repo_id
stringlengths
15
132
file_path
stringlengths
34
176
content
stringlengths
2
3.52M
__index_level_0__
int64
0
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/get_calorie_by_jogging.py
import random import time from promptflow import tool @tool def get_calorie_by_jogging(duration: float, temperature: float): """Estimate the calories burned by jogging based on duration and temperature. :param duration: the length of the jogging in hours. :type duration: float :param temperature: the environment temperature in degrees Celsius. :type temperature: float """ print( f"Figure out the calories burned by jogging, with temperature of {temperature} degrees Celsius, " f"and duration of {duration} hours." ) # Generating a random number between 0.2 and 1 for tracing purpose time.sleep(random.uniform(0.2, 1)) return random.randint(50, 100)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/add_message_and_run.py
import asyncio import json from openai import AsyncOpenAI from openai.types.beta.threads import MessageContentImageFile, MessageContentText from promptflow import tool, trace from promptflow.connections import OpenAIConnection from promptflow.contracts.multimedia import Image from promptflow.contracts.types import AssistantDefinition from promptflow.exceptions import SystemErrorException from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker URL_PREFIX = "https://platform.openai.com/files/" RUN_STATUS_POLLING_INTERVAL_IN_MILSEC = 1000 @tool async def add_message_and_run( conn: OpenAIConnection, assistant_id: str, thread_id: str, message: list, assistant_definition: AssistantDefinition, download_images: bool, ): cli = await get_openai_api_client(conn) invoker = await get_assisant_tool_invoker(assistant_definition) # Check if assistant id is valid. If not, create a new assistant. # Note: tool registration at run creation, rather than at assistant creation. if not assistant_id: assistant = await create_assistant(cli, assistant_definition) assistant_id = assistant.id await add_message(cli, message, thread_id) run = await start_run(cli, assistant_id, thread_id, assistant_definition, invoker) await wait_for_run_complete(cli, thread_id, invoker, run) messages = await get_message(cli, thread_id) file_id_references = await get_openai_file_references(messages.data[0].content, download_images, conn) return {"content": to_pf_content(messages.data[0].content), "file_id_references": file_id_references} @trace async def get_openai_api_client(conn: OpenAIConnection): cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) return cli @trace async def get_assisant_tool_invoker(assistant_definition: AssistantDefinition): invoker = AssistantToolInvoker.init(assistant_definition.tools) return invoker @trace async def create_assistant(cli: AsyncOpenAI, assistant_definition: AssistantDefinition): assistant = await cli.beta.assistants.create( instructions=assistant_definition.instructions, model=assistant_definition.model ) print(f"Created assistant: {assistant.id}") return assistant @trace async def add_message(cli: AsyncOpenAI, message: list, thread_id: str): content = extract_text_from_message(message) file_ids = await extract_file_ids_from_message(cli, message) msg = await cli.beta.threads.messages.create(thread_id=thread_id, role="user", content=content, file_ids=file_ids) print("Created message message_id: {msg.id}, assistant_id: {assistant_id}, thread_id: {thread_id}") return msg @trace async def start_run( cli: AsyncOpenAI, assistant_id: str, thread_id: str, assistant_definition: AssistantDefinition, invoker: AssistantToolInvoker, ): tools = invoker.to_openai_tools() run = await cli.beta.threads.runs.create( assistant_id=assistant_id, thread_id=thread_id, model=assistant_definition.model, instructions=assistant_definition.instructions, tools=tools, ) print(f"Assistant_id: {assistant_id}, thread_id: {thread_id}, run_id: {run.id}") return run async def wait_for_status_check(): await asyncio.sleep(RUN_STATUS_POLLING_INTERVAL_IN_MILSEC / 1000.0) async def get_run_status(cli: AsyncOpenAI, thread_id: str, run_id: str): run = await cli.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id) print(f"Run status: {run.status}") return run @trace async def get_tool_calls_outputs(invoker: AssistantToolInvoker, run): tool_calls = run.required_action.submit_tool_outputs.tool_calls tool_outputs = [] for tool_call in tool_calls: tool_name = tool_call.function.name tool_args = json.loads(tool_call.function.arguments) print(f"Invoking tool: {tool_call.function.name} with args: {tool_args}") output = invoker.invoke_tool(tool_name, tool_args) tool_outputs.append( { "tool_call_id": tool_call.id, "output": str(output), } ) print(f"Tool output: {str(output)}") return tool_outputs @trace async def submit_tool_calls_outputs(cli: AsyncOpenAI, thread_id: str, run_id: str, tool_outputs: list): await cli.beta.threads.runs.submit_tool_outputs(thread_id=thread_id, run_id=run_id, tool_outputs=tool_outputs) print(f"Submitted all required resonses for run: {run_id}") @trace async def require_actions(cli: AsyncOpenAI, thread_id: str, run, invoker: AssistantToolInvoker): tool_outputs = await get_tool_calls_outputs(invoker, run) await submit_tool_calls_outputs(cli, thread_id, run.id, tool_outputs) @trace async def wait_for_run_complete(cli: AsyncOpenAI, thread_id: str, invoker: AssistantToolInvoker, run): while run.status != "completed": await wait_for_status_check() run = await get_run_status(cli, thread_id, run.id) if run.status == "requires_action": await require_actions(cli, thread_id, run, invoker) elif run.status == "in_progress" or run.status == "completed": continue else: raise Exception(f"The assistant tool runs in '{run.status}' status. Message: {run.last_error.message}") @trace async def get_run_steps(cli: AsyncOpenAI, thread_id: str, run_id: str): run_steps = await cli.beta.threads.runs.steps.list(thread_id=thread_id, run_id=run_id) print("step details: \n") for step_data in run_steps.data: print(step_data.step_details) @trace async def get_message(cli: AsyncOpenAI, thread_id: str): messages = await cli.beta.threads.messages.list(thread_id=thread_id) return messages def extract_text_from_message(message: list): content = [] for m in message: if isinstance(m, str): content.append(m) continue message_type = m.get("type", "") if message_type == "text" and "text" in m: content.append(m["text"]) return "\n".join(content) async def extract_file_ids_from_message(cli: AsyncOpenAI, message: list): file_ids = [] for m in message: if isinstance(m, str): continue message_type = m.get("type", "") if message_type == "file_path" and "file_path" in m: path = m["file_path"].get("path", "") if path: file = await cli.files.create(file=open(path, "rb"), purpose="assistants") file_ids.append(file.id) return file_ids async def get_openai_file_references(content: list, download_image: bool, conn: OpenAIConnection): file_id_references = {} for item in content: if isinstance(item, MessageContentImageFile): file_id = item.image_file.file_id if download_image: file_id_references[file_id] = { "content": await download_openai_image(file_id, conn), "url": URL_PREFIX + file_id, } else: file_id_references[file_id] = {"url": URL_PREFIX + file_id} elif isinstance(item, MessageContentText): for annotation in item.text.annotations: if annotation.type == "file_path": file_id = annotation.file_path.file_id file_id_references[file_id] = {"url": URL_PREFIX + file_id} elif annotation.type == "file_citation": file_id = annotation.file_citation.file_id file_id_references[file_id] = {"url": URL_PREFIX + file_id} else: raise Exception(f"Unsupported content type: '{type(item)}'.") return file_id_references def to_pf_content(content: list): pf_content = [] for item in content: if isinstance(item, MessageContentImageFile): file_id = item.image_file.file_id pf_content.append({"type": "image_file", "image_file": {"file_id": file_id}}) elif isinstance(item, MessageContentText): text_dict = {"type": "text", "text": {"value": item.text.value, "annotations": []}} for annotation in item.text.annotations: annotation_dict = { "type": "file_path", "text": annotation.text, "start_index": annotation.start_index, "end_index": annotation.end_index, } if annotation.type == "file_path": annotation_dict["file_path"] = {"file_id": annotation.file_path.file_id} elif annotation.type == "file_citation": annotation_dict["file_citation"] = {"file_id": annotation.file_citation.file_id} text_dict["text"]["annotations"].append(annotation_dict) pf_content.append(text_dict) else: raise SystemErrorException(f"Unsupported content type: {type(item)}") return pf_content async def download_openai_image(file_id: str, conn: OpenAIConnection): cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) image_data = await cli.files.content(file_id) return Image(image_data.read())
