text
stringlengths
13
1.77M
id
stringlengths
22
127
metadata
dict
__index_level_0__
int64
0
28
# Run prompt flow in Azure AI :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../../../how-to-guides/faq.md#stable-vs-experimental). ::: Assuming you have learned how to create and run a flow following [Quick start](../../../how-to-guides/quick-start.md). This guide will walk you through the main process of how to submit a promptflow run to [Azure AI](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/overview-what-is-prompt-flow?view=azureml-api-2). Benefits of use Azure AI comparison to just run locally: - **Designed for team collaboration**: Portal UI is a better fix for sharing & presentation your flow and runs. And workspace can better organize team shared resources like connections. - **Enterprise Readiness Solutions**: prompt flow leverages Azure AI's robust enterprise readiness solutions, providing a secure, scalable, and reliable foundation for the development, experimentation, and deployment of flows. ## Prerequisites 1. An Azure account with an active subscription - [Create an account for free](https://azure.microsoft.com/free/?WT.mc_id=A261C142F) 2. An Azure AI ML workspace - [Create workspace resources you need to get started with Azure AI](https://learn.microsoft.com/en-us/azure/machine-learning/quickstart-create-resources). 3. A python environment, `python=3.9` or higher version like 3.10 is recommended. 4. Install `promptflow` with extra dependencies and `promptflow-tools`. ```sh pip install promptflow[azure] promptflow-tools ``` 5. Clone the sample repo and check flows in folder [examples/flows](https://github.com/microsoft/promptflow/tree/main/examples/flows). ```sh git clone https://github.com/microsoft/promptflow.git ``` ## Create necessary connections Connection helps securely store and manage secret keys or other sensitive credentials required for interacting with LLM and other external tools for example Azure Content Safety. In this guide, we will use flow `web-classification` which uses connection `open_ai_connection` inside, we need to set up the connection if we haven't added it before. Please go to workspace portal, click `Prompt flow` -> `Connections` -> `Create`, then follow the instruction to create your own connections. Learn more on [connections](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/concept-connections?view=azureml-api-2). ## Submit a run to workspace Assuming you are in working directory `<path-to-the-sample-repo>/examples/flows/standard/` ::::{tab-set} :::{tab-item} CLI :sync: CLI Use `az login` to login so promptflow can get your credential. ```sh az login ``` Submit a run to workspace. ```sh pfazure run create --subscription <my_sub> -g <my_resource_group> -w <my_workspace> --flow web-classification --data web-classification/data.jsonl --stream ``` **Default subscription/resource-group/workspace** Note `--subscription`, `-g` and `-w` can be omitted if you have installed the [Azure CLI](https://learn.microsoft.com/en-us/cli/azure/install-azure-cli) and [set the default configurations](https://learn.microsoft.com/en-us/cli/azure/azure-cli-configuration). ```sh az account set --subscription <my-sub> az configure --defaults group=<my_resource_group> workspace=<my_workspace> ``` **Serverless runtime and named runtime** Runtimes serve as computing resources so that the flow can be executed in workspace. Above command does not specify any runtime which means it will run in serverless mode. In this mode the workspace will automatically create a runtime and you can use it as the default runtime for any flow run later. Instead, you can also [create a runtime](https://learn.microsoft.com/en-us/azure/machine-learning/prompt-flow/how-to-create-manage-runtime?view=azureml-api-2) and use it with `--runtime <my-runtime>`: ```sh pfazure run create --flow web-classification --data web-classification/data.jsonl --stream --runtime <my-runtime> ``` **Specify run name and view a run** You can also name the run by specifying `--name my_first_cloud_run` in the run create command, otherwise the run name will be generated in a certain pattern which has timestamp inside. With a run name, you can easily stream or view the run details using below commands: ```sh pfazure run stream -n my_first_cloud_run # same as "--stream" in command "run create" pfazure run show-details -n my_first_cloud_run pfazure run visualize -n my_first_cloud_run ``` More details can be found in [CLI reference: pfazure](../../../reference/pfazure-command-reference.md) ::: :::{tab-item} SDK :sync: SDK 1. Import the required libraries ```python from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential # azure version promptflow apis from promptflow.azure import PFClient ``` 2. Get credential ```python try: credential = DefaultAzureCredential() # Check if given credential can get token successfully. credential.get_token("https://management.azure.com/.default") except Exception as ex: # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work credential = InteractiveBrowserCredential() ``` 3. Get a handle to the workspace ```python # Get a handle to workspace pf = PFClient( credential=credential, subscription_id="<SUBSCRIPTION_ID>", # this will look like xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx resource_group_name="<RESOURCE_GROUP>", workspace_name="<AML_WORKSPACE_NAME>", ) ``` 4. Submit the flow run ```python # load flow flow = "web-classification" data = "web-classification/data.jsonl" runtime = "example-runtime-ci" # assume you have existing runtime with this name provisioned # runtime = None # un-comment use automatic runtime # create run base_run = pf.run( flow=flow, data=data, runtime=runtime, ) pf.stream(base_run) ``` 5. View the run info ```python details = pf.get_details(base_run) details.head(10) pf.visualize(base_run) ``` ::: :::: ## View the run in workspace At the end of stream logs, you can find the `portal_url` of the submitted run, click it to view the run in the workspace. ![c_0](../../../media/cloud/azureml/local-to-cloud-run-webview.png) ### Run snapshot of the flow with additional includes Flows that enabled [additional include](../../../how-to-guides/develop-a-flow/referencing-external-files-or-folders-in-a-flow.md) files can also be submitted for execution in the workspace. Please note that the specific additional include files or folders will be uploaded and organized within the **Files** folder of the run snapshot in the cloud. ![img](../../../media/cloud/azureml/run-with-additional-includes.png) ## Next steps Learn more about: - [CLI reference: pfazure](../../../reference/pfazure-command-reference.md) ```{toctree} :maxdepth: 1 :hidden: create-run-with-automatic-runtime ```
promptflow/docs/cloud/azureai/quick-start/index.md/0
{ "file_path": "promptflow/docs/cloud/azureai/quick-start/index.md", "repo_id": "promptflow", "token_count": 2042 }
0
# Deploy a flow using Kubernetes :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../faq.md#stable-vs-experimental). ::: There are four steps to deploy a flow using Kubernetes: 1. Build the flow as docker format. 2. Build the docker image. 3. Create Kubernetes deployment yaml. 4. Apply the deployment. ## Build a flow as docker format ::::{tab-set} :::{tab-item} CLI :sync: CLI Note that all dependent connections must be created before building as docker. ```bash # create connection if not created before pf connection create --file ../../../examples/connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` Use the command below to build a flow as docker format: ```bash pf flow build --source <path-to-your-flow-folder> --output <your-output-dir> --format docker ``` ::: :::{tab-item} VS Code Extension :sync: VSC Click the button below to build a flow as docker format: ![img](../../media/how-to-guides/vscode_export_as_docker.png) ::: :::: Note that all dependent connections must be created before exporting as docker. ### Docker format folder structure Exported Dockerfile & its dependencies are located in the same folder. The structure is as below: - flow: the folder contains all the flow files - ... - connections: the folder contains yaml files to create all related connections - ... - Dockerfile: the dockerfile to build the image - start.sh: the script used in `CMD` of `Dockerfile` to start the service - runit: the folder contains all the runit scripts - ... - settings.json: a json file to store the settings of the docker image - README.md: Simple introduction of the files ## Deploy with Kubernetes We are going to use the [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/) as an example to show how to deploy with Kubernetes. Please ensure you have [create the connection](../manage-connections.md#create-a-connection) required by flow, if not, you could refer to [Setup connection for web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification). Additionally, please ensure that you have installed all the required dependencies. You can refer to the "Prerequisites" section in the README of the [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/) for a comprehensive list of prerequisites and installation instructions. ### Build Docker image Like other Dockerfile, you need to build the image first. You can tag the image with any name you want. In this example, we use `web-classification-serve`. Then run the command below: ```bash cd <your-output-dir> docker build . -t web-classification-serve ``` ### Create Kubernetes deployment yaml. The Kubernetes deployment yaml file acts as a guide for managing your docker container in a Kubernetes pod. It clearly specifies important information like the container image, port configurations, environment variables, and various settings. Below, you'll find a simple deployment template that you can easily customize to meet your needs. **Note**: You need encode the secret using base64 firstly and input the <encoded_secret> as 'open-ai-connection-api-key' in the deployment configuration. For example, you can run below commands in linux: ```bash encoded_secret=$(echo -n <your_api_key> | base64) ``` ```yaml --- kind: Namespace apiVersion: v1 metadata: name: <your-namespace> --- apiVersion: v1 kind: Secret metadata: name: open-ai-connection-api-key namespace: <your-namespace> type: Opaque data: open-ai-connection-api-key: <encoded_secret> --- apiVersion: v1 kind: Service metadata: name: web-classification-service namespace: <your-namespace> spec: type: NodePort ports: - name: http port: 8080 targetPort: 8080 nodePort: 30123 selector: app: web-classification-serve-app --- apiVersion: apps/v1 kind: Deployment metadata: name: web-classification-serve-app namespace: <your-namespace> spec: selector: matchLabels: app: web-classification-serve-app template: metadata: labels: app: web-classification-serve-app spec: containers: - name: web-classification-serve-container image: <your-docker-image> imagePullPolicy: Never ports: - containerPort: 8080 env: - name: OPEN_AI_CONNECTION_API_KEY valueFrom: secretKeyRef: name: open-ai-connection-api-key key: open-ai-connection-api-key ``` ### Apply the deployment. Before you can deploy your application, ensure that you have set up a Kubernetes cluster and installed [kubectl](https://kubernetes.io/docs/reference/kubectl/) if it's not already installed. In this documentation, we will use [Minikube](https://minikube.sigs.k8s.io/docs/) as an example. To start the cluster, execute the following command: ```bash minikube start ``` Once your Kubernetes cluster is up and running, you can proceed to deploy your application by using the following command: ```bash kubectl apply -f deployment.yaml ``` This command will create the necessary pods to run your application within the cluster. **Note**: You need replace <pod_name> below with your specific pod_name. You can retrieve it by running `kubectl get pods -n web-classification`. ### Retrieve flow service logs of the container The kubectl logs command is used to retrieve the logs of a container running within a pod, which can be useful for debugging, monitoring, and troubleshooting applications deployed in a Kubernetes cluster. ```bash kubectl -n <your-namespace> logs <pod-name> ``` #### Connections If the service involves connections, all related connections will be exported as yaml files and recreated in containers. Secrets in connections won't be exported directly. Instead, we will export them as a reference to environment variables: ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json type: open_ai name: open_ai_connection module: promptflow.connections api_key: ${env:OPEN_AI_CONNECTION_API_KEY} # env reference ``` You'll need to set up the environment variables in the container to make the connections work. ### Test the endpoint - Option1: Once you've started the service, you can establish a connection between a local port and a port on the pod. This allows you to conveniently test the endpoint from your local terminal. To achieve this, execute the following command: ```bash kubectl port-forward <pod_name> <local_port>:<container_port> -n <your-namespace> ``` With the port forwarding in place, you can use the curl command to initiate the endpoint test: ```bash curl http://localhost:<local_port>/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` - Option2: `minikube service web-classification-service --url -n <your-namespace>` runs as a process, creating a tunnel to the cluster. The command exposes the service directly to any program running on the host operating system. The command above will retrieve the URL of a service running within a Minikube Kubernetes cluster (e.g. http://<ip>:<assigned_port>), which you can click to interact with the flow service in your web browser. Alternatively, you can use the following command to test the endpoint: **Note**: Minikube will use its own external port instead of nodePort to listen to the service. So please substitute <assigned_port> with the port obtained above. ```bash curl http://localhost:<assigned_port>/score --data '{"url":"https://play.google.com/store/apps/details?id=com.twitter.android"}' -X POST -H "Content-Type: application/json" ``` ## Next steps - Try the example [here](https://github.com/microsoft/promptflow/tree/main/examples/tutorials/flow-deploy/kubernetes).
promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-kubernetes.md/0
{ "file_path": "promptflow/docs/how-to-guides/deploy-a-flow/deploy-using-kubernetes.md", "repo_id": "promptflow", "token_count": 2398 }
1
# Using File Path as Tool Input Users sometimes need to reference local files within a tool to implement specific logic. To simplify this, we've introduced the `FilePath` input type. This input type enables users to either select an existing file or create a new one, then pass it to a tool, allowing the tool to access the file's content. In this guide, we will provide a detailed walkthrough on how to use `FilePath` as a tool input. We will also demonstrate the user experience when utilizing this type of tool within a flow. ## Prerequisites - Please install promptflow package and ensure that its version is 0.1.0b8 or later. ``` pip install promptflow>=0.1.0b8 ``` - Please ensure that your [Prompt flow for VS Code](https://marketplace.visualstudio.com/items?itemName=prompt-flow.prompt-flow) is updated to version 1.1.0 or later. ## Using File Path as Package Tool Input ### How to create a package tool with file path input Here we use [an existing tool package](https://github.com/microsoft/promptflow/tree/main/examples/tools/tool-package-quickstart/my_tool_package) as an example. If you want to create your own tool, please refer to [create and use tool package](create-and-use-tool-package.md#create-custom-tool-package). 1. Add a `FilePath` input for your tool, like in [this example](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_file_path_input.py). ```python import importlib from pathlib import Path from promptflow import tool # 1. import the FilePath type from promptflow.contracts.types import FilePath # 2. add a FilePath input for your tool method @tool def my_tool(input_file: FilePath, input_text: str) -> str: # 3. customise your own code to handle and use the input_file here new_module = importlib.import_module(Path(input_file).stem) return new_module.hello(input_text) ``` 2. `FilePath` input format in a tool YAML, like in [this example](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_file_path_input.yaml). ```yaml my_tool_package.tools.tool_with_file_path_input.my_tool: function: my_tool inputs: # yaml format for FilePath input input_file: type: - file_path input_text: type: - string module: my_tool_package.tools.tool_with_file_path_input name: Tool with FilePath Input description: This is a tool to demonstrate the usage of FilePath input type: python ``` > [!Note] tool yaml file can be generated using a python script. For further details, please refer to [create custom tool package](create-and-use-tool-package.md#create-custom-tool-package). ### Use tool with a file path input in VS Code extension Follow steps to [build and install your tool package](create-and-use-tool-package.md#build-and-share-the-tool-package) and [use your tool from VS Code extension](create-and-use-tool-package.md#use-your-tool-from-vscode-extension). Here we use an existing flow to demonstrate the experience, open [this flow](https://github.com/microsoft/promptflow/blob/main/examples/tools/use-cases/filepath-input-tool-showcase/flow.dag.yaml) in VS Code extension: - There is a node named "Tool_with_FilePath_Input" with a `file_path` type input called `input_file`. - Click the picker icon to open the UI for selecting an existing file or creating a new file to use as input. ![use file path in flow](../../media/how-to-guides/develop-a-tool/use_file_path_in_flow.png) ## Using File Path as Script Tool Input We can also utilize the `FilePath` input type directly in a script tool, eliminating the need to create a package tool. 1. Initiate an empty flow in the VS Code extension and add a python node titled 'python_node_with_filepath' into it in the Visual Editor page. 2. Select the link `python_node_with_filepath.py` in the node to modify the python method to include a `FilePath` input as shown below, and save the code change. ```python import importlib from pathlib import Path from promptflow import tool # 1. import the FilePath type from promptflow.contracts.types import FilePath # 2. add a FilePath input for your tool method @tool def my_tool(input_file: FilePath, input_text: str) -> str: # 3. customise your own code to handle and use the input_file here new_module = importlib.import_module(Path(input_file).stem) return new_module.hello(input_text) ``` 3. Return to the flow Visual Editor page, click the picker icon to launch the UI for selecting an existing file or creating a new file to use as input, here we select [this file](https://github.com/microsoft/promptflow/blob/main/examples/tools/use-cases/filepath-input-tool-showcase/hello_method.py) as an example. ![use file path in script tool](../../media/how-to-guides/develop-a-tool/use_file_path_in_script_tool.png) ## FAQ ### What are some practical use cases for this feature? The `FilePath` input enables several useful workflows: 1. **Dynamically load modules** - As shown in the demo, you can load a Python module from a specific script file selected by the user. This allows flexible custom logic. 2. **Load arbitrary data files** - The tool can load data from files like .csv, .txt, .json, etc. This provides an easy way to inject external data into a tool. So in summary, `FilePath` input gives tools flexible access to external files provided by users at runtime. This unlocks many useful scenarios like the ones above.
