflow import tool @tool def get_current_city(): """Get current city.""" # Generating a random number between 0.2 and 1 for tracing purpose time.sleep(random.uniform(0.2, 1)) return random.choice(["Beijing", "Shanghai"])
0