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/flow.dag.yaml
environment: python_requirements_txt: requirements.txt version: 2 inputs: chat_history: type: list is_chat_history: true default: [] question: type: string is_chat_input: true default: I am going to swim today for 30 min in Guangzhou city, how much calories will I burn? assistant_id: type: string default: "" thread_id: type: string default: "" outputs: answer: type: string reference: ${assistant.output} is_chat_output: true thread_id: type: string reference: ${get_or_create_thread.output} nodes: - name: get_or_create_thread type: python source: type: code path: get_or_create_thread.py inputs: conn: chw-manager-OpenAI thread_id: ${inputs.thread_id} - name: assistant type: python source: type: code path: add_message_and_run.py inputs: conn: chw-manager-OpenAI message: ${inputs.question} assistant_id: ${inputs.assistant_id} thread_id: ${get_or_create_thread.output} download_images: true assistant_definition: assistant_definition.yaml
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_flow/print_input.py
from promptflow import tool @tool def print_input(input: str) -> str: return input
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_flow/flow.dag.yaml
inputs: text: type: string default: world outputs: output1: type: string reference: ${nodeC.output} output2: type: string reference: ${nodeD.output} nodes: - name: nodeA type: python source: type: code path: print_input.py inputs: input: ${inputs.text} activate: when: ${inputs.text} is: hello - name: nodeB type: python source: type: code path: print_input.py inputs: input: ${inputs.text} activate: when: ${nodeA.output} is: hello - name: nodeC type: python source: type: code path: print_input.py inputs: input: ${nodeB.output} - name: nodeD type: python source: type: code path: print_input.py inputs: input: ${inputs.text} activate: when: ${inputs.text} is: world
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool/inputs.jsonl
{"num": "hello"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool/divide_num.py
from promptflow import tool @tool def divide_num(num: int) -> int: return (int)(num / 2)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool/flow.dag.yaml
inputs: num: type: int outputs: content: type: string reference: ${divide_num.output} nodes: - name: divide_num type: python source: type: code path: divide_num.py inputs: num: ${inputs.num}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/default_input/samples.json
[ { "text": "text_1" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/default_input/test_print_aggregation.py
from typing import List from promptflow import tool @tool def test_print_input(input_str: List[str], input_bool: List[bool], input_list: List[List], input_dict: List[dict]): assert input_bool[0] == False assert input_list[0] == [] assert input_dict[0] == {} print(input_str) return input_str
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/default_input/flow.dag.yaml
inputs: input_str: type: string default: input value from default input_bool: type: bool default: False input_list: type: list default: [] input_dict: type: object default: {} outputs: output: type: string reference: ${test_print_input.output} nodes: - name: test_print_input type: python source: type: code path: test_print_input.py inputs: input_str: ${inputs.input_str} input_bool: ${inputs.input_bool} input_list: ${inputs.input_list} input_dict: ${inputs.input_dict} - name: aggregate_node type: python source: type: code path: test_print_aggregation.py inputs: input_str: ${inputs.input_str} input_bool: ${inputs.input_bool} input_list: ${inputs.input_list} input_dict: ${inputs.input_dict} aggregation: true use_variants: false
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/default_input/test_print_input.py
from promptflow import tool @tool def test_print_input(input_str: str, input_bool: bool, input_list: list, input_dict: dict): assert not input_bool assert input_list == [] assert input_dict == {} print(input_str) return input_str
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import/fail.py
from aaa import bbb # noqa: F401
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import/flow.dag.yaml
inputs: text: type: string outputs: output: type: string reference: ${node1.output} nodes: - name: node1 type: python source: type: code path: dummy_utils/main.py inputs: x: ${inputs.text}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import/dummy_utils/util_tool.py
from promptflow import tool @tool def passthrough(x: str): return x
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import/dummy_utils/main.meta.json
{ "name": "main", "type": "python", "inputs": { "x": { "type": [ "string" ] } }, "source": "dummy_utils/main.py", "function": "main" }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/script_with_import/dummy_utils/main.py
from promptflow import tool from dummy_utils.util_tool import passthrough @tool def main(x: str): return passthrough(x)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input_with_variant/flow.dag.yaml
inputs: key: type: object outputs: output: type: string reference: ${print_val.output.value} nodes: - name: print_val use_variants: true type: python source: type: code path: print_val.py node_variants: print_val: default_variant_id: variant1 variants: variant1: node: type: python source: type: code path: print_val.py inputs: key: ${inputs.key} conn: mock_custom_connection
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input_with_variant/print_val.py
from promptflow import tool from promptflow.connections import CustomConnection @tool def get_val(key, conn: CustomConnection): # get from env var print(key) if not isinstance(key, dict): raise TypeError(f"key must be a dict, got {type(key)}") return {"value": f"{key}: {type(key)}"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_stream_output/chat.jinja2
system: You are a helpful assistant. {% for item in chat_history %} user: {{item.inputs.question}} assistant: {{item.outputs.answer}} {% endfor %} user: {{question}}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_stream_output/flow.dag.yaml
inputs: chat_history: type: list is_chat_history: true question: type: string is_chat_input: true default: What is ChatGPT? outputs: answer: type: string reference: ${chat_node.output} is_chat_output: true nodes: - inputs: deployment_name: gpt-35-turbo max_tokens: "256" temperature: "0.7" chat_history: ${inputs.chat_history} question: ${inputs.question} name: chat_node type: llm source: type: code path: chat.jinja2 api: chat provider: AzureOpenAI connection: azure_open_ai_connection
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/samples.json
[ { "line_number": 0, "variant_id": "variant_0", "groundtruth": "App", "prediction": "App" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/convert_to_dict.py
import json from promptflow import tool @tool def convert_to_dict(input_str: str): try: return json.loads(input_str) except Exception as e: print("input is not valid, error: {}".format(e)) return {"category": "None", "evidence": "None"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/fetch_text_content_from_url.py
import bs4 import requests from promptflow import tool @tool def fetch_text_content_from_url(url: str): # Send a request to the URL try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } response = requests.get(url, headers=headers) if response.status_code == 200: # Parse the HTML content using BeautifulSoup soup = bs4.BeautifulSoup(response.text, "html.parser") soup.prettify() return soup.get_text()[:2000] else: msg = ( f"Get url failed with status code {response.status_code}.\nURL: {url}\nResponse: {response.text[:100]}" ) print(msg) return "No available content" except Exception as e: print("Get url failed with error: {}".format(e)) return "No available content"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/classify_with_llm.jinja2
Your task is to classify a given url into one of the following types: Movie, App, Academic, Channel, Profile, PDF or None based on the text content information. The classification will be based on the url, the webpage text content summary, or both. Here are a few examples: {% for ex in examples %} URL: {{ex.url}} Text content: {{ex.text_content}} OUTPUT: {"category": "{{ex.category}}", "evidence": "{{ex.evidence}}"} {% endfor %} For a given URL : {{url}}, and text content: {{text_content}}. Classify above url to complete the category and indicate evidence. OUTPUT:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/summarize_text_content__variant_1.jinja2