promptflow/docs/how-to-guides/develop-a-tool/use-file-path-as-tool-input.md/0
{ "file_path": "promptflow/docs/how-to-guides/develop-a-tool/use-file-path-as-tool-input.md", "repo_id": "promptflow", "token_count": 1804 }
2
# Alternative LLMs This section provides tutorials on incorporating alternative large language models into prompt flow. ```{toctree} :maxdepth: 1 :hidden: ```
promptflow/docs/integrations/llms/index.md/0
{ "file_path": "promptflow/docs/integrations/llms/index.md", "repo_id": "promptflow", "token_count": 43 }
3
# Python ## Introduction Users are empowered by the Python Tool to offer customized code snippets as self-contained executable nodes in PromptFlow. Users can effortlessly create Python tools, edit code, and verify results with ease. ## Inputs | Name | Type | Description | Required | |--------|--------|------------------------------------------------------|---------| | Code | string | Python code snippet | Yes | | Inputs | - | List of tool function parameters and its assignments | - | ### Types | Type | Python example | Description | |-----------------------------------------------------|---------------------------------|--------------------------------------------| | int | param: int | Integer type | | bool | param: bool | Boolean type | | string | param: str | String type | | double | param: float | Double type | | list | param: list or param: List[T] | List type | | object | param: dict or param: Dict[K, V] | Object type | | [Connection](../../concepts/concept-connections.md) | param: CustomConnection | Connection type, will be handled specially | Parameters with `Connection` type annotation will be treated as connection inputs, which means: - Promptflow extension will show a selector to select the connection. - During execution time, promptflow will try to find the connection with the name same from parameter value passed in. Note that `Union[...]` type annotation is supported **ONLY** for connection type, for example, `param: Union[CustomConnection, OpenAIConnection]`. ## Outputs The return of the python tool function. ## How to write Python Tool? ### Guidelines 1. Python Tool Code should consist of a complete Python code, including any necessary module imports. 2. Python Tool Code must contain a function decorated with @tool (tool function), serving as the entry point for execution. The @tool decorator should be applied only once within the snippet. _Below sample defines python tool "my_python_tool", decorated with @tool_ 3. Python tool function parameters must be assigned in 'Inputs' section _Below sample defines inputs "message" and assign with "world"_ 4. Python tool function shall have return _Below sample returns a concatenated string_ ### Code The snippet below shows the basic structure of a tool function. Promptflow will read the function and extract inputs from function parameters and type annotations. ```python from promptflow import tool from promptflow.connections import CustomConnection # The inputs section will change based on the arguments of the tool function, after you save the code # Adding type to arguments and return value will help the system show the types properly # Please update the function name/signature per need @tool def my_python_tool(message: str, my_conn: CustomConnection) -> str: my_conn_dict = dict(my_conn) # Do some function call with my_conn_dict... return 'hello ' + message ``` ### Inputs | Name | Type | Sample Value in Flow Yaml | Value passed to function| |---------|--------|-------------------------| ------------------------| | message | string | "world" | "world" | | my_conn | CustomConnection | "my_conn" | CustomConnection object | Promptflow will try to find the connection named 'my_conn' during execution time. ### outputs ```python "hello world" ``` ### Keyword Arguments Support Starting from version 1.0.0 of PromptFlow and version 1.4.0 of [Prompt flow for VS Code](https://marketplace.visualstudio.com/items?itemName=prompt-flow.prompt-flow), we have introduced support for keyword arguments (kwargs) in the Python tool. ```python from promptflow import tool @tool def print_test(normal_input: str, **kwargs): for key, value in kwargs.items(): print(f"Key {key}'s value is {value}") return len(kwargs) ``` When you add `kwargs` in your python tool like above code, you can insert variable number of inputs by the `+Add input` button. ![Screenshot of the kwargs On VScode Prompt Flow extension](../../media/reference/tools-reference/python_tool_kwargs.png)
promptflow/docs/reference/tools-reference/python-tool.md/0
{ "file_path": "promptflow/docs/reference/tools-reference/python-tool.md", "repo_id": "promptflow", "token_count": 1821 }
4
from enum import Enum from typing import Union from openai import AzureOpenAI as AzureOpenAIClient, OpenAI as OpenAIClient from promptflow.tools.common import handle_openai_error, normalize_connection_config from promptflow.tools.exception import InvalidConnectionType # Avoid circular dependencies: Use import 'from promptflow._internal' instead of 'from promptflow' # since the code here is in promptflow namespace as well from promptflow._internal import tool from promptflow.connections import AzureOpenAIConnection, OpenAIConnection class EmbeddingModel(str, Enum): TEXT_EMBEDDING_ADA_002 = "text-embedding-ada-002" TEXT_SEARCH_ADA_DOC_001 = "text-search-ada-doc-001" TEXT_SEARCH_ADA_QUERY_001 = "text-search-ada-query-001" @tool @handle_openai_error() def embedding(connection: Union[AzureOpenAIConnection, OpenAIConnection], input: str, deployment_name: str = "", model: EmbeddingModel = EmbeddingModel.TEXT_EMBEDDING_ADA_002): if isinstance(connection, AzureOpenAIConnection): client = AzureOpenAIClient(**normalize_connection_config(connection)) return client.embeddings.create( input=input, model=deployment_name, extra_headers={"ms-azure-ai-promptflow-called-from": "aoai-tool"} ).data[0].embedding elif isinstance(connection, OpenAIConnection): client = OpenAIClient(**normalize_connection_config(connection)) return client.embeddings.create( input=input, model=model ).data[0].embedding else: error_message = f"Not Support connection type '{type(connection).__name__}' for embedding api. " \ f"Connection type should be in [AzureOpenAIConnection, OpenAIConnection]." raise InvalidConnectionType(message=error_message)
promptflow/src/promptflow-tools/promptflow/tools/embedding.py/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/embedding.py", "repo_id": "promptflow", "token_count": 684 }
5
import os import re from io import open from typing import Any, List, Match, cast from setuptools import find_namespace_packages, setup PACKAGE_NAME = "promptflow-tools" PACKAGE_FOLDER_PATH = "promptflow" def parse_requirements(file_name: str) -> List[str]: with open(file_name) as f: return [ require.strip() for require in f if require.strip() and not require.startswith('#') ] # Version extraction inspired from 'requests' with open(os.path.join(PACKAGE_FOLDER_PATH, "version.txt"), "r") as fd: version_content = fd.read() print(version_content) version = cast(Match[Any], re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', version_content, re.MULTILINE)).group(1) if not version: raise RuntimeError("Cannot find version information") with open("README.md", encoding="utf-8") as f: readme = f.read() with open("CHANGELOG.md", encoding="utf-8") as f: changelog = f.read() setup( name=PACKAGE_NAME, version=version, description="Prompt flow built-in tools", long_description_content_type="text/markdown", long_description=readme + "\n\n" + changelog, author="Microsoft Corporation", author_email="[email protected]", url="https://github.com/microsoft/promptflow", classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires="<4.0,>=3.8", install_requires=parse_requirements('requirements.txt'), extras_require={ "azure": [ # Dependency to list deployment in aoai_gpt4v "azure-mgmt-cognitiveservices==13.5.0" ] }, packages=find_namespace_packages(include=[f"{PACKAGE_FOLDER_PATH}.*"]), entry_points={ "package_tools": ["builtins = promptflow.tools.list:list_package_tools"], }, include_package_data=True, project_urls={ "Bug Reports": "https://github.com/microsoft/promptflow/issues", "Source": "https://github.com/microsoft/promptflow", }, )
promptflow/src/promptflow-tools/setup.py/0
{ "file_path": "promptflow/src/promptflow-tools/setup.py", "repo_id": "promptflow", "token_count": 947 }
6
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import argparse import json from promptflow._cli._params import ( add_param_all_results, add_param_archived_only, add_param_include_archived, add_param_max_results, base_params, ) from promptflow._cli._utils import activate_action, exception_handler from promptflow._sdk._constants import get_list_view_type from promptflow._sdk._pf_client import PFClient from promptflow._sdk.entities._experiment import Experiment from promptflow._utils.logger_utils import get_cli_sdk_logger logger = get_cli_sdk_logger() _client = None def _get_pf_client(): global _client if _client is None: _client = PFClient() return _client def add_param_template(parser): parser.add_argument("--template", type=str, required=True, help="The experiment template path.") def add_param_name(parser): parser.add_argument("--name", "-n", type=str, help="The experiment name.") def add_experiment_create(subparsers): epilog = """ Examples: # Create an experiment from a template: pf experiment create --template flow.exp.yaml """ add_params = [add_param_template, add_param_name] + base_params create_parser = activate_action( name="create", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Create an experiment.", action_param_name="sub_action", ) return create_parser def add_experiment_list(subparsers): epilog = """ Examples: # List all experiments: pf experiment list """ activate_action( name="list", description="List all experiments.", epilog=epilog, add_params=[ add_param_max_results, add_param_all_results, add_param_archived_only, add_param_include_archived, ] + base_params, subparsers=subparsers, help_message="List all experiments.", action_param_name="sub_action", ) def add_experiment_show(subparsers): epilog = """ Examples: # Get and show an experiment: pf experiment show -n my_experiment """ activate_action( name="show", description="Show an experiment for promptflow.", epilog=epilog, add_params=[add_param_name] + base_params, subparsers=subparsers, help_message="Show an experiment for promptflow.", action_param_name="sub_action", ) def add_experiment_start(subparsers): epilog = """ Examples: # Start an experiment: pf experiment start -n my_experiment """ activate_action( name="start", description="Start an experiment.", epilog=epilog, add_params=[add_param_name] + base_params, subparsers=subparsers, help_message="Start an experiment.", action_param_name="sub_action", ) def add_experiment_stop(subparsers): epilog = """ Examples: # Stop an experiment: pf experiment stop -n my_experiment """ activate_action( name="stop", description="Stop an experiment.", epilog=epilog, add_params=[add_param_name] + base_params, subparsers=subparsers, help_message="Stop an experiment.", action_param_name="sub_action", ) def add_experiment_parser(subparsers): experiment_parser = subparsers.add_parser( "experiment", description="[Experimental] A CLI tool to manage experiment for prompt flow.", help="[Experimental] pf experiment. This is an experimental feature, and may change at any time.", ) subparsers = experiment_parser.add_subparsers() add_experiment_create(subparsers) add_experiment_list(subparsers) add_experiment_show(subparsers) add_experiment_start(subparsers) add_experiment_stop(subparsers) experiment_parser.set_defaults(action="experiment") def dispatch_experiment_commands(args: argparse.Namespace): if args.sub_action == "create": create_experiment(args) elif args.sub_action == "list": list_experiment(args) elif args.sub_action == "show": show_experiment(args) elif args.sub_action == "start": start_experiment(args) elif args.sub_action == "show-status": pass elif args.sub_action == "update": pass elif args.sub_action == "delete": pass elif args.sub_action == "stop": stop_experiment(args) elif args.sub_action == "test": pass elif args.sub_action == "clone": pass @exception_handler("Create experiment") def create_experiment(args: argparse.Namespace): from promptflow._sdk._load_functions import _load_experiment_template template_path = args.template logger.debug("Loading experiment template from %s", template_path) template = _load_experiment_template(source=template_path) logger.debug("Creating experiment from template %s", template.dir_name) experiment = Experiment.from_template(template, name=args.name) logger.debug("Creating experiment %s", experiment.name) exp = _get_pf_client()._experiments.create_or_update(experiment) print(json.dumps(exp._to_dict(), indent=4)) @exception_handler("List experiment") def list_experiment(args: argparse.Namespace): list_view_type = get_list_view_type(archived_only=args.archived_only, include_archived=args.include_archived) results = _get_pf_client()._experiments.list(args.max_results, list_view_type=list_view_type) print(json.dumps([result._to_dict() for result in results], indent=4)) @exception_handler("Show experiment") def show_experiment(args: argparse.Namespace): result = _get_pf_client()._experiments.get(args.name) print(json.dumps(result._to_dict(), indent=4)) @exception_handler("Start experiment") def start_experiment(args: argparse.Namespace): result = _get_pf_client()._experiments.start(args.name) print(json.dumps(result._to_dict(), indent=4)) @exception_handler("Stop experiment") def stop_experiment(args: argparse.Namespace): result = _get_pf_client()._experiments.stop(args.name) print(json.dumps(result._to_dict(), indent=4))
promptflow/src/promptflow/promptflow/_cli/_pf/_experiment.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf/_experiment.py", "repo_id": "promptflow", "token_count": 2454 }
7
The directory structure in the package tool is as follows: ```python {{ package_name }} │ setup.py # This file contains metadata about your project like the name, version. │ │ MANIFEST.in # This file is used to determine which files to include in the distribution of the project. │ └───{{ package_name }}{{" " * (24 - package_name|length)}}# This is the source directory. All of your project’s source code should be placed in this directory. {{ tool_name }}.py{{ " " * (17 - tool_name|length)}}# The source code of tools. Using the @tool decorator to identify the function as a tool. utils.py # Utility functions for the package. A method for listing all tools defined in the package is generated in this file. __init__.py ``` Please refer to [tool doc](https://microsoft.github.io/promptflow/how-to-guides/develop-a-tool/index.html) for more details about how to develop a tool.