Please summarize some keywords of this paragraph and have some details of each keywords. Do not add any information that is not in the text. Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/prepare_examples.py
from promptflow import tool @tool def prepare_examples(): return [ { "url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. It has a variety of features such as creating and sharing music playlists, discovering new music, and listening to popular and exclusive podcasts. It also has a Premium subscription option which allows users to download and listen offline, and access ad-free music. It is available on all devices and has a variety of genres and artists to choose from.", "category": "App", "evidence": "Both", }, { "url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL games on YouTube. It is available in 2023 and is subject to the terms and privacy policy of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL", }, { "url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and receiving not only languages but also images, providing complex visual questions or visual editing instructions, and providing feedback and asking for corrected results. It incorporates different Visual Foundation Models and is publicly available. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content", }, { "url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None", }, ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/flow.dag.yaml
inputs: url: type: string default: https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h outputs: category: type: string reference: ${convert_to_dict.output.category} evidence: type: string reference: ${convert_to_dict.output.evidence} nodes: - name: convert_to_dict type: python source: type: code path: convert_to_dict.py inputs: input_str: ${classify_with_llm.output} - name: summarize_text_content type: llm source: type: code path: summarize_text_content__variant_1.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '256' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai - name: classify_with_llm type: llm source: type: code path: classify_with_llm.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' url: ${inputs.url} examples: ${prepare_examples.output} text_content: ${summarize_text_content.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion - name: fetch_text_content_from_url type: python source: type: code path: fetch_text_content_from_url.py inputs: url: ${inputs.url} - name: prepare_examples type: python source: type: code path: prepare_examples.py inputs: {}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_no_variants_unordered/summarize_text_content.jinja2
Please summarize the following text in one paragraph. 100 words. Do not add any information that is not in the text. Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/external_files/convert_to_dict.py
import json from promptflow import tool @tool def convert_to_dict(input_str: str): try: return json.loads(input_str) except Exception as e: print("input is not valid, error: {}".format(e)) return {"category": "None", "evidence": "None"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/external_files/fetch_text_content_from_url.py
import bs4 import requests from promptflow import tool @tool def fetch_text_content_from_url(url: str): # Send a request to the URL try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } response = requests.get(url, headers=headers) if response.status_code == 200: # Parse the HTML content using BeautifulSoup soup = bs4.BeautifulSoup(response.text, "html.parser") soup.prettify() return soup.get_text()[:2000] else: msg = ( f"Get url failed with status code {response.status_code}.\nURL: {url}\nResponse: {response.text[:100]}" ) print(msg) return "No available content" except Exception as e: print("Get url failed with error: {}".format(e)) return "No available content"
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/external_files/summarize_text_content.jinja2
Please summarize the following text in one paragraph. 100 words. Do not add any information that is not in the text. Text: {{text}} Summary:
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/samples.json
{ "question": "What is the capital of the United States of America?", "chat_history": [] }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/inputs.jsonl
{"question": "What is the capital of the United States of America?", "chat_history": [], "stream": true} {"question": "What is the capital of the United States of America?", "chat_history": [], "stream": false}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/chat.py
import openai from openai.version import VERSION as OPENAI_VERSION from typing import List from promptflow import tool from promptflow.connections import AzureOpenAIConnection IS_LEGACY_OPENAI = OPENAI_VERSION.startswith("0.") def get_client(connection: AzureOpenAIConnection): api_key = connection.api_key conn = dict( api_key=connection.api_key, ) if api_key.startswith("sk-"): from openai import OpenAI as Client else: from openai import AzureOpenAI as Client conn.update( azure_endpoint=connection.api_base, api_version=connection.api_version, ) return Client(**conn) def create_messages(question, chat_history): yield {"role": "system", "content": "You are a helpful assistant."} for chat in chat_history: yield {"role": "user", "content": chat["inputs"]["question"]} yield {"role": "assistant", "content": chat["outputs"]["answer"]} yield {"role": "user", "content": question} @tool def chat(connection: AzureOpenAIConnection, question: str, chat_history: List, stream: bool) -> str: if IS_LEGACY_OPENAI: completion = openai.ChatCompletion.create( engine="gpt-35-turbo", messages=list(create_messages(question, chat_history)), temperature=1.0, top_p=1.0, n=1, stream=stream, stop=None, max_tokens=16, **dict(connection), ) else: completion = get_client(connection).chat.completions.create( model="gpt-35-turbo", messages=list(create_messages(question, chat_history)), temperature=1.0, top_p=1.0, n=1, stream=stream, stop=None, max_tokens=16 ) if stream: def generator(): for chunk in completion: if chunk.choices: if IS_LEGACY_OPENAI: yield getattr(chunk.choices[0]["delta"], "content", "") else: yield chunk.choices[0].delta.content or "" # We must return the generator object, not using yield directly here. # Otherwise, the function itself will become a generator, despite whether stream is True or False. # return generator() return "".join(generator()) else: # chat api may return message with no content. if IS_LEGACY_OPENAI: return getattr(completion.choices[0].message, "content", "") else: return completion.choices[0].message.content or ""
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/flow.dag.yaml
inputs: question: type: string chat_history: type: list stream: type: bool outputs: answer: type: string reference: ${chat.output} nodes: - name: chat type: python source: type: code path: chat.py inputs: question: ${inputs.question} chat_history: ${inputs.chat_history} connection: azure_open_ai_connection stream: ${inputs.stream}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment/requirements
tensorflow
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment/flow.dag.yaml
inputs: key: type: string outputs: output: type: string reference: ${print_env.output.value} nodes: - name: print_env type: python source: type: code path: print_env.py inputs: key: ${inputs.key} environment: python_requirements_txt: requirements image: python:3.8-slim
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment/print_env.py
import os from promptflow import tool @tool def get_env_var(key: str): print(os.environ.get(key)) # get from env var return {"value": os.environ.get(key)}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_environment/.promptflow/flow.tools.json
{ "package": {}, "code": { "print_env.py": { "type": "python", "inputs": { "key": { "type": [ "string" ] } }, "function": "get_env_var" } } }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_input_dir/details.jsonl
{"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} {"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/assistant_definition.yaml
model: gpt-4-1106-preview instructions: You are a helpful assistant. tools: - type: code_interpreter - type: function source: type: code path: get_stock_eod_price.py tool_type: python
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/README.md
# Stock EOD Price Analyzer This sample demonstrates how the PromptFlow Assistant tool help with time series data (stock EOD price) retrieval, plot and consolidation. Tools used in this flow: - `get_or_create_thread` tool, python tool, used to provide assistant thread information if absent - `add_message_and_run` tool, assistant tool, provisioned with below inner functions: - `get_stock_eod_price``: get the stock eod price based on date and company name ## Prerequisites Install promptflow sdk and other dependencies in this folder: ```bash pip install -r requirements.txt ``` ## What you will learn In this flow, you will understand how assistant tools within PromptFlow are triggered by user prompts. The assistant tool decides which internal functions or tools to invoke based on the input provided. Your responsibility involves implementing each of these tools and registering them in the `assistant_definition`. Additionally, be aware that the tools may have dependencies on each other, affecting the order and manner of their invocation. ## Getting started ### 1. Create assistant connection (openai) Go to "Prompt flow" "Connections" tab. Click on "Create" button, select one of LLM tool supported connection types and fill in the configurations. Currently, only "Open AI" connection type are supported for assistant tool. Please refer to [OpenAI](https://platform.openai.com/) for more details. ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> ``` Note in [flow.dag.yaml](flow.dag.yaml) we are using connection named `open_ai_connection`. ```bash # show registered connection pf connection show --name open_ai_connection ``` ### 2. Create or get assistant/thread Navigate to the OpenAI Assistant page and create an assistant if you haven't already. Once created, click on the 'Test' button to enter the assistant's playground. Make sure to note down the assistant_id. **[Optional]** Start a chat session to create thread automatically. Keep track of the thread_id. ### 3. run the flow ```bash # run chat flow with default question in flow.dag.yaml pf flow test --flow . ```
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/get_or_create_thread.py
from openai import AsyncOpenAI from promptflow import tool from promptflow.connections import OpenAIConnection @tool async def get_or_create_thread(conn: OpenAIConnection, thread_id: str): if thread_id: return thread_id cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) thread = await cli.beta.threads.create() return thread.id
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/requirements.txt
promptflow promptflow-tools
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/stock_price.csv
Date,A,B 2023-03-15,100.25,110.50 2023-03-16,102.75,114.35 2023-03-17,101.60,120.10
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/add_message_and_run.py
import asyncio import json from openai import AsyncOpenAI from openai.types.beta.threads import MessageContentImageFile, MessageContentText from promptflow import tool, trace from promptflow.connections import OpenAIConnection from promptflow.contracts.multimedia import Image from promptflow.contracts.types import AssistantDefinition from promptflow.exceptions import SystemErrorException from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker URL_PREFIX = "https://platform.openai.com/files/" RUN_STATUS_POLLING_INTERVAL_IN_MILSEC = 1000 @tool async def add_message_and_run( conn: OpenAIConnection, assistant_id: str, thread_id: str, message: list, assistant_definition: AssistantDefinition, download_images: bool, ): cli = await get_openai_api_client(conn) invoker = await get_assisant_tool_invoker(assistant_definition) # Check if assistant id is valid. If not, create a new assistant. # Note: tool registration at run creation, rather than at assistant creation. if not assistant_id: assistant = await create_assistant(cli, assistant_definition) assistant_id = assistant.id await add_message(cli, message, thread_id) run = await start_run(cli, assistant_id, thread_id, assistant_definition, invoker) await wait_for_run_complete(cli, thread_id, invoker, run) messages = await get_message(cli, thread_id) file_id_references = await get_openai_file_references(messages.data[0].content, download_images, conn) return {"content": to_pf_content(messages.data[0].content), "file_id_references": file_id_references} @trace async def get_openai_api_client(conn: OpenAIConnection): cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) return cli @trace async def get_assisant_tool_invoker(assistant_definition: AssistantDefinition): invoker = AssistantToolInvoker.init(assistant_definition.tools) return invoker @trace async def create_assistant(cli: AsyncOpenAI, assistant_definition: AssistantDefinition): assistant = await cli.beta.assistants.create( instructions=assistant_definition.instructions, model=assistant_definition.model ) print(f"Created assistant: {assistant.id}") return assistant @trace async def add_message(cli: AsyncOpenAI, message: list, thread_id: str): content = extract_text_from_message(message) file_ids = await extract_file_ids_from_message(cli, message) msg = await cli.beta.threads.messages.create(thread_id=thread_id, role="user", content=content, file_ids=file_ids) print("Created message message_id: {msg.id}, assistant_id: {assistant_id}, thread_id: {thread_id}") return msg @trace async def start_run( cli: AsyncOpenAI, assistant_id: str, thread_id: str, assistant_definition: AssistantDefinition, invoker: AssistantToolInvoker, ): tools = invoker.to_openai_tools() run = await cli.beta.threads.runs.create( assistant_id=assistant_id, thread_id=thread_id, model=assistant_definition.model, instructions=assistant_definition.instructions, tools=tools, ) print(f"Assistant_id: {assistant_id}, thread_id: {thread_id}, run_id: {run.id}") return run async def wait_for_status_check(): await asyncio.sleep(RUN_STATUS_POLLING_INTERVAL_IN_MILSEC / 1000.0) async def get_run_status(cli: AsyncOpenAI, thread_id: str, run_id: str): run = await cli.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id) print(f"Run status: {run.status}") return run @trace async def get_tool_calls_outputs(invoker: AssistantToolInvoker, run): tool_calls = run.required_action.submit_tool_outputs.tool_calls tool_outputs = [] for tool_call in tool_calls: tool_name = tool_call.function.name tool_args = json.loads(tool_call.function.arguments) print(f"Invoking tool: {tool_call.function.name} with args: {tool_args}") output = invoker.invoke_tool(tool_name, tool_args) tool_outputs.append( { "tool_call_id": tool_call.id, "output": str(output), } ) print(f"Tool output: {str(output)}") return tool_outputs @trace async def submit_tool_calls_outputs(cli: AsyncOpenAI, thread_id: str, run_id: str, tool_outputs: list): await cli.beta.threads.runs.submit_tool_outputs(thread_id=thread_id, run_id=run_id, tool_outputs=tool_outputs) print(f"Submitted all required resonses for run: {run_id}") @trace async def require_actions(cli: AsyncOpenAI, thread_id: str, run, invoker: AssistantToolInvoker): tool_outputs = await get_tool_calls_outputs(invoker, run) await submit_tool_calls_outputs(cli, thread_id, run.id, tool_outputs) @trace async def wait_for_run_complete(cli: AsyncOpenAI, thread_id: str, invoker: AssistantToolInvoker, run): while run.status != "completed": await wait_for_status_check() run = await get_run_status(cli, thread_id, run.id) if run.status == "requires_action": await require_actions(cli, thread_id, run, invoker) elif run.status == "in_progress" or run.status == "completed": continue else: raise Exception(f"The assistant tool runs in '{run.status}' status. Message: {run.last_error.message}") @trace async def get_run_steps(cli: AsyncOpenAI, thread_id: str, run_id: str): run_steps = await cli.beta.threads.runs.steps.list(thread_id=thread_id, run_id=run_id) print("step details: \n") for step_data in run_steps.data: print(step_data.step_details) @trace async def get_message(cli: AsyncOpenAI, thread_id: str): messages = await cli.beta.threads.messages.list(thread_id=thread_id) return messages def extract_text_from_message(message: list): content = [] for m in message: if isinstance(m, str): content.append(m) continue message_type = m.get("type", "") if message_type == "text" and "text" in m: content.append(m["text"]) return "\n".join(content) async def extract_file_ids_from_message(cli: AsyncOpenAI, message: list): file_ids = [] for m in message: if