promptflow/src/promptflow/promptflow/_cli/data/package_tool/README.md.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/package_tool/README.md.jinja2", "repo_id": "promptflow", "token_count": 311 }
8
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import asyncio import functools import inspect import logging import threading import time import uuid from contextvars import ContextVar from logging import WARNING from typing import Callable from promptflow._core._errors import ToolExecutionError, UnexpectedError from promptflow._core.cache_manager import AbstractCacheManager, CacheInfo, CacheResult from promptflow._utils.logger_utils import flow_logger, logger from promptflow._utils.thread_utils import RepeatLogTimer from promptflow._utils.utils import generate_elapsed_time_messages from promptflow.contracts.flow import Node from promptflow.contracts.run_info import RunInfo from promptflow.exceptions import PromptflowException from .run_tracker import RunTracker from .thread_local_singleton import ThreadLocalSingleton from .tracer import Tracer class FlowExecutionContext(ThreadLocalSingleton): """The context for a flow execution.""" CONTEXT_VAR_NAME = "Flow" context_var = ContextVar(CONTEXT_VAR_NAME, default=None) def __init__( self, name, run_tracker: RunTracker, cache_manager: AbstractCacheManager = None, run_id=None, flow_id=None, line_number=None, variant_id=None, ): self._name = name self._run_tracker = run_tracker self._cache_manager = cache_manager or AbstractCacheManager.init_from_env() self._run_id = run_id or str(uuid.uuid4()) self._flow_id = flow_id or self._run_id self._line_number = line_number self._variant_id = variant_id def copy(self): return FlowExecutionContext( name=self._name, run_tracker=self._run_tracker, cache_manager=self._cache_manager, run_id=self._run_id, flow_id=self._flow_id, line_number=self._line_number, variant_id=self._variant_id, ) def cancel_node_runs(self, msg): self._run_tracker.cancel_node_runs(msg, self._run_id) def invoke_tool(self, node: Node, f: Callable, kwargs): run_info = self._prepare_node_run(node, f, kwargs) node_run_id = run_info.run_id traces = [] try: hit_cache = False # Get result from cache. If hit cache, no need to execute f. cache_info: CacheInfo = self._cache_manager.calculate_cache_info(self._flow_id, f, [], kwargs) if node.enable_cache and cache_info: cache_result: CacheResult = self._cache_manager.get_cache_result(cache_info) if cache_result and cache_result.hit_cache: # Assign cached_flow_run_id and cached_run_id. run_info.cached_flow_run_id = cache_result.cached_flow_run_id run_info.cached_run_id = cache_result.cached_run_id result = cache_result.result hit_cache = True if not hit_cache: Tracer.start_tracing(node_run_id, node.name) result = self._invoke_tool_with_timer(node, f, kwargs) traces = Tracer.end_tracing(node_run_id) self._run_tracker.end_run(node_run_id, result=result, traces=traces) # Record result in cache so that future run might reuse its result. if not hit_cache and node.enable_cache: self._persist_cache(cache_info, run_info) flow_logger.info(f"Node {node.name} completes.") return result except Exception as e: logger.exception(f"Node {node.name} in line {self._line_number} failed. Exception: {e}.") if not traces: traces = Tracer.end_tracing(node_run_id) self._run_tracker.end_run(node_run_id, ex=e, traces=traces) raise finally: self._run_tracker.persist_node_run(run_info) def _prepare_node_run(self, node: Node, f, kwargs={}): node_run_id = self._generate_node_run_id(node) flow_logger.info(f"Executing node {node.name}. node run id: {node_run_id}") parent_run_id = f"{self._run_id}_{self._line_number}" if self._line_number is not None else self._run_id run_info: RunInfo = self._run_tracker.start_node_run( node=node.name, flow_run_id=self._run_id, parent_run_id=parent_run_id, run_id=node_run_id, index=self._line_number, ) run_info.index = self._line_number run_info.variant_id = self._variant_id self._run_tracker.set_inputs(node_run_id, {key: value for key, value in kwargs.items() if key != "self"}) return run_info async def invoke_tool_async(self, node: Node, f: Callable, kwargs): if not inspect.iscoroutinefunction(f): raise UnexpectedError( message_format="Tool '{function}' in node '{node}' is not a coroutine function.", function=f, node=node.name, ) run_info = self._prepare_node_run(node, f, kwargs=kwargs) node_run_id = run_info.run_id traces = [] try: Tracer.start_tracing(node_run_id, node.name) result = await self._invoke_tool_async_inner(node, f, kwargs) traces = Tracer.end_tracing(node_run_id) self._run_tracker.end_run(node_run_id, result=result, traces=traces) flow_logger.info(f"Node {node.name} completes.") return result # User tool should reraise the CancelledError after its own handling logic, # so that the error can propagate to the scheduler for handling. # Otherwise, the node would end with Completed status. except asyncio.CancelledError as e: logger.info(f"Node {node.name} in line {self._line_number} is canceled.") traces = Tracer.end_tracing(node_run_id) self._run_tracker.end_run(node_run_id, ex=e, traces=traces) raise except Exception as e: logger.exception(f"Node {node.name} in line {self._line_number} failed. Exception: {e}.") traces = Tracer.end_tracing(node_run_id) self._run_tracker.end_run(node_run_id, ex=e, traces=traces) raise finally: self._run_tracker.persist_node_run(run_info) async def _invoke_tool_async_inner(self, node: Node, f: Callable, kwargs): module = f.func.__module__ if isinstance(f, functools.partial) else f.__module__ try: return await f(**kwargs) except PromptflowException as e: # All the exceptions from built-in tools are PromptflowException. # For these cases, raise the exception directly. if module is not None: e.module = module raise e except Exception as e: # Otherwise, we assume the error comes from user's tool. # For these cases, raise ToolExecutionError, which is classified as UserError # and shows stack trace in the error message to make it easy for user to troubleshoot. raise ToolExecutionError(node_name=node.name, module=module) from e def _invoke_tool_with_timer(self, node: Node, f: Callable, kwargs): module = f.func.__module__ if isinstance(f, functools.partial) else f.__module__ node_name = node.name try: logging_name = node_name if self._line_number is not None: logging_name = f"{node_name} in line {self._line_number}" interval_seconds = 60 start_time = time.perf_counter() thread_id = threading.current_thread().ident with RepeatLogTimer( interval_seconds=interval_seconds, logger=logger, level=WARNING, log_message_function=generate_elapsed_time_messages, args=(logging_name, start_time, interval_seconds, thread_id), ): return f(**kwargs) except PromptflowException as e: # All the exceptions from built-in tools are PromptflowException. # For these cases, raise the exception directly. if module is not None: e.module = module raise e except Exception as e: # Otherwise, we assume the error comes from user's tool. # For these cases, raise ToolExecutionError, which is classified as UserError # and shows stack trace in the error message to make it easy for user to troubleshoot. raise ToolExecutionError(node_name=node_name, module=module) from e def bypass_node(self, node: Node): """Update teh bypassed node run info.""" node_run_id = self._generate_node_run_id(node) flow_logger.info(f"Bypassing node {node.name}. node run id: {node_run_id}") parent_run_id = f"{self._run_id}_{self._line_number}" if self._line_number is not None else self._run_id run_info = self._run_tracker.bypass_node_run( node=node.name, flow_run_id=self._run_id, parent_run_id=parent_run_id, run_id=node_run_id, index=self._line_number, variant_id=self._variant_id, ) self._run_tracker.persist_node_run(run_info) def _persist_cache(self, cache_info: CacheInfo, run_info: RunInfo): """Record result in cache storage if hash_id is valid.""" if cache_info and cache_info.hash_id is not None and len(cache_info.hash_id) > 0: try: self._cache_manager.persist_result(run_info, cache_info, self._flow_id) except Exception as ex: # Not a critical path, swallow the exception. logging.warning(f"Failed to persist cache result. run_id: {run_info.run_id}. Exception: {ex}") def _generate_node_run_id(self, node: Node) -> str: if node.aggregation: # For reduce node, the id should be constructed by the flow run info run id return f"{self._run_id}_{node.name}_reduce" if self._line_number is None: return f"{self._run_id}_{node.name}_{uuid.uuid4()}" return f"{self._run_id}_{node.name}_{self._line_number}"
promptflow/src/promptflow/promptflow/_core/flow_execution_context.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/flow_execution_context.py", "repo_id": "promptflow", "token_count": 4636 }
9
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import os from enum import Enum from pathlib import Path LOGGER_NAME = "promptflow" PROMPT_FLOW_HOME_DIR_ENV_VAR = "PF_HOME_DIRECTORY" PROMPT_FLOW_DIR_NAME = ".promptflow" def _prepare_home_dir() -> Path: """Prepare prompt flow home directory. User can configure it by setting environment variable: `PF_HOME_DIRECTORY`; if not configured, or configured value is not valid, use default value: "~/.promptflow/". """ from promptflow._utils.logger_utils import get_cli_sdk_logger logger = get_cli_sdk_logger() if PROMPT_FLOW_HOME_DIR_ENV_VAR in os.environ: logger.debug( f"environment variable {PROMPT_FLOW_HOME_DIR_ENV_VAR!r} is set, honor it preparing home directory." ) try: pf_home_dir = Path(os.getenv(PROMPT_FLOW_HOME_DIR_ENV_VAR)).resolve() pf_home_dir.mkdir(parents=True, exist_ok=True) return pf_home_dir except Exception as e: # pylint: disable=broad-except _warning_message = ( "Invalid configuration for prompt flow home directory: " f"{os.getenv(PROMPT_FLOW_HOME_DIR_ENV_VAR)!r}: {str(e)!r}.\n" 'Fall back to use default value: "~/.promptflow/".' ) logger.warning(_warning_message) try: logger.debug("preparing home directory with default value.") pf_home_dir = (Path.home() / PROMPT_FLOW_DIR_NAME).resolve() pf_home_dir.mkdir(parents=True, exist_ok=True) return pf_home_dir except Exception as e: # pylint: disable=broad-except _error_message = ( f"Cannot create prompt flow home directory: {str(e)!r}.\n" "Please check if you have proper permission to operate the directory " f"{HOME_PROMPT_FLOW_DIR.as_posix()!r}; or configure it via " f"environment variable {PROMPT_FLOW_HOME_DIR_ENV_VAR!r}.\n" ) logger.error(_error_message) raise Exception(_error_message) HOME_PROMPT_FLOW_DIR = _prepare_home_dir() DAG_FILE_NAME = "flow.dag.yaml" NODE_VARIANTS = "node_variants" VARIANTS = "variants" NODES = "nodes" NODE = "node" INPUTS = "inputs" USE_VARIANTS = "use_variants" DEFAULT_VAR_ID = "default_variant_id" FLOW_TOOLS_JSON = "flow.tools.json" FLOW_META_JSON = "flow.json" FLOW_TOOLS_JSON_GEN_TIMEOUT = 60 PROMPT_FLOW_RUNS_DIR_NAME = ".runs" PROMPT_FLOW_EXP_DIR_NAME = ".exps" SERVICE_CONFIG_FILE = "pf.yaml" PF_SERVICE_PORT_FILE = "pfs.port" PF_SERVICE_LOG_FILE = "pfs.log" PF_TRACE_CONTEXT = "PF_TRACE_CONTEXT" LOCAL_MGMT_DB_PATH = (HOME_PROMPT_FLOW_DIR / "pf.sqlite").resolve() LOCAL_MGMT_DB_SESSION_ACQUIRE_LOCK_PATH = (HOME_PROMPT_FLOW_DIR / "pf.sqlite.lock").resolve() SCHEMA_INFO_TABLENAME = "schema_info" RUN_INFO_TABLENAME = "run_info" RUN_INFO_CREATED_ON_INDEX_NAME = "idx_run_info_created_on" CONNECTION_TABLE_NAME = "connection" EXPERIMENT_TABLE_NAME = "experiment" ORCHESTRATOR_TABLE_NAME = "orchestrator" EXP_NODE_RUN_TABLE_NAME = "exp_node_run" EXPERIMENT_CREATED_ON_INDEX_NAME = "idx_experiment_created_on" BASE_PATH_CONTEXT_KEY = "base_path" SCHEMA_KEYS_CONTEXT_CONFIG_KEY = "schema_configs_keys" SCHEMA_KEYS_CONTEXT_SECRET_KEY = "schema_secrets_keys" PARAMS_OVERRIDE_KEY = "params_override" FILE_PREFIX = "file:" KEYRING_SYSTEM = "promptflow" KEYRING_ENCRYPTION_KEY_NAME = "encryption_key" KEYRING_ENCRYPTION_LOCK_PATH = (HOME_PROMPT_FLOW_DIR / "encryption_key.lock").resolve() REFRESH_CONNECTIONS_DIR_LOCK_PATH = (HOME_PROMPT_FLOW_DIR / "refresh_connections_dir.lock").resolve() # Note: Use this only for show. Reading input should regard all '*' string as scrubbed, no matter the length. SCRUBBED_VALUE = "******" SCRUBBED_VALUE_NO_CHANGE = "<no-change>" SCRUBBED_VALUE_USER_INPUT = "<user-input>" CHAT_HISTORY = "chat_history" WORKSPACE_LINKED_DATASTORE_NAME = "workspaceblobstore" LINE_NUMBER = "line_number" AZUREML_PF_RUN_PROPERTIES_LINEAGE = "azureml.promptflow.input_run_id" AZURE_WORKSPACE_REGEX_FORMAT = ( "^azureml:[/]{1,2}subscriptions/([^/]+)/resource(groups|Groups)/([^/]+)" "(/providers/Microsoft.MachineLearningServices)?/workspaces/([^/]+)$" ) DEFAULT_ENCODING = "utf-8" LOCAL_STORAGE_BATCH_SIZE = 1 LOCAL_SERVICE_PORT = 5000 BULK_RUN_ERRORS = "BulkRunErrors" RUN_MACRO = "${run}" VARIANT_ID_MACRO = "${variant_id}" TIMESTAMP_MACRO = "${timestamp}" DEFAULT_VARIANT = "variant_0" # run visualize constants VIS_HTML_TMPL = Path(__file__).parent / "data" / "visualize.j2" VIS_JS_BUNDLE_FILENAME = "bulkTestDetails.min.js" VIS_PORTAL_URL_TMPL = ( "https://ml.azure.com/prompts/flow/bulkrun/runs/outputs" "?wsid=/subscriptions/{subscription_id}/resourceGroups/{resource_group_name}" "/providers/Microsoft.MachineLearningServices/workspaces/{workspace_name}&runId={names}" ) REMOTE_URI_PREFIX = "azureml:" REGISTRY_URI_PREFIX = "azureml://registries/" FLOW_RESOURCE_ID_PREFIX = "azureml://locations/" FLOW_DIRECTORY_MACRO_IN_CONFIG = "${flow_directory}" # Tool meta info UIONLY_HIDDEN = "uionly_hidden" SKIP_FUNC_PARAMS = ["subscription_id", "resource_group_name", "workspace_name"] ICON_DARK = "icon_dark" ICON_LIGHT = "icon_light" ICON = "icon" TOOL_SCHEMA = Path(__file__).parent / "data" / "tool.schema.json" # trace TRACE_MGMT_DB_PATH = (HOME_PROMPT_FLOW_DIR / "trace.sqlite").resolve() TRACE_MGMT_DB_SESSION_ACQUIRE_LOCK_PATH = (HOME_PROMPT_FLOW_DIR / "trace.sqlite.lock").resolve() SPAN_TABLENAME = "span" PFS_MODEL_DATETIME_FORMAT = "iso8601" class CustomStrongTypeConnectionConfigs: PREFIX = "promptflow.connection." TYPE = "custom_type" MODULE = "module" PACKAGE = "package" PACKAGE_VERSION = "package_version" PROMPTFLOW_TYPE_KEY = PREFIX + TYPE PROMPTFLOW_MODULE_KEY = PREFIX + MODULE PROMPTFLOW_PACKAGE_KEY = PREFIX + PACKAGE PROMPTFLOW_PACKAGE_VERSION_KEY = PREFIX + PACKAGE_VERSION @staticmethod def is_custom_key(key): return key not in [ CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY, CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY, CustomStrongTypeConnectionConfigs.PROMPTFLOW_PACKAGE_KEY, CustomStrongTypeConnectionConfigs.PROMPTFLOW_PACKAGE_VERSION_KEY, ] class RunTypes: BATCH = "batch" EVALUATION = "evaluation" PAIRWISE_EVALUATE = "pairwise_evaluate" COMMAND = "command" class AzureRunTypes: """Run types for run entity from index service.""" BATCH = "azureml.promptflow.FlowRun" EVALUATION = "azureml.promptflow.EvaluationRun" PAIRWISE_EVALUATE = "azureml.promptflow.PairwiseEvaluationRun" class RestRunTypes: """Run types for run entity from MT service.""" BATCH = "FlowRun" EVALUATION = "EvaluationRun" PAIRWISE_EVALUATE = "PairwiseEvaluationRun" # run document statuses class RunStatus(object): # Ordered by transition order QUEUED = "Queued" NOT_STARTED = "NotStarted" PREPARING = "Preparing" PROVISIONING = "Provisioning" STARTING = "Starting" RUNNING = "Running" CANCEL_REQUESTED = "CancelRequested" CANCELED = "Canceled" FINALIZING = "Finalizing" COMPLETED = "Completed" FAILED = "Failed" UNAPPROVED = "Unapproved" NOTRESPONDING = "NotResponding" PAUSING = "Pausing" PAUSED = "Paused" @classmethod def list(cls): """Return the list of supported run statuses.""" return [ cls.QUEUED, cls.PREPARING, cls.PROVISIONING, cls.STARTING, cls.RUNNING, cls.CANCEL_REQUESTED, cls.CANCELED, cls.FINALIZING, cls.COMPLETED, cls.FAILED, cls.NOT_STARTED, cls.UNAPPROVED, cls.NOTRESPONDING, cls.PAUSING, cls.PAUSED, ] @classmethod def get_running_statuses(cls): """Return the list of running statuses.""" return [ cls.NOT_STARTED, cls.QUEUED, cls.PREPARING, cls.PROVISIONING, cls.STARTING, cls.RUNNING, cls.UNAPPROVED, cls.NOTRESPONDING, cls.PAUSING, cls.PAUSED, ] @classmethod def get_post_processing_statuses(cls): """Return the list of running statuses.""" return [cls.CANCEL_REQUESTED, cls.FINALIZING] class FlowRunProperties: FLOW_PATH = "flow_path" OUTPUT_PATH = "output_path" NODE_VARIANT = "node_variant" RUN = "run" SYSTEM_METRICS = "system_metrics" # Experiment command node fields only COMMAND = "command" OUTPUTS = "outputs" class CommonYamlFields: """Common yaml fields. Common yaml fields are used to define the common fields in yaml files. It can be one of the following values: type, name, $schema. """ TYPE = "type" """Type.""" NAME = "name" """Name.""" SCHEMA = "$schema" """Schema.""" MAX_LIST_CLI_RESULTS = 50 # general list MAX_RUN_LIST_RESULTS = 50 # run list MAX_SHOW_DETAILS_RESULTS = 100 # show details class CLIListOutputFormat: JSON = "json" TABLE = "table" class LocalStorageFilenames: SNAPSHOT_FOLDER = "snapshot" DAG = DAG_FILE_NAME FLOW_TOOLS_JSON = FLOW_TOOLS_JSON INPUTS = "inputs.jsonl" OUTPUTS = "outputs.jsonl" DETAIL = "detail.json" METRICS = "metrics.json" LOG = "logs.txt" EXCEPTION = "error.json" META = "meta.json" class ListViewType(str, Enum): ACTIVE_ONLY = "ActiveOnly" ARCHIVED_ONLY = "ArchivedOnly" ALL = "All" def get_list_view_type(archived_only: bool, include_archived: bool) -> ListViewType: if archived_only and include_archived: raise Exception("Cannot provide both archived-only and include-archived.") if include_archived: return ListViewType.ALL elif archived_only: return ListViewType.ARCHIVED_ONLY else: return ListViewType.ACTIVE_ONLY class RunInfoSources(str, Enum): """Run sources.""" LOCAL = "local" INDEX_SERVICE = "index_service" RUN_HISTORY = "run_history" MT_SERVICE = "mt_service" EXISTING_RUN = "existing_run" class ConfigValueType(str, Enum): STRING = "String" SECRET = "Secret" class ConnectionType(str, Enum): _NOT_SET = "NotSet" AZURE_OPEN_AI = "AzureOpenAI" OPEN_AI = "OpenAI" QDRANT = "Qdrant" COGNITIVE_SEARCH = "CognitiveSearch" SERP = "Serp" AZURE_CONTENT_SAFETY = "AzureContentSafety" FORM_RECOGNIZER = "FormRecognizer" WEAVIATE = "Weaviate" CUSTOM = "Custom" ALL_CONNECTION_TYPES = set( map(lambda x: f"{x.value}Connection", filter(lambda x: x != ConnectionType._NOT_SET, ConnectionType)) ) class ConnectionFields(str, Enum): CONNECTION = "connection" DEPLOYMENT_NAME = "deployment_name" MODEL = "model" SUPPORTED_CONNECTION_FIELDS = { ConnectionFields.CONNECTION.value, ConnectionFields.DEPLOYMENT_NAME.value, ConnectionFields.MODEL.value, } class RunDataKeys: PORTAL_URL = "portal_url" DATA = "data" RUN = "run" OUTPUT = "output" class RunHistoryKeys: RunMetaData = "runMetadata" HIDDEN = "hidden" class ConnectionProvider(str, Enum): LOCAL = "local" AZUREML = "azureml" class FlowType: STANDARD = "standard" EVALUATION = "evaluation" CHAT = "chat" @staticmethod def get_all_values(): values = [value for key, value in vars(FlowType).items() if isinstance(value, str) and key.isupper()] return values CLIENT_FLOW_TYPE_2_SERVICE_FLOW_TYPE = { FlowType.STANDARD: "default", FlowType.EVALUATION: "evaluation", FlowType.CHAT: "chat", } SERVICE_FLOW_TYPE_2_CLIENT_FLOW_TYPE = {value: key for key, value in CLIENT_FLOW_TYPE_2_SERVICE_FLOW_TYPE.items()} class AzureFlowSource: LOCAL = "local" PF_SERVICE = "pf_service" INDEX = "index" class DownloadedRun: SNAPSHOT_FOLDER = LocalStorageFilenames.SNAPSHOT_FOLDER METRICS_FILE_NAME = LocalStorageFilenames.METRICS LOGS_FILE_NAME = LocalStorageFilenames.LOG RUN_METADATA_FILE_NAME = "run_metadata.json" class ExperimentNodeType(object): FLOW = "flow" CHAT_GROUP = "chat_group" COMMAND = "command" class ExperimentStatus(object): NOT_STARTED = "NotStarted" QUEUING = "Queuing" IN_PROGRESS = "InProgress" TERMINATED = "Terminated" class ExperimentNodeRunStatus(object): NOT_STARTED = "NotStarted" QUEUING = "Queuing" IN_PROGRESS = "InProgress" COMPLETED = "Completed" FAILED = "Failed" CANCELED = "Canceled" class ContextAttributeKey: EXPERIMENT = "experiment" # Note: referenced id not used for lineage, only for evaluation REFERENCED_LINE_RUN_ID = "referenced.line_run_id" REFERENCED_BATCH_RUN_ID = "referenced.batch_run_id" class EnvironmentVariables: """The environment variables.""" PF_USE_AZURE_CLI_CREDENTIAL = "PF_USE_AZURE_CLI_CREDENTIAL"
promptflow/src/promptflow/promptflow/_sdk/_constants.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_constants.py", "repo_id": "promptflow", "token_count": 5765 }
10
# Prompt Flow Service This document will describe the usage of pfs(prompt flow service) CLI. ### Start prompt flow service (optional) If you don't install pfs as a service, you need to start pfs manually. pfs CLI provides **start** command to start service. You can also use this command to specify the service port. ```commandline usage: pfs [-h] [-p PORT] Start prompt flow service. optional arguments: -h, --help show this help message and exit -p PORT, --port PORT port of the promptflow service ``` If you don't specify a port to start service, pfs will first use the port in the configure file in "~/.promptflow/pfs.port". If not found port configuration or the port is used, pfs will use a random port to start the service. ### Swagger of service After start the service, it will provide Swagger UI documentation, served from "http://localhost:your-port/v1.0/swagger.json". For details, please refer to [swagger.json](./swagger.json). #### Generate C# client 1. Right click the project, Add -> Rest API Client... -> Generate with OpenAPI Generator 2. It will open a dialog, fill in the file name and swagger url, it will generate the client under the project. For details, please refer to [REST API Client Code Generator](https://marketplace.visualstudio.com/items?itemName=ChristianResmaHelle.ApiClientCodeGenerator2022).
promptflow/src/promptflow/promptflow/_sdk/_service/README.md/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/README.md", "repo_id": "promptflow", "token_count": 387 }
11
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import getpass import socket import time from dataclasses import InitVar, dataclass, field from datetime import datetime from functools import wraps import psutil import requests from flask import abort, make_response, request from promptflow._sdk._constants import DEFAULT_ENCODING, HOME_PROMPT_FLOW_DIR, PF_SERVICE_PORT_FILE from promptflow._sdk._errors import ConnectionNotFoundError, RunNotFoundError from promptflow._sdk._utils import read_write_by_user from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow._utils.yaml_utils import dump_yaml, load_yaml from promptflow._version import VERSION from promptflow.exceptions import PromptflowException, UserErrorException logger = get_cli_sdk_logger() def local_user_only(func): @wraps(func) def wrapper(*args, **kwargs): # Get the user name from request. user = request.environ.get("REMOTE_USER") or request.headers.get("X-Remote-User") if user != getpass.getuser(): abort(403) return func(*args, **kwargs) return wrapper def get_port_from_config(create_if_not_exists=False): (HOME_PROMPT_FLOW_DIR / PF_SERVICE_PORT_FILE).touch(mode=read_write_by_user(), exist_ok=True) with open(HOME_PROMPT_FLOW_DIR / PF_SERVICE_PORT_FILE, "r", encoding=DEFAULT_ENCODING) as f: service_config = load_yaml(f) or {} port = service_config.get("service", {}).get("port", None) if not port and create_if_not_exists: with open(HOME_PROMPT_FLOW_DIR / PF_SERVICE_PORT_FILE, "w", encoding=DEFAULT_ENCODING) as f: # Set random port to ~/.promptflow/pf.yaml port = get_random_port() service_config["service"] = service_config.get("service", {}) service_config["service"]["port"] = port dump_yaml(service_config, f) return port def dump_port_to_config(port): # Set port to ~/.promptflow/pf.port, if already have a port in file , will overwrite it. (HOME_PROMPT_FLOW_DIR / PF_SERVICE_PORT_FILE).touch(mode=read_write_by_user(), exist_ok=True) with open(HOME_PROMPT_FLOW_DIR / PF_SERVICE_PORT_FILE, "r", encoding=DEFAULT_ENCODING) as f: service_config = load_yaml(f) or {} with open(HOME_PROMPT_FLOW_DIR / PF_SERVICE_PORT_FILE, "w", encoding=DEFAULT_ENCODING) as f: service_config["service"] = service_config.get("service", {}) service_config["service"]["port"] = port dump_yaml(service_config, f) def is_port_in_use(port: int): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(("localhost", port)) == 0 def get_random_port(): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind(("localhost", 0)) return s.getsockname()[1] def _get_process_by_port(port): for proc in psutil.process_iter(["pid", "connections", "create_time"]): try: for connection in proc.connections(): if connection.laddr.port == port: return proc except psutil.AccessDenied: pass def kill_exist_service(port): proc = _get_process_by_port(port) if proc: proc.terminate() proc.wait(10) def get_started_service_info(port): service_info = {} proc = _get_process_by_port(port) if proc: create_time = proc.info["create_time"] process_uptime = datetime.now() - datetime.fromtimestamp(create_time) service_info["create_time"] = str(datetime.fromtimestamp(create_time)) service_info["uptime"] = str(process_uptime) service_info["port"] = port return service_info def make_response_no_content(): return make_response("", 204) def is_pfs_service_healthy(pfs_port) -> bool: """Check if pfs service is running.""" try: response = requests.get("http://localhost:{}/heartbeat".format(pfs_port)) if response.status_code == 200: logger.debug(f"Pfs service is already running on port {pfs_port}.") return True except Exception: # pylint: disable=broad-except pass logger.warning(f"Pfs service can't be reached through port {pfs_port}, will try to start/force restart pfs.") return False def check_pfs_service_status(pfs_port, time_delay=5, time_threshold=30) -> bool: wait_time = 0 is_healthy = False while is_healthy is False and time_threshold > wait_time: logger.info( f"Pfs service is not ready. It has been waited for {wait_time}s, will wait for at most " f"{time_threshold}s." ) wait_time += time_delay time.sleep(time_delay) is_healthy = is_pfs_service_healthy(pfs_port) return is_healthy @dataclass class ErrorInfo: exception: InitVar[Exception] code: str = field(init=False) message: str = field(init=False) message_format: str = field(init=False, default=None) message_parameters: dict = field(init=False, default=None) target: str = field(init=False, default=None) module: str = field(init=False, default=None) reference_code: str = field(init=False, default=None) inner_exception: dict = field(init=False, default=None) additional_info: dict = field(init=False, default=None) error_codes: list = field(init=False, default=None) def __post_init__(self, exception): if isinstance(exception, PromptflowException): self.code = "PromptflowError" if isinstance(exception, (UserErrorException, ConnectionNotFoundError, RunNotFoundError)): self.code = "UserError" self.message = exception.message self.message_format = exception.message_format self.message_parameters = exception.message_parameters self.target = exception.target self.module = exception.module self.reference_code = exception.reference_code self.inner_exception = exception.inner_exception self.additional_info = exception.additional_info self.error_codes = exception.error_codes else: self.code = "ServiceError" self.message = str(exception) @dataclass class FormattedException: exception: InitVar[Exception] status_code: InitVar[int] = 500 error: ErrorInfo = field(init=False) time: str = field(init=False) def __post_init__(self, exception, status_code): self.status_code = status_code if isinstance(exception, (UserErrorException, ConnectionNotFoundError, RunNotFoundError)): self.status_code = 404 self.error = ErrorInfo(exception) self.time = datetime.now().isoformat() def build_pfs_user_agent(): extra_agent = f"local_pfs/{VERSION}" if request.user_agent.string: return f"{request.user_agent.string} {extra_agent}" return extra_agent def get_client_from_request() -> "PFClient": from promptflow._sdk._pf_client import PFClient return PFClient(user_agent=build_pfs_user_agent())
promptflow/src/promptflow/promptflow/_sdk/_service/utils/utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/utils/utils.py", "repo_id": "promptflow", "token_count": 2835 }
12
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from enum import Enum from typing import Dict, Sequence, Set, List, Any from promptflow._utils.exception_utils import ErrorResponse from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status # define metrics dimension keys FLOW_KEY = "flow" RUN_STATUS_KEY = "run_status" NODE_KEY = "node" LLM_ENGINE_KEY = "llm_engine" TOKEN_TYPE_KEY = "token_type" RESPONSE_CODE_KEY = "response_code" EXCEPTION_TYPE_KEY = "exception" STREAMING_KEY = "streaming" API_CALL_KEY = "api_call" RESPONSE_TYPE_KEY = "response_type" # firstbyte, lastbyte, default HISTOGRAM_BOUNDARIES: Sequence[float] = ( 1.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0, 500.0, 750.0, 1000.0, 2500.0, 5000.0, 7500.0, 10000.0, 25000.0, 50000.0, 75000.0, 100000.0, 300000.0, ) class ResponseType(Enum): # latency from receiving the request to sending the first byte of response, only applicable to streaming flow FirstByte = "firstbyte" # latency from receiving the request to sending the last byte of response, only applicable to streaming flow LastByte = "lastbyte" # latency from receiving the request to sending the whole response, only applicable to non-streaming flow Default = "default" class LLMTokenType(Enum): PromptTokens = "prompt_tokens" CompletionTokens = "completion_tokens" try: from opentelemetry import metrics from opentelemetry.metrics import set_meter_provider from opentelemetry.sdk.metrics import MeterProvider from opentelemetry.sdk.metrics.view import ExplicitBucketHistogramAggregation, SumAggregation, View # define meter meter = metrics.get_meter_provider().get_meter("Promptflow Standard Metrics") # define metrics token_consumption = meter.create_counter("Token_Consumption") flow_latency = meter.create_histogram("Flow_Latency") node_latency = meter.create_histogram("Node_Latency") flow_request = meter.create_counter("Flow_Request") remote_api_call_latency = meter.create_histogram("RPC_Latency") remote_api_call_request = meter.create_counter("RPC_Request") node_request = meter.create_counter("Node_Request") # metrics for streaming streaming_response_duration = meter.create_histogram("Flow_Streaming_Response_Duration") # define metrics views # token view token_view = View( instrument_name="Token_Consumption", description="", attribute_keys={FLOW_KEY, NODE_KEY, LLM_ENGINE_KEY, TOKEN_TYPE_KEY}, aggregation=SumAggregation(), ) # latency view flow_latency_view = View( instrument_name="Flow_Latency", description="", attribute_keys={FLOW_KEY, RESPONSE_CODE_KEY, STREAMING_KEY, RESPONSE_TYPE_KEY}, aggregation=ExplicitBucketHistogramAggregation(boundaries=HISTOGRAM_BOUNDARIES), ) node_latency_view = View( instrument_name="Node_Latency", description="", attribute_keys={FLOW_KEY, NODE_KEY, RUN_STATUS_KEY}, aggregation=ExplicitBucketHistogramAggregation(boundaries=HISTOGRAM_BOUNDARIES), ) flow_streaming_response_duration_view = View( instrument_name="Flow_Streaming_Response_Duration", description="during between sending the first byte and last byte of the response, only for streaming flow", attribute_keys={FLOW_KEY}, aggregation=ExplicitBucketHistogramAggregation(boundaries=HISTOGRAM_BOUNDARIES), ) # request view request_view = View( instrument_name="Flow_Request", description="", attribute_keys={FLOW_KEY, RESPONSE_CODE_KEY, STREAMING_KEY, EXCEPTION_TYPE_KEY}, aggregation=SumAggregation(), ) node_request_view = View( instrument_name="Node_Request", description="", attribute_keys={FLOW_KEY, NODE_KEY, RUN_STATUS_KEY, EXCEPTION_TYPE_KEY}, aggregation=SumAggregation(), ) # Remote API call view remote_api_call_latency_view = View( instrument_name="RPC_Latency", description="", attribute_keys={FLOW_KEY, NODE_KEY, API_CALL_KEY}, aggregation=ExplicitBucketHistogramAggregation(boundaries=HISTOGRAM_BOUNDARIES), ) remote_api_call_request_view = View( instrument_name="RPC_Request", description="", attribute_keys={FLOW_KEY, NODE_KEY, API_CALL_KEY, EXCEPTION_TYPE_KEY}, aggregation=SumAggregation(), ) metrics_enabled = True except ImportError: metrics_enabled = False class MetricsRecorder(object): """OpenTelemetry Metrics Recorder""" def __init__(self, logger, reader=None, common_dimensions: Dict[str, str] = None) -> None: """initialize metrics recorder :param logger: logger :type logger: Logger :param reader: metric reader :type reader: opentelemetry.sdk.metrics.export.MetricReader :param common_dimensions: common dimensions for all metrics :type common_dimensions: Dict[str, str] """ self.logger = logger if not metrics_enabled: logger.warning( "OpenTelemetry metric is not enabled, metrics will not be recorded." + "If you want to collect metrics, please enable 'azureml-serving' extra requirement " + "for promptflow: 'pip install promptflow[azureml-serving]'" ) return self.common_dimensions = common_dimensions or {} self.reader = reader dimension_keys = {key for key in common_dimensions} self._config_common_monitor(dimension_keys, reader) logger.info("OpenTelemetry metric is enabled, metrics will be recorded.") def record_flow_request(self, flow_id: str, response_code: int, exception: str, streaming: bool): if not metrics_enabled: return try: flow_request.add( 1, { FLOW_KEY: flow_id, RESPONSE_CODE_KEY: str(response_code), EXCEPTION_TYPE_KEY: exception, STREAMING_KEY: str(streaming), **self.common_dimensions, }, ) except Exception as e: self.logger.warning("failed to record flow request metrics: %s", e) def record_flow_latency( self, flow_id: str, response_code: int, streaming: bool, response_type: str, duration: float ): if not metrics_enabled: return try: flow_latency.record( duration, { FLOW_KEY: flow_id, RESPONSE_CODE_KEY: str(response_code), STREAMING_KEY: str(streaming), RESPONSE_TYPE_KEY: response_type, **self.common_dimensions, }, ) except Exception as e: self.logger.warning("failed to record flow latency metrics: %s", e) def record_flow_streaming_response_duration(self, flow_id: str, duration: float): if not metrics_enabled: return try: streaming_response_duration.record(duration, {FLOW_KEY: flow_id, **self.common_dimensions}) except Exception as e: self.logger.warning("failed to record streaming duration metrics: %s", e) def record_tracing_metrics(self, flow_run: FlowRunInfo, node_runs: Dict[str, RunInfo]): if not metrics_enabled: return try: for _, run in node_runs.items(): flow_id = flow_run.flow_id if flow_run is not None else "default" if len(run.system_metrics) > 0: duration = run.system_metrics.get("duration", None) if duration is not None: duration = duration * 1000 node_latency.record( duration, { FLOW_KEY: flow_id, NODE_KEY: run.node, RUN_STATUS_KEY: run.status.value, **self.common_dimensions, }, ) # openai token metrics inputs = run.inputs or {} engine = inputs.get("deployment_name") or "" for token_type in [LLMTokenType.PromptTokens.value, LLMTokenType.CompletionTokens.value]: count = run.system_metrics.get(token_type, None) if count: token_consumption.add( count, { FLOW_KEY: flow_id, NODE_KEY: run.node, LLM_ENGINE_KEY: engine, TOKEN_TYPE_KEY: token_type, **self.common_dimensions, }, ) # record node request metric err = None if run.status != Status.Completed: err = "unknown" if isinstance(run.error, dict): err = self._get_exact_error(run.error) elif isinstance(run.error, str): err = run.error node_request.add( 1, { FLOW_KEY: flow_id, NODE_KEY: run.node, RUN_STATUS_KEY: run.status.value, EXCEPTION_TYPE_KEY: err, **self.common_dimensions, }, ) if run.api_calls and len(run.api_calls) > 0: for api_call in run.api_calls: # since first layer api_call is the node call itself, we ignore them here api_calls: List[Dict[str, Any]] = api_call.get("children", None) if api_calls is None: continue self._record_api_call_metrics(flow_id, run.node, api_calls) except Exception as e: self.logger.warning(f"failed to record metrics: {e}, flow_run: {flow_run}, node_runs: {node_runs}") def _record_api_call_metrics(self, flow_id, node, api_calls: List[Dict[str, Any]], prefix: str = None): if api_calls and len(api_calls) > 0: for api_call in api_calls: cur_name = api_call.get("name") api_name = f"{prefix}_{cur_name}" if prefix else cur_name # api-call latency metrics # sample data: {"start_time":1688462182.744916, "end_time":1688462184.280989} start_time = api_call.get("start_time", None) end_time = api_call.get("end_time", None) if start_time and end_time: api_call_latency_ms = (end_time - start_time) * 1000 remote_api_call_latency.record( api_call_latency_ms, { FLOW_KEY: flow_id, NODE_KEY: node, API_CALL_KEY: api_name, **self.common_dimensions, }, ) # remote api call request metrics err = api_call.get("error") or {} if isinstance(err, dict): exception_type = self._get_exact_error(err) else: exception_type = err remote_api_call_request.add( 1, { FLOW_KEY: flow_id, NODE_KEY: node, API_CALL_KEY: api_name, EXCEPTION_TYPE_KEY: exception_type, **self.common_dimensions, }, ) child_api_calls = api_call.get("children", None) if child_api_calls: self._record_api_call_metrics(flow_id, node, child_api_calls, api_name) def _get_exact_error(self, err: Dict): error_response = ErrorResponse.from_error_dict(err) return error_response.innermost_error_code # configure monitor, by default only expose prometheus metrics def _config_common_monitor(self, common_keys: Set[str] = {}, reader=None): metrics_views = [ token_view, flow_latency_view, node_latency_view, request_view, remote_api_call_latency_view, remote_api_call_request_view, ] for view in metrics_views: view._attribute_keys.update(common_keys) readers = [] if reader: readers.append(reader) meter_provider = MeterProvider( metric_readers=readers, views=metrics_views, ) set_meter_provider(meter_provider)
promptflow/src/promptflow/promptflow/_sdk/_serving/monitor/metrics.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_serving/monitor/metrics.py", "repo_id": "promptflow", "token_count": 6653 }
13
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from promptflow._version import VERSION USER_AGENT = "{}/{}".format("promptflow-sdk", VERSION)
promptflow/src/promptflow/promptflow/_sdk/_user_agent.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_user_agent.py", "repo_id": "promptflow", "token_count": 57 }
14
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from os import PathLike from typing import Union # TODO(2528165): remove this file when we deprecate Flow.run_bulk class BaseInputs(object): def __init__(self, data: Union[str, PathLike], inputs_mapping: dict = None, **kwargs): self.data = data self.inputs_mapping = inputs_mapping class BulkInputs(BaseInputs): """Bulk run inputs. data: pointer to test data for standard runs inputs_mapping: define a data flow logic to map input data, support: from data: data.col1: Example: {"question": "${data.question}", "context": "${data.context}"} """ # TODO: support inputs_mapping for bulk run pass class EvalInputs(BaseInputs): """Evaluation flow run inputs. data: pointer to test data (of variant bulk runs) for eval runs variant: variant run id or variant run keep lineage between current run and variant runs variant outputs can be referenced as ${batch_run.outputs.col_name} in inputs_mapping baseline: baseline run id or baseline run baseline bulk run for eval runs for pairwise comparison inputs_mapping: define a data flow logic to map input data, support: from data: data.col1: from variant: [0].col1, [1].col2: if need different col from variant run data variant.output.col1: if all upstream runs has col1 Example: {"ground_truth": "${data.answer}", "prediction": "${batch_run.outputs.answer}"} """ def __init__( self, data: Union[str, PathLike], variant: Union[str, "BulkRun"] = None, # noqa: F821 baseline: Union[str, "BulkRun"] = None, # noqa: F821 inputs_mapping: dict = None, **kwargs ): super().__init__(data=data, inputs_mapping=inputs_mapping, **kwargs) self.variant = variant self.baseline = baseline
promptflow/src/promptflow/promptflow/_sdk/entities/_run_inputs.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/entities/_run_inputs.py", "repo_id": "promptflow", "token_count": 771 }
15
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json import os from datetime import datetime from enum import Enum from traceback import TracebackException, format_tb from types import TracebackType, FrameType from promptflow.exceptions import PromptflowException, SystemErrorException, UserErrorException, ValidationException ADDITIONAL_INFO_USER_EXECUTION_ERROR = "ToolExecutionErrorDetails" ADDITIONAL_INFO_USER_CODE_STACKTRACE = "UserCodeStackTrace" CAUSE_MESSAGE = "\nThe above exception was the direct cause of the following exception:\n\n" CONTEXT_MESSAGE = "\nDuring handling of the above exception, another exception occurred:\n\n" TRACEBACK_MESSAGE = "Traceback (most recent call last):\n" class RootErrorCode: USER_ERROR = "UserError" SYSTEM_ERROR = "SystemError" class ResponseCode(str, Enum): SUCCESS = "200" ACCEPTED = "202" REDIRECTION = "300" CLIENT_ERROR = "400" SERVICE_ERROR = "500" UNKNOWN = "0" class ErrorResponse: """A class that represents the response body when an error occurs. It follows the following specification: https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses """ def __init__(self, error_dict): self._error_dict = error_dict @staticmethod def from_error_dict(error_dict): """Create an ErrorResponse from an error dict. The error dict which usually is generated by ExceptionPresenter.create(exception).to_dict() """ return ErrorResponse(error_dict) @staticmethod def from_exception(ex: Exception, *, include_debug_info=False): presenter = ExceptionPresenter.create(ex) error_dict = presenter.to_dict(include_debug_info=include_debug_info) return ErrorResponse(error_dict) @property def message(self): return self._error_dict.get("message", "") @property def response_code(self): """Given the error code, return the corresponding http response code.""" root_error_code = self._error_dict.get("code") return ResponseCode.CLIENT_ERROR if root_error_code == RootErrorCode.USER_ERROR else ResponseCode.SERVICE_ERROR @property def additional_info(self): """Return the additional info of the error. The additional info is defined in the error response. It is stored as a list of dict, each of which contains a "type" and "info" field. We change the list of dict to a dict of dict for easier access. """ result = {} list_of_dict = self._error_dict.get("additionalInfo") if not list_of_dict or not isinstance(list_of_dict, list): return result for item in list_of_dict: # We just ignore the item if it is not a dict or does not contain the required fields. if not isinstance(item, dict): continue name = item.get("type") info = item.get("info") if not name or not info: continue result[name] = info return result def get_additional_info(self, name): """Get the additional info by name.""" return self.additional_info.get(name) def get_user_execution_error_info(self): """Get user tool execution error info from additional info.""" user_execution_error_info = self.get_additional_info(ADDITIONAL_INFO_USER_EXECUTION_ERROR) if not user_execution_error_info or not isinstance(user_execution_error_info, dict): return {} return user_execution_error_info def to_dict(self): from promptflow._core.operation_context import OperationContext return { "error": self._error_dict, "correlation": None, # TODO: to be implemented "environment": None, # TODO: to be implemented "location": None, # TODO: to be implemented "componentName": OperationContext.get_instance().get_user_agent(), "time": datetime.utcnow().isoformat(), } def to_simplified_dict(self): return { "error": { "code": self._error_dict.get("code"), "message": self._error_dict.get("message"), } } @property def error_codes(self): error = self._error_dict error_codes = [] while error is not None: code = error.get("code") if code is not None: error_codes.append(code) error = error.get("innerError") else: break return error_codes @property def error_code_hierarchy(self): """Get the code hierarchy from error dict.""" return "/".join(self.error_codes) @property def innermost_error_code(self): error_codes = self.error_codes if error_codes: return error_codes[-1] return None class ExceptionPresenter: """A class that can extract information from the exception instance. It is designed to work for both PromptflowException and other exceptions. """ def __init__(self, ex: Exception): self._ex = ex @staticmethod def create(ex: Exception): if isinstance(ex, PromptflowException): return PromptflowExceptionPresenter(ex) return ExceptionPresenter(ex) @property def formatted_traceback(self): te = TracebackException.from_exception(self._ex) return "".join(te.format()) @property def debug_info(self): return self.build_debug_info(self._ex) def build_debug_info(self, ex: Exception): inner_exception: dict = None stack_trace = TRACEBACK_MESSAGE + "".join(format_tb(ex.__traceback__)) if ex.__cause__ is not None: inner_exception = self.build_debug_info(ex.__cause__) stack_trace = CAUSE_MESSAGE + stack_trace elif ex.__context__ is not None and not ex.__suppress_context__: inner_exception = self.build_debug_info(ex.__context__) stack_trace = CONTEXT_MESSAGE + stack_trace return { "type": ex.__class__.__qualname__, "message": str(ex), "stackTrace": stack_trace, "innerException": inner_exception, } @property def error_codes(self): """The hierarchy of the error codes. We follow the "Microsoft REST API Guidelines" to define error codes in a hierarchy style. See the below link for details: https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses This method returns the error codes in a list. It will be converted into a nested json format by error_code_recursed. """ return [infer_error_code_from_class(SystemErrorException), self._ex.__class__.__name__] @property def error_code_recursed(self): """Returns a dict of the error codes for this exception. It is populated in a recursive manner, using the source from `error_codes` property. i.e. For PromptflowException, such as ToolExcutionError which inherits from UserErrorException, The result would be: { "code": "UserError", "innerError": { "code": "ToolExecutionError", "innerError": None, }, } For other exception types, such as ValueError, the result would be: { "code": "SystemError", "innerError": { "code": "ValueError", "innerError": None, }, } """ current_error = None reversed_error_codes = reversed(self.error_codes) if self.error_codes else [] for code in reversed_error_codes: current_error = { "code": code, "innerError": current_error, } return current_error def to_dict(self, *, include_debug_info=False): """Return a dict representation of the exception. This dict specification corresponds to the specification of the Microsoft API Guidelines: https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses Note that this dict represents the "error" field in the response body of the API. The whole error response is then populated in another place outside of this class. """ if isinstance(self._ex, JsonSerializedPromptflowException): return self._ex.to_dict(include_debug_info=include_debug_info) # Otherwise, return general dict representation of the exception. result = {"message": str(self._ex), "messageFormat": "", "messageParameters": {}} result.update(self.error_code_recursed) if include_debug_info: result["debugInfo"] = self.debug_info return result class PromptflowExceptionPresenter(ExceptionPresenter): @property def error_codes(self): """The hierarchy of the error codes. We follow the "Microsoft REST API Guidelines" to define error codes in a hierarchy style. See the below link for details: https://github.com/microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses For subclass of PromptflowException, use the ex.error_codes directly. For PromptflowException (not a subclass), the ex.error_code is None. The result should be: ["SystemError", {inner_exception type name if exist}] """ if self._ex.error_codes: return self._ex.error_codes # For PromptflowException (not a subclass), the ex.error_code is None. # Handle this case specifically. error_codes = [infer_error_code_from_class(SystemErrorException)] if self._ex.inner_exception: error_codes.append(infer_error_code_from_class(self._ex.inner_exception.__class__)) return error_codes def to_dict(self, *, include_debug_info=False): result = { "message": self._ex.message, "messageFormat": self._ex.message_format, "messageParameters": self._ex.serializable_message_parameters, "referenceCode": self._ex.reference_code, } result.update(self.error_code_recursed) if self._ex.additional_info: result["additionalInfo"] = [{"type": k, "info": v} for k, v in self._ex.additional_info.items()] if include_debug_info: result["debugInfo"] = self.debug_info return result class JsonSerializedPromptflowException(Exception): """Json serialized PromptflowException. This exception only has one argument message to avoid the argument missing error when load/dump with pickle in multiprocessing. Ref: https://bugs.python.org/issue32696 :param message: A Json serialized message describing the error. :type message: str """ def __init__(self, message): self.message = message super().__init__(self.message) def __str__(self): return self.message def to_dict(self, *, include_debug_info=False): # Return a dict representation of the inner exception. error_dict = json.loads(self.message) # The original serialized error might contain debugInfo. # We pop it out if include_debug_info is set to False. if not include_debug_info and "debugInfo" in error_dict: error_dict.pop("debugInfo") return error_dict def get_tb_next(tb: TracebackType, next_cnt: int): """Return the nth tb_next of input tb. If the tb does not have n tb_next, return the last tb which has a value. n = next_cnt """ while tb.tb_next and next_cnt > 0: tb = tb.tb_next next_cnt -= 1 return tb def last_frame_info(ex: Exception): """Return the line number where the error occurred.""" if ex: tb = TracebackException.from_exception(ex) last_frame = tb.stack[-1] if tb.stack else None if last_frame: return { "filename": last_frame.filename, "lineno": last_frame.lineno, "name": last_frame.name, } return {} def infer_error_code_from_class(cls): # Python has a built-in SystemError if cls == SystemErrorException: return RootErrorCode.SYSTEM_ERROR if cls == UserErrorException: return RootErrorCode.USER_ERROR if cls == ValidationException: return "ValidationError" return cls.__name__ def is_pf_core_frame(frame: FrameType): """Check if the frame is from promptflow core code.""" from promptflow import _core folder_of_core = os.path.dirname(_core.__file__) return folder_of_core in frame.f_code.co_filename def remove_suffix(text: str, suffix: str = None): """ Given a string, removes specified suffix, if it has. >>> remove_suffix('hello world', 'world') 'hello ' >>> remove_suffix('hello world', 'hello ') 'hello world' >>> remove_suffix('NoColumnFoundError', 'Error') 'NoColumnFound' :param text: string from which prefix will be removed. :param suffix: suffix to be removed. :return: string removed suffix. """ if not text or not suffix: return text if not text.endswith(suffix): return text return text[: -len(suffix)]
promptflow/src/promptflow/promptflow/_utils/exception_utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/exception_utils.py", "repo_id": "promptflow", "token_count": 5411 }
16