isinstance(m, str): continue message_type = m.get("type", "") if message_type == "file_path" and "file_path" in m: path = m["file_path"].get("path", "") if path: file = await cli.files.create(file=open(path, "rb"), purpose="assistants") file_ids.append(file.id) return file_ids async def get_openai_file_references(content: list, download_image: bool, conn: OpenAIConnection): file_id_references = {} for item in content: if isinstance(item, MessageContentImageFile): file_id = item.image_file.file_id if download_image: file_id_references[file_id] = { "content": await download_openai_image(file_id, conn), "url": URL_PREFIX + file_id, } else: file_id_references[file_id] = {"url": URL_PREFIX + file_id} elif isinstance(item, MessageContentText): for annotation in item.text.annotations: if annotation.type == "file_path": file_id = annotation.file_path.file_id file_id_references[file_id] = {"url": URL_PREFIX + file_id} elif annotation.type == "file_citation": file_id = annotation.file_citation.file_id file_id_references[file_id] = {"url": URL_PREFIX + file_id} else: raise Exception(f"Unsupported content type: '{type(item)}'.") return file_id_references def to_pf_content(content: list): pf_content = [] for item in content: if isinstance(item, MessageContentImageFile): file_id = item.image_file.file_id pf_content.append({"type": "image_file", "image_file": {"file_id": file_id}}) elif isinstance(item, MessageContentText): text_dict = {"type": "text", "text": {"value": item.text.value, "annotations": []}} for annotation in item.text.annotations: annotation_dict = { "type": "file_path", "text": annotation.text, "start_index": annotation.start_index, "end_index": annotation.end_index, } if annotation.type == "file_path": annotation_dict["file_path"] = {"file_id": annotation.file_path.file_id} elif annotation.type == "file_citation": annotation_dict["file_citation"] = {"file_id": annotation.file_citation.file_id} text_dict["text"]["annotations"].append(annotation_dict) pf_content.append(text_dict) else: raise SystemErrorException(f"Unsupported content type: {type(item)}") return pf_content async def download_openai_image(file_id: str, conn: OpenAIConnection): cli = AsyncOpenAI(api_key=conn.api_key, organization=conn.organization) image_data = await cli.files.content(file_id) return Image(image_data.read())
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/flow.dag.yaml
version: 2 inputs: assistant_input: type: list default: - type: text text: The provided file contains end-of-day (EOD) stock prices for companies A and B across various dates in March. However, it does not include the EOD stock prices for Company C. - type: file_path file_path: path: ./stock_price.csv - type: text text: Please draw a line chart with the stock price of the company A, B and C and return a CVS file with the data. assistant_id: type: string default: asst_eHO2rwEYqGH3pzzHHov2kBCG thread_id: type: string default: "" outputs: assistant_output: type: string reference: ${add_message_and_run.output} thread_id: type: string reference: ${get_or_create_thread.output} nodes: - name: get_or_create_thread type: python source: type: code path: get_or_create_thread.py inputs: conn: chw_openai thread_id: ${inputs.thread_id} - name: add_message_and_run type: python source: type: code path: add_message_and_run.py inputs: conn: chw_openai message: ${inputs.assistant_input} assistant_id: ${inputs.assistant_id} thread_id: ${get_or_create_thread.output} assistant_definition: assistant_definition.yaml download_images: true
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/get_stock_eod_price.py
import random import time from promptflow import tool @tool def get_stock_eod_price(date: str, company: str): """Get the stock end of day price by date and symbol. :param date: the date of the stock price. e.g. 2021-01-01 :type date: str :param company: the company name like A, B, C :type company: str """ print(f"Try to get the stock end of day price by date {date} and company {company}.") # Sleep a random number between 0.2s and 1s for tracing purpose time.sleep(random.uniform(0.2, 1)) return random.uniform(110, 130)
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_defined_chat_history/show_answer.py
from promptflow import tool @tool def show_answer(chat_answer: str): print("print:", chat_answer) return chat_answer
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_defined_chat_history/chat.jinja2
system: You are a helpful assistant. {% for item in chat_history %} user: {{item.inputs.question}} assistant: {{item.outputs.answer}} {% endfor %} user: {{question}}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_defined_chat_history/flow.dag.yaml
inputs: user_chat_history: type: list is_chat_history: true question: type: string is_chat_input: true default: What is ChatGPT? outputs: answer: type: string reference: ${show_answer.output} is_chat_output: true nodes: - inputs: deployment_name: gpt-35-turbo max_tokens: "256" temperature: "0.7" chat_history: ${inputs.user_chat_history} question: ${inputs.question} name: chat_node type: llm source: type: code path: chat.jinja2 api: chat provider: AzureOpenAI connection: azure_open_ai_connection - name: show_answer type: python source: type: code path: show_answer.py inputs: chat_answer: ${chat_node.output} node_variants: {}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/llm_connection_override/connection_arm_template.json
{ "id": "/subscriptions/xxxx/resourceGroups/xxx/providers/Microsoft.MachineLearningServices/workspaces/xxx/connections/azure_open_ai_connection", "name": "azure_open_ai_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": { "authType": "ApiKey", "credentials": { "key": "api_key" }, "category": "AzureOpenAI", "expiryTime": null, "target": "api_base", "createdByWorkspaceArmId": null, "isSharedToAll": false, "sharedUserList": [], "metadata": { "azureml.flow.connection_type": "AzureOpenAI", "azureml.flow.module": "promptflow.connections", "ApiType": "azure", "ApiVersion": "2023-03-15-preview" } }, "systemData": { "createdAt": "2023-06-14T09:40:51.1117116Z", "createdBy": "[email protected]", "createdByType": "User", "lastModifiedAt": "2023-06-14T09:40:51.1117116Z", "lastModifiedBy": "[email protected]", "lastModifiedByType": "User" } }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/llm_connection_override/conn_tool.py
from promptflow import tool from promptflow.connections import AzureOpenAIConnection @tool def conn_tool(conn: AzureOpenAIConnection): assert isinstance(conn, AzureOpenAIConnection) return conn.api_base
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/llm_connection_override/flow.dag.yaml
inputs: {} outputs: output: type: string reference: ${conn_node.output} nodes: - name: conn_node type: python source: type: code path: conn_tool.py inputs: conn: aoai connection
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_multi_output_invalid/chat.jinja2
system: You are a helpful assistant. {% for item in chat_history %} user: {{item.inputs.question}} assistant: {{item.outputs.answer}} {% endfor %} user: {{question}}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_multi_output_invalid/flow.dag.yaml
inputs: chat_history: type: list question: type: string is_chat_input: true default: What is ChatGPT? outputs: answer: type: string reference: ${chat_node.output} is_chat_output: true multi_answer: type: string reference: ${chat_node.output} is_chat_output: true nodes: - inputs: deployment_name: gpt-35-turbo max_tokens: "256" temperature: "0.7" chat_history: ${inputs.chat_history} question: ${inputs.question} name: chat_node type: llm source: type: code path: chat.jinja2 api: chat provider: AzureOpenAI connection: azure_open_ai_connection
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/basic_with_builtin_llm_node/flow.dag.yaml
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: text: type: string default: Python Hello World! outputs: output: type: string reference: ${llm.output} nodes: - name: hello_prompt type: prompt inputs: text: ${inputs.text} source: type: code path: hello.jinja2 - name: llm type: llm inputs: prompt: ${hello_prompt.output} deployment_name: gpt-35-turbo model: gpt-3.5-turbo max_tokens: '120' source: type: code path: hello.jinja2 connection: azure_open_ai_connection api: chat node_variants: {}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/basic_with_builtin_llm_node/hello.jinja2
system: You are a assistant which can write code. Response should only contain code. user: Write a simple {{text}} program that displays the greeting message when executed.