from io import StringIO from os import PathLike from typing import IO, AnyStr, Dict, Optional, Union from ruamel.yaml import YAML, YAMLError from promptflow._constants import DEFAULT_ENCODING from promptflow._utils._errors import YamlParseError def load_yaml(source: Optional[Union[AnyStr, PathLike, IO]]) -> Dict: # null check - just return an empty dict. # Certain CLI commands rely on this behavior to produce a resource # via CLI, which is then populated through CLArgs. """Load a local YAML file or a readable stream object. .. note:: 1. For a local file yaml .. code-block:: python yaml_path = "path/to/yaml" content = load_yaml(yaml_path) 2. For a readable stream object .. code-block:: python with open("path/to/yaml", "r", encoding="utf-8") as f: content = load_yaml(f) :param source: The relative or absolute path to the local file, or a readable stream object. :type source: str :return: A dictionary representation of the local file's contents. :rtype: Dict """ if source is None: return {} # pylint: disable=redefined-builtin input = None must_open_file = False try: # check source type by duck-typing it as an IOBase readable = source.readable() if not readable: # source is misformatted stream or file msg = "File Permissions Error: The already-open \n\n inputted file is not readable." raise Exception(msg) # source is an already-open stream or file, we can read() from it directly. input = source except AttributeError: # source has no writable() function, assume it's a string or file path. must_open_file = True if must_open_file: # If supplied a file path, open it. try: input = open(source, "r", encoding=DEFAULT_ENCODING) except OSError: # FileNotFoundError introduced in Python 3 msg = "No such file or directory: {}" raise Exception(msg.format(source)) # input should now be a readable file or stream. Parse it. cfg = {} try: yaml = YAML() yaml.preserve_quotes = True cfg = yaml.load(input) except YAMLError as e: msg = f"Error while parsing yaml file: {source} \n\n {str(e)}" raise Exception(msg) finally: if must_open_file: input.close() return cfg def load_yaml_string(yaml_string: str): """Load a yaml string. .. code-block:: python yaml_string = "some yaml string" object = load_yaml_string(yaml_string) :param yaml_string: A yaml string. :type yaml_string: str """ yaml = YAML() yaml.preserve_quotes = True return yaml.load(yaml_string) def dump_yaml(*args, **kwargs): """Dump data to a yaml string or stream. .. note:: 1. Dump to a yaml string .. code-block:: python data = {"key": "value"} yaml_string = dump_yaml(data) 2. Dump to a stream .. code-block:: python data = {"key": "value"} with open("path/to/yaml", "w", encoding="utf-8") as f: dump_yaml(data, f) """ yaml = YAML() yaml.default_flow_style = False # when using with no stream parameter but just the data, dump to yaml string and return if len(args) == 1: string_stream = StringIO() yaml.dump(args[0], string_stream, **kwargs) output_string = string_stream.getvalue() string_stream.close() return output_string # when using with stream parameter, dump to stream. e.g.: # open('test.yaml', 'w', encoding='utf-8') as f: # dump_yaml(data, f) elif len(args) == 2: return yaml.dump(*args, **kwargs) else: raise YamlParseError("Only 1 or 2 positional arguments are allowed for dump yaml util function.")
promptflow/src/promptflow/promptflow/_utils/yaml_utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/yaml_utils.py", "repo_id": "promptflow", "token_count": 1625 }
17
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.9.2, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional VERSION = "unknown" class AzureMachineLearningDesignerServiceClientConfiguration(Configuration): """Configuration for AzureMachineLearningDesignerServiceClient. Note that all parameters used to create this instance are saved as instance attributes. :param api_version: Api Version. The default value is "1.0.0". :type api_version: str """ def __init__( self, api_version="1.0.0", # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None super(AzureMachineLearningDesignerServiceClientConfiguration, self).__init__(**kwargs) self.api_version = api_version kwargs.setdefault('sdk_moniker', 'azuremachinelearningdesignerserviceclient/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or policies.HttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy')
promptflow/src/promptflow/promptflow/azure/_restclient/flow/_configuration.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/_configuration.py", "repo_id": "promptflow", "token_count": 812 }
18
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.9.2, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_create_flow_session_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "sessionId": _SERIALIZER.url("session_id", session_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_get_flow_session_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "sessionId": _SERIALIZER.url("session_id", session_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_delete_flow_session_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "sessionId": _SERIALIZER.url("session_id", session_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="DELETE", url=url, headers=header_parameters, **kwargs ) def build_list_flow_session_pip_packages_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}/pipPackages') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "sessionId": _SERIALIZER.url("session_id", session_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_poll_operation_status_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str action_type, # type: Union[str, "_models.SetupFlowSessionAction"] location, # type: str operation_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest api_version = kwargs.pop('api_version', "1.0.0") # type: Optional[str] type = kwargs.pop('type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}/{actionType}/locations/{location}/operations/{operationId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "sessionId": _SERIALIZER.url("session_id", session_id, 'str'), "actionType": _SERIALIZER.url("action_type", action_type, 'str'), "location": _SERIALIZER.url("location", location, 'str'), "operationId": _SERIALIZER.url("operation_id", operation_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if api_version is not None: query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') if type is not None: query_parameters['type'] = _SERIALIZER.query("type", type, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_standby_pools_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/standbypools') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) # fmt: on class FlowSessionsOperations(object): """FlowSessionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def create_flow_session( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str body=None, # type: Optional["_models.CreateFlowSessionRequest"] **kwargs # type: Any ): # type: (...) -> Any """create_flow_session. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param session_id: :type session_id: str :param body: :type body: ~flow.models.CreateFlowSessionRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: any, or the result of cls(response) :rtype: any :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Any] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowSessionRequest') else: _json = None request = build_create_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, content_type=content_type, json=_json, template_url=self.create_flow_session.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) if response.status_code == 200: deserialized = self._deserialize('object', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('object', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_flow_session.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}'} # type: ignore @distributed_trace def get_flow_session( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.GetTrainingSessionDto" """get_flow_session. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param session_id: :type session_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GetTrainingSessionDto, or the result of cls(response) :rtype: ~flow.models.GetTrainingSessionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.GetTrainingSessionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, template_url=self.get_flow_session.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('GetTrainingSessionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_session.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}'} # type: ignore @distributed_trace def delete_flow_session( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> Any """delete_flow_session. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param session_id: :type session_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: any, or the result of cls(response) :rtype: any :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Any] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, template_url=self.delete_flow_session.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) if response.status_code == 200: deserialized = self._deserialize('object', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('object', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized delete_flow_session.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}'} # type: ignore @distributed_trace def list_flow_session_pip_packages( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> str """list_flow_session_pip_packages. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param session_id: :type session_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_flow_session_pip_packages_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, template_url=self.list_flow_session_pip_packages.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_flow_session_pip_packages.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}/pipPackages'} # type: ignore @distributed_trace def poll_operation_status( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str action_type, # type: Union[str, "_models.SetupFlowSessionAction"] location, # type: str operation_id, # type: str api_version="1.0.0", # type: Optional[str] type=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Any """poll_operation_status. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param session_id: :type session_id: str :param action_type: :type action_type: str or ~flow.models.SetupFlowSessionAction :param location: :type location: str :param operation_id: :type operation_id: str :param api_version: Api Version. The default value is "1.0.0". :type api_version: str :param type: :type type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: any, or the result of cls(response) :rtype: any :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Any] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_poll_operation_status_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, action_type=action_type, location=location, operation_id=operation_id, api_version=api_version, type=type, template_url=self.poll_operation_status.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('object', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized poll_operation_status.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/{sessionId}/{actionType}/locations/{location}/operations/{operationId}'} # type: ignore @distributed_trace def get_standby_pools( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> List["_models.StandbyPoolProperties"] """get_standby_pools. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of StandbyPoolProperties, or the result of cls(response) :rtype: list[~flow.models.StandbyPoolProperties] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.StandbyPoolProperties"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_standby_pools_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, template_url=self.get_standby_pools.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[StandbyPoolProperties]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_standby_pools.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessions/standbypools'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flow_sessions_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flow_sessions_operations.py", "repo_id": "promptflow", "token_count": 10750 }
19
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # pylint: disable=protected-access import os import uuid from datetime import datetime, timedelta from pathlib import Path from typing import Dict, Optional, TypeVar, Union from azure.ai.ml._artifacts._blob_storage_helper import BlobStorageClient from azure.ai.ml._artifacts._gen2_storage_helper import Gen2StorageClient from azure.ai.ml._azure_environments import _get_storage_endpoint_from_metadata from azure.ai.ml._restclient.v2022_10_01.models import DatastoreType from azure.ai.ml._scope_dependent_operations import OperationScope from azure.ai.ml._utils._arm_id_utils import ( AMLNamedArmId, get_resource_name_from_arm_id, is_ARM_id_for_resource, remove_aml_prefix, ) from azure.ai.ml._utils._asset_utils import ( IgnoreFile, _build_metadata_dict, _validate_path, get_ignore_file, get_object_hash, ) from azure.ai.ml._utils._storage_utils import ( AzureMLDatastorePathUri, get_artifact_path_from_storage_url, get_storage_client, ) from azure.ai.ml.constants._common import SHORT_URI_FORMAT, STORAGE_ACCOUNT_URLS from azure.ai.ml.entities import Environment from azure.ai.ml.entities._assets._artifacts.artifact import Artifact, ArtifactStorageInfo from azure.ai.ml.entities._credentials import AccountKeyConfiguration from azure.ai.ml.entities._datastore._constants import WORKSPACE_BLOB_STORE from azure.ai.ml.exceptions import ErrorTarget, ValidationException from azure.ai.ml.operations._datastore_operations import DatastoreOperations from azure.storage.blob import BlobSasPermissions, generate_blob_sas from azure.storage.filedatalake import FileSasPermissions, generate_file_sas from ..._utils.logger_utils import LoggerFactory from ._fileshare_storeage_helper import FlowFileStorageClient module_logger = LoggerFactory.get_logger(__name__) def _get_datastore_name(*, datastore_name: Optional[str] = WORKSPACE_BLOB_STORE) -> str: datastore_name = WORKSPACE_BLOB_STORE if not datastore_name else datastore_name try: datastore_name = get_resource_name_from_arm_id(datastore_name) except (ValueError, AttributeError, ValidationException): module_logger.debug("datastore_name %s is not a full arm id. Proceed with a shortened name.\n", datastore_name) datastore_name = remove_aml_prefix(datastore_name) if is_ARM_id_for_resource(datastore_name): datastore_name = get_resource_name_from_arm_id(datastore_name) return datastore_name def get_datastore_info(operations: DatastoreOperations, name: str) -> Dict[str, str]: """Get datastore account, type, and auth information.""" datastore_info = {} if name: datastore = operations.get(name, include_secrets=True) else: datastore = operations.get_default(include_secrets=True) storage_endpoint = _get_storage_endpoint_from_metadata() credentials = datastore.credentials datastore_info["storage_type"] = datastore.type datastore_info["storage_account"] = datastore.account_name datastore_info["account_url"] = STORAGE_ACCOUNT_URLS[datastore.type].format( datastore.account_name, storage_endpoint ) if isinstance(credentials, AccountKeyConfiguration): datastore_info["credential"] = credentials.account_key else: try: datastore_info["credential"] = credentials.sas_token except Exception as e: # pylint: disable=broad-except if not hasattr(credentials, "sas_token"): datastore_info["credential"] = operations._credential else: raise e if datastore.type == DatastoreType.AZURE_BLOB: datastore_info["container_name"] = str(datastore.container_name) elif datastore.type == DatastoreType.AZURE_DATA_LAKE_GEN2: datastore_info["container_name"] = str(datastore.filesystem) elif datastore.type == DatastoreType.AZURE_FILE: datastore_info["container_name"] = str(datastore.file_share_name) else: raise Exception( f"Datastore type {datastore.type} is not supported for uploads. " f"Supported types are {DatastoreType.AZURE_BLOB} and {DatastoreType.AZURE_DATA_LAKE_GEN2}." ) return datastore_info def list_logs_in_datastore(ds_info: Dict[str, str], prefix: str, legacy_log_folder_name: str) -> Dict[str, str]: """Returns a dictionary of file name to blob or data lake uri with SAS token, matching the structure of RunDetails.logFiles. legacy_log_folder_name: the name of the folder in the datastore that contains the logs /azureml-logs/*.txt is the legacy log structure for commandJob and sweepJob /logs/azureml/*.txt is the legacy log structure for pipeline parent Job """ if ds_info["storage_type"] not in [ DatastoreType.AZURE_BLOB, DatastoreType.AZURE_DATA_LAKE_GEN2, ]: raise Exception("Only Blob and Azure DataLake Storage Gen2 datastores are supported.") storage_client = get_storage_client( credential=ds_info["credential"], container_name=ds_info["container_name"], storage_account=ds_info["storage_account"], storage_type=ds_info["storage_type"], ) items = storage_client.list(starts_with=prefix + "/user_logs/") # Append legacy log files if present items.extend(storage_client.list(starts_with=prefix + legacy_log_folder_name)) log_dict = {} for item_name in items: sub_name = item_name.split(prefix + "/")[1] if isinstance(storage_client, BlobStorageClient): token = generate_blob_sas( account_name=ds_info["storage_account"], container_name=ds_info["container_name"], blob_name=item_name, account_key=ds_info["credential"], permission=BlobSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(minutes=30), ) elif isinstance(storage_client, Gen2StorageClient): token = generate_file_sas( # pylint: disable=no-value-for-parameter account_name=ds_info["storage_account"], file_system_name=ds_info["container_name"], file_name=item_name, credential=ds_info["credential"], permission=FileSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(minutes=30), ) log_dict[sub_name] = "{}/{}/{}?{}".format(ds_info["account_url"], ds_info["container_name"], item_name, token) return log_dict def _get_default_datastore_info(datastore_operation): return get_datastore_info(datastore_operation, None) def upload_artifact( local_path: str, datastore_operation: DatastoreOperations, operation_scope: OperationScope, datastore_name: Optional[str], asset_hash: Optional[str] = None, show_progress: bool = True, asset_name: Optional[str] = None, asset_version: Optional[str] = None, ignore_file: IgnoreFile = IgnoreFile(None), sas_uri=None, ) -> ArtifactStorageInfo: """Upload local file or directory to datastore.""" if sas_uri: storage_client = get_storage_client(credential=None, storage_account=None, account_url=sas_uri) else: datastore_name = _get_datastore_name(datastore_name=datastore_name) datastore_info = get_datastore_info(datastore_operation, datastore_name) storage_client = FlowFileStorageClient( credential=datastore_info["credential"], file_share_name=datastore_info["container_name"], account_url=datastore_info["account_url"], azure_cred=datastore_operation._credential, ) artifact_info = storage_client.upload( local_path, asset_hash=asset_hash, show_progress=show_progress, name=asset_name, version=asset_version, ignore_file=ignore_file, ) artifact_info["remote path"] = os.path.join( storage_client.directory_client.directory_path, artifact_info["remote path"] ) return artifact_info def download_artifact( starts_with: Union[str, os.PathLike], destination: str, datastore_operation: DatastoreOperations, datastore_name: Optional[str], datastore_info: Optional[Dict] = None, ) -> str: """Download datastore path to local file or directory. :param Union[str, os.PathLike] starts_with: Prefix of blobs to download :param str destination: Path that files will be written to :param DatastoreOperations datastore_operation: Datastore operations :param Optional[str] datastore_name: name of datastore :param Dict datastore_info: the return value of invoking get_datastore_info :return str: Path that files were written to """ starts_with = starts_with.as_posix() if isinstance(starts_with, Path) else starts_with datastore_name = _get_datastore_name(datastore_name=datastore_name) if datastore_info is None: datastore_info = get_datastore_info(datastore_operation, datastore_name) storage_client = get_storage_client(**datastore_info) storage_client.download(starts_with=starts_with, destination=destination) return destination def download_artifact_from_storage_url( blob_url: str, destination: str, datastore_operation: DatastoreOperations, datastore_name: Optional[str], ) -> str: """Download datastore blob URL to local file or directory.""" datastore_name = _get_datastore_name(datastore_name=datastore_name) datastore_info = get_datastore_info(datastore_operation, datastore_name) starts_with = get_artifact_path_from_storage_url( blob_url=str(blob_url), container_name=datastore_info.get("container_name") ) return download_artifact( starts_with=starts_with, destination=destination, datastore_operation=datastore_operation, datastore_name=datastore_name, datastore_info=datastore_info, ) def download_artifact_from_aml_uri(uri: str, destination: str, datastore_operation: DatastoreOperations): """Downloads artifact pointed to by URI of the form `azureml://...` to destination. :param str uri: AzureML uri of artifact to download :param str destination: Path to download artifact to :param DatastoreOperations datastore_operation: datastore operations :return str: Path that files were downloaded to """ parsed_uri = AzureMLDatastorePathUri(uri) return download_artifact( starts_with=parsed_uri.path, destination=destination, datastore_operation=datastore_operation, datastore_name=parsed_uri.datastore, ) def aml_datastore_path_exists( uri: str, datastore_operation: DatastoreOperations, datastore_info: Optional[dict] = None ): """Checks whether `uri` of the form "azureml://" points to either a directory or a file. :param str uri: azure ml datastore uri :param DatastoreOperations datastore_operation: Datastore operation :param dict datastore_info: return value of get_datastore_info """ parsed_uri = AzureMLDatastorePathUri(uri) datastore_info = datastore_info or get_datastore_info(datastore_operation, parsed_uri.datastore) return get_storage_client(**datastore_info).exists(parsed_uri.path) def _upload_to_datastore( operation_scope: OperationScope, datastore_operation: DatastoreOperations, path: Union[str, Path, os.PathLike], artifact_type: str, datastore_name: Optional[str] = None, show_progress: bool = True, asset_name: Optional[str] = None, asset_version: Optional[str] = None, asset_hash: Optional[str] = None, ignore_file: Optional[IgnoreFile] = None, sas_uri: Optional[str] = None, # contains registry sas url ) -> ArtifactStorageInfo: _validate_path(path, _type=artifact_type) if not ignore_file: ignore_file = get_ignore_file(path) if not asset_hash: asset_hash = get_object_hash(path, ignore_file) artifact = upload_artifact( str(path), datastore_operation, operation_scope, datastore_name, show_progress=show_progress, asset_hash=asset_hash, asset_name=asset_name, asset_version=asset_version, ignore_file=ignore_file, sas_uri=sas_uri, ) return artifact def _upload_and_generate_remote_uri( operation_scope: OperationScope, datastore_operation: DatastoreOperations, path: Union[str, Path, os.PathLike], artifact_type: str = ErrorTarget.ARTIFACT, datastore_name: str = WORKSPACE_BLOB_STORE, show_progress: bool = True, ) -> str: # Asset name is required for uploading to a datastore asset_name = str(uuid.uuid4()) artifact_info = _upload_to_datastore( operation_scope=operation_scope, datastore_operation=datastore_operation, path=path, datastore_name=datastore_name, asset_name=asset_name, artifact_type=artifact_type, show_progress=show_progress, ) path = artifact_info.relative_path datastore = AMLNamedArmId(artifact_info.datastore_arm_id).asset_name return SHORT_URI_FORMAT.format(datastore, path) def _update_metadata(name, version, indicator_file, datastore_info) -> None: storage_client = get_storage_client(**datastore_info) if isinstance(storage_client, BlobStorageClient): _update_blob_metadata(name, version, indicator_file, storage_client) elif isinstance(storage_client, Gen2StorageClient): _update_gen2_metadata(name, version, indicator_file, storage_client) def _update_blob_metadata(name, version, indicator_file, storage_client) -> None: container_client = storage_client.container_client if indicator_file.startswith(storage_client.container): indicator_file = indicator_file.split(storage_client.container)[1] blob = container_client.get_blob_client(blob=indicator_file) blob.set_blob_metadata(_build_metadata_dict(name=name, version=version)) def _update_gen2_metadata(name, version, indicator_file, storage_client) -> None: artifact_directory_client = storage_client.file_system_client.get_directory_client(indicator_file) artifact_directory_client.set_metadata(_build_metadata_dict(name=name, version=version)) T = TypeVar("T", bound=Artifact) def _check_and_upload_path( artifact: T, asset_operations: Union["DataOperations", "ModelOperations", "CodeOperations", "FeatureSetOperations"], artifact_type: str, datastore_name: Optional[str] = None, sas_uri: Optional[str] = None, show_progress: bool = True, ): """Checks whether `artifact` is a path or a uri and uploads it to the datastore if necessary. param T artifact: artifact to check and upload param Union["DataOperations", "ModelOperations", "CodeOperations"] asset_operations: the asset operations to use for uploading param str datastore_name: the name of the datastore to upload to param str sas_uri: the sas uri to use for uploading """ from azure.ai.ml._utils.utils import is_mlflow_uri, is_url datastore_name = artifact.datastore if ( hasattr(artifact, "local_path") and artifact.local_path is not None or ( hasattr(artifact, "path") and artifact.path is not None and not (is_url(artifact.path) or is_mlflow_uri(artifact.path)) ) ): path = ( Path(artifact.path) if hasattr(artifact, "path") and artifact.path is not None else Path(artifact.local_path) ) if not path.is_absolute(): path = Path(artifact.base_path, path).resolve() uploaded_artifact = _upload_to_datastore( asset_operations._operation_scope, asset_operations._datastore_operation, path, datastore_name=datastore_name, asset_name=artifact.name, asset_version=str(artifact.version), asset_hash=artifact._upload_hash if hasattr(artifact, "_upload_hash") else None, sas_uri=sas_uri, artifact_type=artifact_type, show_progress=show_progress, ignore_file=getattr(artifact, "_ignore_file", None), ) return uploaded_artifact def _check_and_upload_env_build_context( environment: Environment, operations: "EnvironmentOperations", sas_uri=None, show_progress: bool = True, ) -> Environment: if environment.path: uploaded_artifact = _upload_to_datastore( operations._operation_scope, operations._datastore_operation, environment.path, asset_name=environment.name, asset_version=str(environment.version), asset_hash=environment._upload_hash, sas_uri=sas_uri, artifact_type=ErrorTarget.ENVIRONMENT, datastore_name=environment.datastore, show_progress=show_progress, ) # TODO: Depending on decision trailing "/" needs to stay or not. EMS requires it to be present environment.build.path = uploaded_artifact.full_storage_path + "/" return environment
promptflow/src/promptflow/promptflow/azure/operations/_artifact_utilities.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/operations/_artifact_utilities.py", "repo_id": "promptflow", "token_count": 6848 }
20
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from dataclasses import dataclass from datetime import datetime from itertools import chain from typing import Any, List, Mapping from promptflow._utils.exception_utils import ExceptionPresenter, RootErrorCode from promptflow._utils.openai_metrics_calculator import OpenAIMetricsCalculator from promptflow.contracts.run_info import RunInfo, Status from promptflow.executor._result import AggregationResult, LineResult @dataclass class LineError: """The error of a line in a batch run. It contains the line number and the error dict of a failed line in the batch run. The error dict is gengerated by ExceptionPresenter.to_dict(). """ line_number: int error: Mapping[str, Any] def to_dict(self): return { "line_number": self.line_number, "error": self.error, } @dataclass class ErrorSummary: """The summary of errors in a batch run. :param failed_user_error_lines: The number of lines that failed with user error. :type failed_user_error_lines: int :param failed_system_error_lines: The number of lines that failed with system error. :type failed_system_error_lines: int :param error_list: The line number and error dict of failed lines in the line results. :type error_list: List[~promptflow.batch._result.LineError] :param aggr_error_dict: The dict of node name and error dict of failed nodes in the aggregation result. :type aggr_error_dict: Mapping[str, Any] :param batch_error_dict: The dict of batch run error. :type batch_error_dict: Mapping[str, Any] """ failed_user_error_lines: int failed_system_error_lines: int error_list: List[LineError] aggr_error_dict: Mapping[str, Any] batch_error_dict: Mapping[str, Any] @staticmethod def create(line_results: List[LineResult], aggr_result: AggregationResult, exception: Exception = None): failed_user_error_lines = 0 failed_system_error_lines = 0 error_list: List[LineError] = [] for line_result in line_results: if line_result.run_info.status != Status.Failed: continue flow_run = line_result.run_info if flow_run.error.get("code", "") == RootErrorCode.USER_ERROR: failed_user_error_lines += 1 else: failed_system_error_lines += 1 line_error = LineError( line_number=flow_run.index, error=flow_run.error, ) error_list.append(line_error) error_summary = ErrorSummary( failed_user_error_lines=failed_user_error_lines, failed_system_error_lines=failed_system_error_lines, error_list=sorted(error_list, key=lambda x: x.line_number), aggr_error_dict={ node_name: node_run_info.error for node_name, node_run_info in aggr_result.node_run_infos.items() if node_run_info.status == Status.Failed }, batch_error_dict=ExceptionPresenter.create(exception).to_dict() if exception else None, ) return error_summary @dataclass class SystemMetrics: """The system metrics of a batch run.""" total_tokens: int prompt_tokens: int completion_tokens: int duration: float # in seconds @staticmethod def create( start_time: datetime, end_time: datetime, line_results: List[LineResult], aggr_results: AggregationResult ): openai_metrics = SystemMetrics._get_openai_metrics(line_results, aggr_results) return SystemMetrics( total_tokens=openai_metrics.get("total_tokens", 0), prompt_tokens=openai_metrics.get("prompt_tokens", 0), completion_tokens=openai_metrics.get("completion_tokens", 0), duration=(end_time - start_time).total_seconds(), ) @staticmethod def _get_openai_metrics(line_results: List[LineResult], aggr_results: AggregationResult): node_run_infos = _get_node_run_infos(line_results, aggr_results) total_metrics = {} calculator = OpenAIMetricsCalculator() for run_info in node_run_infos: metrics = SystemMetrics._try_get_openai_metrics(run_info) if metrics: calculator.merge_metrics_dict(total_metrics, metrics) else: api_calls = run_info.api_calls or [] for call in api_calls: metrics = calculator.get_openai_metrics_from_api_call(call) calculator.merge_metrics_dict(total_metrics, metrics) return total_metrics def _try_get_openai_metrics(run_info: RunInfo): openai_metrics = {} if run_info.system_metrics: for metric in ["total_tokens", "prompt_tokens", "completion_tokens"]: if metric not in run_info.system_metrics: return False openai_metrics[metric] = run_info.system_metrics[metric] return openai_metrics def to_dict(self): return { "total_tokens": self.total_tokens, "prompt_tokens": self.prompt_tokens, "completion_tokens": self.completion_tokens, "duration": self.duration, } @dataclass class BatchResult: """The result of a batch run.""" status: Status total_lines: int completed_lines: int failed_lines: int node_status: Mapping[str, int] start_time: datetime end_time: datetime metrics: Mapping[str, str] system_metrics: SystemMetrics error_summary: ErrorSummary @classmethod def create( cls, start_time: datetime, end_time: datetime, line_results: List[LineResult], aggr_result: AggregationResult, status: Status = Status.Completed, exception: Exception = None, ) -> "BatchResult": total_lines = len(line_results) completed_lines = sum(line_result.run_info.status == Status.Completed for line_result in line_results) failed_lines = total_lines - completed_lines if exception: status = Status.Failed return cls( status=status, total_lines=total_lines, completed_lines=completed_lines, failed_lines=failed_lines, node_status=BatchResult._get_node_status(line_results, aggr_result), start_time=start_time, end_time=end_time, metrics=aggr_result.metrics, system_metrics=SystemMetrics.create(start_time, end_time, line_results, aggr_result), error_summary=ErrorSummary.create(line_results, aggr_result, exception), ) @staticmethod def _get_node_status(line_results: List[LineResult], aggr_result: AggregationResult): node_run_infos = _get_node_run_infos(line_results, aggr_result) node_status = {} for node_run_info in node_run_infos: key = f"{node_run_info.node}.{node_run_info.status.value.lower()}" node_status[key] = node_status.get(key, 0) + 1 return node_status def _get_node_run_infos(line_results: List[LineResult], aggr_result: AggregationResult): line_node_run_infos = ( node_run_info for line_result in line_results for node_run_info in line_result.node_run_infos.values() ) aggr_node_run_infos = (node_run_info for node_run_info in aggr_result.node_run_infos.values()) return chain(line_node_run_infos, aggr_node_run_infos)
promptflow/src/promptflow/promptflow/batch/_result.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/batch/_result.py", "repo_id": "promptflow", "token_count": 3273 }
21