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_custom_connection/hello.py
from promptflow import tool from promptflow.connections import CustomConnection @tool def my_python_tool(text: str, connection: CustomConnection) -> dict: return connection._to_dict()
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_custom_connection/flow.dag.yaml
inputs: text: type: string outputs: output: type: object reference: ${hello_node.output} nodes: - inputs: text: ${inputs.text} connection: basic_custom_connection name: hello_node type: python source: type: code path: hello.py node_variants: {}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_strong_type_connection/data.jsonl
{"text": "Hello World!"}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/flow_with_package_tool_with_custom_strong_type_connection/flow.dag.yaml
inputs: text: type: string default: Hello! outputs: out: type: string reference: ${My_First_Tool_00f8.output} nodes: - name: My_Second_Tool_usi3 type: python source: type: package tool: my_tool_package.tools.my_tool_2.MyTool.my_tool inputs: connection: custom_strong_type_connection input_text: ${inputs.text} - name: My_First_Tool_00f8 type: python source: type: package tool: my_tool_package.tools.my_tool_1.my_tool inputs: connection: custom_strong_type_connection input_text: ${My_Second_Tool_usi3.output}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/meta_files/samples.json
[ { "line_number": 0, "variant_id": "variant_0", "groundtruth": "App", "prediction": "App" } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/meta_files/remote_fs.meta.yaml
$schema: https://azuremlschemas.azureedge.net/latest/flow.schema.json name: classification_accuracy_eval type: evaluate path: azureml://datastores/workspaceworkingdirectory/paths/Users/wanhan/my_flow_snapshot/flow.dag.yaml
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/meta_files/remote_flow_short_path.meta.yaml
$schema: https://azuremlschemas.azureedge.net/latest/flow.schema.json name: classification_accuracy_eval display_name: Classification Accuracy Evaluation type: evaluate path: azureml://datastores/workspaceworkingdirectory/paths/Users/wanhan/a/flow.dag.yaml description: Measuring the performance of a classification system by comparing its outputs to groundtruth. properties: promptflow.stage: prod promptflow.details.type: markdown promptflow.details.source: README.md promptflow.batch_inputs: samples.json
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/meta_files/flow.dag.yaml
inputs: line_number: type: int variant_id: type: string groundtruth: type: string description: Please specify the groundtruth column, which contains the true label to the outputs that your flow produces. prediction: type: string description: Please specify the prediction column, which contains the predicted outputs that your flow produces. outputs: grade: type: string reference: ${grade.output} nodes: - name: grade type: python source: type: code path: grade.py inputs: groundtruth: ${inputs.groundtruth} prediction: ${inputs.prediction} - name: calculate_accuracy type: python source: type: code path: calculate_accuracy.py inputs: grades: ${grade.output} variant_ids: ${inputs.variant_id} aggregation: true
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/meta_files/flow.meta.yaml
$schema: https://azuremlschemas.azureedge.net/latest/flow.schema.json name: web_classificiation_flow_3 display_name: Web Classification type: standard description: Create flows that use large language models to classify URLs into multiple categories. path: ./flow.dag.yaml
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/two/mod_two.py
from promptflow import tool @tool def mod_two(number: int): if number % 2 != 0: raise Exception("cannot mod 2!") return {"value": number}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/two/flow.dag.yaml
inputs: number: type: int outputs: output: type: int reference: ${mod_two.output.value} nodes: - name: mod_two type: python source: type: code path: mod_two.py inputs: number: ${inputs.number}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/two
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/two/.promptflow/flow.tools.json
{ "code": { "mod_two.py": { "type": "python", "inputs": { "number": { "type": [ "int" ] } }, "source": "mod_two.py", "function": "mod_two" } }, "package": { "promptflow.tools.aoai_gpt4v.AzureOpenAI.chat": { "name": "Azure OpenAI GPT-4 Turbo with Vision", "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "type": "custom_llm", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "tool_state": "preview", "icon": { "light": "", "dark": "" }, "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "inputs": { "connection": { "type": [ "AzureOpenAIConnection" ] }, "deployment_name": { "type": [ "string" ] }, "temperature": { "default": 1, "type": [ "double" ] }, "top_p": { "default": 1, "type": [ "double" ] }, "max_tokens": { "default": 512, "type": [ "int" ] }, "stop": { "default": "", "type": [ "list" ] }, "presence_penalty": { "default": 0, "type": [ "double" ] }, "frequency_penalty": { "default": 0, "type": [ "double" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.azure_content_safety.analyze_text": { "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "inputs": { "connection": { "type": [ "AzureContentSafetyConnection" ] }, "hate_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] }, "self_harm_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] }, "sexual_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] }, "text": { "type": [ "string" ] }, "violence_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] } }, "name": "Content Safety (Text Analyze)", "description": "Use Azure Content Safety to detect harmful content.", "type": "python", "deprecated_tools": [ "content_safety_text.tools.content_safety_text_tool.analyze_text" ], "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.embedding.embedding": { "name": "Embedding", "description": "Use Open AI's embedding model to create an embedding vector representing the input text.", "type": "python", "module": "promptflow.tools.embedding", "function": "embedding", "inputs": { "connection": { "type": [ "AzureOpenAIConnection", "OpenAIConnection" ] }, "deployment_name": { "type": [ "string" ], "enabled_by": "connection", "enabled_by_type": [ "AzureOpenAIConnection" ], "capabilities": { "completion": false, "chat_completion": false, "embeddings": true }, "model_list": [ "text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001" ] }, "model": { "type": [ "string" ], "enabled_by": "connection", "enabled_by_type": [ "OpenAIConnection" ], "enum": [ "text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001" ], "allow_manual_entry": true }, "input": { "type": [ "string" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.openai_gpt4v.OpenAI.chat": { "name": "OpenAI GPT-4V", "description": "Use OpenAI GPT-4V to leverage vision ability.", "type": "custom_llm", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "tool_state": "preview", "icon": { "light": "", "dark": "" }, "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "inputs": { "connection": { "type": [ "OpenAIConnection" ] }, "model": { "enum": [ "gpt-4-vision-preview" ], "allow_manual_entry": true, "type": [ "string" ] }, "temperature": { "default": 1, "type": [ "double" ] }, "top_p": { "default": 1, "type": [ "double" ] }, "max_tokens": { "default": 512, "type": [ "int" ] }, "stop": { "default": "", "type": [ "list" ] }, "presence_penalty": { "default": 0, "type": [ "double" ] }, "frequency_penalty": { "default": 0, "type": [ "double" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.open_model_llm.OpenModelLLM.call": { "name": "Open Model LLM", "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "icon": "", "type": "custom_llm", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "inputs": { "endpoint_name": { "type": [ "string" ], "dynamic_list": { "func_path": "promptflow.tools.open_model_llm.list_endpoint_names" }, "allow_manual_entry": true, "is_multi_select": false }, "deployment_name": { "default": "", "type": [ "string" ], "dynamic_list": { "func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [ { "name": "endpoint", "type": [ "string" ], "optional": true, "reference": "${inputs.endpoint}" } ] }, "allow_manual_entry": true, "is_multi_select": false }, "api": { "enum": [ "chat", "completion" ], "type": [ "string" ] }, "temperature": { "default": 1.0, "type": [ "double" ] }, "max_new_tokens": { "default": 500, "type": [ "int" ] }, "top_p": { "default": 1.0, "advanced": true, "type": [ "double" ] }, "model_kwargs": { "default": "{}", "advanced": true, "type": [ "object" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.serpapi.SerpAPI.search": { "name": "Serp API", "description": "Use Serp API to obtain search results from a specific search engine.", "inputs": { "connection": { "type": [ "SerpConnection" ] }, "engine": { "default": "google", "enum": [ "google", "bing" ], "type": [ "string" ] }, "location": { "default": "", "type": [ "string" ] }, "num": { "default": "10", "type": [ "int" ] }, "query": { "type": [ "string" ] }, "safe": { "default": "off", "enum": [ "active", "off" ], "type": [ "string" ] } }, "type": "python", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "package": "promptflow-tools", "package_version": "1.0.2" }, "my_tool_package.tools.my_tool_1.my_tool": { "function": "my_tool", "inputs": { "connection": { "type": [ "CustomConnection" ], "custom_type": [ "MyFirstConnection", "MySecondConnection" ] }, "input_text": { "type": [ "string" ] } }, "module": "my_tool_package.tools.my_tool_1", "name": "My First Tool", "description": "This is my first tool", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2" }, "my_tool_package.tools.my_tool_2.MyTool.my_tool": { "class_name": "MyTool", "function": "my_tool", "inputs": { "connection": { "type": [ "CustomConnection" ], "custom_type": [ "MySecondConnection" ] }, "input_text": { "type": [ "string" ] } }, "module": "my_tool_package.tools.my_tool_2", "name": "My Second Tool", "description": "This is my second tool", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2" }, "my_tool_package.tools.my_tool_with_custom_strong_type_connection.my_tool": { "function": "my_tool", "inputs": { "connection": { "custom_type": [ "MyCustomConnection" ], "type": [ "CustomConnection" ] }, "input_param": { "type": [ "string" ] } }, "module": "my_tool_package.tools.my_tool_with_custom_strong_type_connection", "name": "Tool With Custom Strong Type Connection", "description": "This is my tool with custom strong type connection.", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2" } } }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/three/flow.dag.yaml
inputs: number: type: int outputs: output: type: int reference: ${mod_three.output.value} nodes: - name: mod_three type: python source: type: code path: mod_three.py inputs: number: ${inputs.number}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/three/mod_three.py
from promptflow import tool @tool def mod_three(number: int): if number % 3 != 0: raise Exception("cannot mod 3!") return {"value": number}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/three
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/mod-n/three/.promptflow/flow.tools.json
{ "code": { "mod_three.py": { "type": "python", "inputs": { "number": { "type": [ "int" ] } }, "source": "mod_three.py", "function": "mod_three" } }, "package": { "promptflow.tools.aoai_gpt4v.AzureOpenAI.chat": { "name": "Azure OpenAI GPT-4 Turbo with Vision", "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "type": "custom_llm", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "tool_state": "preview", "icon": { "light": "", "dark": "" }, "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "inputs": { "connection": { "type": [ "AzureOpenAIConnection" ] }, "deployment_name": { "type": [ "string" ] }, "temperature": { "default": 1, "type": [ "double" ] }, "top_p": { "default": 1, "type": [ "double" ] }, "max_tokens": { "default": 512, "type": [ "int" ] }, "stop": { "default": "", "type": [ "list" ] }, "presence_penalty": { "default": 0, "type": [ "double" ] }, "frequency_penalty": { "default": 0, "type": [ "double" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.azure_content_safety.analyze_text": { "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "inputs": { "connection": { "type": [ "AzureContentSafetyConnection" ] }, "hate_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] }, "self_harm_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] }, "sexual_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] }, "text": { "type": [ "string" ] }, "violence_category": { "default": "medium_sensitivity", "enum": [ "disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity" ], "type": [ "string" ] } }, "name": "Content Safety (Text Analyze)", "description": "Use Azure Content Safety to detect harmful content.", "type": "python", "deprecated_tools": [ "content_safety_text.tools.content_safety_text_tool.analyze_text" ], "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.embedding.embedding": { "name": "Embedding", "description": "Use Open AI's embedding model to create an embedding vector representing the input text.", "type": "python", "module": "promptflow.tools.embedding", "function": "embedding", "inputs": { "connection": { "type": [ "AzureOpenAIConnection", "OpenAIConnection" ] }, "deployment_name": { "type": [ "string" ], "enabled_by": "connection", "enabled_by_type": [ "AzureOpenAIConnection" ], "capabilities": { "completion": false, "chat_completion": false, "embeddings": true }, "model_list": [ "text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001" ] }, "model": { "type": [ "string" ], "enabled_by": "connection", "enabled_by_type": [ "OpenAIConnection" ], "enum": [ "text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001" ], "allow_manual_entry": true }, "input": { "type": [ "string" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.openai_gpt4v.OpenAI.chat": { "name": "OpenAI GPT-4V", "description": "Use OpenAI GPT-4V to leverage vision ability.", "type": "custom_llm", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "tool_state": "preview", "icon": { "light": "", "dark": "" }, "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "inputs": { "connection": { "type": [ "OpenAIConnection" ] }, "model": { "enum": [ "gpt-4-vision-preview" ], "allow_manual_entry": true, "type": [ "string" ] }, "temperature": { "default": 1, "type": [ "double" ] }, "top_p": { "default": 1, "type": [ "double" ] }, "max_tokens": { "default": 512, "type": [ "int" ] }, "stop": { "default": "", "type": [ "list" ] }, "presence_penalty": { "default": 0, "type": [ "double" ] }, "frequency_penalty": { "default": 0, "type": [ "double" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.open_model_llm.OpenModelLLM.call": { "name": "Open Model LLM", "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "icon": "", "type": "custom_llm", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "inputs": { "endpoint_name": { "type": [ "string" ], "dynamic_list": { "func_path": "promptflow.tools.open_model_llm.list_endpoint_names" }, "allow_manual_entry": true, "is_multi_select": false }, "deployment_name": { "default": "", "type": [ "string" ], "dynamic_list": { "func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [ { "name": "endpoint", "type": [ "string" ], "optional": true, "reference": "${inputs.endpoint}" } ] }, "allow_manual_entry": true, "is_multi_select": false }, "api": { "enum": [ "chat", "completion" ], "type": [ "string" ] }, "temperature": { "default": 1.0, "type": [ "double" ] }, "max_new_tokens": { "default": 500, "type": [ "int" ] }, "top_p": { "default": 1.0, "advanced": true, "type": [ "double" ] }, "model_kwargs": { "default": "{}", "advanced": true, "type": [ "object" ] } }, "package": "promptflow-tools", "package_version": "1.0.2" }, "promptflow.tools.serpapi.SerpAPI.search": { "name": "Serp API", "description": "Use Serp API to obtain search results from a specific search engine.", "inputs": { "connection": { "type": [ "SerpConnection" ] }, "engine": { "default": "google", "enum": [ "google", "bing" ], "type": [ "string" ] }, "location": { "default": "", "type": [ "string" ] }, "num": { "default": "10", "type": [ "int" ] }, "query": { "type": [ "string" ] }, "safe": { "default": "off", "enum": [ "active", "off" ], "type": [ "string" ] } }, "type": "python", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "package": "promptflow-tools", "package_version": "1.0.2" }, "my_tool_package.tools.my_tool_1.my_tool": { "function": "my_tool", "inputs": { "connection": { "type": [ "CustomConnection" ], "custom_type": [ "MyFirstConnection", "MySecondConnection" ] }, "input_text": { "type": [ "string" ] } }, "module": "my_tool_package.tools.my_tool_1", "name": "My First Tool", "description": "This is my first tool", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2" }, "my_tool_package.tools.my_tool_2.MyTool.my_tool": { "class_name": "MyTool", "function": "my_tool", "inputs": { "connection": { "type": [ "CustomConnection" ], "custom_type": [ "MySecondConnection" ] }, "input_text": { "type": [ "string" ] } }, "module": "my_tool_package.tools.my_tool_2", "name": "My Second Tool", "description": "This is my second tool", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2" }, "my_tool_package.tools.my_tool_with_custom_strong_type_connection.my_tool": { "function": "my_tool", "inputs": { "connection": { "custom_type": [ "MyCustomConnection" ], "type": [ "CustomConnection" ] }, "input_param": { "type": [ "string" ] } }, "module": "my_tool_package.tools.my_tool_with_custom_strong_type_connection", "name": "Tool With Custom Strong Type Connection", "description": "This is my tool with custom strong type connection.", "type": "python", "package": "test-custom-tools", "package_version": "0.0.2" } } }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/inputs.json