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import asyncio import contextvars import inspect import os import signal import threading import time import traceback from asyncio import Task from concurrent.futures import ThreadPoolExecutor from typing import Any, Dict, List, Tuple from promptflow._core.flow_execution_context import FlowExecutionContext from promptflow._core.tools_manager import ToolsManager from promptflow._utils.logger_utils import flow_logger from promptflow._utils.utils import extract_user_frame_summaries, set_context from promptflow.contracts.flow import Node from promptflow.executor._dag_manager import DAGManager from promptflow.executor._errors import NoNodeExecutedError PF_ASYNC_NODE_SCHEDULER_EXECUTE_TASK_NAME = "_pf_async_nodes_scheduler.execute" DEFAULT_TASK_LOGGING_INTERVAL = 60 ASYNC_DAG_MANAGER_COMPLETED = False class AsyncNodesScheduler: def __init__( self, tools_manager: ToolsManager, node_concurrency: int, ) -> None: self._tools_manager = tools_manager self._node_concurrency = node_concurrency self._task_start_time = {} self._task_last_log_time = {} self._dag_manager_completed_event = threading.Event() async def execute( self, nodes: List[Node], inputs: Dict[str, Any], context: FlowExecutionContext, ) -> Tuple[dict, dict]: # TODO: Provide cancel API if threading.current_thread() is threading.main_thread(): signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) else: flow_logger.info( "Current thread is not main thread, skip signal handler registration in AsyncNodesScheduler." ) # Semaphore should be created in the loop, otherwise it will not work. loop = asyncio.get_running_loop() self._semaphore = asyncio.Semaphore(self._node_concurrency) monitor = threading.Thread( target=monitor_long_running_coroutine, args=(loop, self._task_start_time, self._task_last_log_time, self._dag_manager_completed_event), daemon=True, ) monitor.start() # Set the name of scheduler tasks to avoid monitoring its duration task = asyncio.current_task() task.set_name(PF_ASYNC_NODE_SCHEDULER_EXECUTE_TASK_NAME) parent_context = contextvars.copy_context() executor = ThreadPoolExecutor( max_workers=self._node_concurrency, initializer=set_context, initargs=(parent_context,) ) # Note that we must not use `with` statement to manage the executor. # This is because it will always call `executor.shutdown()` when exiting the `with` block. # Then the event loop will wait for all tasks to be completed before raising the cancellation error. # See reference: https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Executor outputs = await self._execute_with_thread_pool(executor, nodes, inputs, context) executor.shutdown() return outputs async def _execute_with_thread_pool( self, executor: ThreadPoolExecutor, nodes: List[Node], inputs: Dict[str, Any], context: FlowExecutionContext, ) -> Tuple[dict, dict]: flow_logger.info(f"Start to run {len(nodes)} nodes with the current event loop.") dag_manager = DAGManager(nodes, inputs) task2nodes = self._execute_nodes(dag_manager, context, executor) while not dag_manager.completed(): task2nodes = await self._wait_and_complete_nodes(task2nodes, dag_manager) submitted_tasks2nodes = self._execute_nodes(dag_manager, context, executor) task2nodes.update(submitted_tasks2nodes) # Set the event to notify the monitor thread to exit # Ref: https://docs.python.org/3/library/threading.html#event-objects self._dag_manager_completed_event.set() for node in dag_manager.bypassed_nodes: dag_manager.completed_nodes_outputs[node] = None return dag_manager.completed_nodes_outputs, dag_manager.bypassed_nodes async def _wait_and_complete_nodes(self, task2nodes: Dict[Task, Node], dag_manager: DAGManager) -> Dict[Task, Node]: if not task2nodes: raise NoNodeExecutedError("No nodes are ready for execution, but the flow is not completed.") tasks = [task for task in task2nodes] for task in tasks: self._task_start_time[task] = time.time() done, _ = await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED) dag_manager.complete_nodes({task2nodes[task].name: task.result() for task in done}) for task in done: del task2nodes[task] return task2nodes def _execute_nodes( self, dag_manager: DAGManager, context: FlowExecutionContext, executor: ThreadPoolExecutor, ) -> Dict[Task, Node]: # Bypass nodes and update node run info until there are no nodes to bypass nodes_to_bypass = dag_manager.pop_bypassable_nodes() while nodes_to_bypass: for node in nodes_to_bypass: context.bypass_node(node) nodes_to_bypass = dag_manager.pop_bypassable_nodes() # Create tasks for ready nodes return { self._create_node_task(node, dag_manager, context, executor): node for node in dag_manager.pop_ready_nodes() } async def run_task_with_semaphore(self, coroutine): async with self._semaphore: return await coroutine def _create_node_task( self, node: Node, dag_manager: DAGManager, context: FlowExecutionContext, executor: ThreadPoolExecutor, ) -> Task: f = self._tools_manager.get_tool(node.name) kwargs = dag_manager.get_node_valid_inputs(node, f) if inspect.iscoroutinefunction(f): # For async task, it will not be executed before calling create_task. task = context.invoke_tool_async(node, f, kwargs) else: # For sync task, convert it to async task and run it in executor thread. # Even though the task is put to the thread pool, thread.start will only be triggered after create_task. task = self._sync_function_to_async_task(executor, context, node, f, kwargs) # Set the name of the task to the node name for debugging purpose # It does not need to be unique by design. # Wrap the coroutine in a task with asyncio.create_task to schedule it for event loop execution # The task is created and added to the event loop, but the exact execution depends on loop's scheduling return asyncio.create_task(self.run_task_with_semaphore(task), name=node.name) @staticmethod async def _sync_function_to_async_task( executor: ThreadPoolExecutor, context: FlowExecutionContext, node, f, kwargs, ): # The task will not be executed before calling create_task. return await asyncio.get_running_loop().run_in_executor(executor, context.invoke_tool, node, f, kwargs) def signal_handler(sig, frame): """ Start a thread to monitor coroutines after receiving signal. """ flow_logger.info(f"Received signal {sig}({signal.Signals(sig).name}), start coroutine monitor thread.") loop = asyncio.get_running_loop() monitor = threading.Thread(target=monitor_coroutine_after_cancellation, args=(loop,)) monitor.start() raise KeyboardInterrupt def log_stack_recursively(task: asyncio.Task, elapse_time: float): """Recursively log the frame of a task or coroutine. Traditional stacktrace would stop at the first awaited nested inside the coroutine. :param task: Task to log :type task_or_coroutine: asyncio.Task :param elapse_time: Seconds elapsed since the task started :type elapse_time: float """ # We cannot use task.get_stack() to get the stack, because only one stack frame is # returned for a suspended coroutine because of the implementation of CPython # Ref: https://github.com/python/cpython/blob/main/Lib/asyncio/tasks.py # "only one stack frame is returned for a suspended coroutine." task_or_coroutine = task frame_summaries = [] # Collect frame_summaries along async call chain while True: if isinstance(task_or_coroutine, asyncio.Task): # For a task, get the coroutine it's running coroutine: asyncio.coroutine = task_or_coroutine.get_coro() elif asyncio.iscoroutine(task_or_coroutine): coroutine = task_or_coroutine else: break frame = coroutine.cr_frame stack_summary: traceback.StackSummary = traceback.extract_stack(frame) frame_summaries.extend(stack_summary) task_or_coroutine = coroutine.cr_await # Format the frame summaries to warning message if frame_summaries: user_frame_summaries = extract_user_frame_summaries(frame_summaries) stack_messages = traceback.format_list(user_frame_summaries) all_stack_message = "".join(stack_messages) task_msg = ( f"Task {task.get_name()} has been running for {elapse_time:.0f} seconds," f" stacktrace:\n{all_stack_message}" ) flow_logger.warning(task_msg) def monitor_long_running_coroutine( loop: asyncio.AbstractEventLoop, task_start_time: dict, task_last_log_time: dict, dag_manager_completed_event: threading.Event, ): flow_logger.info("monitor_long_running_coroutine started") logging_interval = DEFAULT_TASK_LOGGING_INTERVAL logging_interval_in_env = os.environ.get("PF_TASK_PEEKING_INTERVAL") if logging_interval_in_env: try: value = int(logging_interval_in_env) if value <= 0: raise ValueError logging_interval = value flow_logger.info( f"Using value of PF_TASK_PEEKING_INTERVAL in environment variable as " f"logging interval: {logging_interval_in_env}" ) except ValueError: flow_logger.warning( f"Value of PF_TASK_PEEKING_INTERVAL in environment variable ('{logging_interval_in_env}') " f"is invalid, use default value {DEFAULT_TASK_LOGGING_INTERVAL}" ) while not dag_manager_completed_event.is_set(): running_tasks = [task for task in asyncio.all_tasks(loop) if not task.done()] # get duration of running tasks for task in running_tasks: # Do not monitor the scheduler task if task.get_name() == PF_ASYNC_NODE_SCHEDULER_EXECUTE_TASK_NAME: continue # Do not monitor sync tools, since they will run in executor thread and will # be monitored by RepeatLogTimer. task_stacks = task.get_stack() if ( task_stacks and task_stacks[-1].f_code and task_stacks[-1].f_code.co_name == AsyncNodesScheduler._sync_function_to_async_task.__name__ ): continue if task_start_time.get(task) is None: flow_logger.warning(f"task {task.get_name()} has no start time, which should not happen") else: duration = time.time() - task_start_time[task] if duration > logging_interval: if ( task_last_log_time.get(task) is None or time.time() - task_last_log_time[task] > logging_interval ): log_stack_recursively(task, duration) task_last_log_time[task] = time.time() time.sleep(1) def monitor_coroutine_after_cancellation(loop: asyncio.AbstractEventLoop): """Exit the process when all coroutines are done. We add this function because if a sync tool is running in async mode, the task will be cancelled after receiving SIGINT, but the thread will not be terminated and blocks the program from exiting. :param loop: event loop of main thread :type loop: asyncio.AbstractEventLoop """ # TODO: Use environment variable to ensure it is flow test scenario to avoid unexpected exit. # E.g. Customer is integrating Promptflow in their own code, and they want to handle SIGINT by themselves. max_wait_seconds = os.environ.get("PF_WAIT_SECONDS_AFTER_CANCELLATION", 30) all_tasks_are_done = False exceeded_wait_seconds = False thread_start_time = time.time() flow_logger.info(f"Start to monitor coroutines after cancellation, max wait seconds: {max_wait_seconds}s") while not all_tasks_are_done and not exceeded_wait_seconds: # For sync tool running in async mode, the task will be cancelled, # but the thread will not be terminated, we exit the program despite of it. # TODO: Detect whether there is any sync tool running in async mode, # if there is none, avoid sys.exit and let the program exit gracefully. all_tasks_are_done = all(task.done() for task in asyncio.all_tasks(loop)) if all_tasks_are_done: flow_logger.info("All coroutines are done. Exiting.") # We cannot ensure persist_flow_run is called before the process exits in the case that there is # non-daemon thread running, sleep for 3 seconds as a best effort. # If the caller wants to ensure flow status is cancelled in storage, it should check the flow status # after timeout and set the flow status to Cancelled. time.sleep(3) # Use os._exit instead of sys.exit, so that the process can stop without # waiting for the thread created by run_in_executor to finish. # sys.exit: https://docs.python.org/3/library/sys.html#sys.exit # Raise a SystemExit exception, signaling an intention to exit the interpreter. # Specifically, it does not exit non-daemon thread # os._exit https://docs.python.org/3/library/os.html#os._exit # Exit the process with status n, without calling cleanup handlers, flushing stdio buffers, etc. # Specifically, it stops process without waiting for non-daemon thread. os._exit(0) exceeded_wait_seconds = time.time() - thread_start_time > max_wait_seconds time.sleep(1) if exceeded_wait_seconds: if not all_tasks_are_done: flow_logger.info( f"Not all coroutines are done within {max_wait_seconds}s" " after cancellation. Exiting the process despite of them." " Please config the environment variable" " PF_WAIT_SECONDS_AFTER_CANCELLATION if your tool needs" " more time to clean up after cancellation." ) remaining_tasks = [task for task in asyncio.all_tasks(loop) if not task.done()] flow_logger.info(f"Remaining tasks: {[task.get_name() for task in remaining_tasks]}") time.sleep(3) os._exit(0)
promptflow/src/promptflow/promptflow/executor/_async_nodes_scheduler.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/_async_nodes_scheduler.py", "repo_id": "promptflow", "token_count": 6253 }
22
[tool.black] line-length = 120 [tool.pytest.ini_options] markers = [ "sdk_test", "cli_test", "unittest", "e2etest", "flaky", "endpointtest", "mt_endpointtest", ] [tool.coverage.run] omit = [ # omit anything in a _restclient directory anywhere "*/_restclient/*", ]
promptflow/src/promptflow/pyproject.toml/0
{ "file_path": "promptflow/src/promptflow/pyproject.toml", "repo_id": "promptflow", "token_count": 139 }
23
{ "version": "0.2", "language": "en", "languageId": "python", "dictionaries": [ "powershell", "python", "go", "css", "html", "bash", "npm", "softwareTerms", "en_us", "en-gb" ], "ignorePaths": [ "**/*.js", "**/*.pyc", "**/*.log", "**/*.jsonl", "**/*.xml", "**/*.txt", ".gitignore", "scripts/docs/_build/**", "src/promptflow/promptflow/azure/_restclient/flow/**", "src/promptflow/promptflow/azure/_restclient/swagger.json", "src/promptflow/tests/**", "src/promptflow-tools/tests/**", "**/flow.dag.yaml", "**/setup.py", "scripts/installer/curl_install_pypi/**", "scripts/installer/windows/**", "src/promptflow/promptflow/_sdk/_service/pfsvc.py" ], "words": [ "aoai", "amlignore", "mldesigner", "faiss", "serp", "azureml", "mlflow", "vnet", "openai", "pfazure", "eastus", "azureai", "vectordb", "Qdrant", "Weaviate", "env", "e2etests", "e2etest", "tablefmt", "logprobs", "logit", "hnsw", "chatml", "UNLCK", "KHTML", "numlines", "azurecr", "centralus", "Policheck", "azuremlsdktestpypi", "rediraffe", "pydata", "ROBOCOPY", "undoc", "retriable", "pfcli", "pfutil", "mgmt", "wsid", "westus", "msrest", "cref", "msal", "pfbytes", "Apim", "junit", "nunit", "astext", "Likert", "pfsvc" ], "ignoreWords": [ "openmpi", "ipynb", "xdist", "pydash", "tqdm", "rtype", "epocs", "fout", "funcs", "todos", "fstring", "creds", "zipp", "gmtime", "pyjwt", "nbconvert", "nbformat", "pypandoc", "dotenv", "miniconda", "datas", "tcgetpgrp", "yamls", "fmt", "serpapi", "genutils", "metadatas", "tiktoken", "bfnrt", "orelse", "thead", "sympy", "ghactions", "esac", "MSRC", "pycln", "strictyaml", "psutil", "getch", "tcgetattr", "TCSADRAIN", "stringio", "jsonify", "werkzeug", "continuumio", "pydantic", "iterrows", "dtype", "fillna", "nlines", "aggr", "tcsetattr", "pysqlite", "AADSTS700082", "Pyinstaller", "runsvdir", "runsv", "levelno", "LANCZOS", "Mobius", "ruamel", "gunicorn", "pkill", "pgrep", "Hwfoxydrg", "llms", "vcrpy", "uionly", "llmops", "Abhishek", "restx", "httpx", "tiiuae", "nohup", "metagenai", "WBITS", "laddr", "nrows", "Dumpable", "XCLASS", "otel", "OTLP", "spawnv", "spawnve", "addrs" ], "flagWords": [ "Prompt Flow" ], "allowCompoundWords": true }
promptflow/.cspell.json/0
{ "file_path": "promptflow/.cspell.json", "repo_id": "promptflow", "token_count": 1604 }
0
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.8 BLOCK --> ## Security Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/). If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/opensource/security/definition), please report it to us as described below. ## Reporting Security Issues **Please do not report security vulnerabilities through public GitHub issues.** Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/opensource/security/create-report). If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/opensource/security/pgpkey). You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://aka.ms/opensource/security/msrc). Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue: * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.) * Full paths of source file(s) related to the manifestation of the issue * The location of the affected source code (tag/branch/commit or direct URL) * Any special configuration required to reproduce the issue * Step-by-step instructions to reproduce the issue * Proof-of-concept or exploit code (if possible) * Impact of the issue, including how an attacker might exploit the issue This information will help us triage your report more quickly. If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/opensource/security/bounty) page for more details about our active programs. ## Preferred Languages We prefer all communications to be in English. ## Policy Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/opensource/security/cvd). <!-- END MICROSOFT SECURITY.MD BLOCK -->
promptflow/SECURITY.md/0
{ "file_path": "promptflow/SECURITY.md", "repo_id": "promptflow", "token_count": 674 }
1

Dataset Card for "promptflow"

More Information needed

Downloads last month
31