{ "text": "hello" }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/pass_through.py
from promptflow import tool @tool def pass_through(input1: str) -> str: return 'hello ' + input1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/expected_result.json
[ { "expected_node_count": 3, "expected_outputs": { "output": "Node A not executed. Node B not executed." }, "expected_bypassed_nodes": [ "nodeA", "nodeB" ] } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/flow.dag.yaml
inputs: text: type: string default: hello outputs: output: type: string reference: ${nodeC.output} nodes: - name: nodeA type: python source: type: code path: pass_through.py inputs: input1: ${inputs.text} activate: when: ${inputs.text} is: hi - name: nodeB type: python source: type: code path: pass_through.py inputs: input1: ${inputs.text} activate: when: ${inputs.text} is: hi - name: nodeC type: python source: type: code path: summary_result.py inputs: input1: ${nodeA.output} input2: ${nodeB.output} activate: when: dummy is: dummy
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/summary_result.py
from promptflow import tool @tool def summary_result(input1: str="Node A not executed.", input2: str="Node B not executed.") -> str: return input1 + ' ' + input2
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_simple_image_without_default/pick_an_image.py
import random from promptflow.contracts.multimedia import Image from promptflow import tool @tool def pick_an_image(image_1: Image, image_2: Image) -> Image: if random.choice([True, False]): return image_1 else: return image_2
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_simple_image_without_default/flow.dag.yaml
inputs: image_1: type: image image_2: type: image outputs: output: type: image reference: ${python_node.output} nodes: - name: python_node type: python source: type: code path: pick_an_image.py inputs: image_1: ${inputs.image_1} image_2: ${inputs.image_2}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_invalid_default_value/pick_an_image.py
import random from promptflow.contracts.multimedia import Image from promptflow import tool @tool def pick_an_image(image_1: Image, image_2: Image) -> Image: if random.choice([True, False]): return image_1 else: return image_2
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_invalid_default_value/flow.dag.yaml
inputs: image: type: image default: "" outputs: output: type: image reference: ${python_node_2.output} nodes: - name: python_node type: python source: type: code path: pick_an_image.py inputs: image_1: ${inputs.image} image_2: logo_2.png - name: python_node_2 type: python source: type: code path: pick_an_image.py inputs: image_1: ${python_node.output} image_2: logo_2.png
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_invalid_additional_include/flow.dag.yaml
inputs: url: type: string default: https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h outputs: category: type: string reference: ${convert_to_dict.output.category} evidence: type: string reference: ${convert_to_dict.output.evidence} nodes: - name: fetch_text_content_from_url type: python source: type: code path: fetch_text_content_from_url.py inputs: url: ${inputs.url} - name: summarize_text_content type: llm source: type: code path: summarize_text_content.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai use_variants: true - name: prepare_examples type: python source: type: code path: prepare_examples.py inputs: {} - name: classify_with_llm type: llm source: type: code path: classify_with_llm.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' url: ${inputs.url} examples: ${prepare_examples.output} text_content: ${summarize_text_content.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai - name: convert_to_dict type: python source: type: code path: convert_to_dict.py inputs: input_str: ${classify_with_llm.output} node_variants: summarize_text_content: default_variant_id: variant_1 variants: variant_0: node: type: llm source: type: code path: summarize_text_content.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '128' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai variant_1: node: type: llm source: type: code path: summarize_text_content__variant_1.jinja2 inputs: deployment_name: gpt-35-turbo suffix: '' max_tokens: '256' temperature: '0.2' top_p: '1.0' logprobs: '' echo: 'False' stop: '' presence_penalty: '0' frequency_penalty: '0' best_of: '1' logit_bias: '' text: ${fetch_text_content_from_url.output} provider: AzureOpenAI connection: azure_open_ai_connection api: completion module: promptflow.tools.aoai additional_includes: - ../invalid/file/path
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/inputs.json
{ "text": "world" }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/expected_result.json
[ { "expected_node_count": 2, "expected_outputs":{ "text": "hello world" }, "expected_bypassed_nodes":[] } ]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/flow.dag.yaml
inputs: text: type: string outputs: text: type: string reference: ${node_a.output} nodes: - name: node_a type: python source: type: code path: node_a.py inputs: input1: ${inputs.text} - name: node_b type: python source: type: code path: node_b.py inputs: {} activate: when: ${node_a.output} is: hello world
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/node_a.py
from promptflow import tool @tool def my_python_tool(input1: str) -> str: return 'hello ' + input1
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/activate_with_no_inputs/node_b.py
from promptflow import tool @tool def my_python_tool(): print("Avtivate") return 'Executing...'
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/echo.py
from promptflow import tool @tool def echo(message: str): """This tool is used to echo the message back. :param message: The message to echo. :type message: str """ return message
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/assistant_definition.yaml
model: mock_model instructions: mock_instructions tools: - type: function tool_type: python source: type: code path: echo.py
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/test_assistant_definition.py
from promptflow import tool from promptflow.contracts.types import AssistantDefinition @tool def test_assistant_definition(message: str, assistant_definition: AssistantDefinition): assert assistant_definition.model == "mock_model" assert assistant_definition.instructions == "mock_instructions" invoker = assistant_definition.init_tool_invoker() openai_definition = invoker.to_openai_tools() assert len(openai_definition) == 1 assert openai_definition[0]["function"]["description"] == "This tool is used to echo the message back." assert openai_definition[0]["function"]["parameters"]["properties"] == { "message": {"description": "The message to echo.", "type": "string"} } assert openai_definition[0]["function"]["parameters"]["required"] == ["message"] assert invoker.invoke_tool("echo", {"message": message}) == "Hello World!" return assistant_definition.serialize()
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/tool_with_assistant_definition/flow.dag.yaml
inputs: message: type: string default: Hello World! outputs: output: type: object reference: ${test_assistant_definition.output} nodes: - name: test_assistant_definition type: python source: type: code path: test_assistant_definition.py inputs: message: ${inputs.message} assistant_definition: assistant_definition.yaml
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/samples.json
[{"idx": 1}, {"idx": 4}, {"idx": 10}]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/my_python_tool.py
from promptflow import tool import random @tool def my_python_tool(idx: int) -> int: return idx
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/my_python_tool_with_failed_line.py
from promptflow import tool import random import time @tool def my_python_tool_with_failed_line(idx: int, mod=5) -> int: if idx % mod == 0: while True: time.sleep(60) return idx
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/samples_all_timeout.json
[{"idx": 5}, {"idx": 5}]
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/expected_status_summary.json
{ "__pf__.nodes.my_python_tool.completed": 3, "__pf__.nodes.my_python_tool_with_failed_line.completed": 2, "__pf__.nodes.my_python_tool_with_failed_line.failed": 1, "__pf__.lines.completed": 2, "__pf__.lines.failed": 1 }
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/flow.dag.yaml
inputs: idx: type: int outputs: output: type: int reference: ${my_python_tool_with_failed_line.output} nodes: - name: my_python_tool type: python source: type: code path: my_python_tool.py inputs: idx: ${inputs.idx} - name: my_python_tool_with_failed_line type: python source: type: code path: my_python_tool_with_failed_line.py inputs: idx: ${my_python_tool.output}
0
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows
promptflow_repo/promptflow/src/promptflow/tests/test_configs/flows/all_depedencies_bypassed_with_activate_met/inputs.json
{ "text": "hi" }
0